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Figure 1: This paper develops and evaluates a computational model of emotion that is based on temporal diference reinforce-
ment learning and appraisal theory. It predicts emotional responses to events by integrating reward processing and cognitive 
appraisal. In an illustration of a task carried out by human participants, the user tries to achieve a goal using a computer. 
Multiple successful attempts at the problem result in a self-evaluated feeling of happiness, which our computational model 
matches. We model interaction as a decision process, where an evaluation of interactive events results in a value prediction 
update. The appraisal process of emotion is modeled based on diferent computations that are carried out during this evaluation. 

ABSTRACT 
Predicting users’ emotional states during interaction is a long-
standing goal of afective computing. However, traditional methods 
based on sensory data alone fall short due to the interplay between 
users’ latent cognitive states and emotional responses. To address 
this, we introduce a computational cognitive model that simulates 
emotion as a continuous process, rather than a static state, during 
interactive episodes. This model integrates cognitive-emotional ap-
praisal mechanisms with computational rationality, utilizing value 
predictions from reinforcement learning. Experiments with human 
participants demonstrate the model’s ability to predict and explain 
the emergence of emotions such as happiness, boredom, and irri-
tation during interactions. Our approach opens the possibility of 
designing interactive systems that adapt to users’ emotional states, 
thereby improving user experience and engagement. This work 
also deepens our understanding of the potential of modeling the 
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relationship between reward processing, reinforcement learning, 
goal-directed behavior, and appraisal. 
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1 INTRODUCTION 
Emotions have a signifcant infuence on interpersonal dynamics 
and outcomes in daily interactions. Similar efects are also present 
in human-computer interaction (HCI) [3], where users exhibit emo-
tions akin to face-to-face interactions [46]. Consequently, emotions 
shape perceptions of interactive systems and impact the success of 
interactions [5, 11, 13]. It is therefore a long-standing goal of HCI 
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to understand and predict a user’s emotions. This is a challenging 
problem because while humans have an innate ability to recognize 
emotions in others, and make inferences and reason about them 
[38], computers lack this capacity. They require an explicit emotion 
model in order to make sense of and adapt to users’ emotions. 

Many attempts to enhance computers’ emotion detection focus 
on analyzing psychophysiological signals stemming from the user’s 
autonomic nervous system [18, 19, 34]. However, the challenge 
of automated emotion detection is difcult due to the interplay 
between emotions and cognition [2, 41]. Cognitive processes are 
unobservable, limiting machines to interpreting emotions based 
on observable behavior and physiological changes. Yet, if humans 
can deduce emotions from minimal observations, why can’t ma-
chines? This paper posits that discerning user emotions requires a 
theory bridging cognition and emotions. Models accomplishing this 
implement psychological theories of human cognitive-emotional 
processes, aiming to deduce emotions from sparse data using model-
informed biases [12, 28, 43, 45]. While several such models have 
emerged recently, their integration into HCI remains limited. 

The main contribution of our paper is the adaptation of the tem-
poral diference reinforcement learning model of appraisal [54] to 
HCI. We assess the model’s predictive capabilities in an interac-
tive task, and expand it to capture the dynamic nature of emotions 
during interactions. The model’s key innovation is merging a re-
ward processing mechanism with appraisal theory, using a unifed 
reinforcement learning (RL) framework. Yet, it hasn’t so far been 
adapted to interactive tasks, nor assessed with any real-life tasks 
involving human emotions. In this study, our focus is on examining 
and modeling three emotions: happiness, boredom, and irritation. 
These were selected due to their frequent occurrence in HCI and 
their substantial impact on user behavior, engagement, and the 
overall user experience [25]. The selected emotions represent a 
spectrum from positive (happiness), via neutral (boredom), to neg-
ative (irritation) [20, 21, 26]. 

Figure 1 illustrates the model at work: ‘Lucy’ strives to achieve 
her objectives in an interactive task. Each progressive step elicits 
positive feedback, leading to positive value estimates. As the task 
advances, Lucy gains confdence in her goal attainment. When 
prompted about her emotions after the task, she expresses happi-
ness, but also a hint of boredom due to the task’s simplicity. She 
doesn’t feel frustrated. The bar graphs in Figure 1 display human 
self-report results from a relatively straightforward, rewarding task 
alongside the model’s predictions. The alignment between the two 
stems from a computational cognitive emotion model that estimates 
the user’s likely emotions given interactive events during the task. 
Predictions are made by applying a computationally grounded cog-
nitive model, not by observing physiological signals or learning a 
model from human responses. 

