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1. Introduction

1.1. Background

A weak notion of differentiable charts in singular metric spaces first arose in Cheeger’s 
seminal paper [7]. Lipschitz differentiability charts, or Cheeger charts, have since become 
ubiquitous in analysis in metric spaces, with connections to rectifiability, (non-)embed-
ding results and other topics in geometric measure theory. A Cheeger chart (U, ϕ) consists 
of a Borel set U ⊂ X and a Lipschitz map ϕ : X → Rn such that every f ∈ LIP(X)
admits a differential x �→ dxf : U → (Rn)∗, uniquely determined for μ-a.e. x ∈ U , 
satisfying

f(y) − f(x) = dxf((ϕ(y) − ϕ(x)) + o(d(x, y)). (1.1)

Cheeger charts describe the infinitesimal behaviour of Lipschitz functions but are not 
well suited for studying Sobolev functions in the absence of additional assumptions. In 
[9] the first and third named authors developed p-weak charts, a further weakening of 
Cheeger charts. We refer to Section 2 for their definition and mention here that p-weak 
charts control the behaviour of Sobolev functions curvewise and exist under very mild as-
sumptions, e.g. when the underlying space has finite Hausdorff dimension. While weaker 
than the notion of Cheeger charts, the existence of non-trivial p-weak charts guarantees 
the existence of non-negligible families of curves, and induces a pointwise norm given 
as the essential supremum of directional derivatives along these curves. Indeed, Sobolev 
functions admit a p-weak differential with respect to p-weak charts, and the minimal 
upper gradient is recovered as the pointwise norm of the differential.

In this paper we consider products of spaces admitting a p-weak differentiable struc-
ture and prove that they likewise admit a p-weak differentiable structure.

1.2. Statement of main results

Let X = (X, dX , μ) and Y = (Y, dY , ν) be two metric measure spaces, i.e. complete 
separable metric spaces equipped with Radon measures that are finite on balls. Through-
out this paper we equip the product space X × Y with the product measure μ × ν and 
metric

d((x, y), (x′, y′)) := ‖(dX(x, x′), dY (y, y′))‖, (x, y), (x′, y′) ∈ X × Y, (1.2)
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where ‖ · ‖ is a norm on R2. Note that the behaviour of the norm on the first quadrant 
determines the metric. In the theorem below we denote by

‖(x, y)‖′ := max{|ax + by| : ‖(a, b)‖ = 1, a, b ≥ 0}, (x, y) ∈ R2,

the partial dual norm of a given planar norm ‖ · ‖. While ‖ · ‖′ ≤ ‖ · ‖∗ in general, 
the equality ‖ · ‖′ = ‖ · ‖∗ holds for lp-norms (and more generally norms satisfying 
‖(a, b)‖ = ‖(|a|, |b|)‖ for (a, b) ∈ R2). Roughly speaking the need for the partial (rather 
than the “full”) dual norm comes from the fact that the metric speed of product curves 
does not distinguish between the direction in which each of the component curves is 
traversed, see estimate (4.3) in the proof of Proposition 4.2.

Theorem 1.1. Suppose that (U, ϕ) and (V, ψ) are p-weak charts of dimension N and M
in X and Y , respectively. Then (U × V, ϕ ×ψ) is an (N +M)-dimensional p-weak chart 
for X × Y . The local norm on (RN )∗ × (RM )∗ ≡ (RN+M )∗ is given by

|(ξX , ξY )|(x,y) = ‖(|ξX |x, |ξY |y)‖′, (ξX , ξY ) ∈ (RN+M )∗,

for μ × ν-almost every (x, y) ∈ X × Y .

Theorem 1.1 yields the following immediate corollary.

Corollary 1.2. Let X and Y be two metric measure spaces which admit a p-weak differen-
tiable structure. Then X×Y with the product metric (1.2) admits a p-weak differentiable 
structure.

In proving Theorem 1.1 we will use a characterization of p-weak charts in terms of 
existence and uniqueness of differentials in the spirit of (1.1). In the following definition, 
let U ⊂ X be a Borel set with μ(U) > 0 and ϕ ∈ N1,p

loc (X; RN ).

Definition 1.3. A Borel map ξ : U → (RN )∗ is a p-weak differential of a function f ∈
N1,p(X) with respect to (U, ϕ), if

(f ◦ γ)′t = ξγt
((ϕ ◦ γ)′t), a.e. t ∈ γ−1(U) (1.3)

for p-a.e. curve γ in X.

Note that there is no uniqueness condition imposed in the definition above. We say 
that f ∈ N1,p(X) admits a unique p-weak differential with respect to (U, ϕ), if the map ξ
in (1.3) is unique in the following sense: if ξ′ : U → (RN )∗ is another Borel map satisfying 
(1.3) for p-a.e. γ, then ξ = ξ′ μ-a.e. on U .

Theorem 1.4. Let U ⊂ X be a Borel set with μ(U) > 0 and ϕ : X → RN a Lipschitz 
map. The following are equivalent.
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(1) (U, ϕ) is a p-weak chart;
(2) every f ∈ N1,p(X) admits a unique differential df : U → (RN )∗ with respect to 

(U, ϕ);
(3) every f ∈ LIP(X) admits a unique differential df : U → (RN )∗ with respect to 

(U, ϕ).

1.3. Application: tensorization problem of Sobolev spaces

We use Theorem 1.1 and Corollary 1.2 to make partial progress on the “tensorization 
problem” for Sobolev spaces. The tensorization problem first appeared in [4] and was 
formulated using Sobolev spaces defined via test plans, which we denote here by W 1,p, 
see Definition 2.4. It has later been investigated e.g. in [5]. Given p ≥ 1, the Beppo–Levi
space J1,p(X, Y ) consists of Borel functions f ∈ Lp(X × Y ), which satisfy the following:

(a1) For μX -a.e. x ∈ X, fx := f(x, ·) ∈ W 1,p(Y );
(a2) For μY -a.e. y ∈ Y , fy := f(·, y) ∈ W 1,p(X), and
(a3)

ˆ

X×Y

(|Dfy|pp(x) + |Dfx|pp(y))dμ(x)dν(y) < ∞.

We refer to the Appendix for the measurability of the integrand in (a3). Observe that, 
although the Sobolev space W 1,p and N1,p are isometrically isomorphic, it is not trivial 
that one can replace W 1,p by N1,p in (a1) and (a2), a point we address in Section 5. The 
space J1,p(X, Y ) equipped with the norm ‖f‖J1,p := (‖f‖Lp + [f ]pJ1,p)1/p is a Banach 
space, where [f ]J1,p is the seminorm

[f ]J1,p =

⎛⎝ ˆ

X×Y

(‖(|Dfy|p(x), |Dfx|p(y))‖′)pdμ(x)dν(y)

⎞⎠1/p

. (1.4)

The “tensorization problem” of Sobolev spaces asks whether or not the equality

W 1,p(X × Y ) = J1,p(X,Y ) (1.5)

holds. Roughly speaking this amounts to asking whether knowledge of the directional 
derivatives in the X and Y directions is enough to ensure Sobolev regularity in X × Y . 
While the inclusion W 1,p(X × Y ) ⊂ J1,p(X, Y ) is elementary not much else is known 
without additional assumptions.

Theorem 1.5. Suppose X and Y admit a p-weak differentiable structure and let f ∈
N1,p(X × Y ). Then

df(x,y) = (dxf
y,dyfx)
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and

|Df |p(x, y) = ‖(|Dfy|p(x), |Dfx|p(y))‖′

for μ ×ν-a.e. (x, y). In particular, the embedding W 1,p(X×Y ) ⊂ J1,p(X, Y ) is isometric.

Theorem 1.5 leaves open the question of equality in (1.5) but shows that the elemen-
tary inclusion W 1,p(X × Y ) ⊂ J1,p(X, Y ) is isometric (e.g. when the spaces are finite 
dimensional), providing partial evidence in favour of the tensorization property.

While a full solution to the tensorization problem remains open, we are able to estab-
lish (1.5) under the additional assumption that one of the factors is a PI-space. Recall 
that a p-PI space is a complete doubling metric measure space supporting a weak p-
Poincaré inequality, cf. [12].

Theorem 1.6. Suppose that X is a p-PI-space and Y admits a p-weak differential struc-
ture. Then W 1,p(X × Y ) = J1,p(X, Y ) and the norms coincide.

Previously the same conclusion was (essentially) known to hold if both factors are 
PI-spaces, see [5, Theorem 3.4] for a proof in the case p = 2. Further, in [10] the authors 
obtained independently similar results. Their results apply to p = 2, but also include 
warped products. The crucial proof technique of using a discrete convolution in one of 
the factors is common to both the present paper and [10].
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2. Preliminaries

2.1. Product spaces

Let X and Y be complete separable metric spaces, and ‖ ·‖ a norm on R2. Throughout 
this paper we will use the product metric on X × Y defined by

d((x, y), (x′, y′)) := ‖(dX(x, x′), dY (y, y′))‖, (x, y), (x′, y′) ∈ X × Y.

Given an absolutely continuous curve γ = (α, β) in X × Y , the metric speed satisfies

|(α, β)′t| = ‖(|α′
t|, |β′

t|)‖ a.e. t,
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where |α′
t| and |β′

t| are the metric speeds of the curves α and β with respect to the 
metrics dX and dY , respectively.

Horizontal curves are curves whose Y -component is constant, and their collection is 
denoted H([0, 1]; X × Y ). Similarly, vertical curves have constant X-component, and 
their collection is denoted V ([0, 1]; X×Y ). In Sections 5 and 6 we will need the notion of 
horizontal-vertical curves which are obtained as concatenations of horizontal and vertical 
curves. The formal definition is given below.

Definition 2.1. A curve γ = (α, β) ∈ AC([0, 1]; X × Y ) is called a hv-curve if there exists 
a partition of [0, 1] given as 0 = t0 < t1 < · · · < tk = 1 so that for every i ∈ {1, . . . , k}
either α or β is constant in [ti−1, ti]. We denote the set of hv-curves by HV ([0, 1]; X×Y ).

Given a HV-curve γ = (α, β) its constant speed parametrization γ̄ = (ᾱ, β̄) is also 
a HV-curve with the additional property that γ̄|I is non-constant on any open interval 
I ⊂ [0, 1] unless γ is a constant curve. For (non-constant) γ̄ we may find a decom-
position 0 < t1 . . . < tn < 1, with either α or β constant on each [ti−1, ti], which is 
maximal in the following sense: for any i = 1, . . . , n and open I ⊃ [ti−1, ti], both ᾱ|I and 
β̄|I are non-constant (i.e. none of the intervals [ti−1, ti] can be enlarged while keeping 
one of the component curves constant). By convention constant curves have an empty 
decomposition.

