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ABSTRACT

This thesis focuses on studying inverse problems for nonlinear elliptic partial differential
equations and in particular inverse problems for the minimal surface equation and semilinear
elliptic equations. It is shown that one can recover information about the coefficients of the
equation or some geometric information from boundary measurements of solutions. The main
tool used is linearization, both first order and higher order linearization.

The introduction describes inverse problems for partial differential equations in the context of
the Calderén problem and gives a survey of the literature related to the linearization methods.
Main theorems of the included articles are presented and the methods to prove them are also
discussed.

The articles (A) and (C) focus on inverse problems for the minimal surface equation. In both
articles we look at the minimal surface equation in Euclidean space that is equipped with a
Riemannian metric. Then from boundary measurements we determine information about the
metric. In (A) the metric is conformally Euclidean and in (C) the metric will be in a class of
admissible metrics. The main method used in both articles is the higher order linearization
method.

The remaining articles (B) and (D) study inverse problems for semilinear elliptic equations.
In (B) the equation has a power type nonlinearity and the aim is to determine an unbounded
potential from boundary measurements. Also in (B) the method used is the higher order
linearization method. In (D) the focus is on recovering a general zeroth order nonlinearity from
boundary measurements. Here the first linearization is used and we improve previous results
for this method in the case of semilinear equations.



FOREWORD

I wish to thank my advisor Professor Mikko Salo for giving me the opportunity to test my
wings as a researcher and guiding me through my doctoral studies. He has been a very kind
and understanding advisor and I could not have hoped for a better mentor. I also want to
thank the Department of Mathematics and Statistics of University of Jyvéskyla for providing
a welcoming work environment and great colleagues to work with.

I want to thank Yavar Kian for agreeing to be my opponent at my defense and the pre-
examiners Tracey Balehowsky and Catalin I. Carstea for their encouraging words.

I also wish to thank my fellow doctoral students for all their support in a PhD students life
both inside and outside of work. I also wish to express personal thanks to my other collaborator
David Johansson for all the enlightening discussions we had.

I wish to thank the former and present members of the inverse problems research in Jyvéskyla
for the great, friendly atmosphere we have had. It has been a great joy to work with you all.

Finally I want to thank my family for being there for me. Special thanks go to Maria for
always being there for me through all the highs and lows. She has believed in me when I did
not and most certainly I would not be here without her support.

Jyvaskyla, April 2024

Department of Mathematics and Statistics
University of Jyvéskyla

Janne Nurminen



TIIVISTELMA

Téassa vaitoskirjassa tutkitaan inversio-ongelmia epélineaarisille osittaisdifferentiaaliyhtéloille,
joista erityisesti keskitytadn inversio-ongelmiin minimipintayhtalolle ja semilineaarisille yhtaloille.
Tassa tyosséd naytetdan, ettd ratkaisujen reunamittauksista voidaan saada tietoa geometriasta
tai yhtalon kertoimista. Tyon tarkeimpia tyokaluja ovat ensimmaisen asteen ja korkeamman
asteen linearisaatio.

Johdannossa kuvaillaan inversio-ongelmia osittaisdifferentiaaliyhtéloille Calderénin ongelman
kontekstissa ja annetaan katsaus linearisaatiotekniikoihin liittyvaan kirjallisuuteen. Lisaksi es-
itellaan tutkielmaan sisaltyvien artikkeleiden paatulokset seka todistuksiin kaytetyt tekniikat.

Artikkelit (A) ja (C) keskittyvét inversio-ongelmiin minimipintayhtélolle. Molemmissa artik-
keleissa minimipintayhtaloa katsotaan euklidisessa avaruudessa, joka on varustettu Riemannin
metriikalla ja reunamittauksista saadaan tietoa tastd metriikasta. Artikkelissa (A) metriikka
on konformisesti euklidinen ja artikkelissa (C) metriikka kuuluu hyvéksyttaviin metriikoihin.
Pastyokalu molemmissa artikkeleissa on korkeamman asteen linearisaatio.

Artikkeleissa (B) ja (D) tutkitaan inversio-ongelmia semilineaarisille elliptisille yhtéloille.
Artikkelin (B) yhtélossé on potenssityylinen epélineaarisuus ja tarkoituksena on méaérittaé ra-
joittamaton potentiaali reunamittauksista. Jélleen péaatyokaluna on korkeamman asteen lin-
earisaatio. Artikkelin (D) tarkoituksena on mé&érittdsa reunamittauksista yleinen nollannen
asteen epdlineaarisuus. Térkein tyokalu on ensimméinen linearisaatio ja tyOssd parannetaan
aikaisempia tuloksia télle tekniikalle semilineaaristen yhtaléiden tapauksessa.
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1. INTRODUCTION

In inverse problems one is interested in studying the properties of a medium by making
indirect measurements. One of the classical inverse problems for partial differential equations is
the Calderén problem that arises from oil detection. The name comes from the mathematician
Alberto Calderén who in a famous paper from the 80’s studied the mathematical model
of determining the conductivity of a medium by making measurements on the boundary of
this medium. The inverse problem of finding the conductivity is called electrical impedance
tomography or EIT for short. In EIT one makes measurements by placing electrodes on the
surface of a medium and then inserts a voltage on these electrodes. This voltage then induces
a current inside the medium and one can then measure the current on the boundary of this
medium. Then with the knowledge of voltage and current on the boundary one tries to determine
the conductivity inside the medium.

This problem is modelled by a partial differential equation. Let 2 C R™, n > 2, be a bounded
open set with smooth boundary 02 and vy be a smooth positive function that is the conductivity
of Q2. The potential will be a function u that solves the following boundary value problem

(o s s,

and here the boundary value f is the known potential on the boundary. In fact u is induced by
f. The measurements that one makes are encoded in the so called Dirichlet-to-Neumann map,
or DN map for short:

Ay f = yO0uf|an.
Here the function wy is the unique solution to (1.1)) with boundary value f.
By doing the so called Liouville reduction [Sal08| that is doing the substitution ¢ =

AyL/2 .
n
172

(1.1) we get a reformulation of the Calderén problem by a Schrédinger equation:

(1.2) { Aus+qup =0, inQ

up = f, on Of).
Then the corresponding DN map will be

Aq: f — 8I,Uf|ag.
1



Now the inverse problem would be to determine the potential ¢ from the boundary measurements
encoded in the DN map A,.

There are different questions that one may study for this inverse problem, and we mention
some of them here:

I. Boundary uniqueness: Can one determine - or ¢ on the boundary 92 from the DN

map”?

II. Interior uniqueness: Can one determine « or ¢ in the set 2 from the DN map?

ITI. Regularity: What is the lowest regularity needed to achieve uniqueness either on 9€) or
in Q7

IV. Stability: If there is some noise in the measurements, how does this affect the recovery
of the conductivity?

V. Reconstruction: Can one give a constructive procedure to get recovery?

VI. Partial data: If one can only make measurements on a part of the boundary, can unique-
ness still be achieved? One can also study the above questions with partial data.

These questions can be asked with inverse problems related to any other partial differential
equation. In this thesis, we study mainly interior uniqueness (II.), regularity (III.) and partial
data (VL.).

For the Calderén problem these have been extensively studied. A standard method to show
interior uniqueness (II.) is to construct complex geometric optics solutions [AP06], [SU86],
[SU8T7]. For more results on this, we refer to [Uhl14].

The results mentioned above are for the full data. When dealing with partial data interior
uniqueness there is a difference in the results depending on the dimension. For n = 2 one can
measure on an arbitrary subset I' C 92 and get uniqueness [[UY10]. When n > 3 there are
only partial results for example in [BU02|, [Isa07], [KSU07|, [KS13|. For further references, see
[KS14].

When studying regularity (III.) we again distinguish the dimensions n = 2 and n > 3. When
n > 3 and we have full data, then in [Nac92], [Cha90], [DKS13] is shown that for ¢ € Lz one
has interior uniqueness and this is considered optimal (in the sense of standard well-posedness
and the strong unique continuation principle). One can show uniqueness also when ¢ € W~1"
[Hab18]. For partial data similar results for ¢ € Lz have been obtained in [CT20], [Tzo18] for
specific geometric assumptions. In the full generality the partial data case is still open. When
n = 2 the optimal regularity would be ¢ € LP where p > 1 is as close to 1 as possible. The best
known result so far is for ¢ € L3 [BTW20], [Ma20b]. For partial data the best known result is
for ¢ € WP, p > 2, with an arbitrary subset of the boundary [TY12].

Another variant of the Calderén problem is when the conductivity v is a matrix. This is
a realistic assumption, since many materials are not isotropic which would be the case with a
positive real valued function ~ as before. When ~ is a matrix the inverse problem is called the
anisotropic Calderén problem. This problem is closely related to a geometric problem (see for
example |[LU89|, [Uhl14]) of recovering a Riemannian metric g from measurements done on the
boundary of a manifold (M, g). More specifically one would study the boundary value problem

{ Aguy =0, in M

(1.3) up = f, on OM,

and the related DN map
Ag: f — 8uuf|8M~

Here A, is the Laplace-Beltrami operator and d,u is the Riemannian boundary normal deriva-
tive.

The above mentioned partial differential equations are linear. In this thesis we study inverse
problems for nonlinear partial differential equations. We study two types of equations; first is
a semilinear equation

Au+a(z,u) =0,
2



where a is nonlinear in u, for example a(z,u) := ¢(z)u™, where m > 2 is an integer and ¢ a
potential. This equation is a nonlinear version of the Schrédinger equation . The second
type that we study is the minimal surface equation. We will study this in a Riemannian setting
and the inverse problem will have similar features as the one for . These similarities will
be highlighted in Section

One possible way of studying these inverse problems for nonlinear partial differential equations
is to linearize the DN map. Recently many authors have been using a method called the higher
order linearization for these problems. We will describe this method in more detail in Section
and also review the literature on this subject. In Section 3| we go through articles (A) and
(C) where we study inverse problems for the minimal surface equation. Finally in Sections
and |5 we discuss articles (B) and (D) where inverse problems for Au + a(z,u) = 0 are studied.
In article (B) we focus on the case when a(x,u) = g(x)u™, m > 2, and study the question III
mentioned above. In (D) we try to see what assumptions on the nonlinearity a are needed in
order to solve the inverse problem of recovering the nonlinearity from boundary measurements.

2. THE METHOD OF HIGHER ORDER LINEARIZATION

In inverse problems for nonlinear partial differential equations one can try to linearize the DN
map and then try to extract information from this linearization. In [Isa93] the first linearization
was used in a parabolic case where the linearized equation is a linear one and hence one can use
the theory of inverse problems for linear PDEs. When dealing with elliptic semilinear PDEs
of the type Au + a(z,u) = 0 the inverse problem of determining the nonlinearity a(z,u) was
studied in [IS94], [IN95], [Sunl10], [[Y13]. In all of these articles they use the (first) linearization
method, that is, they study the (first) Fréchet derivative of the DN map and use results for
linear equations.

In [IS94] the authors show that for n > 2 one can recover the nonlinearity a from boundary
measurements in a certain reachable set. For the nonlinearity a they assume that a, 9,a and 92a
are bounded and that dya < 0. In [IN95| the author shows a similar result for n = 2. In that
article it is assumed that the first derivative d,a is bounded from above by a function ¢, so that
the smallest Dirichlet eigenvalue of A + g, is strictly negative (this assumption guarantees that
for example the maximum principle holds) and that the constant function v = 0 is a solution
to Au + a(x,u) = 0. That is they assume that a(x,0) = 0.

In [Sunl10] the author shows that one can recover the nonlinearity a for n > 2 in the reachable
set without the assumption a(z,0) = 0 but still keeping essentially the same assumptions that
have been made in [IS94], [IN95]. In [SunlO] it is also shown that one cannot recover the
nonlinearity uniquely since there is a gauge invariance. That is if one has two nonlinearities a;
and az whose DN maps agree, then one can show that ay = T,,a; on the reachable set. Here
(T,a)(z,u) = a(z,u+ ¢(z)) + Ap(z) and ¢ € C**(Q) with ¢lsg = Velag = 0. If however
there is a common solution, then this gauge invariance disappears.

In [IY13] the dimension is n = 2 and the equation involves also a linear zeroth order term,
that is the equation is of the form Au + g(z)u — a(x,u) = 0. Also this article is different from
the others mentioned before since they focus on partial data. The authors also make some
stronger assumptions on the nonlinearity in order to determine the nonlinearity. Some growth
conditions are made on a,d,a and 92a and in addition they assume a(x,0) = d,a(x,0) = 0.

Since in this thesis we study the minimal surface equation, which is a quasilinear equation,
we give some remarks on previous results for quasilinear equations. The Euclidean minimal

surface equation is
\Y
v Ve - | =0,
(14 |Vul?)2

which can be thought of as a special case of the equation div, (a(z, Vu(z))) = 0. Results for
these equations can be found for example in [HS02], [MU20] where they make strong assumptions
on the nonlinearity a e.g. some growth conditions. For other types of quasilinear equations we
refer to |[CF21] and the references there.
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Recently there has been an increasing interest towards inverse problems for nonlinear partial
differential equations and a new method was introduced to solve these problems. In [KLU18]
the method of higher order linearization was first used for nonlinear hyperbolic wave equations

Du(z) + a(z)u(z)® = f(z)

on Lorentzian manifolds. The aim was to recover the nonlinearity a. After this, in two articles,
[LLLS21a] and [FO20], the method was introduced for semilinear elliptic equations of the type

Au+ a(z,u) = 0.

These two articles were independently done and published at the same time in the same preprint
server. In [LLLS21a] they consider the special case of a power type nonlinearity, that is when
a(z,u) = q(z)u(z)™, m € N;m > 2. They continue to a more general nonlinearity a in
[LLLS21b]| with partial data results. They also prove results on the simultaneous recovery of
an unknown cavity or boundary and the nonlinearity. In [LLST22| the authors generalize this
for general power type nonlinearities. The inverse problem with partial data was also treated
in [KU20].

In these works there are also assumptions on the nonlinearity, but they are more general
than in the works before. In [LLLS21b| it is assumed that a(z,0) = 0,9,a(x,0) = 0 and 0
is not a Dirichlet eigenvalue for the first linearization. Article |[LLLS21a] is a special case of
this. In [FO20] they also assume a(x,0) = 0 and that 0 is not a Dirichlet eigenvalue for the
first linearization. In addition they assume that d,a,92a are known, a is analytic in the second
variable and with these assumptions there is a power series representation. Somewhat similarly
in [KU20] a is assumed to be holomorphic in the second variable, a(z,0) = 0, d,a(z,0) = 0 and
from these it follows that a has a power series representation.

Also in |LL23| the authors discuss semilinear elliptic equations with a source term, that is
equations of type Au+ a(z,u) = F, and they study the inverse problem of recovering both the
nonlinearity and the source term. They remark that in general one cannot determine both since
there is a gauge invariance. They then address some examples where it is possible to break the
gauge by making some assumptions on the nonlinearity.

Other types of equations have also been considered. Quasilinear conductivity equations with
an isotropic nonlinear conductivity have been treated in [CFKKU21|, [KKU23|. In [CFKKU21]
they consider a conductivity equation div(y(z,u,Vu)Vu) = 0 such that v(-,0,0) > 0 is a
smooth function and that « is holomorphic in the last two variables. In [KKU23| they study
partial data with conductivities depending on = and w or additionally depending on some fixed
direction of the gradient Vu. They assume holomorphicity, as before, and that the linearized
equation at 0 is the Laplace equation. These assumptions are similar to the ones made for the
equation Au + a(z,u) = 0.

There are other inverse problems for nonlinear partial differential equations that have been
studied. For example the minimal surface equation in a geometric setting [CLLO24|, [CLLT23]
(more on these in Section and the nonlinear magnetic Schrodinger equation have been studied
in [KU23|, [LZ20], [Ma20a], [KUY21] and in the fractional case in |[LZ23]. Also when dealing
with the fractional Laplace operator, some nonlinear lower order perturbations of this have been
treated in [LO22|, [LL22].

An interesting phenomenon is that the nonlinearity actually helps. For example if you con-
sider an inverse problem for the Schrodinger equation Au + gqu = 0, then in dimension n > 3
the partial data in the general case remains open, that is when I' C 9€) is an arbitrary open
set. For the nonlinear variant Au + qu™ = 0 the partial data is solved for an arbitrary open set
([ILLLS21b|, [KU20]) and even for Neumann data measured at a single point [ST23|. For the
nonlinear isotropic conductivity in [KKU23| the authors show partial data interior uniqueness
in the cases mentioned above for an arbitrary open subset of the boundary. For the linear
conductivity equation in dimensions n > 3 the partial data recovery is not known. For n = 2 it
is known and we refer to [IUY10].

4



Next we will present some details about the method, mainly we will discuss well-posedness
for the nonlinear problems and give an example of the method in a model case.

2.1. Well-posedness. We are dealing with elliptic nonlinear partial differential equations and
it is not clear if we will have well-posedness for boundary value problems of this form. In some
cases we would also like to have a well-defined DN map. In [LLLS21a] this issue was solved
by showing that if the boundary values are small enough, then there exists a unique small
solution to the boundary value problem. This was done by using the implicit function theorem
for Banach spaces (see for example [RR04, Theorem 10.6.]).

We describe here a general setting for the well-posedness that is used in articles (A), (B) and
(C) although in (B) some modifications are done to the function spaces. In (B) we use Sobolev
spaces instead of Holder spaces. In (D) the well-posedness is more delicate and we postpone the
discussion to Section o} Let 2 C R™, n > 2, be a bounded domain with smooth boundary and
let F: Q xR x R" x R" — R be a smooth function so that F(x,0,0,0) = 0. We will consider
the boundary value problem

2 _ .
(2.1) { F(z,u, Vu, V?u) = 0, inQ

u = f, on 0},

where f € C*(0Q2), s > 0 and s ¢ N. Then we can show the existence of small solutions to (2.1)
in the following sense:

Proposition 2.1 ((A), Proposition 2.1). Let F: Q x R x R™ x R R, F = F(x,u,p, P), be
a C* mapping with F(x,0,0,0) = 0. Furthermore assume that the map

v L(v) := 0,F(,0,0,0)v + V,F(x,0,0,0) - Vv + VpF(z,0,0,0) : V0

is injective on Hg(Q)) and that the operator L is strictly elliptic. Let s > 3,s ¢ N. Then there
exist C, 0 > 0 such that for any

f e Us = {h c 08(89) : ||h||cs(3g) < 5}

the boundary value problem

F(z,u,Vu,V?u) =0, inQ
u=f, on 09,

has a unique small solution u = uy which satisfies

ulls @) < ClIflleson)-

Moreover the following mappings are C*° maps

S Ug—)Cs(Q), fl—>Uf,
A: Us — C*~1(59), f = dyuglan-

This proposition gives a unique small solution and continuous dependence on the boundary
values. It also gives that the DN map associated to is a smooth mapping in the Fréchet
sense. This is used to linearize the DN map consecutively to obtain information about the
object that we are trying to recover from boundary measurements.

As mentioned before, the proof relies on the implicit function theorem for Banach spaces and
this is where the smallness of the solution u; comes from. That is because the implicit function
theorem is proved using the Banach fixed point theorem, so we in a way rely on a contraction
principle. The proof also uses that for v,w € C*(Q) we have lowlles @) < ol es @ llwllos @)
Finally a key thing is that the linearized equation behaves well since we assume the injectivity
of the map v — L(v).

5



2.2. Description of the method in a model case. We will next describe this method in a

model case. Consider an inverse problem of recovering a potential ¢ € C*°(Q2) from boundary
measurements, that is from the knowledge of the DN map

Aq: f —> 8Z,Uf|3g
associated to the boundary value problem

2_ .
(2.2) {Au+qu =0, inQ

First of all, one can show that this boundary value problem has a unique small solution (see
Proposition and |LLLS21a, Proposition 2.1]). More precisely there is a § > 0 such that for
any f € C*(09), s > 2, s ¢ N, with |[|f||cs@aq) < 0 there is a unique solution to (2.2) with
[|ul] os@ < |[fllcsa0)- Thus the solution uy depends smoothly on the boundary value f and
the same applies for the DN map.

Relying on these, one can do the following. By setting the boundary value f = e1f1 + g2/
for e1,e9 small enough and fi, fo € C*(052) we have that the solution us will depend smoothly
on ¢; and €2. The same applies for the DN map. By taking the derivative %|€1:€2:0 of the
DN map, one gets a mapping

(DAq)O: fl — 8va1‘aﬂ

where vy = ai{_:luf\ﬂ:gl:o is the solution of the linearized problem. In the case of (2.2)) this
means a solution of

(2.3) { Avy =0, in

vy = f1,  on O

One can obtain this boundary value problem also by taking the derivative 8%1‘ e1=e1=0 Of (12.2)).
By taking the mixed derivative ﬁ%glh:gg:o of (2.2) one gets the second linearization of

22):

(2.4)

Aw = —2quy,vyp,, in )
w =0, on 02,

where w := ﬁ%aluﬂglzazo. Notice that when compared to the first linearization (2.3)) this
equation contains the potential g. This is used below to recover g. Since the DN map can also
be differentiated with the same mixed derivative, we have

(D*Ag)o: (f1, f2) = Ouwlog.

This second linearization of the DN map is a symmetric bilinear map.

Now if we would have two potentials ¢; and g2 and assume that Ay, (f) = Ay, (f) for all f
sufficiently small, then we could use the second linearizations above to get g1 = q2. We would
begin by subtracting the equations for j = 1,2 and integrating the difference against a
third solution vy, to (2.3). This yields

(2.5) / A(w; — wy)vgdr = —2 / (@1 — @)vfvpvyp, de.
Q Q

Now applying the derivative #%‘61:82:0 to Ag, (f) = Ag, (f) gives O w1|aq = Jywa|aq. Thus
using integration by parts in (2.5)) we have

/Q(ql — @)V VU dr = 0.

Choosing vy, = 1, f1 and f3 to be the boundary values of Calderén’s exponential solutions
[Cal80] would then give ¢; = g2 in Q.

In general when using the higher order linearization, one tries to reduce the inverse problem
to a problem of determining if a product of solutions to the first linearization is dense in some
suitable space (for example in L'). In some cases it is reduced to a product of some kind

6



that involves the solution and gradients of solutions to the first linearization (for example in
[CFKKU21J).

The articles in this thesis use this method in different cases. Articles (A) and (C) (see
Section [3) focus on inverse problems for the minimal surface equation and the articles (B)
and (D) (Sections [4| and |5| respectively) will consider inverse problems for semilinear partial
differential equations of type Au + a(z,u) = 0.

3. INVERSE PROBLEMS FOR THE MINIMAL SURFACE EQUATION

In this section we discuss inverse problems for the minimal surface equation in a setting where
we equip R™ with a Riemannian metric.

Let © € R"! be a bounded domain and let us consider the graph of a function u: Q — R,
that is, let us consider the set

Y= {2 u(2)): 2’ € Q} CR™.

If the metric on R™ would be Euclidean, then X is a minimal surface if the function u solves
the following quasilinear partial differential equation

div Ll =0 forall z €.
(1+|Vul|?)2

This is equivalent with saying that the mean curvature of ¥ vanishes on all points of X. If one
compares this equation with the conductivity equation and the inverse problem for that
equation, then it is not clear what the inverse problem would be. There is no “conductivity” to
recover. Also it is not clear if the boundary value problem for the minimal surface equation is
well-posed or not.

The other difficulty is that if the underlying metric is not Euclidean, then the appearance
of the minimal surface equation differs from case to case. In the case where we would have a
product structure § ® e, with a Riemannian metric § on R?~!, that is the nth direction only
would be Euclidean, then ¥ would be minimal if

vA
divy [ ——2% ) =0 forallzeQ.
(1+|Vgul3)2

In this case it would be natural to ask that if one makes boundary measurements on 3, could
one then identify the metric § on Q. This question has an answer in |[CLLO24] where they show
that it is possible to determine § up to an isometry that is the identity on 02 when n = 2.

Recently in |[CLLT23| the authors considered an even more general setting. They showed
that under a certain topological condition a two dimensional minimal surface embedded in a
three dimensional Riemannian manifold can be recovered up to an isometry from the DN map
associated to the minimal surface equation. If the topological condition is removed, then one
can recover the conformal factor of a general minimal surface.

There is a link from minimal surfaces to a geometric inverse problem. In [ABN20] the authors
show that under some geometric conditions on a Riemannian manifold (M, g) the knowledge of
least areas circumscribed by simple closed curves on the boundary M determine the metric
g. There are also restrictions on the metric. This inverse problem can be thought of as a
generalization of the boundary rigidity problem that asks if a metric can be determined by
knowing the distances between boundary points (see e.g. [BI13], [PU05|, [PSU23| and the
references therein). In this problem the data would be lengths of geodesics which can be
thought of as one dimensional minimal surfaces.

3.1. On the recovery of a conformal factor in the presence of a conformally Euclidean
metric. Let us then look at a case when we equip R™ with a conformally Euclidean metric,
7



that is we look at the manifold (R", ¢ -1Id), where ¢ € C*°(R"), ¢(z) > 0 for all z € R™. Then
the minimal surface equation becomes

\Y
(3.1) div 7111
(14 |Vul|?)2
Au(l— ™)+ 5-Vu - Vel + [Vul> — %) + ”27_318%0(1 + |Vul?)
3
(14 |Vul?)?
Note that if ¢ = 1 then we get the more familiar Euclidean minimal surface equation . In
this case one natural question is to ask that if one makes boundary measurements on Y can

one then identify the conformal factor c. These boundary measurements are encoded in the DN
map

+ =0.

AL: f e Opuglp
where T' C 0 and f is small (in the sense defined below) with spt(f) € I'. We will denote

A, := A% when T' = 99Q. This question is studied in the first article of this thesis (A) and the
main result is the following;:

Theorem 3.1 ((A), Theorem 1.1). Let Q@ C R™ 1, n > 3, be a bounded domain with C*
boundary, (R™, g1), (R", g2) be two Riemannian manifolds with (g;)ix(x) = ¢j(x)dir, where ¢; €
C>®(R™), ¢j(z) > 0 for j = 1,2 and for all z € R™. Assume that 0,,c;(z',0) = 92 cj(2',0) =0
for ' € Q. We have four cases:

(1) Letn > 3 and A¢; be the DN maps associated to cj, j = 1,2, and assume that

Ac, (f) = Acz(f)

for all f € Us :={h € C*(0Q) : ||h]|csa0) < 6}, where 6 > 0 is sufficiently small.
(2) Assume either that
(a) n=3,T C 9N be open and T # O or
(b) n>3,QC {xy,_1 >0}, T CIN be open, T # O and that O\ T C {x,_1 =0} or
(c) n >3, Qis a strict subset of some ball B C R"™, T' C 99 be open, T' # 0 and that
0Q\T C 0B.

In addition assume that

A, () = Ay (f)
for all f € Uy, spt(f) C T, where 6 > 0 is sufficiently small and AE], are the partial DN
maps associated to c; for j =1,2.

Then in the cases (1) or (2) we have for A # 0
o e1(x',0) = A ea(',0), in Q, m > 0.

As seen in the result, one can get some results with measurements done on only a part of the
boundary.

As mentioned in Section [2] this is proved using the higher order linearization method. We
will use small boundary data of the form f =¢e1f; + -+ & fi for e; small and we denote € =

(e1,...,e) and by u?c the unique small solution to ([3.1) with c replaced by ¢; and with boundary
value f. A key step is the first linearization of the DN map and what is the corresponding
boundary value problem for that. The first linearization of the DN map at f =0 is

(DA, )o: C*(09) — cHo9), fe &ﬂ’é}aﬁ'

l._ 0 Jo: :
Here v; = 5 }ezouf is a solution to

div (cj(a:', O)%VU§> =0, inQ
vé = fi, on 0f2.
8
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Using boundary determination from [BS06] and the results in [IUY10], [SU87| or [Isa07] (de-
pending on the dimension and if we are dealing with partial data or not) we get

(3.3) c1(z',0) = Aea(27,0), 2’ € Q.

With this knowlegde we will move to higher order linearizations of the DN map. This is done
by an induction on the order of linearization, but we will describe how the method works in the
second linearization.