Existing computational cognitive emotion models fall short in 
predicting the scenarios we present here, primarily because they 
do not incorporate a simulation of an autonomous agent capable of 
evaluating and selecting actions to optimize anticipated outcomes. 
We foresee multiple applications of this approach. First, afective 
computing researchers could integrate our work to existing mod-
els on physiological signals, improving the accuracy of emotion 
detection. Second, machines equipped with a model-based under-
standing of their users’ emotions can simulate, in silico, alternative 

courses of action, deciding on one that is best predicted to achieve 
the desired emotional outcome [14, 43]. 

2 BACKGROUND 
Understanding and predicting the user’s emotions is a long-standing 
objective in HCI. To that end, afective computing studies and devel-
ops systems designed to recognize, interpret, simulate, and respond 
to human emotions [51]. Since the founding of this feld [33], the 
main research lines revolve around the detection and interpreta-
tion of afective and social signals from humans [50], modeling the 
diferent facets of human-agent interaction [23, 35, 44], as well as 
computational simulation of emotion processes based on psycholog-
ical theories [7], especially appraisal theories [4, 10, 24]. Afective 
computing has produced a number of key techniques that use sen-
sors to infer emotional states, often based on either basic emotion 
[15] or core afect theories [36]. In contrast, appraisal theory stands 
out as a promising foundation for computational cognitive emo-
tion models due to its dedication to explaining emotions within 
integrated cognitive-afective processes inherent to humans [43]. 

Cognitive models of appraisal delineate an evaluative process 
(appraisal) by which specifc situations evoke particular emotional 
responses, given the subject’s goals [29, 31, 42, 47]. For instance, 
the component process model (CPM) proposes a set of sequential 
cognitive checks, which assess situational stimuli based on char-
acteristics like novelty, intrinsic pleasantness, goal relevance, and 
coping [30, 37]. The CPM predicts that the collective efect of these 
evaluations results in an emotion-specifc outcome profle. Most 
commonly occurring profles are called ‘modal’, and are associ-
ated with an emotion word, such as happiness, joy, or anger [40]. 
Such appraisal models provide a detailed and empirically verifable 
account of the cognitive mechanics underpinning the appraisal pro-
cess and its associated emotion [41]. Moreover, these models enable 
their specifcs to be formalized in computationally implementable 
terms [27, 37], making them suitable for creating machines that 
understand their users’ emotions. While this allows for a clear step-
by-step analysis of how a specifc emotion may have been elicited 
by a given situational stimulus, especially for computational im-
plementations of this model, it only provides a framework for the 
static, momentary assessment of emotion elicitation, i.e. a specifc 
moment in time. Yet, most scenarios, especially interactive tasks, 
encompass an extended temporal context and repeated situational 
evaluations, underscoring the need for a more continuous account 
of computational appraisal. 

Reward processing models have been used in afective computing 
and HCI to estimate and predict user responses, allowing systems to 
adapt their behaviors [6, 9, 53]. At its core, a reward processing mod-
eling seeks to understand decision-making based on anticipated 
rewards, with the ultimate aim of maximizing these rewards over 
time[1]. The operating principle is that positive outcomes reinforce 
behaviors, encouraging their repetition. Yet, the approach has limi-
tations in modeling emotions: it often oversimplifes motivations 
by assuming agents act purely for rewards, overlooking aspects 
such as cognitive processing or behavioral constraints. Further-
more, there is still a considerable gap between a reward-processing 
model of emotion and a realistic model of human emotions. 
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Computational rationality is an approach that has recently been 
used in modeling a variety of interactive tasks [32]. It posits that 
humans can be modeled as agents whose decision-making and 
behavior are optimal within the bounds imposed by information, 
computational resources, and expected outcome utility [22]. This 
approach has an interesting connection to the reward processing 
model of emotion: in computational rational modeling, RL is used 
to derive bounded optimal behavior policies. At the heart of com-
putational rationality in HCI is implementing a simulated user’s 
goals as a reward function [8, 16, 17]. This facilitates the integration 
of emotion into computational rationality, thereby implementing 
emotion as part of an emerging modeling paradigm in HCI. 

However, what stands in the way of implementing a model of 
user’s emotions within computational rationality is the aforemen-
tioned gap between reward processing models of emotion and a 
more realistic understanding of human emotions. It has been re-
cently suggested that appraisal theory is a promising candidate for 
bridging this gap [28, 54]. In many ways, appraisal theory is well 
suited for modeling emotion within the computational rationality 
framework, if it is implemented via the reward processing carried 
out in bounded optimal agents. This is because both appraisal the-
ory and computational rationality embrace the importance of goals 
in making predictions, and note that it is not merely the events 
of the environment that shape behavior, but also cognition. In a 
demonstration of this, a recent model integrates appraisal theory 
with RL [54]. While the model is promising, it is limited in being 
evaluated only with vignettes – textual descriptions – of everyday 
situations. Our goal with this paper is to review the applicability of 
this model in interactive tasks, and evaluate and design it further 
to ft this goal. 