Definition 2.2. Given a curve γ, we call the unique decomposition t(γ) = {t1 < . . . < tn}
as above the collection of turning times of γ. For n ∈ N, we denote by HVn the subset 
of HV consisting of curves γ such that the constant speed parametrization γ̄ has exactly 
n turning times.

2.2. Partial upper gradients

We refer the reader to [12,6] for a good account of modulus, line integrals along 
curves, weak upper gradients, and Newton-Sobolev spaces N1,p(X), N1,p

loc (X), and omit 
their definitions here.

Let Γ ⊂ AC([0, 1]; X) be a family of curves in a metric measure space X, and let 
p ≥ 1. We say that a Borel function g : X → [0, ∞] is an upper gradient of a Borel 
function f : X → R along Γ, if the upper gradient inequality

|f(γt) − f(γs)| ≤
ˆ

γ|[s,t]

gds, 0 ≤ s < t ≤ 1 (2.1)

holds for every γ ∈ Γ. We moreover say that g is a p-weak upper gradient along Γ if 
(2.1) holds for p-a.e. curve γ ∈ Γ. If Γ = AC([0, 1]; X) we say that g is an upper gradient 
(resp. p-weak upper gradient) of f .

We record the following result which establishes the existence of minimal weak partial 
upper gradients.
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Proposition 2.3. Let Γ ⊂ AC([0, 1]; X) be a family of curves and f : X → R a locally 
integrable function which admits a p-weak upper gradient g ∈ Lp

loc(μ) along Γ. Then there 
exists a minimal p-weak upper gradient |Df |p,Γ of f along Γ.

Minimality in the claim above is intended in the sense that (a) |Df |p,Γ is a p-weak 
upper gradient of f along Γ, and (b) |Df |p,Γ ≤ g for any locally p-integrable p-weak 
upper gradient g of f .

Proof. By Fuglede’s Lemma, the family of partial weak upper gradients of f is closed 
under (local) Lp-convergence. The collection of partial weak upper gradients of f has 
the lattice property by argument in the proof of [12, Lemma 6.3.14]. The existence of a 
minimal element in the lattice follows as in [12, Theorem 6.3.20]. �
2.3. Plans

A plan on X is a finite measure η on C([0, 1]; X) concentrated on absolutely continuous 
curves. The barycenter η# of η is the measure on X defined by

η#(E) :=
1̈

0

χE(γt)|γ′
t|dtdη(γ), E Borel.

If η# is an Lq-function – i.e. η# = ρμ for some ρ ∈ Lq(μ) – we say η is a q-plan. To 
define test plans, denote

et : C([0, 1];X) → X, γ �→ γt,

for fixed t ∈ [0, 1]. We say that η is a q-test plan, if

1̈

0

|γ′
t|qdtdη(γ) < ∞, (2.2)

and there exists C > 0 such that et∗η ≤ Cμ for each t ∈ [0, 1]. If q = ∞, we replace (2.2)
by the requirement that η is concentrated on a family of L-Lipschitz curves, for some L. 
Test plans appear in the definition of the Sobolev spaces W 1,p.

Definition 2.4. Let p ≥ 1 and let q be the dual exponent of p. A function f ∈ Lp(μ)
belongs to the Sobolev space W 1,p(X) if there exists g ∈ Lp(μ) such that

ˆ
|f(γ1) − f(γ0)|dη ≤

¨

γ

gdsdη

for every q-test plan η on X.
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We remark that the equality N1,p(X) = W 1,p(X) holds, for p > 1, if properly inter-
preted, see e.g. [9, Theorem 2.5]. Next we define the restriction operation on plans.

Definition 2.5 (Restriction of a plan). Let η be a plan on X and t, s ∈ [0, 1], t ≤ s. The 
restriction of η to [0, 1] is defined as the plan

η|[t,s] = e[t,s]∗η,

where e[t,s] : C([0, 1]; X) → C([0, 1]; X) is the restriction map satisfying for all γ ∈
C(I; X) the equality e[t,s](γ) = γ̃ with γ̃(r) = γ((1 − r)t + rs).

We record the following lemma which can be established by elementary arguments. 
We omit the proof.

Lemma 2.6. Let η be a q-plan and t, s ∈ [0, 1], t ≤ s. Then η|[t,s] is a q-plan. If η is a 
q-test plan then η|[s,t] is a q-test plan.

In Section 5 we define the concatenation of plans which is, in a sense, an opposite 
operation to restricting plans.

2.4. Disintegration

Disintegration of measures with respect to a Borel map is a far reaching generalization 
of Fubini’s theorem. Although we will mostly apply it to plans and with respect to the 
evaluation map, we present a more general formulation below. The following theorem 
can be found in [2, Theorem 5.3.1].

Theorem 2.7. Let φ : X → Y be a Borel map between complete separable metric spaces. 
Let π ∈ P(X) and ν := φ∗π. Then there exists a ν-a.e. x ∈ X uniquely defined family 
of measures {πx} ⊂ P(Y ) such that πx is concentrated on φ−1(x) and

ˆ
Gdπ =

ˆ

X

⎛⎜⎝ ˆ

φ−1(x)

Gdπx

⎞⎟⎠dν(x)

for every Borel map G : X → [0, ∞].

The disintegration is often used for the measure dπ := |γ′
t|dtdη on [0, 1] ×AC([0, 1]; X)

and the evaluation map e : [0, 1] ×AC([0, 1]; X) → X given by e(t, γ) = γt, when η is a q-
plan. This yields a family of measures {πx}, which are e∗dπ-almost everywhere uniquely 
defined for x ∈ X. We call {πx} the disintegration of π (without reference to the map). 
Note here that η# = e∗dπ.
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2.5. p-Weak differentiable structure

Given a Borel set U ⊂ X of positive measure and ϕ ∈ N1,p
loc (X; RN ), we say that 

(U, ϕ) is p-independent if

inf
v∈D

|D(v · ϕ)|p(x) > 0 μ− a.e. on U

for some (and thus any) countable dense subset D ⊂ SN−1. The pair (U, ϕ) is said to 
be p-maximal if, for all Lipschitz maps ψ ∈ LIP(X; RM ) with M > N and Borel sets 
V ⊂ U of positive measure, the pair (V, ψ) is not p-independent.

Definition 2.8. A pair (U, ϕ) is a p-weak chart if it is both p-independent and p-maximal.

To describe the pointwise norm associated to p-weak charts we record the following 
result which will be useful in the sequel. In the statement U ⊂ X is Borel and ϕ ∈
N1,p

loc (X; RN ).

Theorem 2.9 (Lemmas 4.1–4.3 in [9]). There exists a q-plan η on X and a Borel set 
D ⊂ X with μ�D η#, and {πx} the disintegration of dπ := |γ′

t|dtdη, such that

Φ(x, ξ) := χD(x)
∥∥∥∥ (ϕ ◦ γ)′t

|γ′
t|

∥∥∥∥
L∞(πx)

defines a Borel map X × (RN )∗ → [0, ∞] with the following properties.

(a) Φξ := Φ(·, ξ) is a representative of |D(ξ ◦ ϕ)|p for all ξ ∈ (RN )∗;
(b) Φx := Φ(x, ·) is a seminorm on (RN )∗ for μ-a.e. x ∈ X;
(c) For any Borel map ξ : U → (RN )∗ and Borel set V ⊂ X we have that Φx(ξx) = 0

μ-a.e. x ∈ V if and only

ξγ(t)((ϕ ◦ γ)′t) = 0 a.e. t ∈ γ−1(V )

for p-a.e. γ;
(d) (U, ϕ) is p-independent if and only if Φx is a norm for μ-a.e. x ∈ U .

We will refer to a map Φ so that (a) in Theorem 2.9 holds as a canonical representative
for the gradient of ϕ.

2.6. From plans to test plans

In the sequel we want to consider canonical representations of gradients of Sobolev 
functions arising from test plans rather than plans. To achieve this we adapt arguments 
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in [1, Theorem 8.5 and Theorem 9.4], which we present in detail here for the readers’ 
convenience.

Proposition 2.10. Let η be a q-plan on X, q ∈ [1, ∞], and {πx} the disintegration of 
dπ := |γ′

t|dtdη. Then there exists a q-test plan η̄ on X such that

η#  η̄#  η# (2.3)

and the disintegration {π̄x} of π̄ := |γ′
t|dtdη̄ satisfies

∥∥∥∥ (f ◦ γ)′t
|γ′

t|

∥∥∥∥
L∞(πx)

=
∥∥∥∥ (f ◦ γ)′t

|γ′
t|

∥∥∥∥
L∞(π̄x)

η# − a.e. x ∈ X, f ∈ N1,p(X). (2.4)

Proof. First we obtain a plan with parametric barycenter in L∞ by a suitable 
parametrization of η-a.e. curve (see also [1, Theorem 8.5]). Note that if q = ∞ the 
q-plan η already has parametric barycenter in L∞ and thus we assume that q < ∞.

Let η1 := �
1+�ηl, where ηl = l∗η (with l : C([0, 1]; X) → C([0, 1]; X) the constant 

speed parametrization map). Observe that η#  (η1)# ≤ η#. The parametric barycen-
ter ν1 := e∗(dtdη1) satisfies η#  ν1 ≤ η# so that η1 has parametric barycenter in Lq. 
Denote by ρ1 the density of ν1 with respect to μ and set

h1 = 1
max{1, ρ1}

.

For γ ∈ AC([0, 1]; X), define

bγ(s) :=
sˆ

0

h1(γt)dt, τγ(s) = bγ(s)
bγ(1) , s ∈ [0, 1].

For η1-a.e. γ we have that 0 < bγ(1) ≤ 1 and (τγ)′(s) = h1(γs)
bγ(1) > 0 a.e. s ∈ [0, 1]. For such 

γ it follows that the inverse σγ : [0, 1] → [0, 1] of τγ is absolutely continuous. Moreover, 
the maps γ �→ bγ and H := γ �→ γ ◦ σγ are Borel, cf. [1, Lemma 8.4].

Define dη2 := bγ(1)
(1+�(γ))qH∗(dη1). By Lemma A.2 η#

2 and η#
1 are mutually absolutely 

continuous since bγ(1)
(1+�(γ))q > 0 η1-a.e. For η1-a.e. γ and any Borel map g : X → [0, ∞]

we have that

1ˆ

0

g((γ ◦ σγ)t)dt =
1ˆ

0

g(γs)(τγ)′(s)ds = 1
bγ(1)

1ˆ

0

g(γs)h1(γs)ds.