First of all, since solutions to are unique we get that implies v! := vll = vé. Then
we linearize the boundary value problem for the equation twice to get

n—1

div (cj(m’, O)TVw](-al)) —2=le(, O)nT_l_lﬁgncj(:E’, 0)vlv® =0, in Q

wl® =0, on 99

(3.4)

(al) . _
A i
%ﬁ%l‘g:ou? Using (3.3)), subtracting (3.4]) for j = 1,2 and using integration by parts we obtain

an integral identity

where v%, v! solve the first linearization with corresponding boundary values f,, f; and w

-1 n—

(3.5) / n 5 €l (:c’,O)Tl_l (92 e1(a!,0) — ND2 ca(a’,0)) vl da’ = 0.
Q

Solutions to the first linearization (3.2) are also solutions to a Schrédinger equation. Then we

use the property that products of these solutions are dense in L' (when n > 3 [SUS7|, when

n = 2 [Buk08], see also |[Blall] and |[LLLS21bl Proposition 2.1]) and thus obtain

92 c1(2',0) = N2 co(2',0), 2’ € Q.

This would then imply that wgal) = wéal). The induction would then proceed in a similar

fashion.

When dealing with partial data, the proof goes in almost the same way. The main difference
comes when we try to obtain the integral identity . There one needs to take care of
boundary integrals on 92 \ I when using integration by parts. This is done by constructing a
positive solution to the first linearization by using the maximum principle.

Some comments on the assumptions made in Theorem The assumption d,,,¢;(z',0) =0
is needed for the well-posedness of the boundary value problem for , that is, it ensures that
0 is a solution. The second derivative Ogn ¢j(2',0) is assumed to be 0 in order for the method to
work, and it is not known if it could be removed. The assumption in part (b) comes from the
fact that we use partial data results for inverse problems for the Schrédinger equation. When
n = 3 we use [IUY10] and there they do not pose any constraints on I' C 9. When n > 3
we use the results of [[sa07] and there are some conditions needed for 2, 92 and I". These
conditions are described in the statement of Theorem [3.11

Then we would like to make some remarks about the conclusion of Theorem Firstly, if
one would assume that both ¢; and c¢o were real analytic with respect to x,, then we would
have

c1(z) = Aea(z),z € @ x R.

Secondly, there is a small gauge invariance with the conformal factor. If we replace ¢ by uc, 1 a
constant such that p # 0, then the DN maps A, and A, will be the same and also the minimal
surface equation for ¢ and pc will be the same (this can be seen from ({3.1))). This is the reason
for A # 0 to appear in the conclusion.

3.2. On the recovery of a metric in a fixed conformal class in the presence of an
admissible metric. In the third article (C) we try to combine the setting of articles (A) and
[CLLO24]. Thus we will look at the case where we equip R"” with a metric

(3.6) 9(a/, 2n) = cla,20) (9(8”') ‘f) .
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Here (2/,7,) € R" ! x R, § is a Riemannian metric on R*~! and ¢ € C*®(R"), ¢(z) > 0 for all
x € R™. With this metric the minimal surface equation is

Vgu
(14 |Vgul2)
Agu(l = ™) + 5 (Vgu)?0y,c(1 + [Vgul? —c™2) + 210y, (1 + |Vgu|§)
(1+ |Vgu|§)%

(3.7)  div,

=

Note that when g = Id we would have the metric in article (A) and when ¢ = 1 we would be in
the setting of [CLLO24]. In the third article we consider the inverse problem of identifying the
Riemannian metric in a fixed conformal class, that is if we know the DN maps for two metrics
in the same conformal class, are these two metrics then the same. The main result of (C) gives
a partial answer to this question in the setting described above. This problem is studied also
when dealing with the inverse problem for the Laplace equation on a manifold (see equation
(1.3)). More on this problem can be found for example in [DKSU09|, [CFO23|.

Before we state the result, we need to introduce some concepts. Let Q C R”! be a bounded
open set and I' C 99. First of all the DN map in this situation will be

(3.8) AL: f = Qyuglr

for small f with spt(f) C I' and when I' = 02 we denote A, := AE. Here Qyus = §Y0,,uv;.
Then we will introduce the set of admissible metrics:

Definition 3.2. A Riemannian metric g is called admissible if on R™ it is of the form (3.6
and (€, ) is a simple manifold.

Definition 3.3. A compact manifold (M,Q) with boundary is called simple if for any p € M
the exponential map exp, with its maximal domain of definition in TyM is a diffeomorphism
onto M, and if oM is strictly convex in the sense that its second fundamental form is positive

definite.

The reason to introduce this class of Riemannian metrics is that we will use results for the
inverse problem for an advection diffusion equation that is in the setting of admissible metrics
IKU18|.

Now we are ready to state the main results of (C).

Theorem 3.4 ((C), Theorem 1.3). Let (R",g), n > 3, be a Riemannian manifold where g is
as in with Oy, c(z',0) = 82 c(2',0) = 0 and let Q@ C R be a bounded domain with C>
boundary. When n = 3 assume that Q) is simply connected and when n > 3 assume that § is
admissible. Let ¢ € C*(R") be such that 9y, &(z',0) = 02, &(a',0) = 0 and let O &(2',0)]on =0
for k > 3. Assume that Ag(f) = Azg(f) for all f € Us, where 6 > 0 is sufficiently small. Then

&@',0) =X, 0F &a',0)=0
for some A > 0 and for all k > 2.
Thus, if ¢ is real analytic with respect to x,, then ¢(x) = X\ for all x € Q x R.

We also consider a partial data result when n = 3:

Theorem 3.5 ((C), Theorem 1.4). Let (R, g), ¢ and Q be as in Theorem and let T' C 09,
I' # 0, be open. Assume that Ag(f) = Aeg(f) for all f € Us, where 6 > 0 is sufficiently small.
Then

&', 0) =2, 0F éa',0)=0
for some A > 0 and for all k > 2.

Thus, if ¢ is real analytic with respect to xs, then é(x) = X for all x € Q x R.
10



These results extend the result from (A). The proof follows a similar pattern as for Theorem
The differences come in with the first linearization of the DN map and the linearized
equation for (3.7]). For the metric g the linearized equation is

{ —Agvl—i—le =0 in$

(3.9) ol = fi, on 09,

where Xv! = % Z” 1 §90,,¢(x',0)0;,v. For the metric g it is

A+ Xt =0 inQ
(3.10) { !

ot = fi, on 9,
—n sij (Ozic(x’,0) | Oz, E(x',0)
where Xh = 2 gj( @0y T e, ) )8 h. Both equations and ( are called
advection diffusion equations.

Since Ay, = Az, we can use results for inverse problems for advection diffusion equations
(|GT11] for n = 3, [KU18] for n > 3) to get that X = X. This implies that &(z’,0) = A € (0, o)
and o' = ol

Next we use this information together with the second linearization of the DN map and the
second linearization of . The second linearizations are

—Ajwkt + 201(;,%) Z” 1§90, c(2’,0)05, Wk + 207(‘3:,10) 93 c(z/,0)vF! =0 inQ
(3.11) W
w™ =0, on 0f)

for the metric g and

—A 'Lbkl + QCI(Z],LD) Z?j 11 g”axlC(fI: 0)8%11}“ + 20(I’10) 83 ( ! )’Uk’Ul

(3.12) +oatr0y 05, (@’ 0)vFul = 0 in Q
k=0, on 0N

for the metric ¢g. Now ﬁx z( € Q. We construct a solution v(©) of the adjoint of the first lin-
earization (3.9) so that v(®)(x)) # 0. Then subtracting equations (3.11] and integrating
this against the solution v(®) gives

/ n( 0)83 é(2’,0)v UU(O)dV_O
Since products of solutions to advection diffusion equation are dense in L' (see Lemma 4.1 in
(C)), we get 03 &(a',0) = 0 for 2’ € Q. As before, we would proceed by induction.

The assumptlons made in these two theorems are similar to those done in Theorem 3.1} As in
Theorem [3.1] we assume 8,,,c(2,0) = 8,,¢(z',0) = 0 for the minimal surface equation to be well-
posed for small data with both metrics g, g and the assumption ﬁgnc(x’ ,0) = 83%”6@’ ,00=0
is made in order to make the method work. The assumption GI;HE(SU/, 0)|ao = 0 for £ > 3 might
possibly be removed by boundary determination. When n > 3 we assume that the metric § is
admissible. As mentioned before, this is done in order to use results from |[KU18] where the
metric is of the same form as §. When n = 3 we assume that 2 is simply connected. The
reason for this is that we use results for inverse problems for the magnetic Schrodinger equation
(IGT11] and |Tzol7| for partial data). In order to get information about the vector fields X
and X we need an additional argument that uses the Poincaré Lemma and thus we need the
simply connectedness of Q (see Lemma 4.2. of (C) for this argument).

The gauge invariance that appeared in Theorem is present in and in the DN map
and it plays a role here also. It shows in the conclusion of Theorems and that is
we cannot hope to say anything more than ¢(z’,0) = X because of the gauge invariance.

The partial data result, Theorem is proved in the same way as the full data case. One of
the main differences is to use results from [Tzol7| instead of [GT11]. Also when constructing
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this special solution v(®) one needs to construct it so that it also takes care of the boundary
integral terms on the inaccessible part of the boundary, that is integrals on 9Q \ T'.

4. RECOVERY OF AN UNBOUNDED POTENTIAL

In article (B) we study an inverse problem for an elliptic equation with a power type nonlin-
earity. The PDE in question is

Au+qu™ =0 in§, wherem >2,m e N.

It was shown in [LLLS21a], [KU20| that with measurements made on an open subset I' C 99,
which can be the whole boundary, one can recover a smooth potential q or a Holder continuous
potential ¢, respectively. It is also enough to make measurements on a single point on the
boundary to recover a Holder continuous potential [ST23]. In (B) we show that one can recover
an unbounded potential in the same situations as mentioned before. The potential will be in
L%+€(Q) for the partial and full data and in L™""¢(2) for the single point measurement. Here
€ > 0 for both cases. In order to state these results, we must define the correct boundary data

now that the potential is not bounded. For this let Us := {h € W27%’p(8§2): HhHW%%’p(aﬁ) <

0}, where p := 5 4 ¢. Thus we have the following results:
Theorem 4.1 ((B), Theorem 1.1.). Let Q@ C R™, n > 2, be a bounded open set with C™
boundary, € > 0 and q1,q2 € L%+5(Q). Let Ay, be the DN maps associated to the boundary
value problems

Au+gju™ =0, inQ

u=f, on 0%,
for 3 = 1,2, and assume that Ay, f = Ay, f for all f € Us with § > 0 sufficiently small. Then
@ =q2 in Q.

Theorem 4.2 ((B), Theorem 1.2.). Let  C R™, n > 2, be a connected open and bounded
set with C*° boundary and let T' # () be an open subset of the boundary 0Q. Let ¢ > 0,
Q1,92 € L%“'e(Q) and Agj be the partial DN maps associated to the boundary value problems

Au+qu™ =0, inf)
u =0, on OQ\ T
u = f, onT
for j =1,2. Assume that
r r
Mg f=Ngf
for all f € Us with spt(f) C I, where § > 0 sufficiently small. Then g1 = g2 in Q.

Theorem 4.3 ((B), Theorem 1.3.). Let Q@ C R", n > 2, be a connected open and bounded set
with C* boundary and let T # () be an open subset of the boundary 0. Suppose that p # 0 s
a fized measure on O and let € > 0. Assume that q1,q2 € L"T¢(Q) satisfy

(4.1) /8 ()= /8 A

for all f € Us with spt(f) C T, where § > 0 sufficiently small. Then q1 = g2 in Q. Thus when
choosing p = 0, for some fized xo € 08 the condition

Ay (f)(xo) = Ao (f) (o) for all f € Us with spt(f) CT
gives q1 = qo in .

As mentioned already in Section [If one can study this kind of low regularity for the linear
Schrodinger equation. Again the nonlinearity helps since we do not need to pose any restrictions
on the set I' C 09 as they do in |[CT20|, [Tzol8]. But we are not able to get the case that
is considered optimal for the linear Schrodinger equation in dimension n = 3, we only get
arbitrarily close to it. For n = 2 our results have lower regularity than those that exist for
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the linear counterpart, since the regularity is ¢ € L for full data (IBTW20], [Ma20b|) and
q € WL r > 2, for partial data ([IY12]).

The proof for all three theorems is essentially the same, and the main idea is already presented
in Section [2| The main difference to the earlier works comes up in the well-posedness since we
now work with Sobolev spaces. First of all, the unique small solution will be in W?2P?(£2) and

the boundary values are in WQ_%’p (092). The proof of the well-posedness is similar to the one
in (A) (see Proposition but one needs to use various embeddings for Sobolev spaces.

In Theorem we assume qi, g2 € L"(Q) instead of q1,q2 € L75L+5(Q) as in Theorems
and and here is an explanation. Since we assume , we then get for the solutions of the
m-th order linearization that

(Opwy — Oywa) dp = 0.
o0
We would then like to integrate by parts against this measure p. From Lemma 5.1 in (B) we
have that

0= / (Opw1 — Opwa) dp = / A(wy — w2)V dz.
o0 Q

Here ¥ € L("9)'(Q), where (n +¢)’ is the dual exponent of n + ¢, solves

AV =0, in
U =pu,  ondf.

To use Lemma 5.1 we need that (n +¢)’ < 5. For § + ¢ and its dual exponent (% + 5)/ this
is not true for every € > 0.

5. INVERSE PROBLEMS FOR SEMILINEAR ELLIPTIC PDE WITH A GENERAL NONLINEARITY
a(w, u)

In article (D) we study an inverse problem for the semilinear elliptic partial differential
equation

(5.1) Au+a(z,u) =0 in Q.

Our aim is to recover the nonlinearity a from boundary measurements corresponding to solutions
of .

As mentioned in Section [2] in previous works similar inverse problems have been studied
under various assumptions. In (D) we remove some of the assumptions made before. The
techniques can be divided into two categories: using the first linearization only and using the
higher order linearization method discussed in Section

When using the first linearization, the most general result known to us is that of [Sunl(]
which had the assumption dya(z,u) < 0. This assumption guarantees that for example the
maximum principle holds and thus one has well-posedness for the boundary value problem

Au+a(z,u) =0, inQ
u=f, on 0f).
Similar assumptions have been made when using the higher order linearization method. In
previous works (e.g. [FO20|, [LLLS21b|) the assumptions have been that
(5.2)  a(x,0)=0
(5.3) 0 is not a Dirichlet eigenvalue of the linearized equation Au 4+ dya(z,0)u = 0.
The first one guarantees that « = 0 is a solution and the second one gives that the boundary
value problem is well-posed for sufficiently small boundary values.
With the above mentioned assumptions one would have a well defined DN map for small

data. Without these assumptions the boundary value problem may not be well-posed but one
may still work with the Cauchy data set:

Ca = {(ulog, d,ulan) : u € C**(Q) solves Au + a(z,u) = 0}.
13



Even without the above mentioned assumptions, we can still construct solutions to close
to some known solution w to . This is shown in Lemma 2.4 in (D) using a Banach fixed
point argument and the implicit function theorem together with the fact that Fredholm theory
guarantees the existence of a unique solution to the linearized equation that is L?-orthogonal
to a finite dimensional set.

The fact that we can construct solutions near some fixed solution w of leads us to look
at local Cauchy data sets such as

C¥9 = {(uloq, Dyulsn) : ue CH*(Q) solves Au+ a(z,u) =0 and |w — ull oz < 5}

for some § > 0.
Using the first order linearization as our main tool we prove the following;:

Theorem 5.1 ((D), Theorem 1.2). Let aj,az € C3(R™,CH*(Q)), and let wy € C%*(Q) solve
Awi + a1 (z,w1) =0 in Q. If
0 0,C
Cat? CCy
for some 8,C' > 0, then there is € > 0 such that
ai(z,wi(x) + X) = Tpas(z, w1 (x) + \)

whenever z € 0 and |\| < e. Here p = wy — we where we € C*%(Q) is the unique solution of
Awsg + az(z,w2) =0 in Q with wi|gg = walsq and dywi|an = dywslsq.

Before sketching the proof, let us discuss a little bit about the result and its assumptions.
First of all the mapping T, was already introduced in Section [2| and is defined as

Toa(z,u) = Ap(x) + a(z,u + ¢(z)).

To recall, there is a gauge invariance described by T, when trying to recover the nonlinearity
a. The gauge invariance disappears if the equations Au + a;(z,u) = 0 have a common solution
w = wp = wy. Comparing this result with previous ones, we actually manage to recover the
nonlinearity (up to gauge) in some neighborhood of w; without a sign condition on dya;(z,u)
and without assuming , . We still assume that the equation has at least one solution,

but we do not require this solution to be the zero solution. The assumption C’fo’d - CS;C on the

Cauchy data sets is there to ensure that when we construct a solution to Au+as(z,u) = 0 then
that solution will be close to wo and that the constructed solutions u;, to Au + a;(x,u) =0,
j = 1,2, are parametrized smoothly by the same v solving (A + dya;(x,u))v = 0.

Here is a sketch of the proof. First we show by a Banach fixed point argument together with
the implicit function theorem (similar to the one in (A) and [OSSU20, Section 6] for example)
that there are solutions u, = w 4+ v + O (||[v|[*) to Au + a(z,u) = 0 where w and v solve
Aw+a(z,w) = 0 and Av + dya(x, w)v = 0, respectively. This is Lemma 2.4 in (D) and it gives
a bijective map S @ v +— u, with DS, ,,(0) = Id. More importantly the solution u, depends
smoothly on v.

Now we construct a solution u , for a; and use the Cauchy data inclusion to obtain a solution
Uz, for ap with the same Cauchy data as u;,. Since we constructed u;, with Lemma 2.4 in
(D), we know that it depends smoothly on v solving Av + dyaq(z,w1)v = 0. Apriori we do
not know if ug, depends smoothly on v also. To show this, we prove quantitative estimates to
show that bounded solutions to close to a given solution depend smoothly on their Cauchy
data. Using this, we can show that us, depends smoothly on v.

Let us then look at ¢, = ug, — u1,. Now

Apy, = ai(z,u1 ) — az(x,ury — ©y)
or in other words
ar(w,u1y(z)) = Tp,a2(x, ur ().

We would like to show that actually ¢, = @9 = wo — wi. For this, we look at the first

linearization of (5.1]). Because if we can show that dya;(x, u; ) = Oyaz(z, ug,) for any v small
14



enough, then the derivative of o, with respect to v will solve a linear elliptic equation with zero
Cauchy data. Thus we would have the claim.

Now let v,h be solutions to Av + Jya;(x,w;)v = 0 with v sufficiently small, define v; =
v +th and construct solutions u;,, as above. We then differentiate in ¢ the equations Awu;,, +
a(z,u;y,) = 0, subtract them and integrate against any solution vy of Av + 9yaz(z, w2)v = 0
to obtain an integral identity:

/(&Lal(ﬂ?, Ul,w) — Oua2(T, U2.4)) 0t v, |t=ov2 da = 0.
Q

Here 0su1 4, |t=0 = DSqw(v)h. Now Lemma 2.5 in (D) shows that for small v the map DS, ,,(v) is
an isomorphism between the solutions of Ah+0,a1(z, w1 )h = 0 and Ah+0ya1(x, Sq.w(v))h = 0.
Since Sqw(v) = w1y, any solution vy to Ah + Odyai(z,u1,)h = 0 can be written as v; =
DS, .w(v)h for a suitable h. Thus we get an integral identity

/(8ua1(at, Ulw) — Oua2(x,u2,y))v1v2 dz = 0.
Q

Now it follows from the density of products of solutions as in the standard Calderén problem
(see [SU8T] for n > 3 and [BUO2|, [BTW20] for n = 2) that dyai(x, u1,) = Oyaz(x, uzy).
What is left is to verify the existence of some € > 0 so that

ai(z,wi(z) + X) = Toaz(z, wi(z) + )

whenever z € Q and |\| < e. We begin by fixing z € Q. Since u;, = w1 +v + O(||v||*) and by
Runge approximation we can generate solutions v with v(zo) # 0, we get the desired result by
varying v.

For the higher order linearization method we show that it works without the assumptions
and and one can prove results such as

Theorem 5.2 ((D), Theorem 1.3). Let a1, az € C*THR™, CL(Q)) with k > 2, let wy € C#%(Q)
solve Awy + a1 (z,w1) = 0 in Q, and suppose that

szll,a c cgf

for some §,C > 0. Let wg € C*%(Q) be the unique solution of Awsg + az(z,ws) = 0 in Q with
wilag = waleq and dywi|ag = dywalgn. Assume further that

(5.4) AL ay (z,wy) = AL as(z,ws), 1<i<k-1

Then

/ (O%ay(x, w1) — Oag(z,we))v1 ... Vg1 dz =0
Q
for any v; solving the linear equation Avj + Oyaq(x,w1)v; =0 in Q.

The proof uses similar arguments as described in Sections 2] Bland[d Mainly we differentiate k
times the equations Au;,+a(x, u;,) = 0 with respect to v, subtract the k-th order linearizations,
use and integrate against a special solution to the first linearization. This results in the
integral identity in Theorem [5.2}
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1. Introduction

This article focuses on an inverse problem for the minimal surface equation (MSE), which is a quasilinear
elliptic PDE. In particular we consider MSE on a manifold (R”,g),n > 3, where g;;(z) = c(z)d;;,
1 <4,57 < n, with ¢ € C®(R"), ¢(x) > 0 for all z € R”, that is the metric is conformally Euclidean. The
aim is to use the method of higher order linearization to recover information about the conformal factor ¢
from boundary measurements. This method, which uses the nonlinearity of the partial differential equation
as a tool, was first introduced in [18] in the case of a nonlinear wave equation and was further developed
in [7,22] for nonlinear elliptic equations.

The novelty of this work is that we use higher order linearization in the case of MSE. For a sufficiently
smooth function u : 2 C R"! — R, 2 a bounded domain with C* boundary, consider Graph, :=
{(z',u(z) : 2’ € 2} C R™. If ¢ = 1 we would call Graph,, a minimal surface if and only if the function u
solves the Euclidean MSE

div [ —Y% ) —0, o

1+ |[Vul?
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Define then a function F:R™ — R,

F(2',u,p, P) = ZP” — (Zpl - Bwnc(x',u)> (1.1)
E—1 Z szszp

1+|| i,j=1

where p = (p1,...,pp—1) € R*"1 P = (P;) is an (n — 1) x (n — 1) matrix and 2/ € R"~'. With the
conformally Euclidean metric, MSE takes the form

1 T2
F(2',u, Vu, Vu) = — Au — o (Ve Vu—0y,¢)+ M (1.2)
1+ |Vaul
—1)0,,¢c
— _div,, Vu : n (n—1)0 ;(‘
(1 + |Vul|?)1/2 2¢(1 + |Vul7)1/2

=0.

for 2/ € 2. Here divy, ,(a) = Y i, (&%al + Z] L a; T ) is the Riemannian divergence with respect to
the first n — 1 variables and I’ "l-j is the Christoffel symbol corresponding to the metric g. The derivation of
this equation is done in Section 3.

In this work we consider a boundary value problem

F(z' u,Vu,V2u) =0 in 2
u=f, on 012,

and prove that it is well-posed (Section 2) for a certain class of small boundary values f. To be more precise,
we show that there is 6 > 0 such that whenever f € C*(912), s > 3, s ¢ N, with || f||cs90) < J, there exists
a unique small solution v € C*(£2) with sufficiently small norm. Let Us := {h € C*(012) : ||h||csa0) < 0}
Thus the Dirichlet-to-Neumann (DN) map can now be defined for these small solutions as

Ac:Us = C*7H092),  f = Dyugl,,. (1.3)

Here C* = C** k € Z, 0 < a < 1, is the standard Holder space (see for example [6, Section 5.1]) and d,us
is the Euclidean boundary normal derivative. One can think of the normal derivative on the boundary as
tension on the boundary caused by the minimal surface. From the knowledge of the DN map, can we recover
information about the metric g7

It is worth noting that there is a small gauge invariance for Eq. (1.2) and thus for the DN map. That is,
if you instead of ¢ put Ac, A # 0, into (1.2), the equation stays the same. Thus also the DN maps A, and
Ay, are the same.

We also consider partial data cases, that is, if we have knowledge of the DN map in an open subset I" of
the boundary 92. In this case the partial DN map is defined for f € Us, spt(f) C I', as

AL:Us = C*7100),  f e duuyl .. (1.4)

Can we recover information about the metric g if we have knowledge of this partial DN map?
These are our inverse problems for the MSE and our main result gives the following answers. Before
stating it, we denote by F7 the function F with ¢ replaced by cj-

Theorem 1.1. Let 2 C R*™ ! n >3, be a bounded domain with C°° boundary, (R, g1), (R™, g2) be two
Riemannian manifolds with (g;)ik(x) = ¢j(x)dk, where ¢; € C®(R™), ¢j(x) > 0 for j = 1,2 and for all
x € R"™. Assume that 0,,,c;(2',0) = 82 c;(2’,0) =0 for 2’ € £2. We have four cases:

2
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(1) Let n >3 and A.; be the DN maps associated to

{Fj(ac’,u, Vu,V32u) =0, in 2 (L)

u=f, on 012,

j=1,2, and assume that
Ay (f) = Aey ()

for all f € Us .= {h € C*(012) : ||hllcsan) < 0}, where 6 > 0 is sufficiently small.
(2) Assume either that

(a) n=3,T C IR be open and I # () or
(b)n>3, 2 C{xy_1 >0}, [ CIN beopen, I' # 0 and that 02\ I' C {x,_1 =0} or
(c) n >3, 12 is a strict subset of some ball B C R*™!, I' C 912 be open, I # ) and that 02\ I C OB.

In addition assume that
AL () = AL(f)

forall f € Us, spt(f) C I', where 6 > 0 is sufficiently small and /1(13; are the partial DN maps associated
to (1.5) for j =1,2.

Then in the cases (1) and (2) we have for A # 0
A er(2',0) = A9 ca(a’,0), in 2, m > 0.

The assumption 9, ¢;j(z’,0) = 0 is needed in order for u = 0 to be a solution to (1.5), and this is used to
prove the well-posedness. The condition 8§ncj (2',0) = 0 is assumed in order for the method to work and it
is not known if it could be removed.

As an immediate corollary of Theorem 1.1 we get the following.

Corollary 1.2. Assume the conditions in Theorem 1.1 and assume additionally that c¢; are real analytic with
respect to x,,. Then for A # 0 we have

c(x) = Aea(z), =€ 2 xR

In Section 5 we give a full proof of Theorem 1.1 and as mentioned, it will use higher order linearization
together with complex geometric optics (CGO) solutions. In the proof we first linearize (1.5) at u = 0 and
the DN map at f = 0. We see that the linearization of (1.5) correspond to a conductivity equation where the
conductivity is ¢;(a’,0). The first linearization of the DN map maps a boundary value f to d,v|s where v
is a solution to the conductivity equation. We will show that ¢;(2’,0) can be recovered up to a multiplicative
constant with the knowledge of this (partial) DN map with the help of boundary determination for a first
order perturbation of the Laplacian from [2] ([10] for n = 3 and [12,29] for n > 3). In the full data case the
higher order linearizations lead to an integral equality

m+3
/ (0 er(2,0) — NI eq(2,0)) H oIV dz’ = 0.
2

N=1

where v'N are solutions to the first linearization. For the partial data cases, we need a special solution v(©)
which is positive in {2 and vanishes on 92 \ I". With the help of this function we get the integral identity

m—+3
/ (8;’;"‘401(3:', 0) — A6$l+462(£/,0)) v© H oIV dz’ = 0.
2 N=1
3
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Again v'N are solutions to the first linearization. In both cases, choosing two of v'¥ to be real or imaginary
parts of CGO solutions and the rest equal to 1 we get that 8;’:5“401(96’, 0) = A@;’}f‘l@(:ﬂ’, 0) (for n = 3 [3],
for n > 3 [29]).