3 MODELING 
In this section we review the recent model that formalizes emotional 
appraisal using RL [54], and develop it further. In section 3.1 we 
outline the foundations of RL; in sections 3.2 and 3.3 we describe 
the existing model that integrates appraisal into RL; and in section 
3.4 we build on this model. 

3.1 Sequential Decision-Making 
The model’s interactive episodes are formalized via a Markov de-
cision process (MDP), a mathematical framework for modeling 
decision-making problems in stochastic environments [48]. It is a 
tuple < �, �,� , �,� >, where � denotes the set of states and � repre-
sents the set of actions that the agent can take. The state transition 
function � (�, �, � ′) describes the probability of transitioning from 
state � ∈ � to state � ′ ∈ � when taking action � ∈ �. The reward 
function �(�, �, � ′) defnes the immediate reward an agent receives 
when transitioning from state � to state � ′ by performing action �. 
The discount factor � discounts future rewards when calculating 
the value of actions. 

In order to maximize the long-term rewards of a sequential 
decision-making task described with an MDP, an RL agent interacts 
with the environment, encoding the state transition probabilities 
and the reward function. The problem of RL is to derive an optimal 
policy �∗, which maps states to action probabilities such that behav-
ior according to it maximizes the expected cumulative reward over 

time. The value function of a state � under a policy � , denoted as 
�� (�), is the expected return when starting in state � and following 
policy � thereafter. The function �� (�) is the state-value function 
for policy � : 

�� (�) = E� [�� |�� = �], for all � ∈ �, (1)Í∞where �� = 
�=0 �

� �� represents the expected discounted return, 
and E� denotes the expected value of the policy. The value of 
performing an action � ∈ � while in a state � ∈ � is defned as: 

�� (�, �) = E� [�� |�� = �, �� = �], for all � ∈ � and � ∈ �. (2) 

The agent learns the optimal policy by interacting with the envi-
ronment, receiving feedback in the form of rewards, and updating 
its value estimates for state-action pairs. In temporal diference (TD) 
learning, the value estimates are based on the diference between 
the expected and the observed value: 

� (�) ← � (�) + � [�� ′ + �� (� ′) − � (�)], (3) 
where � is the learning rate. �� ′ is the reward received after moving 
to the new state and � (� ′) is the estimated value for the new state. 
This operation updates the value � (�) associated with a state � as 
soon as the new state � ′ is reached, by computing the diference 
between predicted and observed values. Combining equations 2 
and 3 results in a form of TD learning called Q-learning [48], which 
can be expressed as 

�(�, �) ← �(�, �) + � [�(�, �) + � max �(� ′ , � ′) − �(�, �)] . (4)
� ′ 

3.2 Appraisal Calculation 
Several appraisals are discussed in the literature, including rele-
vance, implication, coping potential, and normative signifcance 
[39]. In the RL appraisal model [54], four appraisals were considered: 
suddenness, goal relevance, conduciveness, and power. This choice 
was made because these appraisals have distinct representational ca-
pacities (regarding real-life episodes), and minimal inter-correlation, 
and they are suitable for integration into an RL model. 

Suddenness is part of the novelty assessment of an event during 
appraisal. Specifcally, it quantifes the frequency with which a 
transition to state � ′ occurs after action � is taken in a prior state � 
by the agent. Suddenness is denoted by �� and is defned as: 

�̂ (�, �, � ′)
�� = 1 − Í , (5) 

� ′′ ∈� �̂
 (�, �, � ′′)

where �̂ is a world model. It approximates the true transition func-
tion � , and is learned by the agent during interaction. The intuition 
of �̂ is that the agent learns to expect certain state-action-state 
transitions, and therefore encountering such a transition triggers a 
suddenness appraisal: how expected was this transition? 

Goal relevance checks how relevant an event is, given the agent’s 
current goal. The more goal-relevant an event is, the stronger emo-
tional reactions there will probably be [42]. Goal relevance is oper-
ationalized as the magnitude of the TD error observed during value 
prediction updates: 

��� = ���(1, |Δ|), (6) 
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where Δ(�, �) = � [�(�, �) + � max� ′ �(� ′ , � ′) − �(�, �)] is TD error. 
Conduciveness appraisal in the CPM evaluates if an event aids the 

agent’s goal attainment. Conducive events generally elicit positive 
emotions, while obstructive ones invoke negative ones [37]. In the 
RL appraisal model, conduciveness is likened to both the direction 
and magnitude of the discrepancy between expected and actual 
outcomes. This concept is quantifed by standardizing its values 
between 0 (highly unconducive) and 1 (very conducive), with 0.5 
marking neutral events that meet expectations. The intrinsic con-
duciveness of an event relies on the agent’s cognitive value update, 
informed by prior expectations and goals. Goal conduciveness is 
expressed as: 

��� = ���(��� (Δ, −1), 1) ∗ 0.5 + 0.5, (7) 

It is worth mentioning that goal relevance and conduciveness 
in emotional appraisal are not inherently correlative. Events that 
are goal-relevant may still be unconducive, as observed in negative 
emotions like despair, irritation, and sadness. Conversely, conducive 
events can have low goal relevance, exemplifed by scenarios elicit-
ing boredom. 