Thus, ν2 := e∗(dtdη2) satisfies
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ˆ
gdν2 ≤

1̈

0

g((γ ◦ σγ)t)dtdη1 =
1̈

0

g(γs)h1(γs)dsdη1 =
ˆ

gh1ρ1dμ.

It follows that dν2 ≤ h1ρ1dμ. In particular dν2
dμ ∈ L∞(μ) and ν1  ν2  ν1. Similarly, 

for η1-a.e. γ we have that

1ˆ

0

|(γ ◦ σγ)′t|qdt =
1ˆ

0

σ′
γ(t)q|γ′

σγ(t)|qds =
1ˆ

0

σ′
γ(t)q−1|γ′

s|qds

= bγ(1)q−1
ˆ

1 ∨ ρq−1
1 (γs)|γ′

s|qds = [bγ(1)�(γ)]q
1ˆ

0

1 ∨ ρq−1
1 (γs)ds.

Thus,

Eq(η2) :=
1̈

0

|γ′
t|qdsdη2 =

ˆ (
bγ(1)�(γ)
1 + �(γ)

)q
1ˆ

0

(1 ∨ ρ1)q−1(γs)dsdη1(γ)

≤
1̈

0

dsdη1 +
1̈

0

ρq−1
1 dsdη1 = η1(C([0, 1];X)) +

ˆ
ρq1dμ < ∞.

We conclude that η2 is a plan with finite q-energy and its parametric barycenter dν2 =:
ρ2dμ satisfies ρ2 ∈ L∞(μ) and η#  ν2  η#. A repeated application of Lemma A.2
implies that

‖G‖L∞((π2)x) = ‖G‖L∞(πx) η# − a.e. x ∈ X (2.5)

for every G satisfying (A.2).
We now modify η2 to obtain a test plan with the desired properties (cf. [1, Theo-

rem 9.4]). Fix ε ∈ (0, 1) and given τ ∈ [0, ε], let rτ : [0, 1] → [0, 1], rτ (t) = τ + (1 − ε)t. 
Set

ηε := 1
ε

εˆ

0

rτ∗η2dτ.

We claim that ηε is a test plan. Indeed,

Eq(ηε) := 1
ε

εˆ

0

ˆ 1ˆ

0

|(γ ◦ rτ )′t|qdtdη2dτ

= 1
ε

εˆ ˆ 1+τ−εˆ
(1 − ε)q−1|γ′

s|qdsdη2dτ ≤ Eq(η2),

0 τ
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proving that ηε has finite q-energy. For any Borel g : X → [0, ∞] and t ∈ [0, 1] we may 
calculate

ˆ

X

get∗(dηε) = 1
ε

ε̈

0

g((γ ◦ rτ )t)dη2dτ = 1
ε

ε̈

0

g(γ(τ + (1 − ε)t))dτdη2

= 1
ε

ε+(1−ε)t¨

(1−ε)t

g(γs)dsdη2 ≤ 1
ε

ˆ

X

gρ2dμ.

Thus ηε is a q-test plan.
It remains to show that ηε satisfies (2.3) and (2.4) (for any choice of ε > 0). Denote 

dπε = |γ′
t|dtdηε. For any Borel G : C([0, 1]; X) × [0, 1] → [0, ∞] we have

ˆ
Gdπε = 1

ε

εˆ

0

ˆ 1ˆ

0

G(γ ◦ rτ , t)|(γ ◦ rτ )′t|dtdη2dτ

= 1
ε

εˆ

0

ˆ 1+τ−εˆ

τ

G(γ ◦ rτ , r−1
τ (s))|γ′

s|dsdη2dτ

=
ˆ

RεGdπ2,

where

RεG(γ, s) := 1
ε

εˆ

0

χ[τ,1−ε+τ ](s)G(γ ◦ rτ , r−1
τ (s))dτ

= 1
ε

εˆ

0

χ[s−(1−ε),s](τ)G(γ ◦ rτ , r−1
τ (s))dτ.

If G satisfies (A.2) for all rτ : [0, 1] → [0, 1], 0 ≤ τ ≤ ε, we obtain

RεG(γ, s) = mε(s)G(γ, s), mε(s) = |[0, ε] ∩ [s− (1 − ε), s]|
ε

.

In particular, choosing G(γ, s) := g(γs)|γ′
s| for arbitrary Borel g : X → [0, 1], we obtain 

dη#
ε = λεdη#

2 where λε(x) :=
ˆ

mε(s)d(π2)x > 0 for η#
2 -a.e. x. This proves (2.3).

The disintegration {(πε)x} of πε satisfies

ˆ
Gd(πε)x = 1

λε(x)

ˆ
RεGd(π2)x η# − a.e. x ∈ X.
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Thus, for G satisfying (A.2) for all {rτ : [0, 1] → [0, 1]}τ∈[0,ε] we obtain

(ˆ
Gmd(πε)x

)1/m

=
(

1
λε(x)

ˆ
mε(s)Gmd(π2)x

)1/m

for all m ∈ N η# − a.e. x ∈ X

and letting m → ∞ we obtain

‖G‖L∞((πε)x) = ‖G‖L∞((π2)x) η# − a.e. x ∈ X. (2.6)

Finally, given f ∈ N1,p(X) consider G(γ, s) = (f ◦ γ)′s
|γ′

s|
and observe that G satisfies 

(A.2) for every absolutely continuous injection σ : [0, 1] → [0, 1]. Now combining (2.5)
and (2.6) we obtain (2.4). This finishes the proof by choosing e.g. η̄ := η1/2. �
3. Existence of p-weak differentials

We lay some groundwork for the proof of Theorem 1.4. Fix a pair (U, ϕ), and let 
Φ: X × (RN )∗ → [0, ∞] canonically represent the gradient of ϕ. For μ-a.e. x ∈ U we 
denote by

|ξ|x = Φ(x, ξ), ξ ∈ (RN )∗

the pointwise seminorm, and write Wx := (RN )∗/{ξ : |ξ|x = 0}. We also let Lx : Wx →
(RN )∗ denote the right inverse of the canonical projection map [·] : (RN )∗ → Wx, given 
by sending each [ξ] ∈ Wx (which is an affine subspace of (RN)∗) to the unique vector 
ζ ∈ [ξ] with smallest Euclidean norm. Note that | · |x is a norm on Im(Lx).

Define the vector space Γp(T ∗U) as the set of Borel maps ξ : U → (RN )∗ with ξ(x) ∈
Im(Lx) μ-a.e. such that

‖ξ‖Γp(U) :=

⎛⎝ˆ

U

|ξ|pdμ

⎞⎠1/p

is finite, with the usual identification of elements that agree μ-a.e. It is a standard 
exercise to show that ‖ · ‖Γp

is a norm making Γp(T ∗U) a Banach space. Moreover we 
let Γp,loc(T ∗U) the collection of all Borel maps ξ : U → (RN )∗ so that ξ|K ∈ Γp(T ∗K)
for all bounded subsets K ⊂ U .

Lemma 3.1. Suppose ξ : U → (RN )∗ is a p-weak differential of f ∈ N1,p(X) with respect 
to (U, ϕ). Then

(1) ξ′ := L[ξ] is a p-weak differential of f with respect to (U, ϕ);
(2) We have that |ξ| = |Df |p μ-a.e. on U .
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Proof. Let gf be a Borel representative of |Df |p and define the Borel function g =
χU |ξ| + χX\Ugf . The identity (1.3) implies that

|ξ((ϕ ◦ γ)′t)| ≤ gf (γt)|γ′
t| a.e. t ∈ γ−1(U)

for p-a.e. curve. By the definition of Φ this yields |ξ(x)|x ≤ gf (x) μ-a.e. x ∈ U . Thus 
g ≤ gf . The identity (1.3) also yields that for p-a.e. curve γ we have

|(f ◦ γ)′t| = |ξγ(t)((ϕ ◦ γ)′t)| ≤ g(γt)|γ′
t|

for a.e. t ∈ γ−1(U). Thus g is a p-weak upper gradient, and g ≥ gf and (2) follows. 
To prove (1) note that, since |ξ′ − ξ| = 0 μ-a.e. on U by definition, it follows that 
ξ((ϕ ◦ γ)′t)) = ξ′((ϕ ◦ γ)′t)) a.e. t ∈ γ−1(U) for p-a.e. γ, cf. [9, Lemma 4.3(2)]. The claim 
in (1) follows directly from this. �
Lemma 3.2. Let f ∈ N1,p(X). Assume that there exist fi ∈ N1,p(X), Ci ⊂ X, for each 
i ∈ I in a countable index set I such that (1) fi admits a p-weak differential with respect 

to (U, ϕ) and f |Ci
= fi|Ci

for each i ∈ I, and (2) μ 

(
U \

⋃
i∈I

Ci

)
= 0. Then f admits a 

p-weak differential with respect to (U, ϕ).

Proof. Let ξi be a p-weak differential of fi for each i ∈ I. Identify I with a subset of N
and define the sets

Wj := U ∩ Cj \
⋃
i<j

Ci.

Let J be the set of j ∈ I for which μ(Wj) > 0. Then {Wj}j∈J is a partition of U up to 
a null-set and f |Wj

= fj |Wj
for all j ∈ J . We claim that

ξ :=
∑
j∈J

χWj
ξj : U → (RN )∗

is a p-weak differential of f with respect to (U, ϕ). Indeed, note that p-a.e. curve γ in X
has the following properties:

(i) f ◦ γ, ϕ ◦ γ and fj ◦ γ are absolutely continuous for all j ∈ J ;
(ii) almost every t ∈ γ−1(U) is a density point of γ−1(Wj) for some j;
(iii) (fj ◦ γ)′t = (ξj)γ(t)((ϕ ◦ γ)′t) a.e. t ∈ γ−1(U).

For any such γ we have that

(f ◦ γ)′t = (fj ◦ γ)′t = (ξj)γ(t)((ϕ ◦ γ)′t) = ξγ(t)((ϕ ◦ γ)′t)

for some j, for almost every t ∈ γ−1(U). This proves the claim. �
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Remark 3.3. Lemma 3.2 shows in particular the local nature of p-weak differentials: if 
V ⊂ U and f1 = f2 μ-a.e. on V , then a p-weak differential ξ of f1 with respect to (U, ϕ)
is a p-weak differential of f2 with respect to (V, ϕ).