This method has received a lot of attention in various situations lately. Linearization has already been
used in a parabolic case in [11] where the author shows that the first linearization of the nonlinear DN map
is the DN map of a linear equation. Thus one can use the theory of inverse problems for linear equations.
Also nonlinear elliptic cases have been studied, for example in [13,28]. As mentioned above, the method
of higher order linearization was first used in [18] for a nonlinear wave equation. After that there were
two simultaneously published articles [7,22] in which higher order linearization was introduced to nonlinear
elliptic equations of the type Au + a(z,u) = 0. The important thing in this method was that it used the
nonlinearity as a tool. In [16,23] the method was further developed for the case Au+ a(z,u) = 0 in inverse
problems with partial data. See also [24,27] for more results on the special case of a power type nonlinearity.

After these, there have been several articles using this method for different nonlinear elliptic equations.
Different cases of nonlinear conductivity equations have had a treatment in [4,14]. This method has also been
used in the case of a nonlinear magnetic Schrédinger equation [21] and in inverse transport and diffusion
problems [20]. See also [17] for a semilinear elliptic equation with gradient nonlinearities and [19] for the
case of fractional semilinear elliptic equations.

There are also works in inverse problems that have considered the minimal surface equation. The
Euclidean case has had a treatment in [25] where the authors consider a quasilinear conductivity depending
on a function u and its gradient.

Also while writing this article we have learned that Catalin I. Carstea, Matti Lassas, Tony Liimatainen
and Lauri Oksanen are working on an inverse problem involving minimal surface equation on a Riemannian
manifold in their upcoming preprint [5]. They simultaneously and independently prove a result similar to
Theorem 1.1. In their work it is shown that from the knowledge of the DN map of the minimal surface
equation it is possible to determine a 2-dimensional Riemannian manifold (X, g). We agreed with them to
publish our preprints at the same time on the same preprint server.

This article is organized as follows. In Section 2 we prove well-posedness for a general nonlinear boundary
value problem and we describe the first and second order linearizations for the general case. Section 3 is
dedicated to the derivation of the minimal surface equation on a manifold with conformally Euclidean metric.
Section 4 consists of describing the setting for Theorem 1.1 and then calculating the first and second order
linearizations in this setting. Finally, we will use higher order linearization to prove Theorem 1.1 in Section 5.

2. Well-posedness and linearizations

In this section, we consider general equations F(z,u, Vu, V2u) = 0 and in later sections apply these
methods. Let 2 C R™,n > 2 be a bounded domain with C* boundary and let F': 2 x R x R™ x R* R,
be a C*° function. Consider next the boundary value problem

{F(J@u, Vu,V2u) =0, in 2 (2.1)

u=f, on 0f2,

where f € C*(0f2) and Vu,V2u denote the gradient and Hessian of u, respectively. In addition let
F(2,0,0,0) = 0 which guarantees that u = 0 is a solution to (2.1) with f = 0.

Next we prove well-posedness for (2.1) using the implicit function theorem on Banach spaces [26, Theorem
10.6 and Remark 10.5]. In what follows, we denote for mxn matrices A = (a;;), B = (b;;) the matrix product

A : B = ZZaijbij
=1 j=1
4
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and VpF' is the matrix with elements dp,; F'. Also a linear differential operator Lu = A(x) : V2u + b(z) -
Vu + c(x)u is strictly elliptic [8] in {2 if for some constants A, 4 > 0 we have

NEPP < €TAE < AP,z e,
for all £ € R™\ {0}. Here A is a symmetric n X n matrix.

Proposition 2.1. Let F: 2 x R x R™ x R” 5 R be a O mapping with F(x,0,0,0) = 0. Furthermore
assume that the map

v L(v) = 0, F(x,0,0,0)v + VF(x,0,0,0) - Vo 4+ VpF(,0,0,0) : Vv

is injective on H(£2) and that the operator L is strictly elliptic. Let s > 3,s ¢ N. Then there exists C,§ > 0
such that for any
JeUs={hecC*02):|hlcspa <d}

the boundary value problem

F(x,u,Vu,Vu) =0, in 2
u=f, on 012,

has a unique small solution uw = uy which satisfies

lulles(2y < Cllfllos@n)-

Moreover the following mappings are C°° maps

S:U(;—}CS(Q), f>—>uf,
AIU(S*)CS_l(aQ), f = 0vurlon.

Proof. Let X = C*(002),Y = C*(2),Z = C*~2(0) x C*(0N) and
T:X xY =2, T(fu)=(F(z,u,Vu, V?u),ulsq — f)
Since ulpq, f € C*(002), u € C*(2) and F € C*, the map T really has this mapping property.

Next we show that the map u +— F(x,u, Vu, VZu) is a C* map C*(£2) — C*~2(£2). This is done by using
a Taylor expansion. Write A = (z,p, P) € R x R™ x R"* and expand F'(z, -) at p € R x R™ x R

DYF(x,))
Flz, A +p) =) ot > Rg(A 4w,
la| <k |Bl=k+1
where

1
Rs(\+p) = %' (1= t)PIT DEF (@, A + tp) dt.

"o
Now let u € C*(2) be fixed, \ = (u,Vu,V?u) and let u = (h,Vh,V2h),h € C*(2) be such that
[tlloriapy < 1. Tt is enough to show that the map u — D F(z, u, Vu, V?u) is continuous for all a and

Rs(A+ ) = o(p¥) in C*(02).

Firstly, since the composition of a C* function F with a C*~2 function is again a C*~2 function

[9, Theorem A.8], we have the continuity. The space C*({2) is an algebra under pointwise multiplication

5
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[9, Theorem A.7], and thus

IRsO+ i ey < € (IRsO+ )l sy + IRs O+ 1)l ceqan 114 )
< ClRs A+ )l o Il 5t

8 [ :
< Clullgs oy gy | (1= P IDEF @A+ th)los oy dt
81 1Bl ! 1B]—1
< Cralluléney gy [ (=0 at

where || DS F(z, X + ti)|| sy 1s uniformly bounded in ¢ € (0, 1) and the bounding constant may depend on
u and F. This is due to F being a C*° function and that u € C*(2). Now the remainder satisfies

H > RB(A+M)M3‘

[Bl=k+1

cs@ < Cll(h, VR, V2h)[IEh
and hence the map u — F(z,u, Vu, VZu) is a C* map C*(2) — R.
By the assumption F(z,0,0,0) = 0 we have 7'(0,0) = 0. Also D,/ T(0,0) is linear and

D,T(0,0)v = (0, F(2,0,0,0)v + V,F(z,0,0,0) - Vo + VpF(x,0,0,0) : VZv,0|s0).

The mapping v — L(v) is injective and v = 0 is a solution to

{auF(x, 0,0,0)v + V,F(x,0,0,0) - Vo + VpF(2,0,0,0) : V0 = H, in 2 22)

v =g, on 942,

when H = g = 0. Using Fredholm alternative [8, Theorem 6.15] the boundary value problem (2.2) has a
unique solution for all H and ¢. Thus D, T(0,0) is surjective.

Then by the implicit function theorem there exist § > 0 and Us := B(0,6) C X = C*(02) and a C* map
S:Us — Y = C*(2) such that T(f, S(f)) = 0. Also, for small enough f € U; (not necessarily the same §)
and uy € C*(2), S(f) = uy is the only solution of T(f,uf) = 0. Moreover, since S is Lipschitz continuous
and S(0) =0, for u = S(f) we have

lulles(@y < Cllfllesoo)-
Also the mapping A is a well defined C* map between Us and C*~1(9£2) since taking a normal derivative
is a linear map from C*(£2) to C*~1(802). O

In order to use the method of higher order linearization, we calculate formally the first and second order
linearizations of (2.1) and the corresponding DN map. This formal looking calculation can be justified as
in [22].

Let us begin by assuming that for

{F-j(ﬂc,u, Vu,V3u) =0, in 2 (2.3)

u = f, on 0{2,

Jj = 1,2, we have Ap1(f) = Ap2(f) for all f € C°(002) with || f||cs@ne) < 6, for § > 0 sufficiently small.
In order to find the linearizations, let £1,. .., & be sufficiently small numbers and f1,..., fi € C*(92). Let
uj(z,€1,...,€x) be the unique small solution to

{Fj(x,uj,Vuj,V2uj) =0, in £ (2.4)

k
Uy = _1Emfm, on 942,
6
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for j = 1,2. Differentiate this with respect to g;, I € {1,...,k}, and evaluate at e = --- = ¢;, = 0 to get

{8qu(z, 0,0,0)v} + V,F(,0,0,0) - Vol + VpFi(z,0,0,0) : V20l =0, in 2 25)

ol =, on 92,

where vj = 0 uj(x,€1,. .. ,ak)] The boundary value problem (2.5) has a unique solution if we

E1=~~~=Ek=0'
assume that the map

v L(v) = 0, F%(2,0,0,0)v + V,FI(x,0,0,0) - Vo + VpFI(2,0,0,0) : Vv

is injective on H}(#2) and assume strict ellipticity of the operator L. At this point, we would like to see
what exactly is the first linearization and see if some information can be recovered about the coefficients
0, F7(x,0,0,0), V,F’(,0,0,0), VpFi(z,0,0,0) from the knowledge of the DN maps corresponding to (2.3)
for j = 1,2. What actually can be recovered depends on the equation at hand.
Let us next differentiate (2.4) first with respect to €; and then with respect to e,,a # I:
I; =02 F'(z,uj, Vuj, Vu;)

€a€|

=0, (aqu(ac,uj, Vu;, VQUJ-)Bgluj)

+ 0., (Z Op, F7 (2, uj, Vuj, V2u;)0y,0:, uj>

i=1

+ 0, Z@pijj(m,uj,Vuj,V2uj)82 O, U

TiT
Jrk=1

=11+ 10+ I3

Then we expand these one by one:

n
i+ 020, w0y + Y Oy, 0uF Or, 0z 1500,

i=1

Lix=0,F02,
+ Z 8pjk8uFiajjzk85auj8quj7
k=1

Lo = Z (api F10,,02 i + 0u0p, F70c 0y, 0 u;
=1
n ) n )
+ ) 0, 0p, F10,, 04105, 0-uj + Y apjkapiwa;masaujaxiasluj),

r=1 k=1

I3 = Z <apijj(92 o2 uj; + auapijaeana2 Oz, U;

CEJI)C €afl m]xk
jik=1

+ 0y 0py FI0,,0-,u,07 4, Oeyuy + Y aprtapjkFjazmagaujagﬂkagluj>.

i=1 rt=1
Evaluate I; at € = --- = ¢, = 0 and denote w§“l) = (agasl“j)(:cvgl’ . ,Ek)\slz--:ek:o to have
I = 0,F(,0,0,0)w\"” + 92 F¥ (x,0,0,0)v'v" (2.6)

+ ((Vp(0uF7))(2,0,0,0) - Vo + (Vp(9,F7))(x,0,0,0) : VZ0) '
+ VpFI(2,0,0,0) - V'™ + (V,(8,F7))(2,0,0,0) - Volv®
7
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+) (Vo0 F7))(2,0,0,0) - Vo + (V p(p, F7)(2,0,0,0) : V20")) 9,0
=1
+ VpFi(2,0,0,0) : V2ul™ + (Vp(8,F7))(2,0,0,0) : VZulv®

+ 3 ((T@ry ) - V0 + (Vo (0, F1)) (2,0,0,0) : V20 ) 02, of

J,k=1

Thus w§al) satisfies the boundary value problem

w§al) =0, on 9{2. '

Next we would like to integrate I; — I> against a solution to the adjoint of
O F (2,0,0,0)05 + V,F (2,0,0,0) - Vol + VpF(2,0,0,0) : V20, =0

and use the assumption that the DN maps associated to (2.3) coincide for j = 1,2 together with a
completeness result to recover information about the coefficients of I; and I5. Again the information that can
be recovered depends on the equation and below this method is applied in the case of the minimal surface
equation.

What we would do next is to use an induction argument to show that from higher order linearizations it
is possible to recover more information. This too will be specified below.

3. Mimimal surface equation on a Riemannian manifold

In this section we derive Eq. (1.2). Let (M, g), M = R", n > 3, be a Riemannian manifold with the metric
gij (@', xn) = (@', 2,045, (3.1)

where
(2',2,) ER" X R, c€ C®(R"), c(z) >0 forall zeR™

These assumptions are valid for the rest of the article, unless otherwise stated.
Let u: 2 C R* ' — R, u € C%(£2), and consider the graph of the function u

Graph,, = {(z’,u(z")):2' € N} C M.

This graph is a minimal surface if and only if its mean curvature H is equal to zero at all points on the
graph. By defining
xRS R, f(a,z,) =z, —u(z),

the graph of u is the surface
Y={(a,z,) € 2 xR: f(z',z,) = 0}.

The mean curvature of X at x € X is the sum of principal curvatures. We omit the normalizing factor

1

—— when calculating the mean curvature. In order to calculate the principal curvatures, we introduce the

Riemannian gradient and Hessian of a function f: M — R:

)

Vo =690, f0n,, V2 = (02, f ~ T";00,.1 )

8

n
i,7=1
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where g% is the inverse of g;; and rm, = %gml(axigjz + Oz, 91 — 0z,9i5) is the Christoffel symbol related to
the metric g. Define also the Laplace—Beltrami operator, which is a trace of the Hessian (this is one way of
defining it), and the norm of the gradient:

Agf = TH(V2f) = g7 (2,0 F = T80 f ) o Va2 = g90s, 0, .

Now the principal curvatures of X' at z € X are the eigenvalues of Vg f(z) restricted to the tangent space
T, at x. Since % is a normal to X at the point z, we have T, X = {V,f(z)}*, or in other words,
the tangent space T, X is the orthogonal complement of the vector V, f(z).

Let {F1,...,E,_1} be an g-orthonormal basis of T,X. Then {El, oy B, %} is an orthonormal
basis of R”. Now the mean curvature of X' at z € X' is the trace of Vf;f(l“ﬂ{vgf(z)}h

n—1

H(z) =Y (Vif(x)E:, E;)

=1
n—1

_ 2¢(\E B 200 Vyf(x) Vyf(x)
= ;(ng( VEi, E;) + (ng( )) (vgf(w)g’ |vgf(x)|g>

oz gy [ Vel@) Ve
(Vaf (@) <|vgf<x)|g’ |vgf<x>|g>
= T(V; f(2)) = Vo f(2)],* (V3 (@) (Vof(2), Vo f(x))

= Agf(@) = Vo f (@)[;7 (V3 f(2)) (Vof (2), Vo f ().

Thus Graph,, is a minimal surface if and only if
\ng(x)\iAgf(x) - (sz(z)) (Vof(x),Vyf(xz)) =0 forall x € Graph,,. (3.2)

Next we will calculate the minimal surface equation more explicitly using the conformally Euclidean
metric (3.1). Now g¥ = ¢714;; is the inverse matrix of (3.1) and thus

Vof =Y 0u,f0n;, |Vofli=c¢> " 0u, fOr,f.
j=1 i=1

Also the Christoffel symbol can be simplified by letting A\ = % log ¢ and hence 0, A = %c‘laxic. Then
m 1 ml
", = 39 (amigjl + 0,90 — awlgij)
1
=5 (0ric8im + OuycOim — Dy céij)
= 02, A0jm + Op; Adim — Oz, A5

Tm

Let us next calculate the two parts of (3.2) separately, starting from

62|vgf|3Agf = (Z 8aclf8w1f> Zailmlf_ Z Z 6z’jpmij axmf
i=1 m=1

i=1 i =1 \7,j=1
= (i O, fOu, f) <§n: ... f—(@2—n) En: Oy Ao, f) ,
i=1 1=1 m=1

9
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and the other part becomes

V2,1,V f)
= (02,8 = 700,01 ) €9 0r, fog"0s, f

zn: < Xn: (azixajm + 0, A — O, Aéij) Dy f) Do, fOu, |

1,j=1

n

< 03,0, f = 0w N0, | — 00 N0 f + (Z azmAalmf> ) Oz, fOu, f

i,j=1 m=1
=3 (02,0,0 = 20,00, ) 00, £, + (Z amzfamlf) <Z Drn Ao, f> :
i,7=1 =1 m=1

Now

02|ng|2Aqf—02V2f(V £, Vyf)

- ( . ) (Za fH(n—-3 Z&M@J)

=1 =

Zn: (02,0,1 = 200,202, f ) 0u, 0,

Plugging the above to (3.2), we get that X is a minimal surface if and only if

<2n: ) (i &R, f+n—3 Z A@wmf> (3.3)

i =1

=1
i ( = 202;A0r, f) 02, f0s;f =0

for x € X.
Insert next f(z',x,) = x, — u(a’) to the above in order to get an equation in terms of the function w.
Then the first line of (3.3) becomes (note that 9,,u = 0)

(Z Sin — 20,0, u + (0ziu)2> (— 02 a4 (n=3) Y Oy NOmn — 8zmu)>
m=1

i=1 i=1

- (1 + |Vu|2) (= Au+ (n = 3)(D, X — Vs X - V).

The second line is equal to

— Z (—6§ixju — 205, M(jn — 0z ©)) (83005 — 0in0z;u — 850z, u + Gl.l.u@mju)
i,j=1
n n—1 n—1
= D 050 u0pudy w200, A =2 0 ANy u+2Y Dy NDru)?

i,j=1 i=1 Jj=1

n—1

=2 02, A0r,u(0;u)°

ij=1
= Vu ' V2uVu + 20, A — 2V X - Vu + 20, A|Vul®> — 2V, X - Vu|Vul?
= Vu ' V2uVu + 2 (0y, A — VX - V) (14 |Vul?).

10
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Combining these two, we get that Graph, is a minimal surface if and only if the function w satisfies the

following minimal surface equation

Vul' V2uVu n—1
14+ [Vu)? 2e(z’,u(z))

— Au+ (Vare(! u(z!)) - Vu — 0y, c(2’,u(z’))) =0 (3.4)

for all 2’ € £2. Multiplying both sides with (1 + |Vu|*)~1/2 gives

! O 0y ;Ci; - :
— div < Vu ) _ Z .7u JC 4 (n 1)8In(’

L+ V)2 L+ [Va)2 2 2e(1+|Vu?) /2

i,j=1
n—1
Op. ) _
— _div Vu 5 . Z ‘JUQ I’ZZJ (TL 1)8;350
(1 + |Vu|")/2 521 (L+ [Vl )1/2 2¢(1 + |Vu|7)1/2
— v Vu n (n—1)0,,¢
N (14 | VP12 2¢(1 + |Vul?)1/2

=0.

In the Euclidean setting, ¢ = 1, this is the more familiar Fuclidean minimal surface equation.

4. Preliminaries for the higher order linearization

In this section we use the method of higher order linearization on the minimal surface equation derived
in the previous section. From now on, assume that 2 C R"~! is a bounded domain. Let us start by looking
at the assumptions of Proposition 2.1, where it is assumed that « = 0 is a solution to (3.4). This leads to
the condition that

Oy, c(z',0) =0, 2 €, (4.1)

which can be seen as follows. For a constant function u: 2 — R,u(2’) = d to be a solution to (3.4) is
equivalent with )
n—
7720(x,’ d) (930”0(1'/’ d) =0 forall 2’ ¢ Q,

which is equivalent with 9,,,c(a’,d) = 0 for all 2’ € £2. The assumption (4.1) comes by setting d = 0.

Next we will focus on the boundary value problem (2.1) in the setting described above and calculate
the first and second order linearizations of (2.1) and the corresponding linearizations of the DN map. This
could be done directly from (3.4) but we will follow the general method in Section 2 and begin by defining

a function F:R™ — R,

n—1

n—1
n—1
F(IL’/,u,p, P) == § Pn - 2((3}, u) (E piazic(x/vu) —aan(Q?/,u))
i=1 e i=1

n—1
1
+——5 > Pypip;.
1+ |p| ij=1

Here p = (p1,...,pn—1) € R"1 P = (P;) is an (n — 1) x (n — 1) matrix and 2’ € R"~!. Then (3.4) is
equivalent with F (2, u, Vu, V2u) = 0 for all 2’ € 2.

Let us start with the first linearization. For this, let 2’ € 2. As shown in Section 2, we need to differentiate
F with respect to u,p and P. The first derivatives with respect to variable P are

PrpL
-
1+ [p|

8Ple($/7u7p7 P) = _5kl +

11
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When evaluated at e1 = -+ - = g, = 0, we get

aple(x,, O, O7 0) e 7(5]@[.
Next calculation is VI

n—1
n—1 2D
Op F(a' u,p, P) = ———0p,c — ———5— Pijpip;
2 (L+1[p")? ;::1
1 n—1
+ PE—Y I_)zJ zkp] + 6Jkpz)
1+ |p] ”21
-1
n—1 2py; e
=——0p— ——5— Piipip;
2¢. 70 (14 p|")? ijzz:l
n—1
+ — Zpkjp]+zpzkpz
1+ |p| j=1

Setting €1 = - - - = g = 0, this becomes

n—1
3ka(x/,0,0,0) = —mazkc(x/,()).

e1=+-=e3,=0

Since the solution operator S from Proposition 2.1 is smooth, the solution u(z’, ) depends smoothly on &
and thus u(z/, 5)} = 0. Hence the coordinate x,, is 0 since we are on the graph of u
What is left to calculate is the derivative 0, F

n—1 9 m—1_
auF(x’,u,pJD) :72702(833”0) +Tca c

n—1 n—1 n—1 n—1
+ 2728%10 Z O;cpi — Toe Z Oz, 0z,,Cpi.
i=1 =1
Hence, when evaluated at e; =

=g =0

/ _ n—1 2 /
auF(x 7070’0) - QC(x/,O)awnC(m 50)7
since 0, c¢(z’,0) = 0.

In Theorem 1.1 the condition 82 c(a’,0) = 0 is assumed and thus

9.F(x,0,0,0) = 0.

(4.2)
Now the first linearization (2.5) is the following boundary value problem
1 n—1 ’ 1 .
Av' 4 o———=Vc(2’,0) - Vo' =0, in 2
ol = fy, on 0{2.

By multiplying the first equation in (4.3) with ¢(z,0)"Z we see that (4.3) is equivalent with
div (c(:v’,O)nTAVvl) =0, in £
o' = fi,

on J{2.
12



J. Nurminen Nonlinear Analysis 227 (2023) 113163

Hence the first linearization of the DN-map (1.3) at f =0 is
(DAL)o:C5(002) — C*~10R), f— 8l’vf|69' (4.4)

In dimension 3—1 = 2 one can recover ¢(z’, 0) up to a multiplicative constant using a boundary determination
result [2] together with the knowledge of the partial DN-map [10]. When n > 3, ¢(2’,0) can be recovered,
again up to a multiplicative constant, combining the same boundary determination result and the DN
map [29] or the partial DN map (when {2 is as described in Theorem 1.1 part (2) [12]). Details will be
shown in the proof of Theorem 1.1.

For the second linearization, as can be seen from (2.7), second derivatives of the map F' need to be
calculated. Firstly

dp,,0p,, F(a',u,p, P) =0,
Opy OuF (2! u, p, P) = 0,0p,, F(x',u,p, P) =0

and hence, when evaluated at e = - - - = g = 0, these vanish. Let us next calculate other mixed derivatives.
Now

1
PrpL+ ———5 (OrsDi + O15Dk)

_2ps
8 sap F('r/?/U’?p?P) = T 9.5
ek 1+ [p*)? 1+ |p|

and when evaluated at e =--- =, =0
a,,saple(x’, 0,0,0) = 8pkl(’)psF(ac', 0,0,0) = 0.

Also ne1 I
Op OuF (2’ u,p, P) = ——5=04,,¢0y).c — ——0.

2c2 TR 2c i O €

Setting €1 = - - - = g, = 0 we have
8pk6uF(m’, 0,0,0) = Buaka(:c’, 0,0,0) =0,

since 9y, Oz, c(z',0) =0for k=1,...,n— 1.
What is left are the second derivatives with respect to the variables p and u. Let us start from the variable

p:
—25 n—1
Op, Oy F (@', u,p, P) = ——5— " Pypip;
1+ |p| )2 i§=:1
74p n—1 1 n—1
=2 | ———— Pijpipj + ——— Pi;(0ispj + 9;sDi)
(1+[p[)? 1';‘:31 (1+[p[")? 132::1
n—1 1
- ijp]+ P’Lkpz +72(Pka+P.sk)
e (o S o)
Hence when evaluating at e = -+ =¢, =0

B O, F(a,0,0,0) = 0.

For the variable u the second derivative reads

"—_1(6%& - %8%082 c

- 1 Z O, CDi

13
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n—1 n—1
n—1
+ 50 ((ﬁnc Z Og;CP; + Og,,C Z amiawncpi>

i=1 i=1
n—1

n—1 n—1%2
+ Waznc E &Uﬁxncpi — 7 E axlagncpz
i=1 i=1

Thus, letting at e =--- =, =0

-1
2 / __n 3 ' 0).
0:F(2',0,0,0) SRR 0, c(x',0)

Let us plug the calculated derivatives in (2.6) to find out what is the second linearization:

I= %éﬁnc(m', 0w 4 %aﬁnc(x’, 0)v'v® — %Vﬂc(m’, 0) - V(@) — Ag(ad,

Here v®, v! satisfy (4.3) with corresponding boundary values. Now the function w(®) = (afaslu)(x’, 0,...,0)
solves
Aw(D) 4 26’5;&0) Vre(a',0) - V)
+7261(;,’f0) agnc(m’, 0)w@) 4 261(;,'?0)32”0(35’, 0)vlv® =0, in 2 (4.5)
wleh) =0, on 0f2.
In Theorem 1.1 there is an assumption that 07 c¢(2/,0) = 0 and thus the term %Binc(x'ﬁ)w(al)

vanishes. Now the boundary value problem (4.5) is equivalent with

div (c(w’,O)%Vw(“l)) - "T_lc(a:’,O)nT_l’l(?gnc(:r’,O)vlva =0, in

4.6
w@) =0, on 912. (46)

5. Proof of Theorem 1.1

Now we use the method of higher order linearization to prove our main result. This will also make use of
the linearizations calculated in the previous section. Before the proof we state a proposition which says that
products of solutions to the Schrédinger equation form a complete set in L' (£2) for n > 2 (when n > 3 [29],
when n = 2 [3], see also [1] and [23, Proposition 2.1] where this result is stated in the following form).

Proposition 5.1. Let 2 C R*,n > 2, be a bounded domain with C*™ boundary, q1,qz € C® () and let
f € L (). Assume that
/ fvivadx =0,
Q

for allvj solving (—A + gj)v; =0 in 2. Then f =0 in £2.

Proof of Theorem 1.1. The assumptions of Proposition 2.1 hold for our case and thus (1.5) is well-posed.
Assume now that we have two conformal factors ¢, c2 on the manifold M. As in Section 2, let €1,...,en+1
be sufficiently small numbers, € = (e1,...,en11), fi,..., fn41 € C*(092) and u;(z,€) be the unique small
solution to
Fi(z,uj,Vuj,V?u;) =0, in 2
{uj = ZNH emfm, on 042,

m=1
for j = 1,2, where FV is (1.1) with ¢ replaced by c;.
The proof now divides to the cases (1) and (2) and we will prove first (1). It is the most straightforward
of these cases and the other cases are proven similarly with only minor modifications.

14
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Case (1): Assume now that
Ac1 (f) = Acz(f) (51)

for all f € C*(012) sufficiently small. Now we have the corresponding F!, F? and the first linearization of
Ae; is (4.4), with ¢(a’,0) replaced by c;(z’,0), which corresponds to the conductivity equation
div (cj(w’,O)%Vv§> =0, in

(5.2)
vé— = fi, on 942,
for j = 1,2. Using boundary determination from [2] for the case of Laplacian with a convection term we get
for ' € 912
Ve (@',0)  Vyea(a!,0)

1 (@'0) = (@ 0) = Vyp (ln(cl(m’,O))) =V, (ln(CQ(x’,O))).

From this we get that V,/ (In(c1(2’,0)) — In(ca(2’,0))) = Vu <ln Z;E;:g;) = 0 which then implies that
c1(z',0) = Aea(2/,0) for 2’ € 992 and A # 0. (We cannot use boundary determination for the conductivity
equation (e.g. [15]) because the DN maps are different: here f +— 8,,vf|89 instead of f — ¢1 (2, O)(‘)va‘ag.)
It is known that the knowledge of this linearized DN map combined with ¢;(2/,0)]90 = Aca(2',0)|an gives
us ¢1(z’,0) = Aeo(2/,0) in 2 [29].