Power appraisal is part of the more general coping evaluation, 
asking how much an agent infuences an event’s outcome. For 
instance, an experienced user possesses power due to their knowl-
edge, while a novice lacks this. Power appraisal provides a means 
to explain why a particular event, such as an error message, might 
cause widely diferent emotions in diferent users (e.g. confusion 
or even fear in novice users, and irritation in experienced users). 
In the model, power refects the agent’s ability to discern between 
benefcial and non-benefcial actions. When the � values for various 
actions difer, the agent is believed to have power. Conversely, iden-
tical � values or a singular action option denote no power. Power 
is quantifed as: ( 

|max� ′ �(� ′) − avg(�(� ′)) |, if |min� ′ �(� ′) | < max� ′ �(� ′),
�� ∝ 

|min� ′ �(� ′) − avg(�(� ′)) |, otherwise. 
(8) 

This formulation underscores that the essence of the agent’s power 
lies in its ability to identify which actions to pursue and which to 
avoid. In the simulations below, we standardize the power appraisal 
by dividing by the highest absolute � value. 

3.3 Classifer 
In order to predict modal emotions (emotion words such as ‘happi-
ness’ or ‘irritation’) from the computed appraisals, the vector of the 
four appraisals needs to be classifed. In the model, this classifer 
is created by connecting modal emotions to particular values or 
profles of such vectors. These profles are shown in Table 1, which 
summarizes textual descriptions connecting appraisal profles and 
modal emotions [39]. Details of how this was done are reported 
in [54]. For this study, we employed simulated data to train and 
test our classifer. The simulated data were generated by transform-
ing nominal appraisals from Table 1 into a range of quantitative 
values (Table 2). We used a linear Support Vector Machine (SVM) 
for classifcation, focusing on the penalty parameter � to balance 
maximizing the margin and minimizing classifcation errors. Our 
goal was to approximate human performance in the classifer. We 

Table 1: Appraisal patterns for selected emotions and ap-
praisals. Goal rel. = goal relevance, Conduc = conduciveness, 
obs. = obstruct. 

Suddenness Goal rel. Conduc. Power 
Happiness low medium high open 
Boredom very low low open medium 
Irritation low medium obs. medium 

analyzed human precision in emotion identifcation from the frst 
experiment reported below (mean: 0.626, variance: 0.048) and used 
it as a benchmark. 

We tested 100 SVM classifers with varying � values (0.0035 to 
0.006) against the simulated data. The classifer’s precision closely 
matched human performance at a � value of 0.0049, with a variance 
of 0.0004. To account for individual diferences, we trained an SVM 
classifer for each participant, each with a � value sampled from a 
normal distribution (mean = 0.0049, variance = 0.0004), refecting 
the variance in human precision, thereby ensuring that our model 
not only matched average human performance but also captured 
individual variability. Importantly, the parameter � was not ftted 
to minimize the model’s prediction error against human emotion 
ratings, but to the same rating precision level as found in the human 
data. The goal of this procedure was to bring the variance of our 
modal emotion predictions more in line with human self-responses: 
with a � value too large, only the most intense emotion would be 
predicted; by lowering the value, the model predicts also other, less 
intense emotions. This refects how humans are able to experience 
various emotions simultaneously. With the classifer, the compu-
tational appraisal model is able to predict emotion words from 
value computations of an RL agent, via the equations for diferent 
appraisals. 

3.4 Extending The Model for Sequential 
Emotions 

While the model presented above bridges appraisal theory and a 
general computational approach to modeling interactive behavior, 
it lacks in capturing the episodic nature of the interaction, wherein 
a single episode there are bound to be diferent emotional reac-
tions. For instance, encountering an error multiple times during 
interaction should not result in multiple ‘snapshot’ instances of 
irritation, but rather a continuously growing feeling of irritation. 
In other words, emotions do not appear and disappear, but linger 
and interact. 

To that end, we augment the model. Initially, in this paper, we 
implement a simple moving window average, which considers not 
merely the present state evaluation, but those that precede it. 