Lemma 3.4. Suppose (fj) ⊂ N1,p
loc (X) is a sequence such that fj → f in Lp

loc(μ) and 
(|Dfj |p)j is equi-integrable. If fj has a p-weak differential with respect to (U, ϕ) for each 
j, then f has a p-weak differential with respect to (U, ϕ).

Proof. For each j, let ξj be a p-weak differential of fj. By Lemma 3.1 we may assume 
that (ξj) ⊂ Γp,loc(T ∗U). Since

‖ξj‖Γp(V ) =

⎛⎝ˆ

V

|Dfj |ppdμ

⎞⎠1/p

, V ⊂ U,

the sequence (|ξj |p|K) is equi-integrable for every bounded subset K ⊂ U . The following 
arguments are first applied to each bounded subset K of U , where the convergence is in 
the normed space Γp(T ∗K), and then a diagonal argument is used to extend them to all 
of U . A subsequence of (ξj) converges weakly (by reflexivity for p > 1 and by Dunford–
Pettis for p = 1) to an element ξ ∈ Γp,loc(T ∗U). Denote by ξ̃j and f̃j the sequence of 
convex combinations (granted by Mazur’s lemma) converging to ξ and f in Γp,loc(T ∗U)
and Lp

loc(μ), respectively in such a way that their restrictions to any compact subset 
K ⊂ U converges in norm. Now we may argue as in the proof of [9, Lemma 4.7] (using 
Fuglede’s lemma) to conclude that the identities (f̃j ◦ γ)′t = ξ̃jγ(t)((ϕ ◦ γ)′t) for p-a.e. γ
and a.e. t ∈ γ−1(U) pass to the limit and yield

(f ◦ γ)′t = ξγ(t)((ϕ ◦ γ)′t) a.e. t ∈ γ−1(U)

for p-a.e. γ. This proves that ξ is a p-weak differential of f with respect to (U, ϕ). �
Remark 3.5. The proof above shows that any weak limit in Γp(T ∗U) of a sequence of 
p-weak differentials of the fj ’s is a p-weak differential of f .

We close this section by proving Theorem 1.4.

Proof of Theorem 1.4. If (U, ϕ) is a p-weak chart, the existence of p-weak differentials 
of Newton–Sobolev functions is proved in [9, Theorem 1.7], and their uniqueness follows 
from p-independence and Theorem 2.9(c). The implication (2) =⇒ (3) is trivial. Thus it 
suffices to prove (3) =⇒ (1).

Assume that every f ∈ LIP(X) admits a unique p-weak differential with respect to 
(U, ϕ). It follows that (U, ϕ) is p-independent. Indeed, let Φ represent the gradient of 
ϕ canonically, cf. Theorem 2.9. Since any Borel map ξ : U → (RN )∗ with ξx ∈ ker Φx

is a p-weak differential of the zero function, the uniqueness of p-weak differentials with 
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respect to (U, ϕ) implies that kerΦx = {0} μ-a.e. x ∈ U . Theorem 2.9(d) implies that 
(U, ϕ) is p-independent.

It remains to show that (U, ϕ) is p-maximal. Suppose that V ⊂ U has positive measure 
and that ψ ∈ LIP(X; RM ) is p-independent on V . We will show that M ≤ N . Let 
dψi ∈ (RN )∗ be the unique p-weak differentials of the components ψi of ψ for i = 1, . . .M . 
To reach a contradiction assume M > N . Then dψi are linearly dependent, and there 
are Borel functions ai ∈ L∞(V ) so that 

∑M
i=1 aidψi = 0, with a := (a1, . . . , aM ) �= 0

μ-a.e. on V . But, then for p-a.e. absolutely continuous γ and a.e. t ∈ γ−1(V ) we have

M∑
i=1

ai(γt)(ψi ◦ γ)′t = 0.

By Theorem 2.9(c) this implies that Ψx(a) = 0 for a.e. x ∈ V , where Ψ canonically repre-
sents the gradient of ψ. By Theorem 2.9(d) this is a contradiction to p-independence. �
4. Products of charts and tensorization

4.1. Tensorization of charts

Throughout this section we fix p-weak charts (U, ϕ) and (V, ψ) of dimensions N and 
M in X and Y , respectively. To prove Theorem 1.1, the following two propositions will 
be used.

Proposition 4.1. Let u ∈ N1,p
loc (X), v ∈ N1,p

loc (Y ), h ∈ C1(R2) and set f := h ◦ (u, v) ∈
N1,p

loc (X × Y ). Then the Borel map ξ : U × V → (RN+M )∗ � (RN )∗ × (RM )∗ given by

ξ(x, y) := ∂1h(u(x), v(y))dxu + ∂2h(u(x), v(y))dyv

is a p-weak differential of f with respect to (U × V, ϕ × ψ), and

g := ‖(|∂1h(u(x), v(y))||dxu|, |∂2h(u(x), v(y))||dyv|)‖′

is a p-weak upper gradient of f .

Proposition 4.2. Let | · |x and | · |y denote the pointwise norms associated to ϕ and ψ, 
respectively. Then the Borel map Ξ: U × V → (RN+M )∗ � (RN )∗ × (RM )∗ given by

Ξ((x, y), (ξ, ζ)) := ‖(|ξ|x, |ζ|y)‖′

canonically represents the gradient of ϕ × ψ ∈ N1,p
loc (X × Y ; RN+M ).

It follows in particular from Proposition 4.2 that (U ×V, ϕ ×ψ) is p-independent. We 
present the proof of Theorem 1.1 assuming Propositions 4.1 and 4.2 above, and after 
this prove the propositions.
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Proof of Theorem 1.1. Proposition 4.2 implies that (U ×V, ϕ ×ψ) is p-independent and 
thus any p-weak differentials are necessarily unique. By Theorem 1.4 it suffices to show 
that every f ∈ LIP(X) admits a p-weak differential with respect to (U × V, ϕ × ψ). We 
do this in two steps using Lemma 3.4.

We first prove the claim for distance functions. Indeed, let (x0, y0) ∈ X × Y and 
f = d((x0, y0), ·). Note that f = h ◦ (u, v), where h(t, s) = ‖(t, s)‖, u = d(x0, ·) and 
v = d(y0, ·). Let hj : R2 → [0, ∞] be a sequence of smooth functions with uniformly 
bounded Lipschitz constant converging to h pointwise. By Proposition 4.1 the functions 
fj := hj ◦ (u, v) admit a p-weak differential. The sequence (fj) is moreover uniformly 
Lipschitz and thus (|Dfj |p) is equi-integrable. Since hj → h locally uniformly we have 
that fj → f uniformly on bounded sets. By Lemma 3.4 it follows that f admits a p-weak 
differential, as claimed.

Next we prove the claim for general f ∈ LIP(X×Y ) using approximation by a sequence 
of McShane extensions. Choose a countable dense set D := {(x1, y1), (x2, y2), (x3, y3),
. . .} ⊂ X × Y and define

fN (x) = min{f(xj) + LIP(f)d(x, (xj , yj)) : 1 ≤ j ≤ N}.

Note that supN LIP(fN ) < ∞ and fN → f pointwise. By Lemma 3.4 f has a p-weak 
differential if fN has a p-weak differential with respect to (U×V, ϕ ×ψ) for each N ∈ N. 
To see this, observe that there exists a Borel partition B1, . . . , BN of X such that

fN = f(xj) + LIP(f)d((xj , yj), ·) on Bj

for each 1 ≤ j ≤ N , and that

d((xj , yj), ·) = ‖(d(xj , ·), d(yj , ·))‖.

It follows from Lemma 3.2 that fN has a p-weak differential for each N . The claim about 
the pointwise norm follows from Proposition 4.2, completing the proof. �

The remainder of this subsection is devoted to proving Propositions 4.1 and 4.2. We 
start with a technical lemma.

Lemma 4.3. Let h = h̃ ◦ (g1, g2), where h̃ : [0, 1]2 → R is Lipschitz and g1, g2 : [0, 1] →
[0, 1] are absolutely continuous. Assume there exist Borel sets A, B ⊂ [0, 1] such that 
the following hold: (1) for every t ∈ A the partial derivative ∂1h(t, s) exists for every 
s ∈ [0, 1], and (2) for every s ∈ B the partial derivative ∂2h(t, s) exists for every t ∈ [0, 1]. 
Then the function δ(t) := h(t, t) is absolutely continuous and

δ′(t) = ∂1h(t, t) + ∂2h(t, t) a.e. t ∈ A ∩B.

Remark 4.4. The assumptions can’t be much weakened, because if h(x, y) = max(|x|, |y|), 
then ∂th(t, t) = 1, but ∂1h, ∂2h do not exist along the diagonal. In [2] this is avoided by 
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using an upper derivative, but we need the actual derivative to find the differential. The 
slightly odd assumption on the existence guarantees the identity in the claim.

Proof. The absolute continuity of δ follows from the estimate

|δ(t) − δ(s)| ≤ LIP(h̃)[|g1(t) − g1(s)| + |g2(t) − g2(s)|], s, t ∈ [0, 1]. (4.1)

In particular, the distributional and classical derivatives of δ agree a.e. Suppose ζ ∈
C∞(R), sptζ ⊂ (0, 1), and ε is small. On one hand, denoting C := A ∩B we have

ˆ

C

ζ(t)h(t + ε, t + ε) − h(t, t)
ε

dt =
ˆ

C

ζ(t)h(t + ε, t + ε) − h(t + ε, t)
ε

dt

+
ˆ

C

ζ(t)h(t + ε, t) − f(t, t)
ε

dt

=
ˆ

C−ε

ζ(t− ε)h(t, t) − h(t, t− ε)
ε

dt

+
ˆ

C

ζ(t)h(t + ε, t) − h(t, t)
ε

dt.

On the other hand,∣∣∣∣∣∣
ˆ

C

ζ(t)h(t, t) − h(t, t− ε)
ε

dt−
ˆ

C−ε

ζ(t− ε)h(t, t) − h(t, t− ε)
ε

dt

∣∣∣∣∣∣
≤
ˆ

C

|ζ(t− ε) − ζ(t)| |h(t, t) − h(t, t− ε)|
ε

dt +
ˆ

C�(C−ε)

‖ζ‖∞
|h(t, t) − h(t, t− ε)|

ε
dt

and the right hand side tends to zero as ε → 0. Using this, dominated convergence and 
the fact that ∂1h(t, t), ∂2h(t, t) exist for every t ∈ C we may take the limit ε → 0 to 
obtain

ˆ

C

ζδ′dt =
ˆ

C

ζ(∂1h + ∂2h)dt.