By the gauge invariance of (4.3) (replacing co(x’,0) = A~tcq(2’,0)) we have that vé» solves the equation

div (cl(x’,O)%Vvé) =0, in{f2
vé— = fi, on 0f2.

Since solutions to this are unique, we define v := v} = v}.
For recovering the higher order derivatives of ¢;(z’,0) we can use the second linearizations (from (4.6))

div (cj ($/70)an1ij(_<11)) - “T*cj(x’,0)”%1*18;@(93’,0)@%“ =0, in {2

w§al) — 07 on 0f2.

(5.3)

corresponding to j = 1,2. Notice that if we replace ca(2',0) by A~tei(2,0) in (4.5), except in the third

order derivative, we get that wg! solves

div (01 (2, O)nT_IVwéal)> —A2te (o, O)TLT_I’I(?%”CQ(:E’, 0)vtv® =0, in 2
(5.4)
wéal) =0, on 012.

Subtract now (5.3) for j =1 from (5.4), integrate against v = 1 (solution to the first linearization) over {2

/ div(cl(x’,O)anleg““ —01($/,0)HTAVU)§GD)
17

n—
2

_1 —
— (Lcl(x’,O)Tlﬂ@incl(x',O) -

1 n—
5 cl(x’,O)Tlﬂ@inCQ(x',OO vl da’

=0

15
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and use integration by parts to have
0= /Em e (2/,0) 7 (Vw(al) v— ngal) ~z/) ds
:/ div(cl(x'70)%Vw§al) 7CQ($’,O)nT71V’LU§al))dI/
Q

:/Qn; (e 0)%F

This is true since by (5.1)

(93 c1(2!,0) — AD2 co(a,0)) vlo® da.

aﬂ“’an = aﬂ@’an

and applying 0,0, |€=0 to this implies
(al) (al)
0, LWy ’ag &,wz !ag, for a,lE {1,...,]{7}.

Thus
n—1
/ ar(2,0) = 71 (03 e1(a,0) — NI co(',0)) v da’ =0 (5.5)
0

for any v®, v solving the conductivity equation (5.2). A solution to (5.2) is equivalently a solution to

A sei(z,0)2/2 .

g = c;(a, 0)*/2f,, on 042,

where o = ”T’l, g = (e, 0)0‘/ 2yt and A,/ denotes the Laplacian with respect to the first two variables.
Hence by using the fact that a product of a pair of solutions (Proposition 5.1) is dense in L'(£2), we get

2 c1(2',0) = A03 ca(2’,0), 2’ €.

Also (5.3), (5.4) together with the previous equality and ¢;(2’,0) = Aca(2,0), gives the following boundary
value problem
n—1 a a .

div (cl($’70)TV (wi D_ wé ”)) =0, in £

w%al) - wéal) =0, on 042.
This has a unique solution and thus w%al) = wéal).

Next we use induction to show 0% ¢1(2/,0) = AJ¥ cz(a’,0) for all k € N. By the above this already holds
for k =0,1,2,3. Our assumption now is
O ci(a/,0) = A0F co(2',0), 2’ €, forall k=0,1,2,...,NeN,N >3.

In

Let us do a subinduction to prove

afl._.lkul(xﬂO) = 8f1._‘lku2(x',0), x e 0,
forall k=1,..., N, where 81 n u;j(z’,0) = 2%7(20) Above we have shown this for k£ = 1, 2. Assume that
811 E
it holds for £k < K < N. Then the linearization of order K + 1 is, when evaluated at e} = -+ =eg41 =0,

div (c] (=, 0) TV (GKH

1%

K+1
+ch(m’,0)%’18£f2 («',0) (H v(lk)> =0,

16

u;(@',0)) ) + Ric(uz, ¢;(a',0),0) (5.6)
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' € 2, where C # 0. Actually C = —1 , since it comes from the u derivatives of I’ and is the constant "=
appearing in front of the second term of F. Also, here R is a polynomial of algnc](m ,())78[1'_.lku1(x ,O)
and the components of V. (agncj(x’ ,0)). Now an integration by parts argument similar to the case of
the second linearization and together with Proposition 5.1 (choosing v® = --- = o5+l = 1) gives
OK+2¢i(27,0) = ANOK+2¢5(2,0).
Subtracting Eqs. (5.6) (similarly as for Eqgs. (5.3) and (5.4)) for j = 1,2 we get
. n-1 .

div (cl(m’,o) TV (81K+ll +1u1(x’,0) 8K+11K+luz(at’,0))) =0, in 2

(9K+11K+1u1(:r’,0) 8K+11K+1 2(2’,0) =0, on 9f2.
This is true, since by induction assumptions for all 2/ € £ we have V,/ (0% ¢1(a’,0) — 9% c2(2’,0)) =0
and the other terms agree for j = 1,2, k < K. Again, by the uniqueness of solutions, 8 lKHul(a:’,O) =

lKﬂ ug(2’,0), ' € 2, which ends the subinduction.
1Ky

Returning to the original induction, the linearization of order N +1late; =--- =eny41 =01is
N+1
div (cj(x 0) (8 +l1v . u;(2/, 0)))

N+1
+ Ry (uj,ci(2,0),0) + Ce;(a, 0)**181‘“2 z, (H v<lk>> =0,

z' € (2. By the subinduction, the terms RN(u], ¢j(2',0),0) agree for j = 1,2. Thus by subtracting, using

integration by parts and that 9, 6N+1 ui(2’,0)|on = 0y 8N+1 uz(2’,0)]an we get

ANt ANt
. N+1
/ cj(2’,0)7Z 1 (0N F2ci(a!,0) — AOL FPea (2, 0)) H o'k dz’ = 0.
2 k=1

Choosing all but two of the functions v'* to be equal to 1, we have by the completeness of such solutions
(Proposition 5.1) that

aﬁfzcl(m’,()) = )\ai.\:j_QCQ(l‘/,O), ¥ e 0,
which ends the proof for case (1).

Case (2): Now we assume that the partial DN maps coincide for f € Uy, spt(f) C I'. Then, as in
the previous case, from the first linearization we get ¢;(2’,0) = Ace(2,0) in 2 (using first the boundary
determination from [2], then [10] for n = 3 and [12] for n > 3). Now define v' := v! = v} again by uniqueness
of solutions.

Moving to the second order linearizations and recovering higher order derivatives produces some extra
work since we only have partial data. From the assumption that the DN maps coincide we get

8U’LU%Z|[‘ = 8,,w‘2’l’p. (57)

If we would now integrate the difference of (5.3), for j = 1, and (5.4) against v = 1 and integrate by parts,
some terms would not cancel out. Let us instead introduce the function v(®) which is a solution to

div (cl(ac’,O)nTilVU(O)) =0, in {2

WO — 0, on 902\ T (5.8)
v = g, on [,

17
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where g € C°(I') such that g > 0 and g # 0. Then by the maximum principle v(®) > 0 in £2. Now we
integrate against this and use integration by parts to have

-1 -
/ n 5 cl(:v',O)Tl_1 (32 e1(x',0) = A02 ca(a’,0)) vOvlv® da’
7

= /Q div (cl(x/,O)nT_lv (wﬁal) _ wéal))) 0 d!

(w — ws') div (cl(x’, O)%VU(O)> dx’

+

S—s—

ea(@,0)" 7 (9 (wi! - wgho® - (it - wg9,v®) ds

+

cr (2, 0)an1 (8, (wi — wgl)v(o) — (w® — wgl)ayv@)) dS
9O\l

I
e

In the last inequality we used Eq. (5.7), the fact that v(®) solves (5.8) and that w$' =0 on 942 for j =1,2.
Then using Proposition 5.1 and the positivity of v(°) we can conclude

2 c1(2',0) = A02 ca(2’,0), 2’ €.

As in the previous case we use induction to show 9% ¢1(2/,0) = A9% ca(a’,0) for all k € N. By the above
this already holds for k = 0,1,2,3. Our assumption now is

O c1(a),0) = A0F ca(2',0), 2’ €, forall k=0,1,2,...,NeN,N >3.
By a subinduction we can show that

a,

1.l

ul(x/,O)zalkl. us(2’,0), '€ 0,

"lk

akuj(z’,o)
0,

1y 9=

for all k = 1,..., N, where afll_.lkuj (z',0) = . This goes in the same way as in the previous case
except the integration by parts argument needs to be done as shown in this case.

Returning to the original induction, the rest of the proof is again the same as in case (2). We only need to
modify the integration by parts argument using again the function v(°) and Proposition 5.1 which finishes

the proof. O
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where m > 2, m € N, and Q C R" open and bounded. This boundary value problem is well posed for
q € L3%%(Q) and a certain class of boundary values. In fact we show that there is § > 0 such that for all
(see [21] for Sobolev spaces)

f€Us:={he W 5P (@Q): Al o1, <0}

(09)
there exists a unique small solution u € W?2P(Q2) with sufficiently small norm. Here and in the rest of this
article, we denote p := 5 + ¢. Thus the DN map can be defined as

Aq: Us —>W1’%’p(89), f'—>8UUf|aQ.
Our first main result shows that we can determine the potential from the knowledge of the DN map.

Theorem 1.1. Let Q C R™, n > 2, be a bounded open set with C> boundary, € > 0 and q1,q2 € L2T5(Q).
Let Ay, be the DN maps associated to the boundary value problems

(1.2)

Au+qu™ =0, in§)
u=f, on 0N,

for j =1,2, and assume that Ay, [ = Ag, f for all f € Us with § > 0 sufficiently small. Then q1 = g2 in €.

This result is a special case of Theorem 1.2 but we give a proof because it is helpful for the other two
main theorems of this paper. Also the proof of Theorem 1.1 gives a reconstruction formula for the potential
¢ via the Fourier transform (see Corollary 3.1).

The proof Theorem 1.1 is quite similar as in [19] and it uses the method of higher order linearization
first introduced in [18] and further developed in the works [9], [19]. The key ingredient in this proof is the
following integral identity which characterizes the m-th order linearization of the DN map (D™A,) at 0
[19, Proposition 2.2]:

/(DmAtn = D™Ag,)o(f1s- -, fm) fmg1dS = —(ml) /(q1 — q2)vyf, - vy, L, da. (1.3)
80 Q

Here vy, are solutions to Avy, = 0 with boundary values vy, |an = fi. Using this integral identity together
with a result on density of products of solutions eventually gives ¢ = ¢o in €.

Theorem 1.1 has been proved for Holder continuous potentials in [9] and [19] but in this article we give
a first result for a less regular potential (at least to the best of our knowledge). The difference is in proving
that (1.2) is well-posed when the potential is in LP(£2) and defining the DN map as a map from Uj to
W5 (59).

In the linear case (A + q)u = 0, when n > 3, a similar result for ¢ € L3 (£2) has been obtained in the
works [23], [6] and in a more general Riemannian manifold setting in [8], where they used LP Carleman
estimates in their proof. The case ¢ € L3 () is considered optimal in the sense of standard well-posedness
theory and for the strong unique continuation principle [15]. There are also results when one assumes that
q € W=1(Q), see for example [11]. When n = 2 the lowest regularity for the potential to have uniqueness in
the inverse problem, at least to the best of our knowledge, is L3 () [3]. The same result is true on compact
Riemannian surfaces with smooth boundary [22]. In dimension two the unique continuation principle holds
for potentials in LP(€2) where p > 1 (see for example [1], [2]).

In addition to the full data case, we consider some partial data results for the Schrodinger equation
with unbounded potentials. In particular, let I" be an open subset of the boundary 0f). Define the partial
Dirichlet-to-Neumann map for f € Us, spt(f) C T, as
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Agf = al,u|p.
Then from the knowledge of this partial DN map it is possible to determine the potential.

Theorem 1.2. Let Q C R™, n > 2, be a connected open and bounded set with C> boundary and let T # 0 be
an open subset of the boundary 0. Let € >0, q1,q2 € L=2T5(Q) and Agj be the partial DN maps associated
to the boundary value problems

Au+qju™ =0, in§)
u=0, on OQ\T
u=f, onT

for j =1,2. Assume that
r r
Al]lf = AL]2f
for all f € Us with spt(f) C T, where § > 0 sufficiently small. Then ¢ = g2 in Q.

When the potentials are assumed to be Hélder continuous, then this theorem has been proved in [17] and
[20] using the method of higher order linearization, which we will also use. Here again the key ingredients
are the integral identity (1.3) and a density result for solutions of the Laplacian [25] (see also [5, Section
4]).

For the linear Schrédinger equation, partial data results with unbounded potentials have been proved
only for special cases of partial data. When n > 3, it is proved in [7] that from the knowledge of the partial
DN map in a specific situation it is possible to determine a potential in L2 (£2). The authors use a method
involving the construction of a Dirichlet Green’s function for the conjugated Laplacian. In a similar situation
on a manifold setting, [26] shows that a potential in L3 can be determined from a particular case of partial
data. When n = 2 the best known result for the case of an arbitrary open subset of the boundary is for
potentials in the Sobolev space WP (Q), for p > 2 [14].

For partial data results, there is still the case when we are restricted to only one point on the boundary.
In the situation of Au+ qu™ with the potential ¢ in C*(£2) this has been proved in [25] using the method of
higher order linearization. Here we show that the same result holds even if we only assume that ¢ € L"7¢(Q)
for a positive ¢.

Theorem 1.3. Let Q@ C R™, n > 2, be a connected open and bounded set with C>® boundary and let T # ()
be an open subset of the boundary 0S2. Suppose that p £ 0 is a fired measure on 02 and let € > 0. Assume
that q1,q2 € L"T¢(Q) satisfy

[Audi= [ A7) an (1.4)

o0 o0

for all f € Us with spt(f) C T, where 6 > 0 sufficiently small. Then ¢1 = qo in Q. Thus when choosing
f =0z, for some fized xo € 02 the condition

Alh (f)(xo) = AQ2 (f)(x()) fOT all f € Us with Spt(f) cr
gives q1 = gz in €.

The proof of this theorem is very similar to the one in [25] and it uses heavily the identity (1.3) and a
density result for solutions of the Laplacian [25].
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It is an interesting question if in Theorems 1.1 and 1.2 it is enough to assume the potential g to be in
L% (Q) and if in Theorem 1.3 the potential ¢ could be in L*(£2) for s = n or even s < n. The argument given
for Theorems 1.1 and 1.2 fails when ¢ € L% (Q) since the well-posedness (Theorem 2.1) relies on Sobolev
embedding theorems that fail for the exponent 5. For Theorem 1.3 the restriction to s > n comes from
Lemma 5.1 and that we again use Sobolev embedding theorems that do not work for the exponent n or
exponents less than n.

The rest of this paper is organized as follows. In section 2 we prove the well-posedness of the boundary
value problem (1.1). In sections 3 to 5 the proofs for Theorems 1.1, 1.2 and 1.3 are given.

Acknowledgments. The author was supported by the Finnish Centre of Excellence in Inverse Modelling and
Imaging (Academy of Finland grant 284715). The author would like to thank the anonymous referee for
helpful comments and Mikko Salo for helpful discussions on everything related to inverse problems.

2. Well-posedness

A short reminder for the reader that we denote here and in the rest of this article p := & + €.

Theorem 2.1. (Well-posedness) Let @ C R™ n > 2, be a bounded open set with C*° boundary, € > 0 and let
q € LP(Q). Then there exist ,C > 0 such that for any

feUs:={heW>»2Q): ||h|l <6},

_1
w2 B P (00)

there is a unique small solution uy in the class {v € W*P(Q): ||w||lwz2rq) < C6} of the boundary value
problem

{Au—i—qu =0, inQ (2.1)

u=f, on 09,

where m € N and m > 2. Moreover

lullwa@) < Iy ey

and there are C°° maps

S:Us — W*P(Q), f > uy,
Ag: Us = W5 P(09),  f i duug|oa.

The proof uses the implicit function theorem between Banach spaces [24, Theorem 10.6 and Remark
10.5] and is very similar to the one in [19, Proposition 2.1]. The difference here is that we replace Holder
spaces with Sobolev spaces and one needs to be careful with various embeddings for these spaces.

Proof. Let
X =W>P0Q), Y=W2PQ), Z=LPQ)xW> 5P(5Q)

and F: X XY — 7,

F(f»“‘) = (Q(U),u|ag - f)a
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where Q(u) = Au + qu™. Let us now show that F' has the claimed mapping property. Since u € W2?(Q),
this implies that u|so € WQ_%’p(aﬁ) (see [21]) and Au € LP(2). Hence we need to show that the term
qu™ € LP(£2). Since 2 (% + £) > n, then by the Sobolev embedding theorem [21] u € Co(Q), for 0 < a < 1,
which is a subset of L*(Q) for every 1 < s < oco. Now this implies

llau™||zo(0) < Hlallzo @)l [u™ | @) < llallzo) (lull )™ < o0

and thus qu™ € LP(Q). Hence F has the claimed mapping property.

Next we want to show that F is a C°° mapping. Since u — Aw is a linear map W?2P?(Q) — LP(Q), it
is enough to show that u +— qu™ is a C° map W?2P(Q) — LP(Q). This follows since u™ is a polynomial.
More precisely, let u,v € W?P(Q) and use the Taylor formula:

1
m_ N\~ %lqu™) It (q(u+t0)™) i
gut+v)™=>" i +/ - o1 —t) dt
J=0 0
m By m .
DIk
=0
Now for |[v|[y2»(q) < 1 the above gives
q(u+v) 72%'@] :OSHUH];;;I,p(Q)
=0 7 Lo ()

and thus the map u + g(z)u™ is C* (in the sense of [24, Definition 10.2]) for all k¥ € N. Hence it is a C>
map and F' is also C'*°.

Our aim is to use the implicit function theorem for Banach spaces to get a unique solution for the
boundary value problem (2.1). Firstly, the linearization of F' at (0,0) in the second variable is

Dy Fl0,0)(v) = (Av,v|a0),

which is linear and also F'(0,0) = 0. Secondly, D,F|,0): Y — Z is a homeomorphism. To see this, let
(¢,9) € Z and consider the boundary value problem

Av=¢, in{
v =g, on 0f).

This problem has a unique solution for each pair (¢,g) (see for example [10, Theorem 9.15]), and thus
D, F(o,0) is bijective. We also have the estimate

1D Fl0,0)(0)l1Z = 180700 + ||v|aﬂ||iv27%,p(am < Ml[v[ffy2.(q)

because the trace operator from W?2P(Q2) to WZ_%”’((’“)Q) is bounded (see [21]). Hence D, F|() is also
bounded and then the open mapping theorem (see e.g. [24, Theorem 8.33]) tells us that it is also a homeo-
morphism.

Now by the implicit function theorem [24, Theorem 10.6] there exists 6 > 0, a neighborhood Us =
B(0,6) € X and a C* map S: Us — Y such that F(f,S(f)) = 0 for Hf”wz’%’p(aﬂ) < 6. Now S is also
Lipschitz continuous, S(0) = 0, 5(f) = u and thus we have
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lullw2e) < Ul 3o ey

27%"’(89) <4, Hu||W2,p(Q) < C6 and

the implicit function theorem gives that u is the unique small solution of F(f,u) = 0. Also the solution
operator S: Us — W2P(Q) is a C* map. Because u € WP (), then Vu € W1P(Q). The trace operator
is a bounded linear map from W?(€) to W“%»P(ag) (see [21]) and thus d,u € W“%»P(m) is defined
almost everywhere on 0€2. Hence A, is a well defined C'*™° map between Us and WieP (0Q). O

for C' > 0. By redefining 0 if necessary we have the estimates || f ||W

Remark 2.2. In the previous proof, we showed that the mapping D,F|, is bijective and bounded
and deduced that it is a homeomorphism. An alternative way to see this is to look at the inverse map
(DuFl0,0))"": Z = Y and show that it is bijective and bounded. In order to do this, one needs to prove
the following estimate:

lollwsiey < € (lollira + ol )

where C' > 0 does not depend on v, ¢ and g. This can be done for example by combining the estimate

[[v]lw2.p@) < C <||¢||LP(Q) + HQHW%%,,,(SQ) + ||'U||Lp(gz))

from [27, Theorem 9.1.3] with the assumption that 0 is not a Dirichlet eigenvalue and using a compactness
argument.

3. Proof of Theorem 1.1

Using the method of higher order linearization we prove that it is possible to determine a potential in
LP(Q) from the knowledge of full DN map.

Proof of Theorem 1.1. Let Aq,..., A, be sufficiently small numbers, A = (Ay,...,\p,) and f1,..., fm €
1
W2 2 P(9Q). Let uj(z, ) € W?P(Q) be the unique small solution to

(3.1)

Auj + qugn =0, in
w; =Y Aefe, on OQ.

Differentiating this with respect to A;,1 € {1,...,m} (possible by Theorem 2.1 which shows that S is a C°
map) and setting A = 0 gives that vé- = Oy, u;(x, \)|a=0 satisfies
l . .
Av; =0, inQ (3.2)
vj» = f;, on 0f.

This has a unique solution in W2?(€Q) (see for example [10, Theorem 9.15]) and thus we can define v! :=
vl =vl. Also the first linearizations of the DN maps Ay, are the DN maps of the Laplace equation.

Let 1 < a <m—1 be an integer and I3, ...,l, € {1,...,m}. Then the a-th order linearization of (3.1) is

and uniqueness of solutions for the Laplace equation gives that 0 is the only solution. Thus the a-th order
linearizations of the DN maps A, are equal to 0.
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Moving to the m-th order linearization, we apply J, ---0x,, |x=0 to (3.1) which results in the boundary
value problem

Awj = —mlg; [T, v*, inQ (3.3)
wj =0, on 0f).
Here w; = 9y, - -+ Ox,, u;(z, \)|x=0 and the functions v*, k € {1,...,m}, are solutions to equation (3.2) with

corresponding boundary values fx. On the left hand side of (3.3) we are only left with a product of functions

v, since after differentiating (3.1) m times with respect to €, all other terms involve a positive power of uj.

Proposition 2.1 says that the solution u; depends smoothly on ¢ and thus when evaluating at € = 0, the
function u; vanishes.

By our assumptions we have that Ag, (37, Aefi) = Ag (X pey Mefi) and thus dyui|a = dyus|sq.
Applying Oy, -+ - O, |n=0 to this gives d,w1|an = O,wa|aq. Subtracting (3.3) for j = 1,2 and integrating
against v = 1 (a solution of (3.2)) over  implies

m!(g1 — q2) ﬁ vHde = — | Alwy —wy)de = — | 8,(wy —ws)dS = 0. (3.4)
[riw-w T f /

Let us now choose v',v? to be the Calderén’s exponential solutions [4]
vl(z) i= e 2(g) 1= e(THIO) T (3.5)

where 7,6 € R™, L ¢ and || = |¢|, and v* = 1 for k = 3,...,m. Then we get that the Fourier transform
of the difference ¢ — g2 at —2¢ vanishes. Thus ¢; = ¢ since £ was arbitrary. O

Notice that this proof gives a reconstruction formula for the potential. In particular, inspecting the last
lines after equation (3.4) we have the following result which reconstructs the potential ¢ via its Fourier

transform.

Corollary 3.1. Let Q C R™, n > 2, be a bounded open set with C* boundary, € > 0 and g € LP(Q2). Let A,
be the DN map associated to the boundary value problem

Au-+qu™ =0, inS
u=f, on 0S).

Then, denoting A = (A1,..., Am),

X 1 om S
(=26 =~ / mhzof\q (Z Akfk) ds,
o9 k=1

where f1, fo are the boundary values of Calderdn’s exponential solutions (3.5), fr =1 for 3 <k <m and
is the Fourier transform of q.

4. Proof of Theorem 1.2

We prove the partial data result for determining a potential in LP(2) by using higher order linearization.
The proof uses similar techniques as in [17] and [20].
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Proof of Theorem 1.2. Let A1,..., A, be sufficiently small numbers, A = (A1,...,A\y) and f1,..., fin €
WQ_%’p(GQ) with spt(f) C T. Let u;(z,\) € W2P(Q2) be the unique small solution to

Auj +qu™ =0, inQ
u; =30 Aefe, on 9.

The first and m-th order linearizations are the same as in the proof of Theorem 1.1, with corresponding
boundary values. We also define v' := v} = v} by uniqueness of solutions to (3.2). Let v(?) be the solution

to

Av® =0, inQ
v® =0, onoN\T
v =g, on T,

where g € C2°(T") with ¢ non-negative and not identically zero. By the maximum principle, 0@ > 0in Q.
Then subtracting (3.3) for j = 1,2 and integrating against v(©) gives the following integral identity (compare
to (3.4))

—/m!(q1 — g2)v® H oF dr = /A(w1 — wy)v® dz (4.1)
Q k=1 Q

= /(wl — wy) A dz

Q

+ /u@)a,(wl —wsy) — (wy — wg)ayv(o) ds
o0

= /v(o)ay(wl —wsy) — (wy — wg)ayv(o) ds
o0

Here Green’s formula and the fact that Av(® = 0 in Q were used. Now our assumption on the DN maps
coinciding gives d,u;|r = Jyuz|r and when applying dy, - - - dx,, [x=o0 to this, we have d,w1|r = d,wz|r. Also
wy —wp =0 on N by (3.3) and v(®) = 0 on I\ T'. Using these (4.1) becomes

- /m!(q1 —qo)v® H P de = /v(o)ﬁ‘u(wl —wy) — (wy — wy)d,v? dS (4.2)
Q k=1 09

= / v(o)&,(wl —wsy)dS + /U(O)&,(wl —wsy)dS
OO\ r
=0.

Now we can apply Theorem 1.3 in [25] (see also [5, Section 4]) which says that the set of products of two
harmonic functions that vanish on 9Q \ T is dense in L!(€). Thus we can conclude from (4.2) that

m!(q — g2)v'? H " =0 in Q.
k=3

Let fr, € C(T'), fr non-negative and f > 0 somewhere for k = 3,...,m. Then again the maximum
principle gives that v* > 0 in Q. Combining this with v(®) > 0 in Q then implies ¢; = ¢z in Q. O
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5. Proof of Theorem 1.3

As in [25], we need a lemma stating that the solution to the boundary value problem with a finite Borel
measure /¢ as boundary value is in L"(€2) for 1 < r < 5. For the lemma, denote by 7’ the dual exponent
of 1 <r < cc.

Lemma 5.1. Let Q C R™, n > 2 be a bounded open set with C*° boundary and p a finite complex Borel
measure on 0S2. Then for the function

W)= [ Pay)duty), « e (5.1)
o0

where P(x,y) is the Poisson kernel for A in Q, we have ¥ € L"(Q), 1 < r < 5. Additionally ¥ solves
the boundary value problem

AU =0, inQ
U = pu, on 0%,

where W = 1 on 8Q means that for any w € W2 (Q) with w|pq = 0, in trace sense, one has
/&,w dp = /(Aw)\I/ dx. (5.2)
a9 Q

Notice that the left hand side of relation (5.2) is well defined since d,w is continuous by the Sobolev
embedding theorem (see for example [21]): The assumption w € W2 (Q) says that Vw € Wh'(Q).
This space embeds to C%1= (Q) if ' > n. Notice that 7/ > n is equivalent with the assumption that
1 < r < -25. Also the right hand side of (5.2) is well defined by the fact that Aw € L7 (Q),¥ e L"(Q)
implies (Aw)¥ € L*(Q).

The proof of this lemma is the same as in [25, Lemma 2.1.]. The only difference when compared to the
statement in [25], is that we assume w € W27 () instead of w € C%(Q).

Proof of Theorem 1.3. As before, we use the method of higher order linearization. Let Ai,..., A, be
sufficiently small numbers, A = (A1,...,\p) and f1,...,fm € szi’p(aﬁ) with spt(f) C T. Let
u;(z,\) € W2P(Q) be the unique small solution to

Auj +qjui =0, inQ
wj =Y ey Aefe, on O€.

The first and m-th order linearizations are the same as in the proof of Theorem 1.1, with corresponding
boundary values. We also define v := v} = v} by uniqueness of solutions to (3.2).