� (�) + � (� − 1) + ... + � (� − �)
SMA(�) = , (9)

� + 1 
where, � (�) is the prediction from the classifcation of a given 
emotion e at time step t, and n is the length of the window. In this 
paper, experiment 2, we set � = 2, but this number depends on the 
abstraction level of the simulation. In the future, we also envision a 
discounting factor, making emotions that occurred further in the 
past have less impact on the present emotional state. 
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Table 2: Mapping of nominal appraisal values to scales was 
done by setting the parameters of a normal (N ) or a uniform 
(U) distribution to correspond to the text description. 

obstruct N , � ≥ 0, � = 0, � = 0.05 
very low N , � ≥ 0, � = 0, � = 0.05 
low N , � ≥ 0, � = 0, � = 0.1 
medium N , � = 0, � = 0.05 
high N , � ≤ 1, � = 1, � = 0.1 
open U(0, 1) 

4 EVALUATION 

4.1 General Method 
Given the goal of this paper – adapting an RL-based appraisal model 
to predict emotion in interactive tasks –, we focus our evaluation on 
users within an interactive environment. This approach difers from 
the vignette-based method used previously in validation. This paper 
introduces two original studies and assesses the model’s predictions 
based on their outcomes. Our focus is on three common emotions 
in HCI: happiness, boredom, and irritation [20, 21, 26]. Happiness 
refects the fulfllment of a user’s goals or desires, and can lead to 
increased user engagement. Boredom signifes a lack of stimulation, 
possibly due to a system’s failure to maintain the user’s interest. 
Irritation is typically associated with frustrating events that may 
be due to system errors, poor design, or a failure to meet user ex-
pectations. The experimental tasks derive from appraisal theory 
principles, refecting the targeted emotions’ appraisal profles (see 
Table 1). For example, the happiness task featured low-suddenness, 
and high goal-conduciveness events, while irritation involved goal-
obstructive events where participants had some power. Having 
formalized these appraisals computationally, we implemented iden-
tical manipulations in the computational task designs. The frst 
experiment tests the original single-appraisal model against data 
collected from real emotional experiences. In the second, we test 
the idea of averaging emotions over longer sequences. 

4.1.1 Materials: We constructed six online tasks, three for each 
experiment. The material was a text paragraph (about 220 words) in 
the English language sourced from Wikipedia, and the participants 
had to answer questions about the text. Multiple questions were 
designed from the same source text. To infuence participants’ emo-
tions, we made specifc design alterations. For the happiness task, 
the questions were meaningful, correct answers resulted in positive 
feedback, and in the end the participant received a message con-
gratulating them for good performance (Figure 2a). The boredom 
task featured a large number of monotonous, simple questions, and 
intentionally neutral feedback both for an individual task and at 
the end of the experiment (Figure 2b). Finally, the irritation task 
incorporated multiple system errors, leading to incorrect selections 
irrespective of user decisions, culminating in task failure and nega-
tive feedback (Figure 2c). The text and all questions are presented 
in full in Appendix B. 

4.1.2 Participants: In the frst experiment, � = 27 participants 
were recruited, 9 per task. The participants had an average age of 
34 years (�� = 10.7), consisting of 7 men and 20 women. For the 

(a) Happiness task with positive feedback 

(b) Boredom task with neutral feedback 

(c) Irritation task with an error 

Figure 2: Screenshots from the experiments that targeted one 
of the three emotions. The happiness task was designed to 
be encouraging and rewarding, the boredom task contained 
a large number of repetitive tasks and neutral feedback, and 
the irritation task was ridden with errors and ended up fail-
ing the task. 

second experiment, � = 45 participants were recruited, 15 for each 
task (average age 29 (�� = 7.3), 15 men and 30 women). 

All participants were sourced online through Prolifc, and were 
required to be native English speakers.With this requirement we 
aimed to eliminate potential biases or variations in the comprehen-
sion of the text, allowing participants to concentrate primarily on 
the test’s structure. 
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4.1.3 Procedure: Participants evaluated their emotions using a 
rating scale that was part of the online experiment design. This scale 
encompassed emotion words, asking participants to report on their 
current feelings (0 indicating “not experiencing this emotion at all” 
and 10 denoting “experiencing this emotion intensely”). Besides the 
primary emotions of interest (happiness, boredom, irritation), we 
introduced two other emotions (joy, sadness) to divert concentrated 
attention from the manipulated emotions. In the frst experiment, 
the self-report was administered once post-task. In the second, 
evaluations occurred four times: initially, twice during the tasks, and 
upon completion. Correlations between the self-reported emotions 
are reported in the Appendix C. A between-subjects design was 
used, with participants engaging solely in one of the three emotional 
conditions. Diferent participants took part in the two experiments. 

4.1.4 Data Analysis: In analyzing the self-reporting of the targeted 
three emotions, we frst standardized them to reduce the impact of 
individuals interpreting the scale diferently. For each participant, 
we normalized their ratings by dividing their rating for an emotion 
by the total sum of their ratings for all three emotions. This ensured 
that the rating for each emotion ranged between 0 and 1, with the 
combined ratings always summing up to 1. The rationale for this 
was that we expected the participants to hold a diferent internal 
standard for how strong a particular rating for an emotion is. How-
ever, what could be assumed to be common to all participants is 
how they rate the emotions in relation to each other. 