Since ζ is arbitrary the claim follows. �
Proof of Proposition 4.1. By Lemma 3.1 the functions |du| and |dv| are p-weak upper 
gradients for u and v respectively. By using this observation, find curve families ΓX ⊂
AC([0, 1]; X) and ΓY ⊂ AC([0, 1]; Y ) of zero p-modulus such that u ◦ α and v ◦ β are 
absolutely continuous and
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(u ◦ α)′t = dα(t)u((ϕ ◦ α)′t) a.e. t ∈ α−1(U)

|dα(t)u((ϕ ◦ α)′t)| ≤ |dα(t)u||α′
t| a.e. t ∈ α−1(U)

(v ◦ β)′t = dβ(t)u((ψ ◦ β)′t) a.e. t ∈ β−1(V )

|dβ(t)v((ψ ◦ β)′t)| ≤ |dβ(t)v||β′
t| a.e. t ∈ β−1(V )

whenever α /∈ ΓX and β /∈ ΓY .
The curve family Γ0 = ΓX × AC([0, 1]; Y ) ∪ AC([0, 1]; X) × ΓY has zero p-modulus 

in X × Y . For every γ = (α, β) /∈ Γ0 define H(t, s) = f(α(t), β(s)) and note that 
H = h ◦ (u ◦α, v ◦β). Denote A = α−1(U) \E and B := β−1(V ) \F for suitable null-sets 
E, F ⊂ [0, 1] where the identities above fail for u and v, respectively. We have that

∂1H(t, s) = ∂1h(u(αt), v(βs))(u ◦ α)′t = ∂1h(u(αt), v(βs))dα(t)u((ϕ ◦ α)′t)

exists for every (t, s) ∈ A × [0, 1], and

∂2H(t, s) = ∂2h(u(αt), v(βs))(v ◦ β)′s = ∂2h(u(αt), v(βs))dβ(t)u((ψ ◦ β)′t)

exists for every (t, s) ∈ [0, 1] ×B. Applying Lemma 4.3 we obtain that f ◦ γ(t) = H(t, t)
is absolutely continuous and

(f ◦ γ)′t = ∂H1(t, t) + ∂2H(t, t)

= ∂1h(u(αt), v(βt))dα(t)u((ϕ ◦ α)′t)

+ ∂2h(u(αt), v(βt))dβ(t)u((ψ ◦ β)′t)

= ξ(x,y)(((ϕ× ψ)γ)′t) a.e. t ∈ α−1(U) ∩ β−1(V ) = γ−1(U × V ).

This proves that ξ is a p-weak differential of f with respect to (U × V, ϕ ×ψ). From the 
previous equality together with ‖dα(t)u((ϕ ◦α)′t)‖ ≤ ‖dα(t)u‖|α′

t| and ‖dβ(t)v((ψ◦β)′t)‖ ≤
‖dβ(t)v‖|β′

t| we get

|(f ◦ γ)′t| =
∣∣∂1h(u(αt), v(βt))dα(t)u((ϕ ◦ α)′t) + ∂2h(u(αt), v(βt))dβ(t)u((ψ ◦ β)′t)

∣∣
≤ |∂1h(u(αt), v(βt))|

∣∣dα(t)u
∣∣ |α′

t| + |∂2h(u(αt), v(βt))||dβ(t)v||β′
t|

:= A |α′
t| + B|β′

t| ≤ ‖(A,B)‖′‖(|α′
t| , |β′

t|)‖ = g(αt, βt)|(α, β)′t|.

In particular, g is a p-weak upper gradient. �
Proof of Proposition 4.2. We will show that Ξ((x, y), (ξ, ζ)) is a minimal p-weak upper 
gradient for ξ ◦ ϕ + ζ ◦ ψ for any (ξ, ζ) ∈ (RN ×RM )∗.

By Proposition 4.1, applied to u = ξ ◦ ϕ, v = ζ ◦ ψ and h(u, v) = u + v, we know 
that Ξ((x, y), (ξ, ζ)) is a p-weak upper gradient for ξ ◦ ϕ + ζ ◦ ψ. Next, we show that 
|D(ξ ◦ ϕ + ζ ◦ ψ)|p ≥ Ξ((x, y), (ξ, ζ)) for μ-a.e. point (x, y). To show this, it suffices to 
consider any upper gradient h ∈ Lp

loc(X × Y ) of ξ ◦ ϕ + ζ ◦ ψ and to show that
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h ≥ Ξ((x, y), (ξ, ζ)) μ× ν − a.e. (x, y) ∈ X × Y. (4.2)

Let η and η′ be q-plans on X and Y , respectively, and D ⊂ X, D′ ⊂ Y Borel sets 
such that

|ξ|x =χD(x)
∥∥∥∥ξ((ϕ ◦ α)′t)

|α′
t|

∥∥∥∥
L∞(πx)

|ζ|y =χD′(y)
∥∥∥∥ζ((ψ ◦ β)′t)

|β′|

∥∥∥∥
L∞(π′

y)
,

cf. Theorem 2.9. By Proposition 2.10 we may assume that η and η′ are q-test plans. If 
{πx}, {π′

y} are the disintegrations of dπ = |α′
t|dtdη and dπ′ = |β′

t|dtdη′, then {πx×π′
y}

is the disintegration of π × π′ with respect to the map

ẽ : ([0, 1]×AC([0, 1];X))× ([0, 1]×AC([0, 1];Y )) → X × Y, ẽ((t, α), (s, β)) = (αt, βs),

and is μ × ν-a.e. defined in D ×D′. Fix such disintegrations.
First, for a.e. (x, y) �∈ D × D′ we have Ξ((x, y), (ξ, ζ)) = 0, and we have the trivial 

bound |D(ξ ◦ ϕ + ζ ◦ ψ)|p ≥ Ξ((x, y), (ξ, ζ)) = 0. In what follows, we will concentrate on 
μ-a.e. (x, y) ∈ D × D′. Fix (ξ, ζ) ∈ (RN+M )∗ and a upper gradient h ∈ Lp

loc(μ × ν) of 
ξ ◦ ϕ + ζ ◦ ψ. Let γ = (α, β) be a curve for which

1ˆ

0

1ˆ

0

h(α(t), β(s))‖(|α′
t|, |β′

s|)‖dtds < ∞,

(notice that η×η′-almost every γ satisfies this). A Fubini-type argument yields that for 
a.e. (t, s) ∈ [0, 1]2

lim
ε→0

1
ε

εˆ

0

h(α̃(τ), β̃(τ))|(α̃, β̃)′τ |dτ = h(α̃(0), β̃(0))|(α̃, β̃)′0|,

where

α̃(τ) := α(t + aτ/|α′
t|), β̃(τ) := β(s + bτ/|β′

s|)

and (a, b) belongs to a countable dense set G ⊂ R2. Thus, for (t, s) ∈ [0, 1]2 \N , where 
N is a null-set, we have that

a
ξ((ϕ ◦ α)′t)

|α′
t|

+ b
ζ((ψ ◦ β)′s)

|β′
s|

= ξ((ϕ ◦ α̃)′0) + ζ((ψ ◦ β̃)′0) ≤ h(α̃(0), β̃(0))|(α̃, β̃)′0|

≤ h(α(t), β(s))‖(|a|, |b|)‖
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for (a, b) ∈ G. By continuity we obtain the estimate for all (a, b) ∈ R2. By using Theo-
rem 2.7, it follows that for μ × ν-a.e. (x, y) ∈ D ×D′ we have∥∥∥∥aξ((ϕ ◦ α)′t)

|α′
t|

+ b
ζ((ψ ◦ β)′s)

|β′
s|

∥∥∥∥
L∞(πx×π′

y)
≤ h(x, y)‖(|a|, |b|)‖ for all (a, b) ∈ R2.

(4.3)

Let σx, σy ∈ {±1} be such that∥∥∥∥ξ((ϕ ◦ α)′t)
|α′

t|

∥∥∥∥
L∞(πx)

= esssupπx
σx

ξ((ϕ ◦ α)′t)
|α′

t|
and

∥∥∥∥ζ((ψ ◦ β)′s)
|β′

s|

∥∥∥∥
L∞(π′

y)

= esssupπ′
y
σy

ζ((ψ ◦ β)′s)
|β′

s|
,

where esssupτ is the essential supremum with respect to a measure τ .
For a.e. (x, y) ∈ D × D′, there exists a, b ∈ [0, ∞)2 with ‖(a, b)‖ = 1 and for which 

‖(|ξ|x, |ζ|y)‖′ = a|ξ|x + b|ζ|y. Let a′ = σxa, b′ = σyb, and apply (4.3) to get

‖(|ξ|x, |ζ|y)‖′ = esssupπx
a′
ξ((ϕ ◦ α)′t)

|α′
t|

+ esssupπ′
y
b′
ζ((ψ ◦ β)′s)

|β′
s|

= esssupπx×π′
y

(
a′
ξ((ϕ ◦ α)′t)

|α′
t|

+ b′
ζ((ψ ◦ β)′s)

|β′
s|

)
≤ h(x, y).

This establishes (4.2) and consequently implies

‖(|ξ|x, |ζ|y)‖′ ≤ |D(ξ ◦ ϕ + ζ ◦ ψ)|p(x, y) μ× ν − a.e. (x, y),

completing the proof of the proposition. �
4.2. Isometric inclusion W 1,p ⊂ J1,p(X, Y )

With the results of Subsection 4.1 we can prove the isometric inclusion of N1,p(X×Y )
in J1,p(X, Y ).

Proof of Theorem 1.5. The product X × Y admits a p-weak differentiable structure 
with charts given by products of charts of X and Y , cf. Corollary 1.2. Thus every 
f ∈ N1,p(X × Y ) has a differential df satisfying ‖df‖ = |Df |p. We will show that 
|df |(x,y) = ‖(|dxf

y|x, |dyfx|y)‖′. Given a p-weak chart (U, ϕ) of X and (V, ψ) of Y it 
suffices to prove the identity for almost every (x, y) ∈ U × V .

Since (U×V, (ϕ, ψ)) is a p-weak chart, we have a local representation of the differential 
d(x,y)f = (a(x,y), b(x,y)). Since f ∈ N1,p(X × Y ), for almost every x ∈ X, we have 
fx ∈ N1,p(Y ), and for almost every y ∈ Y we have fy ∈ N1,p(X). Thus for p-a.e. 
horizontal curve, i.e. for a.e. y ∈ V and p-a.e. γ ∈ AC([0, 1]; X) we have that
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(fy ◦ γ)′t = d(γt,y)f((ϕ ◦ γ)′t, 0) = a(x,y)((ϕ ◦ γ)′t) a.e. t ∈ γ−1(U).