Let € > 0 and g1, g2 € L™(Q) be such that (1.4) holds for all f € Us, spt(f) C T with sufficiently small
d. From Oy, -+ -0, Ag; (f) = O, -+ Ox,,Ouujlaa = ywjlaq, where w; is the solution to (3.3), and equation

(1.4) we get that

/(&,wl — dyws)du = 0.
o0
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Let ¥ € L") (Q) be the function given by (5.1) which is a solution to

AU =0, inQ
U=y, ondf)

in the sense of Lemma 5.1. Notice that (n +¢)’ < =27 and w; € W2"(Q) because —mlq; [[}, v* €

L"T2(Q) (see for example [10, Theorem 9.15]). Thus combining (5.2) and (3.3) gives

0= /(8,,101 — Oyws)dp = /A(w1 —we)¥dr = —/m!(q1 — q2) H P de,
Q Q

where each v* is a solution to the Laplace equation with corresponding boundary value fi. Let fs,..., fm €
C>(082) be such that spt(fy) C T, fr > 0 and f;, > 0 somewhere, then by the maximum principle v* > 0 in

Q. Choosing the boundary values f1, fo € C(99), spt(f1),spt(f2) C I, we get by elliptic regularity that

vl v? are smooth and thus we may apply Theorem 1.3 from [25] (see also [5, Section 4]) to get

ml(qg1 — q2)vs v, U =0 a.e. in Q.

The positivity of vs, ..., v, implies that (g1 — ¢g2)¥ = 0 a.e. in Q. Now we claim that ¥ cannot vanish
in any set & C Q of positive measure. This can be seen as follows: We argue by contradiction and assume
that ¥ = 0 in £ C Q where F has positive measure. Then by a unique continuation principle (see for
example [12], n > 2, and for n = 2 [13]) ¥ = 0 in Q. From [16] there is a constant ¢ > 0 such that for all
(z,y) € Q x 00

.. dist(xz, 00)
|z —y|"

< P(z,y).

In view of the definition of ¥ in (5.1) this would imply that ;1 = 0 which is a contradiction. Hence we must
have that ¢ = ¢2 a.e. in Q. O
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1. INTRODUCTION

This article focuses on an inverse problem for the minimal surface equation (MSE),
which is a quasilinear elliptic PDE. In particular we consider MSE on a manifold
(R™, g),n > 3, where

(1.1) o(2 ) = o, 2) (g(g'> g’) |

Here (7', z,) € R ' xR, § is a Riemannian metric on R"~! and ¢ € C°°(R"), ¢(x) > 0
for all z € R™. Inverse problems for the MSE were considered in [Nur23a] where § was
Euclidean and in [CLLO22] where ¢ = 1. Now we consider metrics of the form (1.1)
which includes both of these cases. Metrics with local coordinates of the form (1.1)
were introduced for example in [DKSU09], [DKLS16] where the Calderén problem
was studied.
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Let © € R*™ ! be a bounded domain. In order to define a minimal surface, we
introduce notation for Riemannian Hessian and norm of the gradient

n
2, _ (92 m 2 _ g
Viyu = <6l,ﬂju = ijaxmu>i , Vgul, = g7 0,,u0,u.

J=1
We use the Einstein summation convention where there is no chance to misinterpret.
Also here I'™;; are the standard Christoffel symbols. Now define the Laplace-Beltrami
operator to be the trace of the Hessian

Agu = Tr(V?u) =g" (Qixju — Fmijﬁxmu) .

Then for the metric (1.1) the MSE has the form

(1.2)
div, Vgl T
(1+]Vgul2)®
N Agu(l =) + 5 (Vau) 0y, c(1 4 [Voul2 — ¢72) + 2510, ¢(1 + Vaul?) B

3
(1+ |Vgu|§) 2
For the derivation of this equation, see Section 2. When ¢ = 1, one gets the MSE from
[CLLO22|. The graph of a function u:  C R*"™! — R is called a minimal surface if
it satisfies (1.2) for all 2" € €.

We will look at the boundary value problem
{ F(2',u,Vgu,Viu) =0 in Q

(1.3) u=f, on 0f2

where F: R — R,
1-— -1
F(x',u, Vgu, Viu) := (—Agu + Tngmraxrcaxmu + %axnc) (1+|Vguly)

+ Viu(Viu, Viu)

(this is an equivalent formulation of (1.2), see Section 2). One can show that (1.3) is
well-posed for small enough boundary data f for example by following the arguments
in [LLLS21a]. In particular one can show that there exist C,6 > 0 and s > 3, s ¢ N,
such that for all
f e Us:= {h c CS(aQ) : ||h| Cs(00) < 5}

there is a unique small solution u; in {v € C*(Q) : [|v||cs) < Cd}. In addition to
full data we will be considering partial data and for this let I' C 92 be a nonempty
open subset of the boundary. We can now define a (partial) Dirichlet-to-Neumann

map (DN map) A} : C3(T) — C*~1(D),

(1.4) Ay f = duuglr

where uy is the unique small solution corresponding to the boundary value f, d,u =

§"8,,uv; and v is the unit normal of 9Q. When I' = 09, we will denote A, = A
The inverse problem we study in this work is the following: Given the knowledge

of the partial DN map for two metrics in the same conformal class, does it hold that
the metrics are the same? We note that when trying to recover the metric from
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boundary measurements one expects an obstruction to uniqueness by a boundary
fixing diffeomorphism. When the metrics are in the same conformal class such an
obstruction is not present, since the only diffeomorphism that leaves a conformal
class invariant is the identity. In this article we will give some partial answers to this
inverse problem.

Before stating the results, we will introduce the class of admissible metrics [DIXSU09].

Definition 1.1. A Riemannian metric g is called admissible if on R™ it is of the form
(1.1) and (9, §) is a simple manifold.

Definition 1.2. A compact manifold (M g) with boundary is called simple if for any
p € M the exponential map exp, with its mazrimal domain of definition in T, M s

a diffeomorphism onto M, and if OM s strictly convex in the sense that its second
fundamental form is positive definite.

The first result is for the full data case.

Theorem 1.3. Let (R™, g), n > 3, be a Riemannian manifold where g is as in (1.1)
with Oy, c(x',0) = 02 ¢(2/,0) = 0 and let @ C R*' be a bounded domain with C*™
boundary. When n = 3 assume that ) is simply connected and when n > 3 assume
that g is admissible. Let ¢ € C*°(R") be such that 9,,¢(x’,0) = 02 é(2/,0) = 0 and
let 0% ¢(2',0)[on = 0 for k > 3. Assume that Ny(f) = Ag(f) for all f € Us, where
0 > 0 s sufficiently small. Then

o(2',0) =X, 0 &(2/,0)=0
for some A > 0 and for all k > 2.
Thus, if ¢ is real analytic with respect to x,, then ¢(x) = X for all z € Q x R.

For the partial data we will only consider the case n = 3. For n > 3 we would be
able to get some results, but the partial data results for the magnetic Schrodinger
equation (see [SY23]) are more restrictive and hence we do not record these results
here.

Theorem 1.4. Let (R3,g), ¢ and Q be as in Theorem 1.5 and let T C 9Q, T # (), be
open. Assume that AL (f) = Ay, (f) for all f € Us, where 6 > 0 is sufficiently small.
Then
o(2',0) = A, 85 e(2',0)=0
for some A > 0 and for all k > 2.
Thus, if ¢ is real analytic with respect to xs, then ¢(x) = X for all v € Q x R.

These results extend the results from [Nur23a).

We make some comments about the assumptions made in Theorems 1.3 and 1.4.
First of all, the assumption 0, c(2’,0) = 0,,¢(2',0) = 0 is needed for the well-
posedness of the boundary value problem (1.3) for small data, that is we want it to
be well-posed for both the metric g and the metric ég. The assumption 97 c(z’,0) =
92 ¢(a’,0) = 0 is needed in order for the method used in the proof to work and it
is not yet known if this could be removed. Lastly, there is a small gauge invariance
in (1.2) and also in the DN map. To be more precise, if one replaces the conformal
factor ¢ in (1.1) by pe, u # 0, then both the equation (1.2) and the DN map remain
the same. Thus we cannot have A =1 in Theorem 1.3.
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There are also some assumptions made when n = 3. The assumption that €2 is
simply connected is needed to use the Poincaré Lemma. This is something that one
might be able relax with some amount of work by looking at the so called gauge
isomorphism mentioned in [GT11] that relates two connection 1-forms. The other
assumption that 9F ¢(2/,0)]sq = 0 for k > 3 could possibly be removed by doing a
boundary determination result.

The proof will use the method of higher order linearization. We will begin by look-
ing at the first linearization of (1.3) and the DN map for that. The first linearization
of the DN map corresponds to an advection diffusion type equation. From this it
is possible to determine the advection term ([GT11] for n = 3, [KULg] for n > 3)
and this will then imply that ¢(z’,0) = A for some A € (0,00). Now fix 25 € Q and
construct a solution v(?) to the adjoint of the linearized equation so that v(%)(zq) # 0.
Then using the higher order linearizations one can obtain an integral identity

N+1

/ (2, 0)7toN e (2!, 0)v® H v da’ =0,
@ k=1

where N+1 is the order of linearization and v'* are solutions to the linearized equation.
Then choosing v = 1 for k > 2 and using that a product of these solutions form a
complete set in L' (see Lemma 4.1) we can conclude that

(@', 0)7toN e (2!, 0)v® = 0.

From this, using v¥(zy) # 0 and that x was arbitrary, we get 9 +2¢(z/,0) = 0.
Then one proceeds by induction.

For the partial data, the proof is very similar and has only a few modifications.
One of the more significant changes is that instead of using the results of [GT'11] to
determine the advection term, we use the results for partial data in [Tzol7].

As mentioned above, the main technique in this work is the method of higher or-
der linearization. This method, which uses the nonlinearity of the partial differential
equation as a tool, was first introduced in [KLUI8] in the case of a nonlinear wave
equation and was further developed in [LLLS21a], [FO20] for nonlinear elliptic equa-
tions. In these works the equation Awu + a(z,u) = 0 was considered and further
results for example in partial data and obstacle problems were obtained in [KU20a],
[LLLS21b]. Also there has been multiple works when the nonlinearity is of power
type (e.g. [LLST22|, [ST22] and [Nur23b]).

At the same time there have been multiple articles concerning inverse problems for
other nonlinear elliptic PDEs. For example different cases of nonlinear conductivity
equations have been considered in [CFKKU21|, [KKU20] and in the latter they also
consider partial data. For the nonlinear magnetic Schrodinger equation the full data
case has been treated on conformally transversally anisotropic manifolds in [KU20b]
and in the Euclidean setting the partial data case is treated in [L.Z20].

Linearization has been used before these works mentioned above. It was used in
the parabolic case in [[sa93] where it was shown that the first linearization of the DN
map is the DN map for a linear equation. Other nonlinear elliptic cases have been
treated, for example in [I594], [SU97].

The present work focuses on an inverse problem for the minimal surface equation
and for this equation there have been some works previously in the literature. The



AN INVERSE PROBLEM FOR THE MINIMAL SURFACE EQUATION 5

Euclidean case has been treated in [MU20], in the sense that they deal with a quasilin-
ear conductivity depending on a function u and its gradient Vu. After that there have
been two works on the minimal surface equation in a Riemannian manifold setting,
one by the author of this article [Nur23a] and another one in [CLLO22]. These were
simultaneously and independently done. The work of this article somehow brings
these two articles together in the following sense: In [Nur23a] the metric was con-
formally Euclidean and thus in this article the setting is more general. In [CLLO22]
the authors consider a two dimensional Riemannian manifold (¥, g) and look at a
minimal surface Y C ¥ x R given as a graph of a function. Thus if ¥ C R? and in
this article we would have ¢ = 1, the settings in these two articles would be the same.

There is also the work [ABN20] that is related to minimal surfaces and inverse
problems. In that article the authors consider a generalization of the boundary rigidity
problem in the sense that instead of measuring distances of boundary points they use
measurements related to areas of minimal surfaces.

The rest of this article is organized as follows. In Section 2 we derive the minimal
surface equation in the setting mentioned above. Section 3 is dedicated to calculating
the first and second order linearizations of (1.3) and addressing shortly the well-
posedness of (1.3). Finally in Section 4 we prove the main results and two Lemmas
to help in the proof.

Acknowledgements. The author was supported by the Finnish Centre of Excellence
in Inverse Modelling and Imaging (Academy of Finland grant 284715). The author
would like to thank Mikko Salo for helpful discussions on the minimal surface equation
and everything related to inverse problems.

2. DERIVING THE MINIMAL SURFACE EQUATION

In this section we derive the equation (1.2). This is done similarly as in [Nur23a,
Section 3|. Let (M, g), M = R" n > 3, be a Riemannian manifold with the metric

~ /
2.1) o) = et (7))
where
(', 2,) ER" ! xR, c € C°(R"), ¢(x) >0 forall zcR"

and ¢ is a Riemannian metric on R"™'. We use the standard notations g;; for the
matrix g and ¢g¥ for the inverse g~!. These assumptions are valid for the rest of the
article, unless otherwise stated.

Let u: Q C R"™' = R, u € C?*(Q), and consider the graph of the function u

Graph, = {(2/,u(2")): 2’ € Q} C M.

This graph is a minimal surface if and only if its mean curvature H is equal to zero
at all points on the graph. By defining

[OXxR—=R, [ 2,)=umz,—u(2),
the graph of u is the surface

o=, 1,) € QxR f(a,2,) =0}
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The mean curvature of X at x € X is the sum of principal curvatures. We omit the
normalizing factor ﬁ when calculating the mean curvature and we use the Einstein
summation convention when it does not cause confusion. In order to calculate the

principal curvatures, we introduce the Riemannian gradient and Hessian of a function
f: M —R:

Vof =60 [0, VEf = (02,0 - pmijaxmf)ijzl,

where g% is the inverse of g;; and = %gml(axigﬂ + Oy, 9it — Or, gij) is the Christoffel
symbol related to the metric g. Define also the Laplace-Beltrami operator, which is
the trace of the Hessian (this is one way of defining it), and the norm of the gradient:

A =Te(V2) = g7 (0 f =Ty 00f ) IVl = 570, f0, ]

Now the principal curvatures of ¥ at # € ¥ are the eigenvalues of V7 f(x) restricted
Vo f(x)
VoIl
have T2 = {V,f(z)}*, or in other words, the tangent space T, is the orthogonal

complement of the vector V, f(z).

Let {Ey, ..., E,_1} be an g-orthonormal basis of T,,3. Then {El, o By, WVQ"]{(%L }

is an orthonormal basis of R™. Now the mean curvature of > at € X is the trace of
Vol @)](v, f@y:

to the tangent space T, at x. Since

is a normal to X at the point x, we

3
»—\

H(x) (VQf(ﬂf)Eu E;)

.

3
—_

I
™

(Vof (@) Ei, Bi) + (Vo f (@ >)( o o )

gf(x)‘g Vo f(z)lg

=1

of ()
- ) (S )
= Te(Vyf(x)) = [Vef(2)];* (Vof (@) (Vef(2), Vo f(z))
= Dgf(2) = [Vof (@);* (V3£ (@) (Vof (@ )V of (@ ).
Thus Graph,, is a minimal surface if and only if
(2.2) |ng(x)|§Agf(:B) - (V;f(zv)) (Vof(2),Vyf(z)) =0 forall z € Graph,.

Next we will calculate the minimal surface equation more explicitly using the metric

(2.1). Now
.
-1_ -1(9 0
= (%)

is the inverse matrix of (2.1). Let us calculate the first term of (2.2):

(2.3) A|Vof(x)[;80f(2)
= 029” (0in — Oz, u)(Ojn — awju) ( agkazl () mu))

= czg” (0indjn — 0inOp,u — 05O, u + @Ciu@zju)gkl( Bim — Iy 4+ 1700, u)

3
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The second term of (2.2) becomes
(2.4)
¢ (Vi f(x)) (Vof(x), Vo f(2))
= 034, f = U0 )9 0n, [ 9% Ou, |
= 02(—8§i$],u ="+ Fmijaxmu)g“igbj(cgan&n — Oan Oz, — Opn Oy, U + Oy, u0y, 1)
= 02(—8§ixju —I"+ Fmij&,;mu)(gmg”j — 9" g% 0, u — 9" g™ Oy, u + g*' g% 0, u0,, )
=I" 0y, u—1I" — Q(anjammu — F”nj)cgbjﬁxbu
+ 02(—8§ixju — I+ Fmijammu)gaigbja%ua%u
=TI, 0pu—T" =2 0, u—T") (Vyu)
— VZu(Vgu, Vgu) =T (VgU)i (Vgu)j )
In order to simplify further we will calculate the Christoffel symbols more explicitly:
2Fmij = ng(azjgir + 02, 9jr — 02, 9i5),
20" = 9" (205, 9nr — Oz, Gnn) = 29"" O, Grn — 9™ O, Grum
=2¢""0y,c — g™ Oy,
21" = §"" (O, 9ir + Ou;9jr — 0, 9ij) = 9" (O, Gin + Oz, Gjn — Or, i)
= ¢ (0, 9in + Oz, Gjn — 0,937
20", = g™ (O, Gnr + O, Gjr — O, nj),
20" = g™ (O, Gr + D Gir — Doy ) = 5" (e, G + o G — D G)
= c_lc?mjc.
Inserting these into (2.3) we have

Vo f ()60 f ()

1

= c(1+ |Vgul3) (—Agu — §gklc_1(angkn + 02, Gin — Or, Gi))
1

= (L4 |Vaulg) (—eAgu = (g"0nc + g™ Onc = 6" 0r, gu1))
1

= (1+[Vyul}) (—cAgu — 50_1(2 —n)0y, C).

For calculating the linearizations in Section 3 it is useful to transform Aju into Aju:

. 1
Ayu = g” <8§%u - §gmr(@xjgir + O, gjr — axrgij)a’cmu)

n—1
—1 g 1 ~mr 1]
=cC 19 ]aimju 5 Z g g ](aCng’iT + axigjr - 8x7-gij)8xmu

2cmr:l
n—1
= 1§70? u—i Z 0"\ G (O, Gir + O, §jr — O A~~))+2_—n8 c) Oy u
g ;T %2 g g :ngzr z: 9jr z Jij c Ty T
m,r=1
9 _
=c 'Ayu — ngmrazrcazmu.

2c2
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Thus
IV f(@)[5A, f (x
(1+|Vzul?) <

g

1
Am’"&vrc&vmu — 50”(2 — n)@xnc) :

Now the second part (2.4) becomes

¢ (Vof(2)) (Vof (), Vof (2))

1
- _Egmrazrca U= ignnaxnc
- (ng<axjgnr + Or, Gjr — axrgnj)axmu - Cilaxj c) (Vﬁu)]

1 . .
— Vou(Vyu, Vau) — 5071(3@91‘71 + On.9jn = 02, 9i5) (Vgu)' (Vgu)’

n—1
1 1
= _56_1 E §"" 0y, Oy, U — 50_1&%0

m,r=1

- Z g™ Gjr 0y, Oy, u(Vgu) + 10y, e(Vu)

1
uw(Vu, Vyu) + 5¢ 10y, c0i(Vu) (Vau)

n—1
L ~mr L _
= 5¢ ! E GOy, Oy, U — 3¢ Op, (1 + |Vgul2) — Viu(Vau, Vju).

m,r=1
As before we would like to modify Viu(Vju, Viu) to have Viu(Vu, Viu):
VZU(VQU, Vgu)
1 ~la ~7
(892: s 59 (axigTj + az]-gm' - arrgji)ﬁwmu)g axGUQJbazbu‘
Since 0., u = 0, all the indices run from 1 to n — 1. Hence
V2U(v§u, Vgu)
1 ~mr ~ ~ ~ ~
(83 oc] ch (amicgrj + Ca:pig'rj + amjcgm' + Caﬂcjgri
— O, Cij — €O, §ij) O, 1) Dy ug" O
m 1 m m AT A ~la ~q
= (aglzju - F Zjawmu - 7(5] amic + 61 a-'fjc - g gljaw'rc)&wmu)g 8£Uaugjbal'bu
1 .
= V(T V) = (570, O 65" 0,1+ 57010y, 0™y, 00,
— 3™ 0y, c0,, uf’ bazjuazbu)

1 ~ia
= Vgu(vgu, Viu) — 209 &cicazau|vgu|§,

where 21", = §™" (O, Gir + O, Gjr — Ou, Jij)-
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Putting these together gives

0=V f(@)3A.f(z) = ¢ (Vi f(2)) (Vof(2), Vof(z))
— (—Agu + 12__Cn§mfawc@mmu + n2—_018mnc) (1+ |Vgu|§)
+ Viu(Viu, Viu).

Thus Graph,, is a minimal surface if and only if the function u satisfies the following
minimal surface equation

(2.5)

1 —
<—Agu + Mingmf(x')awc(x', w(z')) Dy, 1+ Oy (2, u(x'))) (1+ | Vgul2)

x' u(x))

+ Viu(Viu, Vyu) = 0

for all / € Q.

We will modify this a bit in order to see the more familiar Euclidean version of the
equation directly. For this, we start with the divergence of a vector field defined in
local coordinates as

divya = 2": ((‘Liai + 2”: ajFiZ.j> .

i=1 j=1

Let us denote 1 := (14 |V,4ul2)? and expand the following for a CTA metric and a
function u: 2 — R as before:

o (%)
-y (a ((V;u)i> £y T Fim)

n—1 awlgzkaZku + gzkaQ U

_ LT
=1 n

— % (vng:;uy (azigabazauaxbu + gab (aiil‘au8l‘bu + 8xaua§il’bu))
n—1 j )

+ WZU) (T +T7"5) -
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Now we will use that 9,,¢"* = —(T¢,_,g™" +T'* ,g"™) to have

i
L

=
<
@
VRS
/\dbq
N
N—

F.zlglk + szngl)al"ku + nga:% Ik
n

s
Il
—

<
©

S
~

N —
3
w

(—(F“ilg”’ + Fbﬂg“l)&rauﬁxbu + g (65 2, U0z, U 4 Oy u@ixb ))

i
L
—

vg“)j
n

+

(I +1"5)

.
Il
—
|
—

g
S
IS
3
—
<
@
£

d ‘
2

~

=

I

—_
=

<
@
£

DO =
3
W

<_<Vgu)lrailaxau - (vgu)lrbilawbu + (Vgu)“agmu + (vgu>bag xbu>

:|
—_
—~

Vg“)j

" (I +17,)

_I_

<.
Il
—_

After renaming some of the indices, using the definition of the Riemannian Hessian
of a function and I'", ; = 3¢7'0,,¢ we get

n—1
div, (Vgu) _ Ayu B Vz (V u, Vyu) Vgu

(2.6) +
n n 2en

5‘33
=1

<.

Let us now go back to (2.5) and modify it to have (2.6) visible. Now

l—n_.. n—1
+ Vau(Vgu, Viu)
2—n .. n—1
~ (~agu 2 o ) (1Tl
9" O, 0y, u(1 + |Vul?) + Viu(Vu, Vyu)

1
2
-1 1
(—CA U + —0 nc) (1+ |V9u|§) - agm’"amcaxmu + nyu(vgu, Viu).
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Then, we will multiply both sides of (2.5) by ¢™2 to get

—1 1
0= <—Agu + n—é&ﬂc) (¢t + |Vgul2) — §c*3gmraxrcaxmu + Vau(Vgu, Vgu)

2c2

Vu) Vu)
= —Agu|Vul? — ¢ Agu+ Agu — Agu + ( 25’:) Opjen® — ( g:) O, cn’

n—1 I .
+ Wﬁxnc(l + |V9u|§) —5¢ }(Vyu) 0,0 + Vgu(vgu, V,u)

= —Ayun® + Vau(Vgu, Vau) — (Vgu)jﬁ en® 4+ Agu(l —c )
= gun g gU; Vg 2% x; CT] g

n—1 1 . _
2—638%0(1 + |Vgu\§) + Q—C(Vgu)]@xjc(n2 —c7?).

3
Dividing both sides by 7* = (1 + |V,ul2)® gives

Vu
(1+|Vgul?)
N Agu(l =) + 5o (Vou) 0y, c(1 + [Voul2 — ¢ ) + 550, ¢(1+ [ Vaul?)
(1+ |Vgu|§)%

When g is the Euclidean metric, we will have the familiar Euclidean minimal surface
equation. Moreover, when ¢ = 1 we get the minimal surface equation in [CLLO22]:

div,

N[

Vgu

divy | ——2——
(1 + |V§u|§)

= 0.

(Sl

3. FIRST AND SECOND ORDER LINEARIZATIONS

Let ¢ be as in (2.1) and define F: R” — R,

(3.1)
/ 2 l—n ~mr n—1 2
F(2' u, Vgu, Vou) == | =Agu + 5 O, €Oy, U+ . Op,c ) (1 +|Vyul3)

We want to use the well-posedness result from [Nur23a] to say that the boundary
value problem

(3.3) u=f, on 0f)

has a unique small solution. For this we need that F'(z’,0,0,0) = 0 which guarantees
that u = 0 is a solution to (3.3) with f = 0. From (3.1) we can see that this happens
if and only if 0,, ¢(2’,0) = 0 for all 2’ € Q.

To use the above mentioned well-posedness, we will need to calculate the first
linearization of the equation F'(z',u, V u, Viu) = 0. Let us do a formal calculation
to get the first linearization. Let ¢ = (ey,...,¢,,) where £, € R small and assume
that u. := u(z,e) depends smoothly on e and solves F (', u., Vyue, Viu,) = 0. We

{ F(a',u,Vqu,Viu) =0 in Q
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will differentiate this in three parts with respect to ¢, and evaluate at ¢ = 0 (We
could have calculated the first linearization as in [Nur23al, but it would be a longer

calculation). Denote by ug) := 0-,u.. Just to make the calculations a bit nicer we
will start with

1 —-n ~mr
(34) 0 (7 (%TC(%mue)
1-m (L) xmr 1 - " mr (2 (l) )
=0 Oy, cuy’ §"" Oy, Oy, Ue + 5. (0, cul’ Oy, e + Oy, 8y, u)
= Q.

Now the first term of (3.1) becomes

l—n ~mr -1 2
8gl ((-Ag’us + 79 8xrcaxmus + 268%16) (1 + ‘vgusyf})>

n—1

n—1

1-— -1
+<—Agus+ QCanTamrca$mu5+n2—cax ) 7 (O, 1! 8$]u5+8 .0y ulb).

XTi Ve x; e

The second term is

(3.6) 0-, (Viu(Vgue, Viu.))
= 0 (021 e = T, 100, 102)57 0, 0570, 02 )
= @%MJ ul) =T 0, uD) 50, G O,
+ ((95 . "0, )Am A]b(azaug Oy Ue + 8%”58%% )
=P+ Pz

where P, and P; are for future reference. When evaluating at € = 0 we have uo =0,
also V ug, Vguo vanish, and thus when combining the above, denoting v := u6 |8 05

aalF(zla Ug, vguaa V2ua)|a:0
1 — n—1

Z §70,,c(2’,0)9,,0" = 0.

5,j=1

=Nyt + 82 cla, 0w+ ————

2(9:) 2¢(

Now this first linearization satisfies the assumptions of [Nur23a, Proposition 2.1] and
thus we have the existence and uniqueness of small solutions to (3.3).
Next we Will calculate the second linearization for the equation F'(2', u, Vu, Vgu) =

0. Denote u™ := 92 We will differentiate (3.4)-(3.6) with respect to ey, k # [,

€kEL Ue-
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starting with (3.4):

1 _
9.,0., (2—6" Amrﬁzrcﬁzmus>

1-— 1-—
= — " (0, c)gugk)ug)gamc@wmue - 2n 8;1 cugﬂ)ug)g&vr Oy, Ue
c c

1 _
- ?2”8% cugkl)g}@mr Oy, Ue

— ——0,,cuD g™ (D% cu®o, u. + 0y, 0y, ul))

TrXn
1—n
2c2

1 _
+ 5 nf]m’” (0,07 o, ue + 02 c(uo,, u. +uld,, uk)
C

Oz, cg””‘(a2 cug)ﬁmmu€ + &wcaxmug))

TrIn

Tr~ Ty 3

+ Oy, O, ull) + 3xrcaxmu§kl)).