For model predictions, we designed 6 simulated environments to 
represent each task using the MDP formalism. The formalized tasks 
are shown in Figure 3 (experiment 1) and Figure 5 (experiment 2). 
An RL agent was trained via tabular Q-learning to converge on an 
optimal policy separately for each task. From the converged models, 
we computed four appraisal measures using the equations of the 
previous section. The resulting appraisal vectors were classifed into 
modal emotion probabilities using an SVM, which was calibrated 
as described in section 3.3. An overview of the data processing fow 
is shown in Appendix A. 

4.2 Experiment 1 
The frst experiment aimed to elicit three emotions in three between-
subjects tasks: happiness, boredom and irritation. The participants 
carried out tasks that manipulated these target emotions based on 
appraisal theory. Table 1 shows the appraisal profle. 

The MDPs that formalize the three tasks are illustrated in Fig. 3. 
For the MDP of the happiness task, � serves as the Goal state with 
positive rewards, while � denotes the error state with negative 
rewards. Initiating from the state � , the agent can perform the ex-
clusive action � ��� , transitioning to �1. This action represents the 
task’s start, and �1 represents the state where the participant is 
shown a question with two options. These choices are represented 
by two actions: �1 for the selection that is correct, and �2 for incor-
rect. Electing for �1 ofers an 80% likelihood for the agent to land in 
the � goal state, contrasted with a 20% chance of ending up in the 
� error state. This probabilistic outcome recognizes the real-world 
scenario where, despite intending to choose correctly, participants 
might inadvertently err due to incorrect knowledge or confusion. 
The appraisal analysis occurs at the onset of the goal state, when 
the agent transitions from S1 to G. The numerical patterns for 

(a) The MDP model for Happiness 

(b) The MDP model for Boredom 

(c) The MDP model for Irritation 

Figure 3: MDP models for various emotions. Circles are states 
and arrows are transitions caused by actions. Denoted are also 
transition probabilities and rewards, when relevant. In the 
Happiness model, selecting action ‘a1’ from state ‘S1’ results 
in a 20% probability of encountering an error ‘E’, mirroring 
the anticipated error rate among participants. Conversely, 
in the Irritation model, choosing ‘a1’ at ‘S1’ leads to error 
‘E’ with an 80% likelihood, refecting the high probability of 
system errors occurring during the task. 

appraisal of the experiment, generated by these models, are shown 
in Table 3. Note the discrepancy in goal relevance of irritation be-
tween Tables 1 and 3. The reason for this is that in the experiment, 
we wanted to emphasize the irritation in human participants by 
making the obstructing task very goal-relevant. 

The boredom MDP shares a similar confguration in its initial 
states � and �1. The distinction lies in the reward values: � (�1, �1, �2)
is set to 1, while � (�1, �2, �2) is set to -1. This design choice makes the 
task less rewarding, both positively and negatively, implying that 
the outcome is less important. Appraisal analysis is conducted at �2. 
In the irritation task, we introduce a high likelihood of reaching the 
problematic state of the system � even when opting for the correct 
choice �1. This represents the frustrating event when a certainly 
correct action results in an unwanted state due to system errors. 
The appraisal analysis happens accordingly when the problem state 
� is encountered. 

The average standardized self-rated emotions from the partic-
ipants after the tasks and the model predictions are presented in 
Fig. 4. Overall, our model achieved a reasonable degree of ft to 
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Table 3: Appraisal profles generated by our model. 

Suddenness Goal rel. Conduc. Power 
Happiness 0.2 0.6 0.8 0.87 
Boredom 0 0 0.5 0.53 
Irritation 0.2 1 0 0.3 

Figure 4: A comparison of human and modeling predictions 
for emotional ratings in each tasks. Error bars indicate 95% 
confdence intervals. 

the data, �2 = 0.78, RMSE = 0.13. The manipulations proved ef-
fective for both human evaluations and model outcomes. In every 
task, both humans and the model rated the target emotion with the 
highest intensity. 

4.3 Experiment 2 
Our second experiment aimed to expose the process nature of 
emotion and show that a static snapshot emotional state, either 
via a self-report or a model-based prediction, does not provide 
a full understanding of emotions during the interaction. To that 
end, the participants again interacted with the tasks designed to 
elicit one of the three emotions, but now they self-reported their 
emotions four times: beginning, twice during the tasks, and at the 
end of the experiment. While these separate self-reports are still 
static measurements alone, the progression of these self-reports 
over time can be used to evaluate the process nature of emotion 
and how well our model captures that. 