However, since this holds for a.e. fixed y, and p-a.e. γ ∈ AC([0, 1]; X), by [9, 
Lemma 4.5], we have a(x,y) = dxf

y for a.e. x ∈ U . In particular, this means that the 
map (x, y) �→ dxf

y is measurable. Similarly, we get b(x,y) = dyfx for a.e. x ∈ X and a.e. 
y ∈ Y . We have obtained that

d(x,y)f = (dxf
y,dyfx) μ× ν − a.e. (x, y) ∈ U × V.

It follows from Lemma 3.1(3) and Proposition 4.2 that

|Df |p(x, y) = |d(x,y)f |(x,y) = ‖(|dxf
y|x, |dyfx|y)‖′ = ‖(|Dfy|p(x), |Dfx|p(y))‖′

for μ × ν-a.e. (x, y) ∈ U × V . This completes the proof. �
5. Properties of Beppo–Levi functions

In this section we establish a characterization of the Beppo–Levi space J1,p in terms 
of Newtonian spaces. Note that the isomorphism N1,p = W 1,p does not automatically 
allow one to replace W 1,p with N1,p in the definition of J1,p(X, Y ). The main result in 
this section achieves this by providing a good representative.

Theorem 5.1. Let f ∈ J1,p(X, Y ). There exists a representative f̃ of f such that

(1) for μ-a.e. x ∈ X we have fx ∈ N1,p(Y ),
(2) for ν-a.e. y ∈ Y we have fy ∈ N1,p(X),
(3) the map g(x, y) := ‖(|Dfy|p(x), |Dfx|p(y))‖′ is a p-weak upper gradient of f along 

HV-curves, and
(4) the minimal p-weak upper gradient g̃ of f̃ along HV-curves satisfies g ≤ cg̃, where 

c = ‖(c1, c2)‖ and c1 = ‖(1, 0)‖, c2 = ‖(0, 1)‖.

Recall the definition of HV-curves in Definition 2.1. In particular one obtains an 
equivalent definition if in (a1) and (a2) one replaces W 1,p by N1,p. To prove Theorem 5.1
we develop a notion of concatenation of plans and apply it to plans concentrated on 
horizontal and vertical curves, which will henceforth be called horizontal and vertical 
plans, respectively.

5.1. Concatenation of plans

The next definition will allow us to pass from horizontal and vertical plans to plans 
concentrated on HV-curves (HV plans). Here we give the definition and establish the 
basic properties of concatenation of plans.
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Definition 5.2 (Concatenation of plans). Let η and η′ be plans on X with e1∗η = e0∗η
′ =:

ν. Let {ηx} and {η′
x} be the disintegrations of η and η′ with respect to the maps e1

and e0, respectively. For ν-a.e. x ∈ X, set

η′′
x := a∗(ηx × η′

x),

where a : e−1
1 (x) × e−1

0 (x) → X is the concatenation map (α, β) �→ αβ, and define the 
concatenation η ∗ η′ of η and η′ by

η ∗ η′ :=
ˆ

X

η′′
xdν(x). (5.1)

Remark 5.3. Notice that in the definition of concatenation the choice of ηx×η′
x is some-

what arbitrary. One could produce new plans by choosing measurably other couplings 
of ηx and η′

x. In particular, for a given plan η the concatenation of the restrictions: 
η|[0,t] ∗ η|[t,1] does not usually give back the original plan η.

Lemma 5.4. Let η be a plan on X and s ∈ [0, 1]. If both η|[0,s] and η|[s,1] are q-plans, 
then so is η. Moreover, we have

η# = (η|[0,s])# + (η|[s,1])#. (5.2)

Proof. For any bounded Borel function g : X → [0, ∞) we have

ˆ

X

gdη# =
1̈

0

g(γt)|γ′
t|dtdη

=
ˆ ⎡⎣ sˆ

0

g(γt)|γ′
t|dt +

1ˆ

s

g(γt)|γ′
t|dt

⎤⎦dη

=
s̈

0

g(γt)|γ′
t|dtdη +

1̈

s

g(γt)|γ′
t|dtdη

=
1̈

0

g(γ ◦ e[0,s](t))|(γ ◦ e[0,s])′(t)|dtdη +
1̈

0

g(γ ◦ e[s,1](t))|(γ ◦ e[s,1])′(t)|dtdη

=
1̈

0

g(γt)|γ′
t|dtdη|[0,s] +

1̈

0

g(γt)|γ′
t|dtdη|[s,1]

=
ˆ

X

gd(η|[0,s])# +
ˆ

X

gd(η|[s,1])#,

proving (5.2). This proves the claim. �
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As a corollary we have the following.

Corollary 5.5. The concatenation of two q-plans η and η′, whenever defined, is a q-plan. 
Moreover, we have that

(η ∗ η′)# = η# + (η′)#.

Lemma 5.6. Suppose that η is a q-plan, s ∈ [0, 1] and that f ∈ Lp(μ) and g ∈ Lp(μ)
satisfy the inequality

ˆ
|f(γ1) − f(γ0)|dπ(γ) ≤

1̈

0

g(γt)|γ′
t|dtdπ(γ), π ∈ {η|[0,s],η|[s,1]}. (5.3)

Then (5.3) is satisfied for π = η.

Proof. By the argument in the proof of Lemma 5.4, we have that

ˆ
|f(γ1) − f(γ0)|dη ≤

ˆ
|f(γs) − f(γ0)|dη +

ˆ
|f(γ1) − f(γs)|dη

=
ˆ

|f(γ1) − f(γ0)|dη|[0,s] +
ˆ

|f(γ1) − f(γ0)|dη|[s,1]

≤
1̈

0

g(γt)|γ′
t|dtdη|[0,s](γ) +

1̈

0

g(γt)|γ′
t|dtdη|[s,1](γ)

=
1̈

0

g(γt)|γ′
t|dtdη(γ).

This proves the claim. �
As a corollary we get

Corollary 5.7. Suppose f ∈ Lp(μ) and g ∈ Lp(μ) satisfy the inequality

ˆ
|f(γ1) − f(γ0)|dπ(γ) ≤

1̈

0

g(γt)|γ′
t|dtdπ(γ), π ∈ {η,η′},

for two q-plans η and η′ on X for which e1∗η = e0∗η
′. Then (5.3) is satisfied for 

π = η ∗ η′.



S. Eriksson-Bique et al. / Journal of Functional Analysis 287 (2024) 110497 25
5.2. Concatenation of horizontal and vertical curves

We now apply the lemmas from the previous subsection to HV-plans. Recall that 
HV ([0, 1]; X × Y ) denotes the set of all HV curves, and HVn([0, 1]; X × Y ) the subset 
of HV ([0, 1]; X × Y ) consisting of HV curves with exactly n turning times. We remark 
that HV0([0, 1]; X × Y ) consists of the union of all horizontal and vertical curves. Our 
first step is to decompose plans concentrated on HVn([0, 1]; X × Y ). For the proof we 
denote by l : AC([0, 1]; X × Y ) → LIP([0, 1]; X × Y ) the map sending γ to its constant 
speed parametrization γ̄.

Lemma 5.8. Let η be a horizontal or vertical plan in X × Y . Let f ∈ J1,p(X, Y ) and 
g(x, y) = ‖(|Dfy|p(x), |Dfx|p(y))‖′. Then

ˆ
|f(γ1) − f(γ0)|dη ≤

1̈

0

g(γt)|γ′
t|dtdη.

Proof. We prove the claim for horizontal plans. The vertical case follows similarly. If we 
replace η by l∗η, both sides of the inequality remain unchanged. Thus we may assume 
that η-a.e. γ is constant speed parametrized. Further we may assume that η-a.e. γ is 
non-constant.

Since η is a horizontal plan, for η-a.e. γ = (α, β) we have that β is a constant yβ. 
Denote by h the map γ �→ yβ and let {ηy} be the disintegration of η with respect to h. 
Set ν := h∗η. Observe that h−1(y) = AC([0, 1]; X ×{y}) � AC([0, 1]; X) and we regard 
ηy as a plan living on the metric space X × {y} whose metric is a constant multiple of 
the metric of X (constant independent of y).

It is not difficult to see that ν  μY . We claim that η#
y = ρ(·, y)μX for ν-a.e. y, where 

ρ ∈ Lq(μX ×μY ) is the density of η# with respect to μX ×μY . It follows from this that 
ηy is a q-plan for ν-a.e. y.

For each Borel E ⊂ X and bounded Borel function g : Y → [0, ∞] we haveˆ

Y

g(y)η#
y (E)dν(y)

=
ˆ

Y

g(y)
1̈

0

χE(αt)|(α, y)′t|dtdηydν(y)

=
ˆ

Y

g(y)
ˆ

h−1(y)

1ˆ

0

χE×Y (γt)|γ′
t|dηydν(y) =

ˆ
g ◦ h(γ)

1ˆ

0

χE×Y (γt)|γ′
t|dtdη

=
ˆ

E×Y

g(y)dη# =
ˆ

Y

g(y)

⎛⎝ˆ

E

ρ(·, y)dμX

⎞⎠ dμY (y).

Since E and g are arbitrary it follows that for ν-a.e. y the identity η#
y = ρ(·, y)μX holds.
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Now we have the estimate
ˆ

|f(γ1) − f(γ0)|dη

=
ˆ

Y

ˆ

h−1(y)

|fy(α1) − fy(α0)|dηydν(y)

≤
ˆ

Y

ˆ 1ˆ

0

|Dfy|p(αt)|(α, y)′t|dtdηydν(y) =
1̈

0

|Dfβ(t)|p(αt)|(α, β)′t|dtdη

≤
1̈

0

‖(|Dfβ(t)|p(αt), |Dfα(t)|p(βt))‖′‖(|α′
t|, |β′

t|)‖dtdη

=
1̈

0

g(γt)|γ′
t|dtdη,

which proves the claim. �
Notice that a plan η concentrated on HV0([0, 1] : X × Y ) has a decomposition η =

ηH + ηV , where ηH is a horizontal and ηV a vertical plan. This can be shown e.g. 
by disintegrating η with respect to the map P : HV0 → {0, 1} which sends horizontal 
curves to 0 and vertical curves to 1 (we may by convention send constant curves to 0). 
Lemma 5.8 directly implies that, for f ∈ J1,p(X, y) and g as in the claim, the inequality 
holds for all q-plans concentrated on HV0.