Im e

Then we differentiate (3.5) to have

8€k851 ((—Agua + !
n—1

—1
= ( — Agugkl) + %(8xnc)3ugk)ug) = (28xncaincugk)u€l) + (Gxnc)ngkl))

n

-n . n—1
. 9" Oy, Oy, U + Taxnc) (14 \Vgus|§))

n—1 n—1
— 53 On0} culul) + == (0] culul) + 0 eul™) + aEle) (1+ [Vguel3)

n—1 n—1 L
+ <_A§U§l) Ry (&;nc)ng) + ?ancug) — Qz) gY (0xiu§k)8xju5 + &Ciugaxjugk))
1

CAm Tl 2,0k L M1
—|—< Ajul 5o (Op,0) ul) + 50

azncu{_(:k) —+ Qk) QZ] (ariug)az].ua + 8xiuaaxju£-l)

2c
+ &ciugk)@%. ul) + O, U0, ulkD).

1-— —1 g
+ (—Agug + =m0, By, ue + ”Q—Caxnc) (0, u*10, g + 0y, u 0, u®)

Now we calculate the derivative of (3.6) in two parts, starting with P;:

0., P
= (a{zleu&(:kl) - fmijal’mugkl))giaal’auagjaal‘bua

(@, ul) — T8, )5 (0, 0P,y e + Oy, Doy u®).

Tm e
For P, we get
0., Ps
= (2, ul) =T 0y, ul) g ¢ (O, ul Ory uc + O, 105, ul)

+ (Opyaytte — T™3,00,, ) 597 (0, ul Oy ue + 0, ul 0y u)
+ 0y uM 0, ul 4 0, 10y u).

La e
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Evaluating the above second derivatives at € = 0, denoting w* := ugkl)| c—0, gives the
second linearization of the equation F'(2',u, V ju, Vgu) =0:

o2 _F(2 u., Vue, Vgug) |le=0

EkEl

-1
= —AzuwM + 23(33,7 0) (92 c(2!, 0)0%0" + 02 c(a’, 0)w™)
Lon ”5_1 §90,,c(z',0)0, w™ =0
2¢(2’,0) AT

Here we used that uy = 0, V uy, V?]uo vanish, 0,, ¢(2’,0) = 0 and that 0,,,,c(2,0) =
Ofork=1,....,n—1.

4. PROOFS OF THEOREMS 1.3 AND 1.4

Before going to the proof of Theorem 1.3, we state two lemmas that will be used
also in the proof of Theorem 1.4. The first lemma says that the products of two
solutions to an advection diffusion equation form a complete set in L'. For this we
note that equations of the form Aju+Xu = 0, for a smooth real valued vector field X,
can be written in the form of a magnetic Schrodinger equation. In local coordinates
we have

Lyaqu=—lg|"2 (05, +iA;) (|g|%gﬂ'k (O, + iAk)u) +qu=0
for A== and ¢ = 1g(X, X) — $ div,(X).

Lemma 4.1. Let (2,g), Q C R", be a smooth Riemannian manifold with boundary.
We have two cases:

(1) Whenn =2 let T C 9Q be a nonempty open set, let f € C=(Q) be such that
flr = 0. Assume that

for all uj solving Ly a quj = 0 in Q with ujlso\r = 0. Then f =0 in Q.

(2) When n > 2 let g be admissible, f € C*(§2) be such that flsq = 0. Assume
that (4.1) holds for all u; solving Ly 4 qu; =0 in Q. Then f =0 in Q.

Proof. n = 2: The proof is written in [Tzol7, Section 7.3] where the author considers
identifying a zeroth order term.

n > 2: This can be read from the proof of [DKSU09, Theorem 1.7], more precisely
from the part where they prove that the two potentials ¢; and ¢o agree in M (using
the notation of the referred article). O

The second lemma states that if we know the partial DN maps corresponding to
Aju+Xu=0forj=1,2and X; =XoonI' C 90, I' # 0, then X; = X, in Q. The
DN map in question is defined as AL : C*(I") — C*=L(T),

A&f = 8,,u|p.
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Lemma 4.2. Let (R? g) be a Riemannian manifold, Q C R? be simply connected with
smooth boundary and I' C 0Q be an open nonempty set. Let X; be smooth vector
fields for j = 1,2 so that Xi|p = Xo|p. If Ak f = A\, f for all f € C*(T), then
X1 = XQ i €.

Proof. By [Tz017, Theorem 1.1] we have 1A; —iA; = 071d0 and ¢, = ¢» in 2, where

1.X; 1 1 .
Aj= =5 4= 790X, X) = 5 divg (X))
and 6 is a nonvanishing function with 6| = 1. Notice that d(0~'df) = d(0~) A df +
0= A d?0 = 0 which implies that dX; = dX5 and by the Poincaré Lemma we have a

function ¢ € C*°(€2) such that
X1 — X2 = VggD

Using that Xi|r = Xs|r gives 0 = (X7 — X») - v|r = J,¢|r and ¢|r = 0 (actually we
have that ¢|aq is a constant, but we can subtract this constant to obtain ¢|gq = 0).
Let us see what kind of an equation ¢ satisfies. Now X, = X; — V¢ and plugging
this into ¢ = ¢ gives

1 1.
19(X1,X1) — §d1Vg(X1)

1 1 . 1 ..
= igkl (X1x — (Vgo)i) (X1p — (Vgo)t) — 3 divy(X1) + 3 divy (V)
1 1 1 1 1
= ig(Xle) - §Q(Xla Vg@) + Zg(vg%vgg)) ) leg(Xl) + §A990-

Thus ¢ solves

Agp — 9(X1,Vyp) + 5Vepl2 =0 in Q
(4.2) =0 on I'
auSO =0 on I

From this we get that

1 1
1Ay = |g(X1, V) — §|Vg<p|§| < |g(X1, V)| + |§|Vg¢\§| < ClVyply < C(|Vgelg + le])

since |V,pl, < M for some M > 0. Then by the unique continuation principle for
local Cauchy data ¢ =0 in Q (see [KSU11, Theorem B.1]) and hence X; = X5, O

Proof Theorem 1.3. The assumptions of [Nur23a, Proposition 2.1] are satisfied and
thus (3.3) has a unique small solution uy € C*(Q). Let € = (g4, ...,en) where g € R
small enough so that (3.3) has a unique small solution for f. := chv=1 fr, where
fe € C*(09Q) with || fxllcsaa) < 0, 6 > 0. Denote by u := u(z,e) and @ := u(z,¢)
the unique small solutions to (3.3) with the mterics g and ¢g respectively. Then by
[Nur23a, Proposition 2.1] the solutions u and % depend smoothly on . Hence we can
calculate the first and second order linearizations of (3.3) and the linearizations of
the DN map (1.4).

In section 3 we already calculated the first linearization of F(z’,u, V u, Vju) =0

and since we also assume that 02 ¢(2’,0) = 0 we have that the first linearization of
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(3.3) is

I e

vl = f), on 02,
where v' = 0.,u|.—o. Also, the first linearization of the DN map is (DA,)o: C*(9Q) —

Cs710Q), f + D, v!sq. Now (4.3) can be written in the form of an advection diffusion
equation —(A; — X)v! = 0 for the real vector field X such that

_1=n
~ 2¢(a,0)
For the metric ég the first linearization of F\(2', u, V4,1, Vgg&) =0is

37 0,,¢(x',0)0,, h.

~ —n n—1 ~;
— A0 + m > i1 97 0s,c(2',0)0,, ot
(4.4) +2;(zﬁ0) S 990,82 ,0)0,,0' =0 inQ
= /i, on 0,

where ! = Oz, U|c—o. Similarly this can be written as an advection diffusion equation

for the real vector field X such that Xh = 1_7” g <8f(i(,$;’)0) c(x, 0) ) 0y, h. Since
we know that Ay(f) = Ag(f) for all f € Us, where § > 0 is sufficiently small, we can

apply 0., |c—o to this, which implies
(DAQ)O = (DACg)O'

When n = 3 we use lemma 4.2 together with a boundary determination [GT11,
Proposition 4.1.] and when n > 3 we use [KU18, Theorem 1.4] (we assume that the
metric ¢ is admissible) to deduce that X = X and hence for alli =1,...,n— 1

Oy, ¢(2,0)
é(x',0)

This then implies two things. Firstly, ¢(2’,0) = A € (0,00). Secondly, since solutions

to an advection diffusion equation are unique, we have that v' = o'

Now the second order linearization for (3.3) is

=0, for 2’ € Q.

(4.5)
—Ajuwh + 261(;,70) Z?;l §70,,c(2!,0)0,,w™ + 22%;'?0) 3 (2!, 0)0"! =0 inQ
wh =0, on 0f).
For the metric ¢g the second linearization is
(4.6)
— Ak g S G0, c(a, 0)0,, Wk + sty O, e, 0)uo!
+26?;',10) 92 é(a,0)vFt =0 in Q2
Wk =0, on 0f).
Here w* = 92 _ ul.—o and wM&? _ i|.—o. Fix 2 € Q. Let now v©) be a solution to

(4.7) A0 + X0 4 0@ =0 in Q,
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where ¢ := 201(;,7}0) ( C(x, 5 Vel 0)[Z + 02,97 0,2, 0) + §7 0y, (o, O)ijk> so that

v (xf) # 0. The existence of such a solution can be shown using Runge approxi-
mation (see for example [L1.S520, Proposition A.2]). More precisely, there exists a
solution 7(*) of (4.7) in a small neighborhood U C Q of zj such that 5 (2}) # 0
[BJS64, Theorem 115.4.1]. By Runge approximation there exists a solution v with
the desired properties. Now subtracting equations (4.5), (4.6) and integrating against
v gives

(4.8)
_ A (KL =k l—n ij =kl (0)
0—/Q<Ag(w w)+20( Uzlgacx ,0)0,, (w* — M) | v
+ 83 &2, 0)vFulo© av,
2¢(a’,0) g

1 _
:/—(wkl—u?kl)Agv . Zﬁ”&czc ',0)0,,(w" — @ )v ©
Q

TR 33 &2, 0@ v, +/ (wk — @ 9,0 @ — 009, (wk — Wk dS.
2¢(2!,0) o)
Since the volume form is dVj = |§|% dx, where |g| is the determinant of g, we use

integration by parts for the second term in the last equality to have

l—n kKl ~kl\, (0)) a2
+/ﬂm9]amc($/ao)3xj(w —w )U()‘Q‘de

1—n 1
= — ”ﬂ a 5
/(20( 0) Op,c(x',0)0,, 2014
1-— 1
4 it
+ 0y, (2 (w 0) Op.c(2',0)| ) )

1—n _..
kl ~kl ~1 ~15.,,(0)
+f - >‘zc<r/,ojgﬂamc@',ong\w( v, dS

= —/(wkl — "M)(X0 O + ) av;.
Q
Here we used that w* = @* = 0 on 9. Combining this with (4.8) gives

/2:( )63 &z, 0)vkolo @ av,

= /(wkl M) (A0 + X0 4 qv @) aV
0

. / (wkl o ﬁ)kl)&ﬂ)(o) . U(O)a,,(wkl o wkl) dsS
o0
=0.

In the last equality we used w* = @w* = 0 on 90 and that applying 0
ayu|3g = &,ﬂ|69 implies

ekel |E 0 to

0w 90 = 0,0M| 50
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Then by Lemma 4.1 we have

n—1 5 0
m&vnc(m', 0)0®@ =0 for 2’ € Q.

In particular for ' = z{ this implies 82 ¢(x(,0) = 0 but since z{, was arbitrary we get
92 &(2',0) =0 for 2’ € €.

Now the boundary value problems (4.5) and (4.6) are the same and thus by uniqueness
of solutions w*! = w* in Q.

The rest of the proof is done very similarly as in [Nur23a] but we record the proof
here for completeness. Next we use induction to show 9% é(2/,0) = 0 for all k > 3.
By the above this already holds for k£ = 3. Our assumption now is

O &x',0)=0, 2/ €Q, forall k=3,...,NEN,N >3.
Let us do a subinduction to prove

alkl...lku<x/> 0) = ak

1.0y,

w(2',0), 2 e Q

for all k =1,..., N, where oF 9 Above we have shown this for k = 1,2.

oy = 82, 0

Assume that it holds for £ < K < N. Then the linearization of order K + 1 for the

metric g is, when evaluated at e; = --- =g =0,
(4.9) — Ag@ffiﬂ?ﬁ(ﬁ, 0) — X@llK.fllKHu(x/, 0) + R (u, g(2',0),0)
n_1 K+1
T 9RH2.04 )] =0
gy () -0

¥ € Q. Here R is a polynomial of components of g, the derivatives of g and
I yur(e’,0). Also the linearization of order K + 1 for the metric &g is

(4.10) — NOETE a(2,0) — XofTE a2, 0) + Ri(a, g(2',0),0)

Iyl Iyl
n—1 n—1 K
;aK-‘rQ !/ 0 - 8K+2~ / 0 (lk) — 0
’ <2c<xco> 0+ i gy 0 ) 1L

Here Ry could also have terms with 9% &(x’,0) and the components of V. (9% ¢(2/,0))
but terms containing these are zero by the induction assumption. Now an integration
by parts argument similar to the case of the second linearization and together with
Lemma 4.1 (choosing v* = ... = 0¥ = 1) gives 95 2¢(a’,0) = 0.

Subtracting the equations (4.9) and (4.11) we get

Ay <8K+1 u(z’,0) — oF t} il(x’,O))

l1...lK+1 l1...lK+1
X (OfL L u(@,0) = 9L (@, 0)) =0, inQ
aff.fllmlu(x/, 0) — 6fffll[(+lﬂ(x’, 0) =0, on 0.

This is true, since by induction assumptions for all ' €  the other terms agree
for k < K. Again, by the uniqueness of solutions, 0fffl1[(+1u(:c’ ,0) = 8ff11}(+1ﬁ(:1:', 0),
2’ € Q, which ends the subinduction.
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Returning to the original induction, the linearization of order N + 1 at gy = --- =
eny1 = 0 for the metric g is

— NN (2, 0) — XONTE  w(a’,0) + Ry(u, g(2’,0),0)

g ll...lN+1 l1...lN+1
n_1 N+1
— aN-{-Q / 0 (Ix) =0
* 2¢(a’,0) " c(z’,0) H v ’
k=1
' € Q and for the metric ¢g we have
(4.11) — Aga;jf}wa(:c’, 0) — Xa;jj;wa(x’, 0) + Ry(1, g(z',0),0)

N—+1
n—1 n—1
aN+2 / O aN+2~ / O () — O

Now the subinduction implies that Ry(u,g(z’,0),0) = Ry(@,g(2’,0),0). Thus by
subtracting, integrating against v(®) (the solution of (4.7)), using integration by parts
and that 9,0" " u(a’,0)]sq = 0,08 L (2, 0)]sq we get

Iyt (I
N+1
/ (@', 0)7toN e (2!, 0)v® H vl da’ = 0.
Q@ k=1

Choosing all but two of the functions v to be equal to 1, then by the completeness
of such solutions (Lemma 4.1) implies that

ON*2E(x),0) = 0.
Since z{, was arbitrary, we have 92 "2¢(2/,0) = 0 for all 2/ € Q. O

We will next prove Theorem 1.4. The proof will be very similar to the one above
and we will only point out the differences.

Proof of Theorem 1.4. Let ¢ be, as in the previous proof, small enough so that (3.3)
has a unique small solution for f. := chvzl fr, where f, € C*(02) with spt(f) C T
and ||fk| Cs(00) < 0,0 > 0.

The first linearizations are (4.3), (4.4) and for the corresponding partial DN maps
we have

(4.12) (DAD)o = (DAL ).
Now using Lemma 4.2 together with a boundary determination [Tzol7, Proposition
4.1] we get from the first linearization that for alli =1,...,n —1
Oy, ¢(2',0
MZO, for 2/ € Q.
é(a,0)

This then implies two things. Firstly, ¢(2’,0) = X € (0, 00). Secondly, since solutions
to an advection diffusion equation are unique, we have that v' = o'
Let us move to the second order linearization and let zf, € Q. We will subtract

equations (4.5), (4.6) and integrate against the function v(*) that solves
A — X0 — @ =0 inQ

(4.13) v® =g, onT
v® =0, on 9N\ T.
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for g € C*(T), g > 0, g # 0 and that v(®(2)) # 0. This function can be constructed
exactly as before. We now do the integration, where the difference will be on how to
deal with the boundary terms:

n—1

83 ~( ! 0 k.l (0) dV

/Q 552 .0) 2 C(@, 0)v vy f

= / — (W — @) (= A0 + X0 4 g dV
Q

o / (wkl . wkl)&,’l}(o) o U(O)ay(wkl o @kl) ds
o0

1—n _.. 1
K -kl A 10
+ /89(10 w )QC(x’,O)g]axic(x,’oﬂmw( Jv; dS.

Since v(© solves (4.13) and (w*! — @*)|sq = 0 the first and last integral vanish and
also the first term in the second integral vanishes. For the remaining part we divide
the integral in two parts

/ 009, (W — Wk dS = /U(O)&,(wkl — ) dS + / v, (wk — Wk dS.
) r )

O\D
~ kil

This is zero since v@|po\r = 0 and from (4.12) we have that 9, (w* — @*!)|r = 0.

Hence

n=l g k, 1 (0
/Qmaxnc(x/vo)vvv()dvg:o

for all vy, v’ solving (4.3). Continuing as in the proof of Theorem 1.3 we get

9 &(a',0) =0 for 2’ € Q.

and this then implies that w* = @* in Q.
Proceeding with induction as before and taking further care about the boundary

terms in the integrals will conclude the proof. 0
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ABSTRACT. This article studies the inverse problem of recovering a nonlinearity in an elliptic
equation Au + a(xz,u) = 0 from boundary measurements of solutions. Previous results based
on first order linearization achieve this under a sign condition on dya(z,u), and results based on
higher order linearization recover the Taylor series of a(z,u) with respect to u. We improve these
results and show that a general nonlinearity, and not just its Taylor series, is uniquely determined
up to gauge near a fixed solution. Our method is based on constructing a good solution map that
locally parametrizes solutions of the nonlinear equation by solutions of the linearized equation.

1. INTRODUCTION

Motivation. Let 2 CR", n > 2, be a bounded domain whose boundary is assumed to be C'* for
simplicity, and let a € C*(R, C1*(Q)) where k> 3 and 0 < a < 1. We write a = a(z, z) for € Q
and z € R, and consider equations of the form

(1.1) Au(z) + a(z,u(x)) =0 in Q.

In this article we study the inverse problem of identifying the function a(z, z) from certain boundary
measurements of solutions of (1.1). For example, the boundary measurements could be encoded by
a Dirichlet-to-Neumann (DN) map if the equation is well-posed, or more generally one could use
the (full) Cauchy data set

Co = {(uloq, dyulaq) : u € C**(Q) solves Au + a(z,u) = 0}.
That is, we wish to answer the question:
Does C,, determine a(zx, z)?

For linear equations Au+q(x)u = 0, the question above is a version of Calderén’s inverse problem
and there is large literature (see e.g. the survey [Uhl14]). There are also many results for nonlinear
equations. The first generation of such results was based on first order linearization, i.e. on studying
the (first) Fréchet derivative of the nonlinear DN map and using existing results for linear equations.
This method was introduced in [Isa93], and further results for determining a nonlinearity a(x,u) as
in (1.1) were given in [[594; IN95; 1Y 13]. These results typically require assumptions such as

(1.2) a(z,0) =0,
(1.3) Oya(z,u) <0,
which ensure well-posedness and a maximum principle. The assumption (1.3) was weakened in

[IN95], and [Sunl0] gave a result without assuming (1.2). The results show that one can recover
a(x,u) in (some subset of) the reachable set

Ey = {(z,2) : x €Q, z = u(x) for some solution u of Au + a(z,u) = 0}.
1



There are many related works for quasilinear and conductivity type equations. References may be
found in the survey articles [Sun05; Uhl09].

The works [FO20; LLLS21a] introduced a higher order linearization method in inverse problems
for nonlinear elliptic equations, motivated by the earlier work [[KXL.U18] for hyperbolic equations.
This method applies to inverse problems for equations like (1.1) without any positivity assumptions
as in (1.3). Moreover, unlike in the first order linearization method that reduced matters to known
results for linear equations, in higher order linearization the nonlinearity is used as a tool that helps
in solving inverse problems. In this way, one can obtain results in partial data problems [LLLS21hb;
KU20; ST23] or anisotropic problems [FO20; LLLS21a; CFO23; FIKO23] that are stronger than the
known results for corresponding linear equations.

However, the higher order linearization results for (1.1) start with the assumptions that
(1.4) a(x,0) =0,
(1.5) 0 is not a Dirichlet eigenvalue for A + 9d,a(z,0) in Q.

The first assumption ensures that u = 0 is a solution of (1.1). The second assumption ensures that
the linearized equation is well-posed for small Dirichlet data, and hence there is a nonlinear DN map
A, for (1.1) defined for small Dirichlet data. The additional assumption dya(z,0) = 0 also appears
in many results. The works [F'O20; LLLS21a| then show that A, (defined for small Dirichlet data)
determines d%,a(-,0) for many j > 0. If one additionally assumes that a(z, 2) is real-analytic in z,
then this is sufficient for determining a(z, z) completely.

Results. Our aim is to consider inverse problems for (1.1) for general functions a € C*(R, C1*(Q)).
In particular, we wish to remove the assumptions (1.2)—(1.3) in the first order linearization method
and (1.4)—(1.5) in the higher order linearization method. This requires certain changes in the
problem setup. First of all, the results in [FO20; LLLS21a] are based on looking at solutions of
(1.1) close to uw = 0 and on well-posedness for small data. Moreover, the linearized equation might
not be well-posed in general, but by Fredholm theory it is still well-posed for most Dirichlet data
(i.e. data that are L?-orthogonal to a finite dimensional space). It follows that there may not be a
Dirichlet-to-Neumann map to work with.

For these reasons, in the general case we consider an arbitrary but fixed solution w € C%%(Q) of
Aw + a(x,w) = 0 and for § > 0 we define the local Cauchy data set

C¥9 = {(ulpn, Dyulsn) : ue CP*(Q) solves Au+ a(z,u) =0 and ||w — u||02,a(§) < 0}

If w = 0, this would be analogous to small Dirichlet data. By the Fredholm theory fact mentioned
above one expects that there are many solutions close to w, and we will prove a precise version of
such a result.

Our first main theorem shows that if two nonlinearities a; and as admit a common solution w
and if their local boundary measurements satisfy the inclusion C}ﬁ’é - CS;C, then a; = ag near the
common solution w.

Theorem 1.1. Let aj,az € C3*(R,CH*(Q)), and let w € C*%(Q) solve Aw + ai(z,w) = 0 and
Aw + ag(z,w) = 0 in Q. If for some 6,C > 0 one has

CZLUI,J C CO,C

a

then there is € > 0 such that

ar(z, w(z) + ) = ag(z,w(z) + N), re, [N<e
2



This theorem is based on using first order linearization and it is valid for general nonlinearities.
In particular, the sign condition (1.3) in the earlier results mentioned above is not needed. We note
that the higher order linearization method does not require the sign condition either, but the result
in [FO20; LLLS21a] for the case w = 0 was dya1(-,0) = diaz(-,0) for many j > 0 which is clearly
weaker than the conclusion in Theorem 1.1. Moreover, if the linearizations of Au + a;(z,u) = 0
(linearized at the solution w) happen to be well-posed, then by the arguments in Section 2 there
are Dirichlet-to-Neumann maps A,; defined for Dirichlet data close to w|sq, and then by Theorem
1.1 one obtains a; = ag near points (z,w(z)) whenever A, = A,,.

Remark 1.2. It is in order to explain the assumption Cffl"s C CS;C in the theorem. A more typical
way of stating a uniqueness result would be to say that C,, = C,, (i.e. the full Cauchy data sets of a;
and ag agree) implies a; = ag somewhere. However, C,, = C,, implies our assumption C’Z;‘i’é C Cg;o
in many cases, e.g. when the equation Au + ag(z,u) = 0 is well-posed for Dirichlet data near w|gn
or when [[9,az|| < (xr) < 00 (the latter fact follows from the Cauchy data estimates in Section 3).

More precisely, the assumption C’Zfl"s C CE;C means that if u; solves Auy + a1(x,u1) = 0 with

llup — w”cza(ﬁ) < 4, then there is us solving Aug + as(x, uz) = 0, having the same Cauchy data as
u1, and satisfying ||u2H02,a(§) < C. The existence of such a constant C' is required in the proof to
make sure that if uq is very close to w, then uy will also be close to w and we can use a uniqueness
result to guarantee that us can be differentiated with respect to some parameters if the same is true
for u;.

If the nonlinearities a1 and as do not admit a common solution, then this inverse problem has a

gauge invariance as observed in [Sunl0]. If a € C¥(R,C%(Q)) is a nonlinearity and ¢ € C*%(Q) is
any function satisfying ¢|aq = d,¢|sq = 0, we define
(1.6) Toa(x,u) == Ap(x) + alz,u + o(x)).

Then wu solves Au+ a(x,u(x)) = 0 if and only if v = u — ¢ solves Av+ Tya(x,v(z)) = 0. It follows
that the solutions of these two equations have the same Cauchy data. Hence, if the Cauchy data sets
for a; and ay agree, one can only expect that as(x,u) = T,a1(x,u) for (x,u) in the reachable set.
There are a number of related works based on the first linearization, see e.g. [[594; IN95; Sunl0].
Recent works that involve a similar gauge invariance are given in [L1.23; KLL23]. We also mention
the examples in [[S94; FI<O23] showing that in general the reachable set is not all of Q x R.

Our next result shows that if one knows the Cauchy data for a nonlinearity a and for solutions
close to a given solution w, then one can recover a near points (z,w(x)) precisely up to the gauge
mentioned above.

Theorem 1.3. Let ay,ay € C3(R,CH%(Q)), and let wy € C%%(Q) solve Aw; + ay(z,wy) = 0 in .
If
w1,0 0,C
Cyt’ CCy
for some §,C > 0, then there is € > 0 such that
a1(z, wi(z) + A) = Tpaz(z, wi(z) + A)

whenever x € Q and |\| < e. Here ¢ = wy — wy where wy € C*%(Q) is the unique solution of
Awsg + ag(z,we) = 0 in Q with wi|sgo = walan and dyw1|sq = Oywalaq-

Again, Theorem 1.3 is valid for general nonlinearities. Note that Theorem 1.1 is a corollary of
Theorem 1.3 since wy = wj in that case.
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Both Theorem 1.1 and 1.3 are based on first order linearization and they rely on the solution of
an inverse problem for the linearized equation. In contrast, many of the results based on higher
order linearization do not rely directly on the inverse problem for the linearized equation. In fact
in these results the equation often has a form where the unknown quantities only appear in higher
linearizations and not in the first linearization. For such equations, nonlinearity often helps and one
can obtain improved results in the presence of nonlinearity.

In the case of the higher order linearization method, we can remove the assumptions (1.4)-(1.5)
that were present in most of the earlier results. The following result is an example of what one can
prove.

Theorem 1.4. Let a1, as € C*L(R, CH*(Q)) with k > 2, let wy € C?%(Q) solve Aw;+ay(z,wy) =
0 in Q, and suppose that
Ca® € Cay°

for some §,C > 0. Let wy € C%*(Q2) be the unique solution of Awsy + as(z,ws) = 0 in Q with
wilgn = welsqn and dywilag = Opwalsq. Assume further that

(1.7) A ay (z,wy) = AL as(x,ws), 1<I<k-1.
Then

[ @has ) = Ofas(awa)er vy do =0
Q

for any v; solving the linear equation Avj + Oyai(x,wr)v; =0 in Q.

In other words, if C22° € Co;¢ and (1.7) holds, then 9%ay(x,w;) — % ag(x,ws) is L?-orthogonal
to products of k£ + 1 solutions of the same linear equation. This is a typical conclusion in the higher
order linearization method. Under our current assumptions, Theorem 1.3, which is based on solving
the inverse problem for the linearized equation, already implies that 0a;(z,w1) = dFas(x,ws). The
point is that as long as (1.7) holds (this is true e.g. for polynomial nonlinearities a;(x,u) = g;(z)u®
and w; = 0), Theorem 1.4 does not rely on solving the inverse problem for the linearized equation
and one can prove this without assuming (1.4)—(1.5). Theorem 1.4 remains valid for more general
equations such as Aju + a(z,u) = 0 with a smooth Riemannian metric g, for which the linearized
case is not fully understood. For these more general equations one might be able to obtain improved
results in the nonlinear case as was done in [FO20; LLLS21a]| and subsequent works.