Figure 5 illustrates the MDPs utilized in the second experiment. 
They bear a resemblance to those from the frst experiment, but 
are extended to three appraisal stages. Unlike the participants, who 
were expected to already have some emotional experiences upon 

(a) The MDP model for Happiness in series 

(b) The MDP model for Boredom in series 

(c) The MDP model for Irritation in series 

Figure 5: MDP models in series. Circles are states and arrows 
are transitions caused by actions. Denoted are also transition 
probabilities and rewards, when relevant. The error rates in 
the Irritation model escalate from 60% to 70%, and fnally to 
80%, refecting the true the task failure rates. 

starting the experiment, our model does not have the frst emotion 
measurement. That complicates how the SMA (Eq. 9) is imple-
mented. Thus, the initial emotions of the model were set to the 
average initial values obtained from human participants when they 
rated their emotions before the task started. At each time stage, 
we extracted appraisals from the model. Using the same trained 
SVM classifer as in the frst experiment, these appraisals were then 
transformed into predictions of modal emotion intensities. We did 
not recalibrate the SVM classifer’s parameters for this new exper-
iment. Unlike in the frst experiment, we used the average of the 
current and previous emotion predictions to capture the process 
nature of emotion. 

We performed a regression analysis on the human emotion val-
ues against our model’s predictions, with each experiment as a 
fxed term. The results yielded an �2 = 0.86, RMSE of 0.19, a rea-
sonable ft between predictions and responses. From Figure 6, it is 
evident that the targeted emotions increase over time, while the 
non-targeted ones decrease. This trend is consistent in both human 
evaluations and model predictions, and is particularly pronounced 
in the happiness and irritation tasks. 

However, the results from the boredom task warrant further dis-
cussion. The boredom rating sees an uptick, but there’s also a slight 
increase in participants’ irritation ratings. This can be attributed 
to the inherent challenge in designing a universally neutral inter-
active task. In our boredom task, the repetitiveness of the simple 
questions, combined with the sheer volume and limited feedback, 
likely led to participants becoming impatient and consequently 
irritated. Furthermore, the self-reported happiness levels in the 
boredom task were higher than boredom ratings, potentially due to 
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participant response bias where the participants want to provide 
good feedback to the experimenters and are generally favorable of 
their task designs [49]. This might have resulted in over-reporting 
happiness in a task designed primarily to elicit boredom. This is 
also possible for the happiness task in the frst experiment, where 
the participants did not report as much boredom as predicted by 
the model. However, a more general view of all the graphs over 
these time stages clearly shows a decline in happiness and a rise in 
boredom. This points to the need for a more in-depth data analysis, 
focusing on the temporal shifts in emotion ratings as a contextual 
reference for participants’ emotional responses. 

Figure 6: A comparison of human and model predictions for 
emotional ratings in each task at each time stage. Targeted 
emotion magnitudes are reported with numbers. 

5 DISCUSSION AND CONCLUSION 
Empirical evaluation: The goal of the paper was to adapt and 
demonstrate a computational cognitive emotion model that simu-
lates emotion in response to goal-driven interaction events. With 
some exceptions, the model closely mirrored emotional self-reports 
collected from human participants engaging in interactive tasks. 
This accuracy stemmed from incorporating appraisal theory into an 
RL computational framework, facilitated by a theory linking reward 
prediction errors with emotional responses [28, 54]. Furthermore, 
our fndings support the validity of appraisal theory, as both the 
human and computational experiment task designs were rooted in 
appraisal-centric hypotheses. 

While our validating experiments included human participants 
self-reporting their emotions, future research should extend its 
scope into more emotions and tasks. The designed interventions 
intentionally exerted a pronounced emotional impact, and the tasks 
do not represent the wide range of tasks typically performed by 
humans on computers. In the future, adapting the model for more 
involved interactive scenarios beyond the simple interactions dis-
cussed here is crucial. The MDP framework utilized in this paper 

has simulated various interactions, such as multitasking while driv-
ing [17], touchscreen typing [16], and GUI-based decision-making 
[8]. Given that these tasks elicit emotions, our model should be 
able to predict them. Furthermore, while happiness, boredom, and 
irritation are prevalent emotions in interaction, there are other 
emotions relevant in HCI. We limited the amount of emotion to 
these key ones to focus on testing the model. However, there is 
a broader spectrum of emotions that the model should be able to 
predict. The challenge for future research lies in either controlling 
the experiments carefully to elicit targeted emotions, or collecting a 
large naturalistic dataset that considers a wide range of lived human 
emotions. Finally, this paper used a simple moving window average 
to capture the persistence of emotion throughout an episode. In the 
future, more complicated formulas should be considered and the 
complex time-dependent dynamic of emotion investigated. 