Next we extend this observation to plans concentrated on HVn. For the proof we say 
that two plans η and η′ are equivalent if l∗η = l∗η

′. Note that (l∗η)# = η# and that 
l(HVn([0, 1]; X × Y )) = HVn([0, 1]; X × Y ) for all n.

Proposition 5.9. Let f ∈ J1,p(X, Y ) and let g(x, y) = ‖(|Dfy|p(x), |Dfx|p(y))‖′. Then, 
for any q-plan η concentrated on HV ([0, 1]; X × Y ) we have that

ˆ
|f(γ1) − f(γ0)|dη ≤

1̈

0

g(γt)|γ′
t|dtdη. (5.4)

Proof. Let η be a q-plan concentrated on HV ([0, 1]; X × Y ). By disintegrating η with 
respect to the map

tn : HV ([0, 1];X × Y ) → N, γ �→ #{turning points of γ}

we obtain a representation

η = λ0η0 + λ1η1 + λ2η2 + · · · ,
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where (λn) is a non-negative summable sequence and, for each n ∈ N for which λn > 0, 
ηn is a q-plan concentrated on HVn([0, 1]; X × Y ). Thus, we may assume that η is 
concentrated on HVn([0, 1]; X × Y ) for some n ∈ N.

Since both sides of (5.4) are invariant under replacing η by l∗η we may moreover 
assume that η-a.e. γ is constant speed parametrized. For each such γ, let t(γ) ∈ (0, 1)n
denote the turning times of γ, (cf. Definition 2.2). Further, let rγ : [0, 1] → [0, 1] be 
the piecewise affine bijection for which rγ(t(γ)i) = i/n for each i = 1, . . . , n, and set 
r(γ) := γ ◦ rγ . The plan η′ := r∗η is equivalent to η and for each i = 1, . . . , n the 
restriction ηi = η′|[(i−1)/n,i/n] is concentrated on HV0([0, 1]; X × Y ). Thus (5.4) holds 
for ηi for each i = 1, . . . , n. By (an iterated use of) Lemma 5.6 it follows that (5.6) holds 
for η′, and thus for η. This completes the proof. �

Using arguments from [1] and [9], Proposition 5.9 yields the following corollary.

Corollary 5.10. For each f ∈ J1,p(X, Y ) there exists a measurable representative f̃ of f
so that f = f̃ a.e. and g(x, y) = ‖(|Dfy|p(x), |Dfx|p(y))‖′ is an upper gradient of f̃ on 
p-a.e. hv-curve.

Proof. Arguing as in the proof of [9, Lemma 3.3], Proposition 5.9 implies that for Modp-
a.e. HV -curve γ there exists a representative f̃γ of f ◦ γ for which the function g is 
an upper gradient of f̃γ along γ. Now repeating the argument in the proof of [1, Theo-
rem 10.3] we obtain the required representative f̃ . �
Proof of Theorem 5.1. Let f ∈ J1,p(X, Y ). The representative f̃ of f given by Corol-
lary 5.10 satisfies (1) and (2), since gy and gx are p-weak upper gradients of fy and fx, 
respectively, for μX -a.e. x ∈ X and μY -a.e. y ∈ Y . If h is a p-weak upper gradient of f̃
along HV-curves, then for μ-a.e. (x, y) we have

|(f̃y ◦ α)′t| ≤ h(αt, y)|α′
t|‖(1, 0)‖, |(f̃x ◦ β)′t| ≤ h(x, βt)|β′

t|‖(0, 1)‖ a.e. t

for p-a.e. curves α and β in X and Y , respectively. Consequently |Dfy|p(x) ≤ c1h(x, y)
and |Dfx|p(y) ≤ c2h(x, y) and thus

g(x, y) = sup{a|Dfy|p(x) + b|Dfx|p(y) : ‖(a, b)‖ = 1, a, b ≥ 0} ≤ ch(x, y)

μ− a.e. (x, y) ∈ X × Y

proving (4). �
6. Tensorization when one factor is a PI-space

In this section we prove Theorem 1.6. Our proof uses a characterization of the ten-
sorization property in terms of (weak) approximation properties. Specifically, we use 
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the doubling property and Poincaré inequality to construct Lipschitz approximants of a 
Beppo–Levi function satisfying (3) in Proposition 6.1 below.

See [12] for the definitions of the doubling property and the Poincaré inequality. We 
will also need the following definition of the local Lipschitz constant:

Lip[f ](x) = lim sup
y→x

|f(x) − f(y)|
d(x, y) ,

where f : X → R.

Proposition 6.1. Assume p ∈ (1, ∞). Suppose that X and Y admit p-weak differentiable 
structures. If any of the following (equivalent) conditions is satisfied, then W 1,p(X×Y ) =
J1,p(X, Y ).

(1) Density: W 1,p(X × Y ) is dense in J1,p in norm.
(2) (Weak) Approximation by Sobolev functions: For every bounded f ∈ J1,p(X, Y )

with bounded support, there exists a constant C > 0 and a sequence of functions 
fi ∈ N1,p(X × Y ) with ‖fi‖N1,p ≤ C so that fi converges to f in Lp(X × Y ).

(3) (Weak) Approximation by Lipschitz functions: For every bounded f ∈ J1,p(X, Y )
with bounded support, there is a constant C > 0 and a sequence of Lipschitz functions 
fi ∈ J1,p(X, Y ) with bounded support, so that ‖fi‖W 1,p ≤ C, and so that fi converges 
to f in Lp(X × Y ).

Proof. Since W 1,p(X × Y ) ⊂ J1,p(X, Y ) is an isometric closed subset, then equality 
W 1,p(X × Y ) = J1,p(X, Y ) is equivalent to (1).

Clearly (1) =⇒ (2). Further, (2) ⇐⇒ (3) by density in Energy of Lipschitz functions, 
for p ∈ (1, ∞) see [3] (alternative proof in [8]).

Next, we show that (3) implies (1). Suppose f ∈ J1,p(X, Y ).
By Corollary 1.2, X × Y admits a p-weak differential structure. By [9, Corollary 6.7], 

the space W 1,p(X × Y ) is reflexive. Thus bounded functions with bounded support are 
dense in W 1,p(X × Y ).

Let f ∈ J1,p(X, Y ) be bounded and with bounded support. Let (fi) be a sequence of 
Lipschitz functions satisfying the conclusion in (3). By reflexivity and Mazur’s Lemma, 
a convex combination f̃i of a suitable subsequence of (fi) converges in the norm of 
W 1,p(X × Y ) and in Lp(X × Y ). Since the inclusion W 1,p(X × Y ) ↪→ Lp(X × Y ) is 
injective, and since the sequence also converges in Lp(X × Y ) to f , then the limit in 
W 1,p(X × Y ) equals f . Therefore, f ∈ W 1,p(X × Y ). The density of W 1,p(X × Y ) in 
J1,p(X, Y ) follows. �

To construct Lipschitz approximants in the proof of Theorem 1.6 we use a so-called 
discrete convolution in the X-direction. First, define a Lipschitz partition on unity. For 
n ∈ N fix an 2−n-net Nn ⊂ X. That is, fix a set Nn ⊂ X so that for each x ∈ X there 
is a a ∈ Nn with d(a, x) ≤ 2−n, and for each a, b ∈ Nn we have d(a, b) > 2−n. Let 
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{ψn
a : a ∈ Nn} be a Lipschitz partition of unity subordinate to the cover {B(a, 21−n)} so 

that supp(ψn
a ) ⊂ B(a, 22−n). The functions ψn

a can be chosen to be C(D)2n–Lipschitz 
with a constant C(D) depending on doubling constant D of X. We will fix this partition 
of unity and the nets Nn in the proofs below.

For a function f ∈ W 1,p(X) define the approximation

Tnf(x) =
∑
a∈Nn

ψn
a (x) −

ˆ

B(a,2−n)

fdμ. (6.1)

We have the following lemma.

Lemma 6.2. If X is p-PI, then Tn : W 1,p(X) → W 1,p(X) is bounded, with norm bounded 
independent of n, and Tnf → f in Lp(X) for every f ∈ W 1,p(X).

Proof. That Tn : Lp(X) → Lp(X) is bounded, and that Tnf → f for all f ∈ Lp(X)
follows from [11, Lemma 5.2]. Further, [11, Lemma 5.2] also implies that there is a 
constant C > 0 independent of n so that Tnf is locally Lipschitz with

Lip[Tnf ](x) ≤ C2n −
ˆ

B(a,5λ22−n)

|f − fB(a,2−n)|dμ

whenever x ∈ B(a, 5λ22−n). By the p-Poincaré inequality, we have

|DTnf |p(x)p ≤ Lip[Tnf ](x)p ≤ CpcpPI −
ˆ

B(a,5λ22−n)

|Df |ppdμ

for all x ∈ B(a, 5λ22−n). The balls B(a, 5λ22−n) have bounded overlap by the doubling 
condition and thus we get

ˆ
|DTnf |p(x)pdμ ≤

∑
a∈Nn

CpcpPI

ˆ

B(a,5λ22−n)

|Df |ppdμ ≤ C ′
ˆ

X

|Df |ppdμ,

for a constant C ′ = C(C, D, λ, cPI), where D is the doubling constant of μ. �
Remark 6.3. Indeed, our proof of Theorem 1.6 will use the Poincaré inequality only 
through the previous Lemma. One may conjecture that linear approximating operators 
Tn exist more generally. The crucial properties that we need are that the expression is 
given by a partition of unity, averages of the function, and that it is a bounded linear 
operator. PI-spaces are the only context where such a discrete convolution operators are 
known to exist. One plausible approach to tensorization of Sobolev spaces would involve 
constructing such convolutions more generally.
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Proof of Theorem 1.6. We will verify (3) from Proposition 6.1. Let f ∈ J1,p(X, Y ) be 
bounded and with bounded support. We assume that f is the good representative given 
by Theorem 5.1.

For each a ∈ Nn consider the function fa : y �→ −́
B(a,2−n) f(z, y)dμ(z). Let g(z, y) =

|Dfz|p(y) be the p-weak upper gradient of f in the Y -direction and define g̃a(y) =
−́
B(a,2−n) |Dfz|p(z, y)dμ(z). By Minkowski’s inequality, we see that g̃a ∈ Lp with

‖g̃a‖Lp(Y ) ≤ −
ˆ

B(a,2−n)

‖g(z, ·)‖Lp(Y )dμ(z).