Methods. Let us next describe the methods for proving the above results. The first objective is to
show that near a solution w of Aw + a(x,w) = 0, there are many solutions u, = w + v + O(|[v||?)
of the same equation that are parametrized by small solutions v of the linearized equation

Av + Oya(z, w)v = 0.

It will also be important that u, depends smoothly on v. We will prove this by a standard argument
using the implicit function theorem. This is slightly delicate since the linearized equation may not
be well-posed. In order to have a solution wu, depending smoothly on v that is unique in a suitable
sense, one needs to use a solution operator for the linearized equation that takes into account the
finite dimensional obstructions to solvability coming from Fredholm theory.

One can recast the previous result in a different language. If ¢(z) = dya(z, w(z)) and
V,={velC*(Q) : Av+qu=0in Q},
Wo={uecC?(Q) : Au+a(x,u) =0 in Q},
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then V is the solution space of A+q and W, is a Banach manifold in C%%(Q) consisting of solutions
of the nonlinear equation. Then Vj is the tangent space of W, at w, and our result shows that

Saw V> Uy

is a bijective smooth map from a neighborhood of 0 in V;, onto a neighborhood of w in W, with
DS,.,(0) =1d. Similar ideas appear e.g. in [Fel66; Pal68; Sun75].

Next, starting from the assumption C’ffl’é C CS;C, we construct a solution uq, as above for a,
and use the inclusion of Cauchy data sets to conclude that there is a solution usg, for az having
the same Cauchy data as u;,. We know that u;, depends smoothly on v, but this is not known
for ug,. In order to show that also us, depends smoothly on v, we prove quantitative estimates
showing that solutions of both the linearized and nonlinear equations depend continuously on their
Cauchy data. For one of these results we invoke a standard Carleman estimate. Since ug, depends
continuously on its Cauchy data, and since the Cauchy data of ug, is the same as for u; , and the
latter depends smoothly on v, we are able to show that also us, depends smoothly on v. This also
uses certain functional analytic arguments following [OSSU20).

The first order linearization result, Theorem 1.1, is proved as follows. If C}fi’& - CS;C and if
U1, and ug,, are as described above with v; = v + th, we differentiate the equations Aw;,, +
aj(z,u;,,) = 0 with respect to t, subtract the resulting equations, and integrate against a solution
of Aty + Jyaz(x, uz,)v2 = 0 to obtain

/(8ua1(x,u17v) — Oyaz(x,ug,)) 0102 dx =0
Q

where 01 = DS, .»(v)h. Then we use the bijectivity of S, ., above to conclude that any solution
01 of Aty + Oyai(x,u1,)01 = 0 can be written as DSg, ., (v)h for some h. Density of products of
solutions as in the standard Calderén problem [SUS7; Buk0g| implies that

Oyai(x,u1,) = Oyaz(x,us,) for any small v € V.

Next we show that ¢, = ug, —u1, is independent of v, by observing that the derivative of ¢, with
respect to v is identically 0, because it solves a linear elliptic equation and has zero Cauchy data.
Since g = w — w = 0, we obtain

Oua1(x,u1 ) = Oyas(x,ur ) for any small v € V.

(In the setting of Theorem 1.3 one has us, = w1, + ¢ instead.) It then remains to show that for any
fixed xp, the values uj ,(xo) generate an interval [w(zg) — e, w(xp) + €] by varying v. This follows
since u1,, = w + v + O(||v[|?) and since one can generate linear solutions v with v(zg) # 0 by using
Runge approximation. This concludes the outline of proof of Theorem 1.1. The proof of Theorem
1.3 is analogous, except that ¢ will be a nonzero function that is independent of v.

Finally, we use the higher order linearization method and differentiate k times the equations
Au;,+ai(x,u;,) = 0 with respect to v. Subtracting the resulting equations, using the assumption
J, 3\, U, p g g ¢cq ) g p

(1.7) and integrating against a solution vgy1, we arrive at Theorem 1.4.

The article is organized as follows. In Section 2 we construct a solution map for equation (1.1).
Section 3 is dedicated to quantitative uniqueness results for (1.1) and its linearization. The lin-
earization methods require two smooth solution maps and the second one is constructed in Section
4. In Section 5 we use first order linearization to prove Theorems 1.1 and 1.3. Finally, in Section
6 we give the proof of Theorem 1.4. At the end we have an Appendix where we give a Runge
approximation result for the first linearization of (1.1).
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2. A SMOOTH SOLUTION OPERATOR

The linearization methods used in this work are based on constructing solutions u = wu, of
(2.1) Au+ a(z,u) =01in Q,

so that u, is close to a fixed solution w of (2.1) and depends smoothly on a small solution v of the
linearized equation

(2.2) Av + dya(x,w)v =0 in €.

In order to parametrize solutions of (2.1) on solutions of (2.2), we need to be able to single out
suitable solutions of the linearized equation which may not be well-posed. This is done in Lemma
2.1 by using the Fredholm alternative. We then construct solutions u, of (2.1) by solving a nonlinear
fixed point equation. This fixed point equation is solved in Lemma 2.3. The construction of the
smooth solution map v — u, for the equation (2.1) is completed in Lemma 2.4. Finally in Lemma
2.5 we show that the first Fréchet derivative of the solution operator is an isomorphism between
spaces of solutions to the linearized equation.

Before we proceed to the results of this section, let us define some spaces and mappings that
are used throughout. Let 2 C R"™ with n > 2 be a bounded open set with C*° boundary, and
let ¢ € CH¥(Q) be real valued where 0 < a < 1. First we have the kernel N, of the operator
A+q: H () — H1(Q) and the space of Neumann data 9, N, of the functions in N, i.e.

Ny ={ € Hy(Q) : (A+q) =0},
0, Ny = {0,0]a0 : ¥ € Ny},

These spaces appear due to the use of the Fredholm alternative. These are finite dimensional
spaces, and since ¢ € CH?(Q), elliptic regularity [Bro62, Theorem 2.2| ensures that N, C C3%(Q)
and 9,N, C C?*(0%). The last fact is the only reason why we assume ¢ € C5%(Q) (otherwise

q € C*(Q2) would have been sufficient). We let {9,11,...,0,%n} be an orthonormal basis of 9, N,
with respect to the L2(9€)-inner product.

We now show that even in the case when 0 is a Dirichlet eigenvalue of A + ¢ in €2, the equation
(A + g)u = F has a solution u for any F' and one can prescribe the Dirichlet data of w in the
L?(09Q)-orthocomplement of the finite dimensional space 0, Ny. Below, the notation L will always
mean L?-orthogonality.

Lemma 2.1. Let ¢ € C*(Q). For any F € C*(Q) and f € C*%(9R), there is a unique function
O = O(F, f) € 0,N4 such that the problem

(2.3)

Au+qu=F in €,
u=f—o on 082,

admits a solution u € C**(Q). The function ® is given by

(2.4) O(F, f) = ; ( /Q Fap; da + /8 . foub; dS) Dbj.
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Moreover, there is unique solution up 5 = G¢(F, f) such that upy 1 Nq. The solution up; depends
linearly on F and f and satisfies

(2.5) [wr,
where C' is independent of F' and f.

lcze@) < CUIFlga@) + [1f o2 60)),

Proof. We first consider the case of solvability in H?({2) with zero Dirichlet data. If X = H2(Q) N
H}(Q) equipped with the H?()) norm, then by Fredholm theory [[Eval0, Theorem 4 in Section
6.2.3] and elliptic regularity [Fval(, Theorem 4 in Section 6.3.2] the map

T:X = L*Q), Tv=(A+q)v

is Fredholm, i.e. it has finite dimensional kernel N, and its range Ran(T') = {F € L*(Q?) : F L N,}
has finite codimension. It follows that the induced map

Ty : X/N, — Ran(T)

is bounded and bijective, hence invertible by the open mapping theorem. The space X/N, can be
identified with ¥ = {u € X : u L N}, and T becomes an isomorphism from Y onto Ran(T’).
(To see this, let E: X — L?(2) be the restriction to X of the L*-orthogonal projection onto N,.
Then X = Ran(E) @ Ker(E) = Ny, ® Y [Con90, Theorem 13.2 b)|, and the map ¥ — X/N,,
u — [u] identifies Y with X/Ny.) It follows that for any F' € Ran(7") there is a unique vy € X with
vp L N, such that T'(vp) = F. In other words, for any F € L?(Q2) with F L N, there is a unique
vp € H*(2) N H} () with vp L N, that depends linearly on F' and solves

(A+qQu=FinQ, vlpg=0,

and one has
(2.6) lvell 2@y < CIF| L2

We can obtain a similar statement in Hélder spaces. Let F' € C%(Q) with F L N, and let vp be
as above. By elliptic regularity, vy € C%>%(Q) and
(2.7) HUFHcM(ﬁ) < CHFHca(ﬁ)'
(More precisely, from [Bro62, Theorem 2.2] and [GT01, Lemma 6.18 and Problem 6.2] we obtain
vp € C?%(Q) and
(2.8) lvrllcze@) < Cllvrlicm) + 1 lceg@))-
From Theorem 8.15 and the remark around equation 8.38 in [GTO1] it follows that [[vr|[oq) <
Cllvr|lp2(q). Using this with (2.6) and (2.8) yields (2.7).)

We now consider (2.3). To study the uniqueness of u, we fix a bounded extension operator

E, : C**(09) — C**(Q) with E,h|pq = h and E;h L N, for all h € C%*(99).

In fact it is enough to take E, = (Id — Py,)E, where E is any bounded extension operator [11i83,
Theorem 3.3.3 and eq. 1) on p. 51| and Py, is the L?(2)-orthogonal projection to N,. We see that
u solves (2.3) iff u = Ey(f — ®) + v, where v solves

{Av—i—qv—ff1 in £,

2.9
(2:9) v=20 on 0f),



where we wrote F = F — (A + ¢)E,(f — ®). We wish to find a function ® € 9,N, such that
F 1 L*(Q). If 1 € N,, integrating by parts gives

/Qﬁ’wdx:/prdwr/m(f—@)aywds.

Thus F L N, iff ® satisfies for all 1) € N, the condition

/{39<I>8ywd5:/ﬂF¢dm+/an&,wdS.

This holds for ® iff & = ®(F, f) is given by (2.4). For this ®, we let vz L N, be the solution of (2.9)
satisfying (2.6). Then up s := Eq(f — ®(F, f)) + vz L N, satisfies the required estimate (2.5). O

Next we prove an auxiliary lemma which is used in several places in the remainder of the article.
Lemma 2.2. Let a € CF(R,C%(Q)) and f € C(Q) and let | < k. Then
(2.10) Haia(%f(l'))uca(ﬁ) < ”aHC’f([—M,M],CC“(ﬁ))
where M = || f||cq)-

Proof. By manipulating the supremum in the definition of the norm we have

Oha@, f(x)) — dyaly, f(y))]

lhate, )]l oo @ =supldat, f(@))] + sup

zeQ z,y€Q |z —y|*
TFy
ola(x,n) —oa(y,0
<supldba@lloqosay + sup  sup  uel@: ) —Fualy,6)]
veQ 2,yeQ n0€[~ M, M] |z -yl
TFY

la(z) — a(y)ll ot e,
|z —yl*

<suplla(z)llcr—nr,am) + sup.
e 2,yEeQ
TH#Y

=llallcr (- aran.co@- =
Next we study a fixed point equation related to the linearized equation. Below, we let
(2.11) Bs = {u e C**(Q) : Hu”cm(ﬁ) < 0}

Lemma 2.3. Let a € C3(R,C*(Q)) and w € C*%(Q) be a solution of Aw + a(z,w) =0 in Q. Let
q = Oya(xz,w) and let G4(F, f) be the solution operator of

Au+qu=F i
u=f—o(F,f) on 082

provided by Lemma 2.1. Define R,(r) = R(v + ) where R : C*>%(Q) — C*(Q) is given by
1
(2.12) R(h)(z) = /0 [Owa(x,w(x) + th(x)) — Oya(x,w(x))]h(x) dt.

For fized v € C**(Q) define T, : C>*(Q) — C?%(Q) by T,(r) = —Gy(Ry(r),0).

Under the above assumptions, there exists 6 > 0 such that T,|p, : Bs — Bj is a contraction.
Furthermore,

(2.13) 170 (M)l 2.0y < Cllv + hHZ@,a(ﬁ)’ h € Bs.
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Consequently there exists a unique r € Bs solving the fized point equation r = T, (r). The function
r s also the unique solution with r L Ny of

{Ar + Oya(z,w)r = —R(v+7) in Q

(2.14)
rlaa € 0N, on 052,

and necessarily r|opq = ®(R(v +r),0).

Proof. We first show that T, maps Bs into itself when § is small enough. Let v,r € Bs where
initially 6 < 1. By the mapping properties for G in Lemma 2.1 and the fundamental theorem of
calculus, we have

(2.15) 1T ()l c20@)y < CIR@ + 1)l cogm)
1
= | [ 1uatww+ 0+ 1) - duale w)(w +1)
0 c(Q)
1 1
=C / / 2a(z,w + st(v+7))t(v+r)*dsdt
0 Jo Cx(Q)

From Lemma 2.2 we get for s,t € [0, 1] that
(2.16) 102a(z, w + st(v + "Nlce@ < Cuwa-
Since v € Bs we have, by using (2.16) in (2.15), that
o)l < Cllo + 712y < Cllo + 720, < O
The second inequality above proves (2.13). For § small enough we get
170 gy < 6
and conclude that T, indeed maps Bs into itself.

Next we show the contraction property of T,. Let r1,79 € Bs. Then, as in (2.15), we have
IT0(r) = Tolra)ll oy < CIR(r) — Rulra)ll oy
Denote u; = v +r;, i = 1,2. Then

1
Ry(r1) — Ry(r2) :/0 (Opa(x,w + tuy) — Oya(z,w)) up — (Oya(x, w + tug) — Oya(r, w)) ug dt

1
_ / (Oua(z, w + tu1) — Bua(w, w) + Bual, w + tuz) — dyalw, w))(us — uz)
0

— (Oya(z, w + tug) — Oya(z, w))uy + (Oya(x,w + tuy) — Oya(x, w))us dt
1 1 1
:/ (up — ug) <tu1/ 85@(3:,10 + stuq) ds + tug/ aga(x,w + stusg) ds)
0 0 0

1 1
— tujus / (35&(3:, w + stug) ds + tugusg / 83&(1", w + stuy) ds dt
0 0
1 1 1
—/ (up — ug) | tuy / d2a(x,w + stuy) ds + t'LLQ/ d2a(x,w + stuy) ds
0 0 0

1,1
+ t2ugug / / sOPa(z,w + ystuy + (1 — y)stug) dy ds) dt.
0o Jo
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Let us estimate the norm of the last expression term by term. Since v,r; € Bs then u; € By for
i € {1,2}. Using this and (2.16) we have that

1 1
tui/ 2a(, w + stu;) ds §t|]ui|lca(ﬂ)/ 1020, w -+ stus)l o ds
0 0

< té6C.

(@)

Just as in (2.16) we get [|03a(z,w + )|l o) < Cw,a- Using this we estimate

1,1
Ht2u1uQ / / s@ia(w, w + ystuy + (1 — y)stug) dy ds
o Jo

o Q)
1l
< t2||u1u2||ca(§) /0 / s|02a(z, w + ystug + (1 — y)stuz)|| o @) dy ds
0
< t25°C
Finally, for small enough § > 0 we have

1
I T(r1) = Tp(r2)llc20 ) < C’a/ [ur — uzl| ga(q) (260C + t262C') dt
0

< —jug — U2HC2,a(§)

— N =

— 5”']”1 — T2HCQaa(§)'
Thus 7, is a contraction and the Banach fixed point theorem ensures existence and uniqueness of

solution to the equation r = T,(r) in Bs. The definition of T}, ensures that r also solves (2.14). O

We now construct the smooth solution map S, .y, which maps small solutions v of the linearized
equation Av + dya(z, w)v = 0 to solutions u of the nonlinear equation Au + a(x,u) = 0 that are
close to some fixed solution w. Below, if F': U — Y is a C'' map where X and Y are Banach spaces
and U C X is open, we will denote its Fréchet derivative by

DF(x) = F'(x).
Recall that By is given by (2.11).

Lemma 2.4. Let a € CF(R,CY%(Q)), k > 3. Let w € C*>%(Q) be a solution of Aw + a(z,w) = 0.
Let q(z) = dya(x,w(x)). Then there exist 6,C >0 and a C*~1 map Q = Qu. : Bs — Bs satisfying

Q(Bs) € Ny,
Q(Bs)|aa C 0N,
Q(0) = DQ(0) =0

and

(2.17) Q) lone ) < Cllo sy

such that S,: Bs — C*%(Q) defined by u = Squ(v) = w + v+ Q(v) is a C*¥~1 map satisfying
(2.18) Au+ a(z,u) = Av+qu in )

with Sy, ,,(0)v = v. In particular, if v solves Av+qu =0, then u = Sy ,(v) solves Au+a(x,u) = 0.
10



Conversely, if § is small enough, then given any solution u € C**(Q) of Au+ a(z,u) = 0 with
[u—wl 2.0y < 0 there exists a unique solution v € C22(Q) of Av+qu = 0 such that u = Sy (V).
The function v is explicitly given by
(2.19) v =Py, (u—w) + G4(0, (u—w)|aq),

and one has [|v]| cz.0 @) < Cllu — wllc2ag)-

Proof. We first construct the map Q. Let v € Bs. We look for a solution u of (2.18) having the
form w = w 4+ v 4+ r and formulate a fixed point equation for r. Taylor expansion gives
Au+a(z,u) =A(w+v+7r)+alz,w+v+7)
=Aw+ A(v+71)+a(z,w) + Oya(z, w)(v+ 1)+ Ry(r)
where R,(r) fo [Oya(x,w(x) + tlo(z) + r(z)]) — Ouwalz, w(z))][v(x) + r(x)]dt. Since w is a
solution of Aw + a(z,w) = 0, we see that u solves Au + a(z,u) = Av + qu if r satisfies
Ar 4 dya(x,w)r + Ry(r) = 0.

For each v € By, Lemma 2.3 ensures existence and uniqueness of a solution r = r, in By with
r L Ny and r|pq € 0,N,. Hence the mapping v + 7, is well-defined for v € B;. Next we use the
implicit function theorem to show that this mapping is C*~1.

Let F: C%%(Q) x C%%(Q) — C%%(Q) be defined by

F(v,r)=1r—=T,(r) =1+ Gy(Ry(r),0).

From the definition of R, and G, it follows that F'(0,0) = 0. Next, R, is C*=1 since d,a €
CF=1a(R; C12(Q)). Consequently, F is C*~! since G is linear. Moreover

DT‘F‘(O,O) (h)

1
=h+G, (/ O2a(z,w+t(v+7))(v+7) + dua(z,w + t(v + 1)) — ya(z,w) dt|(v7,ﬂ):(070),0>
0
=h

and this is a linear homeomorphism from C?%(Q) to itself. Thus the implicit function theorem
[[1G27, Theorem 4] ensures the existence of open balls Bs,, Bs, and a C*¥~! map Q: Bs, — Bs,
such that
F(v,Q(v)) = 0.

Since 7, found by Lemma 2.3 above is the unique solution of F(v, -) = 0 in By for v € Bs, we
conclude that for 6 < min{dy,da}, r, belongs to Bs, and hence Q(v) = r,,. We have now shown that
for each v € Bj there is a unique r, € Bs with » L N, and r|gq € 0, N, such that u, =w +v + 1,
is a solution of the equation Awu, + a(z,u,) = Av + qv. Moreover, the map v — u, = Sg,(v) is
Cck1,

Next we show that @ satisfies the other properties in the statement. The estimate (2.13) implies

Irllze@ = 1To()lcza@) < Cllvllge.ag + Clrlgs.qm,

and from this we get that

[v 2 Il .ay — Clir 2 |7l 2.0 gy (1 = C6).

2
||02,a(§) ch,a(ﬁ)

For § small enough, and since Q(v) = r, we have

1Q(0) ey < CllolEan gy
11



This proves (2.17) and shows that Q(0) = 0. Using (2.17) together with Q(0) = 0 implies that
DQ(0) = 0. Since Q(v) = 1y, we have Q(v) € Nt and Q(v)|aq € 0, Nq.

We now prove the converse statement. Suppose that u € C*%(€2) solves Au + a(x,u) = 0 in Q
and |lu— wHCQ,a@) < 6. We write & = u—w and want to construct v solving Av+ qv = 0 such that

@ = v+ Q(v). Denote by Py, and Pp,n, the L?-orthogonal projections to the finite dimensional
spaces N, and 0, Iy, respectively. Motivated by the conditions Q(Bs) C NqL and Q(Bjs)|aa € 0, Ny
we define

Y = Py,u,
and let ¢ to be the unique solution given by Lemma 2.1 of the problem
Ap+qp=0inQ, 9L Ng  ploo = (Id = Py, n,)(tloo)-
Let v = ¢ + 1, which means that v is given by (2.19). It follows that Av + qv = 0 and v|pg =
(Id — Py, n,)(@]an). We also have
HUHCM(Q) < CHﬂHCZa(ﬁ) =Clu— w”(ﬁ,a(ﬁ)-

It remains to show that r = @ — v = u — w — v satisfies » = Q(v). By the above conditions we have
r L Ny and r|pq € 0, Ny, and r satisfies

(A+qg)r=(A+q)(u—w)=—(a(z,u) —a(z,w) — q(u —w))
=—(alz,w+v+71)—alz,w) —qlv+r)) = —Ry(r).
The first part of the proof implies that » = Q(v) if ¢ is chosen small enough. This proves that

u = Sgw(v). To show that v is unique suppose that u = Sg ,(0) for another solution ©. Then the
definition of S, ., gives

v—0=Q(0)— Q(v).
Thus v — 0 L N, and v —0|pq € 0, Ny. Since (A +¢)(v —0) =0, Lemma 2.1 implies v = ¥ showing
that v is unique. Il

Lemma 2.5. In the setting of Lemma 2.4, if v is small and solves Av + qu =0 for ¢ = dya(x,w),
define

G = Oya(x, Sa.w(v)),

Vi ={h € C**(Q) : Ah+Gh =0}

If v € V;; is small, the map DSg ,(v) is an isomorphism from V, onto Vg, .

Proof. Let v be a small solution of Av + qv =0 and vy = v + th where h € V. Then u; = Sg 4, (v¢)
solves

Auy + a(m ut) =0.

Since u; is C! in ¢, the function 1y = Oyus|i—o = a,w(V)h satisfies
)

Aty + Oyalz, Saw( )

Thus DS, ., (v) maps V, into V,, .
Now suppose that v € V; is small and h e V- For ¢ small define uy = Sg 5, ,(v) (tﬁ) By the

converse part of Lemma 2.4, if v and ¢ are small enough one has u; = S, ,(v;) for a unique small
solution v; € V, and v; is given by

vy = Py, (ur — w) + Gy(0, (ur — w)lan)-
12



In particular, v; is C! in ¢, and since S, (vo) = up = Sa,5u.ww)(0) = Saw(v) uniqueness gives
vg = v. Differentiating the identities u; = Sqw(ve) and wp = S, 5, (v (th) and using DS(0) = 1d
gives
DSu(v)i0 = g = DS, 5, () (0)h = h.
This shows that DS, ., (v) : V; — V,, is surjective.
Finally, suppose that h € V; satisfies DS, .,(v)h = 0. Since Sq 4 (v) = w 4+ v + Qqw(v), we have
h+ DQu.u(v)h = 0,

But DQqw(0) = 0, which implies that ||DQqw(v)|| < 1/2 when v is sufficiently small. Here we
used that @ is a C*~! map where k > 3. This implies that ||k < 1||A|, showing that h = 0.
Thus DS (v) : Vg — Vg, is bijective and bounded, and by the open mapping theorem it is an
isomorphism. O

3. ESTIMATES FOR SOLUTIONS IN TERMS OF THEIR CAUCHY DATA

In this section we prove estimates for functions in terms of their Cauchy data and in particular
for solutions of the nonlinear equation

(3.1) Au+ a(z,u) =0in Q.

The estimate for (3.1) is used in section 4 when constructing the second solution map required for
the linearization methods.

First we obtain an auxiliary regularity estimate that is then used to prove the quantitative results.

Lemma 3.1. Let Q C R™ be a bounded open set with C*° boundary and let ¢ € C*(2). There is
C > 0 such that for any u € C**(Q) we have

[ullg2a @y < Clllullczeon) + 1A + @)ullgay + lullar @)

Proof. Consider the Banach space X = C%%(9Q) x C*(Q) x H(Q) with norm

I(F, By 0)llx = [[flleze@e) + 1 Fllga@) + l0lla @)

We define the map
T:C*(@Q) = X, T(u) = (ulog, (A + q)u, j(w),

where j is the inclusion C%%(Q) — H'(2). Then T is bounded, linear and injective. We claim
that T has closed range. To see this, suppose that u; € C**(Q) and T'(u;j) — (f, F,v) in X. Then
uj — v in HY(Q), ujloo — f in C>*(0Q) and (A + ¢)u; — F in C%(Q). On the other hand
(A + q)uj — (A+q)v in H-HQ) and u;]aq — v|aq in HY2(09), and by uniqueness of limits one
has (A + q)v = F and v|pq = f. By elliptic regularity, the weak solution v satisfies v € C*%(Q).
Thus (f, F,v) = T(v) and Ran(T") is closed.

We have proved that 7' : C>%(2) — Ran(T) is a bounded linear bijection between Banach spaces.
By the open mapping theorem it has a bounded inverse S : Ran(7) — C?%(Q), and thus for any
u € C%*(Q) one has

Hu”cm@) = ”STU”czﬁa(ﬁ) < C||Tul|x.

This proves the claim. O
Next we show a quantitative uniqueness result that follows by combining Lemma 3.1 with the

unique continuation principle. This is the used in Section 4 related to the first linearization of (3.1).
13



Lemma 3.2. Let & C R™ be a bounded open set with C* boundary and let q € C%(Q). There is
C > 0 such that for any u € C**(Q) we have

[ullg.a @y < Clllullcza@a) + 10ullcre @) + [1Au + qulcag))-

Proof. We argue by contradiction and assume that for any m there is u,, such that
(3.2) [tmll 2.0 @) > m[umllc2e@o) + |0vumllcre@o) + (A + Qumllcam)-
On the other hand, Lemma 3.1 implies that

i ey < Climllcneony + (A + @)tmllga gy + [l @):

Normalize u, so that [[um||g1(q) = 1. Then using (3.2) yields

1
oy < OO limlonam + 1)
Then ||y, || c2am) < C uniformly when m is sufficiently large.

By Theorem 1.34 in [AF03] the embedding C%%(Q) — C?() is compact. Hence there is a
subsequence, still denoted w,,, that converges in C?(Q) to some u € C2?(Q). On the other hand,
from (3.2) and the bound [[um | 2.0y < € we see that

um|aQ — 0, 81/Um|8§2 — 0, (A + q)um —0
in the respective spaces. By uniqueness of limits we have u|gq = 0, d,ulgg = 0, and (A + q)u = 0.
Consequently, u = 0 by unique continuation, which contradicts |ul| g1 (o) = lim|um || g1 =1. O
Finally, we invoke a Carleman estimate to show that solutions of semilinear equations of the form

(3.1) are uniquely and stably determined by their Cauchy data.