Let η be any q-test plan in Y .
ˆ

|fa(γ1) − fa(γ0)|dη(γ) ≤ −
ˆ

B(a,2−n)

ˆ
|f(z, γ1) − f(z, γ0)|dη(γ)dμ(z)

≤ −
ˆ

B(a,2−n)

1̈

0

|Dfz|p(z, γt)|γ′
t|dtdη(γ)dμ(z)

≤
1̈

0

−
ˆ

B(a,2−n)

|Dfz|p(z, γt)dμ(z)|γ′
t|dtdη(γ)

≤
¨

γ

g̃adsdη(γ).

Since η is arbitrary it follows that fa ∈ W 1,p(Y ).
Define

fn(x, y) = Tn(fy)(x) =
∑
a∈Nn

ψn
a (x)fa(y).

Since f has bounded support, the sum here is in fact finite. It follows that fn ∈
N1,p(X×Y ). The doubling condition and p-Poincaré inequality on X easily implies that 
fn → f in Lp(X × Y ). Indeed,

f(x, y) − fn(x, y) =
∑
a∈Nn

ψn
a (x)[f(x, y) − fa(y)] =

∑
a∈Nn

ψn
a (x)[fy(x) − (fy)B(a,2−n)],

whence

⎛⎝ˆ
|fn(x, y) − f(x, y)|pdμ(x)

⎞⎠1/p

≤
∑
a∈Nn

⎛⎜⎝ ˆ
2−n

|fy − (fy)B(a,2−n)|pdμ

⎞⎟⎠
1/p
X B(a,2 )
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≤ C
∑
a∈Nn

2−n

⎛⎜⎝ ˆ

B(a,22−n)

|Dfy|pdμ

⎞⎟⎠
1/p

.

Integrating the p-th power of this estimate over Y using that the balls B(a, 22−n) have 
bounded overlap we obtain ‖fn − f‖Lp(X×Y ) ≤ C2−n‖f‖J1,p , implying ‖fn − f‖ → 0 as 
claimed.

Now, we show that supn∈N ‖|Dfn|p‖Lp < ∞. We have |Dfn|p ≤ |dXfn| + |dY fn|. 
First consider |dY fn|. Since x is constant we obtain

dY fn(x, y) =
∑
a∈Nn

ψn
a (x)dY f

a(y).

By the triangle inequality, and since the sum has at most C(D)-nonzero terms for any 
given x, we get

ˆ

Y

|dY fn|p(x, y)dν(y) �D

∑
a∈Nn

|ψn
a (x)|p

ˆ

Y

|dY f
a(y)|pdν(y)

�
∑
a∈Nn

|ψn
a (x)|p −

ˆ

B(a,2−n)

‖g(z, ·)‖Lp(Y )dμ(z).

Integrating over X, noting that ψn
a has support in B(a, 22−n), and using the doubling 

condition yields that ‖|dY fn|‖Lp(X×Y ) � |g|Lp(X×Y ).
Next, consider the X-derivative. Let b ∈ Nn. We may write

dXfn(x, y) =
∑
a∈Nn

dXψn
a (x)[fa(y) − f b(y)]

using the linearity of the differential and the fact that ψa
n is a partition of unity. The dou-

bling condition implies the existence of a constant CD such that, for each x ∈ B(b, 22−n), 
there are at most CD elements a ∈ Nn with B(a, 22−n) ∩ B(b, 22−n) �= ∅. For these 
a ∈ Nn the p-Poincaré inequality implies the estimate

|fa(y) − f b(y)| =

∣∣∣∣∣∣∣ −
ˆ

B(a,2−n)

f(·, y)dμ− −
ˆ

B(b,2−n)

f(·, y)dμ

∣∣∣∣∣∣∣
≤ C2−n

⎛⎜⎝ −
ˆ

B(b,λ28−n)

|Dfy|pdμ

⎞⎟⎠
1/p

.

This implies that
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‖dXfn(x, ·)‖Lp(Y ) ≤
∑
a∈Nn

|dXψn
a (x)|‖fa(y) − f b(y)‖Lp(Y )

≤ C
∑
a∈Nn

2n · C2−n

∥∥∥∥∥∥∥∥
⎛⎜⎝ −

ˆ

B(b,λ28−n)

|Dfy|pdμ

⎞⎟⎠
1/p

∥∥∥∥∥∥∥∥
Lp(Y )

≤ C ′

⎛⎜⎝ −
ˆ

B(b,λ28−n)

‖|Dfy|(z)‖pLp(Y )dμ(z)

⎞⎟⎠
1/p

for each x ∈ B(b, 22−n). The balls B(b, λ28−n) have bounded overlap by the doubling 
condition. Thus

ˆ

X×Y

|dXfn|pd(μ× ν)

=
ˆ

X

‖|dXfn(x, ·)‖pLp(Y )dμ(x) =
∑
b∈Nn

ˆ

X

ψn
b (x)‖|dXfn(x, ·)‖pLp(Y )dμ(x)

≤ C ′
∑
b∈Nn

ˆ

B(b,22−n)

−
ˆ

B(b,λ28−n)

‖|Dfy|(z)‖Lp(Y )dμ(z)dμ(x)

≤ C ′
∑
b∈Nn

ˆ

B(b,λ28−n)

‖|Dfy|(z)‖pLp(Y )dμ(z) ≤ C ′′
ˆ

X

‖|Dfy|(z)‖pLp(Y )dμ(z).

Thus ‖dXfn‖Lp(X×Y ) and ‖dY fn‖Lp(X×Y ) are bounded independently of n, completing 
the proof. �
Data availability

No data was used for the research described in the article.

Appendix A

A.1. Elementary properties of disintegration

We record some elementary properties of disintegrations of plans. In the following 
statement, the space ACB([0, 1]) consists of absolutely continuous bijections σ : [0, 1] →
[0, 1] with absolutely continuous inverse, and {πx} is the disintegration of the measure 
π given by dπ := |γ′

t|dtdη with respect to e. The following properties are easy to verify 
from the definition by direct calculation using the uniqueness of disintegration. Thus we 
omit the proofs.
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Lemma A.1. Let F : AC([0, 1]; X) → [0, ∞] be bounded and Borel and denote

f(x) :=
ˆ

e−1(x)

Fdπx

for η#-a.e. x ∈ X. Let σ : C([0, 1]; X) → ACB([0, 1]) be Borel and denote

H : C([0, 1];X) → C([0, 1];X), γ �→ γ ◦ σγ .

(a) The plan ηF := Fη and the disintegration {(πF )x} of dπF := |γ′
t|dtdηF satisfy

dη#
F (x) = f(x)dη#(x), (πF )x = 1

f(x)Fπx η# − a.e. x ∈ {f > 0}.

(b) The plan ηH := H∗η and the disintegration {(πH)x} of dπH := |γ′
t|dtdηH satisfy

η#
H = η#, (πH)x = (Hσ−1)∗πx η# − a.e. x ∈ X.

Here Hσ−1(γ, t) := (Hγ, σ−1
γ (t)).

Lemma A.2. Let F and H be as in Lemma A.1 and suppose that F > 0 η-a.e. Consider 
ηF,H := FH∗η and the disintegration {(πF,H)x} of dπF,H := |γ′

t|dtdηF,H . Then η# 
η#
F,H  η# and

‖G‖L∞((πF,H)x) = ‖G‖L∞(πx) η# − a.e. x ∈ X (A.1)

for every Borel function G : C([0, 1]; X) × [0, 1] → R satisfying

G(γ ◦ σγ , t) = G(γ, σγ(t)) π − a.e. (γ, t). (A.2)

Proof. Lemma A.1 implies that η#  η#
F,H  η# (since f > 0 η#-a.e.) and moreover

(πF,H)x = 1
f(x)F (Hσ−1)∗πx η# − a.e. x ∈ X.

For any Borel function G : C([0, 1]; X) × [0, 1] → R we have that ‖G‖L∞((πF,H)x) =
‖G‖L∞((Hσ−1 )∗πx) for η#-a.e. x ∈ X, thus we may assume that F ≡ 1.

Now suppose that G satisfies (A.2). Then G ◦Hσ−1 = H π-a.e. which readily implies 
that

‖G‖L∞((Hσ−1 )∗πx) = ‖G ◦Hσ−1‖L∞(πx) = ‖G‖L∞(πx) η# − a.e. x ∈ X.

This completes the proof. �



34 S. Eriksson-Bique et al. / Journal of Functional Analysis 287 (2024) 110497
A.2. Measurability of |Dfx|(y) and |Dfy|(x)

Proposition A.3. Let f ∈ J1,p(X, Y ). For μ-a.e. x ∈ X there exists a representative of 
dfx ∈ Γp(T ∗Y ) so that (x, y) �→ dyfx is Borel measurable. Similarly for ν-a.e. y ∈ Y

there exists a representative of dfy ∈ Γp(T ∗X) so that (x, y) �→ dxf
y is Borel.

Proof. Let (U, ϕ) and (V, ϕ) be p-weak charts of dimension N and M , respectively. Let 
E ⊂ U , F ⊂ V be null-sets such that the pointwise norms Φx and Ψy are well-defined 
and fy ∈ W 1,p(X), fx ∈ W 1,p(Y ) whenever x /∈ E and y /∈ F . We may define dxf

y as 
the unique vector ξ ∈ (RN )∗ for which∥∥∥∥ξ((ϕ ◦ α)′t) − (fy

α)′(t)
|α′

t|

∥∥∥∥
L∞(πx)

= 0,

whenever this exists, and 0 otherwise. Here fy
α is the absolutely continuous representative 

of fy ◦α if this exists and 0 otherwise. It follows that U×V � (x, y) �→ dxf
y thus defined 

is μ × ν-measurable. A similar argument gives the claim for dyfx. Since μ × ν is Borel 
regular it follows that dxf

y and dyfx have Borel representatives. By the arbitrariness of 
(U, ϕ) and (V, ψ) the claim follows. �
Corollary A.4. Let f ∈ J1,p(X, Y ). For μ-a.e. x ∈ X there exists a representative of 
|Dfx|p ∈ Lp(ν) so that (x, y) �→ |Dfx|p(y) is Borel measurable. Similarly, for ν-a.e. 
y ∈ Y there exists a representative of |Dfy|p so that (x, y) �→ |Dfy|p(x) is Borel.

Proof. The claim follows from Proposition A.3 since Φx(dxf
y) and Ψy(dyfx) are Borel 

representatives of |Dfy|p and |Dfx|p. �
We remark that the measurability of |Dfy|p(x) and |Dfx|p(y) can also be proven 

without using the p-weak differentiable structure.
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