Lemma 3.3. Let a € C%(R,C*(Q)), and let ug € C?%(Q) solve Aug + a(z,up) = 0 in Q. If
u € C%%(Q) is any other solution of Au + a(z,u) =0 in Q and lull 2o @) wollczia@) < M, then

(3:3) [ = wollg2.a ey < C(M; a)([lu = ol 2.0 (o0) + 100 (w = o) |10 a02))-

Proof. We use a standard Carleman estimate (see e.g. [Cho21, Theorem 4.1]): there are C,79 > 0

and ¢ € C*°(Q) such that when 7 > 79, one has

le™ 0|2y + ;He V| 2@ < m”e A2y + Clle™ || r2(90) + ;HC V| 2200

for any v € C?(Q2). We apply this with v = u — ug and use the fact that
1
(3.4) —Av = a(z,u) — a(x,ug) = [/ Oya(z, (1 —t)ug + tu) dt | v.
0
Since |ul, |up| < M, we get from Lemma 2.2 that
(3.5) |Av(x)| < C(M,a)|v(x)].
Thus, choosing 7 = 7(M, a) large but fixed, we get
1 T 1 T T T
le™ iz + ;He PVl 2) < C(lle™ v 200y + €77V V|| L2(90))-
Since ¢(M,a) < e < C(M,a), we have

(3.6) vl @) < C(M,a)([[v] o0y + 10vvlL2(00))-
14



We still need to estimate [|v||¢2.0 ). First, Lemma 3.1 gives

[oll e < € (Iollcaen + 180lo@ + o) -
From (3.4) we observe that

|mwm@<6[/Wa (L= )+ 0 ey ] Tl

By using Lemma 2.2 to estimate the integral from above by a constant depending on a,u and uyg
we have

1Av]|ca @y < Cllvll o
Thus we get
(3.7) [0l 2o < C (HUHCM(aQ) F vl gam) + H’UHHI(Q)) :

Next, we have by the Sobolev embedding [AF03, Theorem 4.12 Part 2| that W'* C C® where
7. Using this and [AF03, Theorem 5.2 (3)] we obtain that

S =

1/2 1/2
[l ey < Cllvlwrs@ < Cllvllips. o ol g)-

Then we use interpolation of LP-spaces (see for example [Fval(, Appendix B|) to get
A 1-A
[0llLs @) < Cllvllz2 o) lvllriq)
for some r > s. Estimating the L"- and W?*-norms by the C?®-norm we have

A) A
lollca@y < Clloll om0l 7560y

Using Young’s inequality with ¢ for p = 2/\ and ¢ = p/(p — 1) gives

-
nwm ) < Clellol ot + Cellollzz o) = (ellvlloan g + Cellollzz o))

since ¢ = 5=5. Using this in (3.7) and choosing € > 0 sufficiently small finally gives

lollgea < € (I0lczaon + [0l @) -

Combining the last estimate with (3.6) proves the result. O

4. A SMOOTH SOLUTION MAP WITH PRESCRIBED CAUCHY DATA

As mentioned previously, in order to prove the main results, we need to construct two smooth
solution maps for the nonlinear equations

(4.1) Au+ a;j(z,u) =01in Q

for i = 1,2. In Section 2 we constructed the first one. One reason why we cannot use the solution
map S, v, for both i € {1,2} is that we need to control the Cauchy data. If u; = S, 4, (v1) then
we would need to find a solution uy = Sq, w, (v2) such that u;, us have the same Cauchy data. But
the solution maps Sg, , don’t provide enough control of the Neumann data to guarantee that this
is possible. Another issue, in particular when identifying the first derivatives 0,a;(z,w;), is that
the method of linearization relies on differentiating both solution maps Sg; w,, Sasw. in the same
direction v. But in order to use the same parameter v for both operators, v needs to solve both
linearized equations

(4.2) Av + dyai(z,w;)v =0 in Q
15



for i € {1,2}. However, before having identified the first derivatives, dya1(z, w1) = dyaz(x,ws), we
don’t know that such functions v exist. So the goal of this section is to construct a new solution map
T4, w; that resolves these two issues. That is, we aim to construct a smooth solution map 75, ., for

(4.3) Au+ ag(x,u) =0 in

parametrized on solutions v of
Av + dyaq(z,wy)v =0 1in Q
such that T}, ,, (v) and S, w, (v) have the same Cauchy data.

Before constructing 7y, ,, we establish some preliminary results. The construction of Ty, ., is
based on the implicit function theorem. In order to properly define the function to which the implicit
function theorem is applied, we require the existence of a certain projection mapping and existence
of a bounded inverse of the Schrédinger operator A + g. We first establish these two results and
then proceed to construct Ty, -

Lemma 4.1. Let ¢ € C*(2). Then the spaces
Y = {u S 02’a(§>: u‘ag = 8Vu|39 = 0}
Z={(A+qu:uecY}

are Banach spaces.

Proof. 1t follows from the continuity of the mappings C**(Q) 2 u — ulgg € C**(0Q) and
C?%(Q) 3 u > dyulgn € CH*(0Q) that Y is a Banach space. To see that Z is a Banach space, let

vp, = Aw, + qu, € Z be a sequence converging to some v € C*(2). Using Lemma 3.2, we have
[ meCZa(ﬁ) < Cl|Awy, + quy, — Awyy, — qmeca(ﬁ)a
so that w, is a Cauchy sequence in Y. Hence there is some w € Y with w,, — w in C?%(Q). Next,
[Awn + qun — Aw — qul| o) < Cllwn — wl[c2.0(g)

So for v = Aw + qw, we have v, — v in C%(Q) and Z is a Banach space. 0

The following result shows that there is a bounded projection P : C**(Q) — Z. If C**(Q)
were a Hilbert space, the existence of a projection would follow from an orthogonal decomposition
C?*(Q) = Z @ W. Since Z is the image of A + ¢ acting on functions whose Cauchy data vanishes,
the orthocomplement W would be the set of suitable functions w with (A + ¢)w = 0. Thus any
u € C**(Q) could be written as u = (A + q)y + w, where y € Y and (A + ¢)w = 0. This shows
that y needs to satisfy (A + q)%y = (A + ¢)u. This formal argument turns out to work also in our
case.

Lemma 4.2. Let ¢ € C*(Q2) and let Y and Z be as in Lemma 4.1. Then there exists a bounded
projection P: C*%(Q) — Z such that P(u) = (A + q)y where y € C+%(Q) is the unique solution of

(A+9Py=(A+qu nQ
y=0,y=0 on 082.

Proof. We first show that there is a unique solution y € C*%(Q). If y and § are solutions, then

(A +¢)%(y — 7) = 0, and integrating this equation against y — 7 gives (A + ¢)(y — §) = 0. Since

y — ¢ has vanising Cauchy data, we see that y = 3 and solutions are unique. Existence of weak

solutions y € H3(Q) for the equation (A + ¢)%y + vy = F € H %(Q), where v > 0 is a constant

chosen sufficiently large depending on ¢, follows by using the Riesz representation theorem with the
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coercive bilinear form B(y,w) = ((A + @)y, (A + @)w)r2(q) + (Y, w)r2(q) for y,w € Y. Fredholm
theory shows that there is a countable set of eigenvalues where unique solvability could fail, but our
uniqueness argument above shows that one has solvability for (A + ¢)?y = F. Elliptic regularity
shows that for u € C%%(Q), one has y € C+*(Q).

Now that we know that the equation is uniquely solvable, let u € C*%(Q)), and let y € C+*(Q)
be the solution. Then P(u) = (A + q)y. Then P(P(u)) = P((A + q)y) = (A + ¢)v for the unique
solution v of

(A+qPv=(A+g? inQ
v=0,v=0 on 0f).
Since y has 0 Cauchy data, w = v — y satisfies

(A+q¢*w=0 inQ
w=0,w=0 on JN.

The unique solution to this equation is w = 0. It follows that v = y. Thus P(P(u)) = P(u) and P
is indeed a projection. ]

Lemma 4.3. Let g € C*(Q2) and let Y and Z be as in Lemma 4.1. Then A+q:Y — Z is bounded
and bijective and has a bounded inverse G: Z — Y .

Proof. By definition of Z, A + ¢ is surjective. To see injectivity, suppose u,v € Y and (A + q)u =
(A + q)v. Then w = v — u satisfies

(A+q@w=0 inQ

w=20 on 0f)

d,w =20 on 0f).
It follows by the unique continuation principle that w = 0. Hence A + ¢ is injective. Lastly, we
have

(A + Q)UHca(ﬁ) < HAUHca(ﬁ) + ||qUHca(§) < CH“HcZa(ﬁ)

so that A 4 ¢ is bounded. Now it follows from the open mapping theorem that there exists a
bounded inverse G of A + q. O

Below we will use the ball V; s in the space of solutions,
Vos ={veC**(Q) : Av+qv=0and ||v||cz,a(§) < 0}.

Lemma 4.4. Let ay,as € C*Y(R,CY¥(Q)) with k > 2 and let wy,wy have the same Cauchy data
and solve Aw;+a;(x,w;) = 0in Q. Write ¢; = Oya;(x,w;). Let Sq,: Vg, 5, — C?%(Q) be the solution
map from Lemma 2.4, for some §; > 0. Suppose uj, = Sq, (v) and that Cffl”s C CS;C. Then there
exists a 0y > 0 and a C* map T,,: Vai.60 = C?2(Q), T,,(v) = U, where ua,, has the same Cauchy

data as uy, and solves Aug, + az(x,ug,) = 0. Moreover, when Oyai(x, wi) = Oyaz(z, w2) then
T;,00)v = v.

Proof. First we use 0(111/11,5 C Cgéc to find, for any v € V;, 5,, a function us, with the same Cauchy
data as uy, and solving Aug, + ag(z,u2,) = 0. Note that u; ¢ = wy. Moreover, both ug g and ws
solve the equation Au + as(z,u) = 0 and they have the same Cauchy data, so by Lemma 3.3 one
has ug g = wo. By (2.17) we have

(4.4) e = il gz < Cllollca @
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Using this, Lemma 3.3, (ug, — w2)|an = (u1,0 — wi)|aq, Ov(u2,, — w2)|an = Oy (u1,y — wi)|sn and
the fact that [|u,[|c2.a gy < € we have

(4.5) Jug,o — w2Hc2,a(§) < CHUHc&a(ﬁ)-

Let 7, = u1,y — u2,. Then r, satisfies

(A4 q2)ry = qary + a2(x, u2y) — a1(x, ury) = qary + a2(x, w1,y — 74) — a1 (2, U1 y).

Let G be the inverse of A + ¢o : Y — Z provided by Lemma 4.3. Then 7, solves the fixed point
equation

(4.6) ry = G(gary + az(@, w1y — ry) — a1 (x,ury)).
We would like to show that 7, depends smoothly on v by applying the implicit function theorem
to (4.6). However, for a general function r the expression gor + as(z,u1,, —7) — a1(z, u1,,) might not

be in the domain of . For this reason we * introduce the projection P: C?%(Q) — Z from Lemma
4.2. Now define the map F': V, 5, x C**(Q2) — C%%(Q) by

F(v,r) =r —GP(qr + az(z,u1,p — ) — a1(x, u1y)).
Next we compute F(0,w; — ws) and D, F(0,w; — wsy; h) and find
F(0,w; —wz) = w1 —wy — GP(g2(w1 — w2) + az(z, w1 — (w1 — wz)) — a1(w,wy))
= w; —wy — GP(qa(w1 — wa) + A(—wq + wy))
=w; —wy — GP((A 4 ¢2) (w1 — w2))
=w; —wy — G((A+ q) (w1 —we)) =0

and
D, F(0,w; —wa;h) = h — GP(qah — Oyas(x, wa)h) = h.

Since h — D, F(0,w1 — w2;h) is bijective, it follows from the implicit function theorem [HG27,
Theorem 4] that there exists a dy with 0 < §» < §; and a C* map R: V, 5, — C*%(Q) such that
7 = R(v) is the unique solution to

(4.7) 7 = GP(qof + az(x,u1, — 7) — a1(z,u1p)).

for 7 close to wi —ws. Choosing v € Vg, 5, in u1, = Sq, (v), we find that r, is in the range of R and
that r, satisfies (4.7). Moreover, by (4.4) and (4.5) we also have

|7 — (w1 — w2)H02,a(§) < CHUcha(ﬁ)-

By the uniqueness of 7 = R(v) near w; — wy we have 7, = R(v) for v € Bs,. Thus the map v — 7,
is indeed C*.

Since 7, = U1,y — U2, We can define the C* map
To, (V) = Sy, (v) — R(v).

It remains to show that T} (0)v = v, provided dya1(z,w;) = dyaz(x,ws). To do this, we use the
implicit function theorem to compute R’'(0),

R'(0)v = —[D,F(0, R(0))]"* D, F(0, R(0))v.
Since D, F(0, R(0))v = v and D, F(0, R(0))v = 0 it follows that R'(0)v = 0. Now we have

T,,(0)v =5, (0)v+ R'(0)v = S, (0)v = v. O
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5. FIRST LINEARIZATION
Throughout this section, we let aj,as € C*%(R, CH*(Q2)) and let w € C*%(Q) be a fixed solution
of Aw+ ai(z,w) =0in Q. Write ¢ = dya1(z,w) and consider the sets
V,={veC** Q) : Av+qu=0in Q},
‘/;],5 = {U = V‘-Z : H’UHCQ’Q(ﬁ) < (5}
Assume C’ffl’d C C’g;C. For any v € V, 5 with 0 small, we let wy, = Sq, w(v) and ug, = Tg, () be
the solutions of Au;, + a;(x,u;,) = 0 given by Lemmas 2.4 and 4.4.
Lemma 5.1. Suppose that C;”;é - CS;C. There is 01 > 0 such that for any v € Vg 5, one has
8ua1(:v, ul,v(x)) = 8ua2(:c, u2,v(x))a z €.
Proof. Let v € V5 and let v; = v + th where h solves Ah 4 gh = 0 and t is small. Consider the
solutions uy 4, = Sq, w(ve) and ugy, = Ty, (ve) of
Ao, +aj(z,ujy,) = 0.

The solutions u;,, are C? with respect to t and have the same Cauchy data. Differentiating the
above equation in ¢ and writing @; = Oy, |t=0, We obtain

Aﬂj + 8uaj(x, Ujﬂ,)’l'l,j =0.
Subtracting the equations for j = 1,2 and rewriting yields
(5.1) (A + Oyaz(z,uzy))(tn — U2) + (Oyar(x,ury) — Oyaz(x, ugy))ty = 0.

Suppose that 0y solves (A + dyaz(x,u2,))02 = 0. Integrating (5.1) against 02 and using that
11 — U9 has zero Cauchy data gives

/ (8ua1 ((L‘, uLv) — 8ua2(x, u27v))1l1172 da; = 0
Q

It remains to study @1 = DSg, w(v)h. By Lemma 2.5, when v € V; is sufficiently small any solution
01 of (A + Jyai(x,u1,))01 = 0 can be written as DSy, (v)h for a suitable h. It follows that

/(&Lal(m,uLU) — Oyaz(x,ug,))0102dx =0
Q

for any solutions v; of (A + 0ya;(z,u;,))0; = 0. Now it follows from the density of products of
solutions as in the standard Calderon problem (see [SUS7| for n > 3 and [Buk08; BTW20] for n = 2)
that Oyai(x,uiy) = Ouaz(z, ugy). O

Lemma 5.2. In the setting of Lemma 5.1, the function
Py = U2y — Ul

is independent of v € Vg 5, .

Proof. Write 1); = ¢4,. The function 1); is C? in t, has zero Cauchy data on 99, and satisfies
Aty = a1z, ur,p) — az(z, Us,ty).-
Thus the derivative z; = 0y, satisfies
Az = Oyar (T, u1,10)Opur po — 0ua2(2, U2 40 ) Opus 1o -
Combining this with Lemma 5.1 yields

Az = —0ya1(x, Ui pw) 2.
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Since z; has zero Cauchy data, it follows that z; = 0 and consequently v; is independent of ¢. In
particular, ¢, = @q. O

We can now give the proofs of Theorem 1.1 and 1.3.

Proof of Theorem 1.5. Let wy solve Aw;j 4 a1(x,w;) = 0 and assume that Cffil’(; C CS;C. Using
Lemma 5.2, we have

Ap = Augy — Augy = a1 (2, u1 ) — az(z, u2,)
= ay1(z,u1 ) — a2(x,ury + @).
This can be rewritten as
a1(z, u1,0(2)) = Tpaz(z, w14 (2)).

It is enough to show that there is € > 0 such that for any # € Q and A\ € [—¢,¢€], one can find a
small solution v such that

(5.2) Ul (Z) = wi(Z) + A
Fix 29 € Q, and use Runge approximation (Lemma A.1) to generate a solution v = v,, of

Av + dyay(z,w1)v = 0 with v(zg) = 4. Let Uy, be a neighborhood of zg so that v(z) > 2 for
x € Uz, N Q. In the notation of Lemma 2.4 one has

Uy = W1 + 0 + Qay w, (TV)

where
Qa1 (0) | < Cay P10l 2 g

Thus for z € U, N one has

une0(2) = w1 ()] > 20t] = Capo P02

Set €4, = 1/(Ca1,w1||v||2,27a(§)). Then for [t| < &4,
|ur,0(2) — wi(z)] = [t].
The next step is to use compactness to find a finite cover {U,,,...,Us, } of Q and to set

e =min{e,,,..., ey, 00}
Here dg is chosen so that |[tv;[|c2.« < & whenever [t] < dp and 1 < j < N.

Now fix any # € Q and A € [—¢, €], and choose j so that Z € Uj. Define

77(75) = ul,tvzj (f) — w1 (f)

Then 7 : [—¢,¢] — R is continuous with 7n(¢) > ¢ and n(—¢) < —e. By continuity, there is
t € [—&,¢] such that n(f) = A. This proves that one has (5.2) for some choice of v, which proves the
theorem. 0

Proof of Theorem 1.1. Since w is a common solution for nonlinearities a; and as, we have w; =

wy = w in Theorem 1.3. Consequently ¢ = 0 and T,,as = az. The result now follows from Theorem

1.3. ]
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6. HIGHER ORDER LINEARIZATION

In this section we prove theorem 1.4. We use the higher order linearization method with the
smooth solution maps from Sections 2 and 4. Essentially the method is to show that the derivatives
of order k of the solution maps satisfy a certain partial differential equation and have the same
Cauchy data, provided d',a1(z,w;) = 0\as(z,wy) for | <k — 1. Then Theorem 1.4 follows from an
integration by parts argument. We start by proving that the derivatives of order k of the solution
maps satisfy a certain differential equation in the following Lemma.

Lemma 6.1. Let aj,as € CF2%R;CY¥(Q)) with k > 1. Let S,,,T,, be the solution operators
Au+ ai(z,u) =0 from Lemma 2.4 and Lemma J.4. Suppose that O%ay(x,wr) = 0Las(x,ws) for all
1 <1<k, then f = D*1S, (0;v1,...,v541) — DT, (0301, ..., vp41) satisfies

Af+af = 05 az(@,ws) — O a (@, w) T v in Q

f=0 on 0N

o,f=0 on 0f)

for any solutions v; of Av+ qu = 0 where ¢ = Jya1(x,w1) = yaz(x,ws).

Proof. We start with the boundary conditions. We have by construction that Sy, (v)|sq = Tu, (v)]aq-
Let t: C%%(Q)) — C?%(9N) be the natural injection. Then the operator v +— 1(S,, (v) — Ty, (v)) is
identically equal to 0. Hence its derivatives are also 0, D'S,, (0;v1,v2)|90 = DTy, (0;v1,v2)|s0 for
all [ € N, or equivalently f|spq = 0. Similarly, 9, f|sq = 0

The proof for the differential equation is by induction on k and we start with the base case k = 1,
where we assume that 9,a;1(x,w1) = dyas(z,wz). Since Sy, (v) and T,,(v) are solution maps for
Au+ aj(x,u) = 0 and Au + az(z,u) = 0, respectively, the operators v — AS,, (v) + a1(x, Sq, (v))
and v — AT, (v) + az(x, T, (v)) are identically equal to 0. Hence their derivatives are also 0. The
second derivatives being 0 can be rewritten as

AD?S,, (0;v1,v3) + ¢D*S,, (0;v1,v2) = —0%ay(x, Sa,y (0)) DS, (0;v1) DS, (0;v2)  in
and
AD*T,, (0;v1,v2) + qD*T,, (0;v1,v2) = —02as(x, Ty, (0)) DTy, (0;v1) DTy, (0;v2)  in Q
From 0ya1(z,w;) = Oyaa(z,ws) we get DS, (0;v) = DT,,(0;v) = v. Using this and S,, (0) = wy,
T, (0) = wy we get, by subtracting the equations, that
Af 4 qf = [0%as(z, w1) — O2as(z, ws)]vive  in Q
where f := D2S,,(0;v1,v9) — D*T,,(0;v1,v2). Now suppose that, for some m > 2, the statement
holds for & = m — 1. That is, suppose for I < m — 1 that 0,a;(z,w1) = 0as(x,ws) and that
f=D"S8.,(0;v1,...,0m) — D™, (0;v1,...,0n) solves
Af+qf = [0 az(x,we) — O ar (@, wr)] [[12vi in Q
(6.1) f=0 on 09
o,f=0 on 0.
To show that it holds also for k¥ = m assume additionally that 0)'a;(z,w1) = 0}'as(x,w2). Then
(6.1) simplifies to
Af+qf=0 inQ
f=0 on 0f)

of=0 on 0f)
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and we conclude that f = 0. Let F(v) := Sq, (v) — Tg, (v), so that D™ F(0;v1,...,v,) = f =0 and
let g = D™ F(0;01,...,0m41). Let §;; denote the Kronecker delta. Then we have by differentiating
(6.1) in direction v, that

Ag+qg=— 85@1(33, wy) D" EF(0;v1, ..., Um) U1
=0

m m
+ [0 ag(z, wa) — 05 ay (z, wr)] ZD Say (05 i, Vg1 H (1 —0;5)v;
i=1 j=1

=0
m+1
+ [0 ag(a,ws) — O ag (z,wr)] [ v
=1
m+1
= [0 ag (@, ws) — O ay (z,w)] [ i

and this proves the lemma. O

Proof of Theorem 1.J. Let I > 2 be an arbitrary integer and suppose that 81{@1(3:, wy) = aiag(z‘, w2)
for 1 < j <l—1. Then we have from Lemma 6.1 that

Af +af = [Baz(z, wz) — Byar(z,w)] [[i—y v in

(6.2) F=0 on 9Q
O f=0 on 0f)
where v; solve Av;+0y,a1(x,wi)v; = 0 for j € {1,...,1}. Let vj4q solve Avyy1+0ua1(x, wi)v4q = 0.

Multiplying the differential equation (6.2) by v;y; and integrating by parts twice gives
+1

/[8ia2(x,w2) — 0Ly (z,w)] Hvi dx = 0. O
Q

=1
APPENDIX A. RUNGE APPROXIMATION

In the proof of Theorem 1.3 we need to find a solution of the linearized equation which is nonzero in
some fixed but arbitrary point of the domain. A few ways to achieve this are described in [LLLS21D,
Remark 2.2]. For the sake of completeness, we give a proof based on Runge approximation that is
valid in our situation following [L1.520].

Lemma A.1. Let 2 C R" be a bounded open set and let q € C*(Q). For any x¢ € Q, there is
u € C2%(Q) solving (—A + q)u = 0 in Q with u(xg) # 0.

Proof. Let Qg be a large ball with Q C Qy, and extend ¢ as a function in C¥(22). We may choose
Qy in such a way that 0 is not a Dirichlet eigenvalue of —A + ¢ in Qy (see e.g. [Ste90, Lemma
3.2]). Now by [BJS64, Theorem 1 in Section 5.4, there is a small ball € centered at zy and a
function ug € C*%(Qy) solving (—A + q)ug = 0 in ©Q; with ug(z¢) = 1. By Runge approximation
(see Lemma A.3 below), there is u € C%%(Qy) solving (—A + q)u = 0 in Qy with u(zg) arbitrarily
close to ug(xg) = 1. This concludes the proof. O

It remains to prove the Runge approximation result. Since the approximation is in the C'(y)
norm, we need a notion of suitable weak solutions with measure data in the duality argument. Let
Q C R™ be a bounded open set with smooth boundary, let ¢ € L*>(2), and assume that 0 is not
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a Dirichlet eigenvalue of —A + ¢ in Q. If y is a bounded linear functional on C(Q) (i.e. p is a
measure), we say that u € L*(Q) is a very weak solution of

(A1) (—A+q)u=pin Q, ulaq =0,
if

/QU(—A +q)pdr = p(p)
for any ¢ € C%(Q) N HE(Q).
Proposition A.2. For any p < ;%5 there is C' > 0 such that for any bounded linear functional y
on C(Q), there is a unique very weak solution u € WHP(Q) of (A.1) satisfying

[l < Cllpll,

where || = supyp o, 1 1)

Proof. 1f ¢ > 0 this follows from [Sta65, Theorem 9.1]. In general we may replace g by ¢ + v where
v > 0 is a large constant, and use the part of [Sta65, Theorem 9.1| where A is away from the
spectrum. O

We can now prove the Runge approximation result.

Lemma A.3. Let 1, Q C R™ be bounded open sets so that Q; C Q, Q\ Q is connected, and Q
has smooth boundary. Suppose that g € C¥(2) and that 0 is not a Dirichlet eigenvalue of —A + q
i ). Consider the sets

S1 = {U S 02’a(§1), (—A + q)u =01 Ql},
S ={uecC*Q), (—A+qu=0inQ}.
For any u € Sy and any € > 0, there is v € S with [|u — vlg, [|o@,) < €

Proof. By the Hahn-Banach theorem [Con90, Corollary 3.15|, it is enough to show that any con-
tinuous linear functional on C'(£21) that vanishes on S|o, must also vanish on S;. Thus, let 4 be a
continuous linear functional on C'(£21) that satisfies

(A.2) pw(vlg,) =0forall v e S.

We consider the extension defined by

f:0Q) =R, a(u) = p(ulg,).
By the Riesz representation theorem, ji is a measure in Q with supp(z) C Q.

We use Proposition A.2 to find a very weak solution w € WP(Q) of the problem

(A.3) (—A+qw=[in Q, wlpn = 0.
We use the assumption (A.2) and the unique continuation principle to prove that
(A.4) w=0in Q\ Q.

Assuming (A.4), the proof can be concluded as follows. Since supp(w) C Qy, there exist w; €
C>(Qq) with wj — w in WHP(Q). Given any u € Sj, we let % be some function in C2*(Q) with
ulg, = u and compute

(o) = ta) = [

w(—=A+ q)ude = lim/ wi(—A+q)udr =lim [ w;(—A+q)udz = 0.
Q 9)

951
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Thus uls, = 0 as required.

It remains to prove (A.4). We begin by studying the regularity of w near 9. Choose a ball
with © C s so that 0 is not a Dirichlet eigenvalue, and a very weak solution w of

(—A+ q)u? = 1 in o, @’392 =0,

where [ is the extension of i by zero to . Using the definition of very weak solutions and the
facts that ¢ € CZ(Q2) and supp(fi) C €21, we see that Aw = 0 near 9§ in the sense of distributions.
Hence w is C°° near 99). Let g € C%%(Q) be the solution of

(~A+qg=0nQ,  gloo = —0|so-
Then both w and @|q + g are very weak solutions of (A.3), and by uniqueness one has
w =g+ g.

It follows that w is C*% near 9. Moreover, since w is a WP solution of (—A + q)w = 0 in Q\ Q,
it follows from [HRR72, see section 4. Concluding remarks| that w is W2 and consequently C%¢ in
0\ .

We now let v € S and choose y € C2°(£2) such that y = 1 near ; and w is C*% in supp(1—x)NQ.
Then

/Qw(—A+q)vd:v:/Qw(—A—I—q)(xv)dx—i—/ﬂw(—A—i—Q)((l—x)v)d:c.

We use the definition of very weak solutions in the first term, and since w is regular in supp(1 — y)
we may integrate by parts in the second term. This yields

/ w(—A + q)vdz = (xv) +/ (Opw)v dS = p(vlg,) + / (Oyw)v dS.
Q o o0
Since v € S, we have p(vlg, ) = 0 by the assumption (A.2). Since we can vary the Dirichlet data of
v € S, it follows that d,w|sq = 0. Thus w in particular satisfies
(—A+4+¢)w =0 in Q\ﬁl, wlan = d,w|sn = 0.

Since w is C%“ in Q\ Q; and this set is connected, the unique continuation principle yields (A.4).

This finishes the proof. U
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