Implications: In the future, we foresee our model used in inter-
active systems that anticipate and adapt to their users’ states [14], 
including emotional responses. Even in its current theoretical form, 
the model can provide designers with insights by allowing them 
to examine how variations in task progression or user goals infu-
ence emotional outcomes. This implies that the model discussed 
herein should be adjustable individually, and tailored to a specifc 
user’s objectives and profciency. By inferring a user’s underlying 
cognitive states, the model’s alignment with the human user can 
be enhanced, potentially boosting the accuracy and validity of its 
predictions. 

Conclusion: With the increase in automated and intelligent 
machines that interact with their users, it becomes imperative that 
collaborative agents possess an understanding of their human users. 
A crucial aspect of this understanding is emotion. Alignment be-
tween humans and technologies embedded with artifcial intelli-
gence is risked, if the latter cannot predict their users’ emotional 
responses to interactive events. With computational cognitive mod-
els like those developed here, it becomes possible to implement 
an explicit understanding of emotion into artifcial agents. This 
understanding is not merely an ability to predict, given observed 
behavior or physiological signals, but to provide reasons for the 
causes of predicted emotions and internally simulate various ‘what 
if’ experiments to facilitate fuent interaction with the user. For 
the purposes of open science as recommended by [52] we present 
the model code and data from the experiments freely available at 
https://gitlab.jyu.f/zhangjy/simulating_emotions_chi. 
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A DATA PROCESSING FLOW 

Figure 7: A reinforcement learning agent is trained in a 
Markov Decision Process-based task environment. Learning 
signals (TD errors from the converged model) are converted 
into appraisal predictions, which are classifed into modal 
emotion predictions using a pre-trained SVM. The classifer 
is fne-tuned to have human-like spread between emotion 
ratings. 

B EXPERIMENTAL SETUP (EXPERIMENTS 1 
AND 2) 

The text used in the tasks (from https://en.wikipedia.org/wiki/ 
English_language) 

Modern English has spread around the world since the 17th cen-
tury as a consequence of the worldwide infuence of the British 
Empire and the United States of America. Through all types of 
printed and electronic media of these countries, English has be-
come the leading language of international discourse and the lingua 
franca in many regions and professional contexts such as science, 
navigation and law. English is the most spoken language in the 
world and the third-most spoken native language in the world, after 
Standard Chinese and Spanish. It is the most widely learned second 
language and is either the ofcial language or one of the ofcial 
languages in 59 sovereign states. There are more people who have 
learned English as a second language than there are native speakers. 
As of 2005, it was estimated that there were over 2 billion speakers 
of English. English is the majority native language in the United 
Kingdom, the United States, Canada, Australia, New Zealand and 
the Republic of Ireland, and is widely spoken in some areas of the 
Caribbean, Africa, South Asia, Southeast Asia, and Oceania. It is 
a co-ofcial language of the United Nations, the European Union 
and many other world and regional international organisations. It 
is the most widely spoken Germanic language, accounting for at 
least 70% of speakers of this Indo-European branch. 

Questions for the Happiness and Irritation task: 
Question 1: When has Modern English spread around the world? 

a. 17th century. 
b. 18th century. 

Question 2: Which of the following countries infuenced the spread 
of modern English? 

a. The Great Britain. 

b. France. 
Question 3: How did English become the world’s leading language? 

a. Through word of mouth of the British Empire and the US. 
b. Through printed and electronic media of the British Empire 

and the US. 
Question 4: Is English the most spoken language in the world? 

a. Yes, it is. 
b. No, it isn’t. 

Question 5: Is English the most spoken native language in the 
world? 

a. Yes, it is. 
b. No, it isn’t. 

Question 6: What is the most spoken native language in the world? 
a. English. 
b. Chinese. 

Question 7: What is the most learned second language in the world? 
a. English. 
b. Spanish. 

Question 8: Which of the following categories has a larger number? 
a. People who speak English as a native language. 
b. People who learn English as a second language. 

Question 9: How many people speak English as of 2005? 
a. 2 billion. 
b. 3 billion. 

Question 10: Which of the following countries has English as a 
majority native language? 

a. India. 
b. New Zealand. 

Question 11: Which of the following languages belongs to the 
ofcial languages of the United Nations? 

a. English. 
b. Hindi. 

Question 12: What type of language is English? 
a. Germanic language. 
b. Latin language. 

Question 13: What is the most spoken Germanic language? 
a. German. 
b. English. 

Question 14: What percentage of Germanic speakers are English 
speakers? 

a. 70%. 
b. 80%. 

Question 15: Which of the following countries infuenced the spread 
of modern English? 

a. Australia. 
b. The United States of America. 

Question 16: Are there more people who have learned English as a 
second language than native speakers? 

a. Yes. 
b. No. 

Question 17: Which of the following organizations recognizes Eng-
lish as a co-ofcial language? 

a. African Union. 
b. European Union. 

Question 18: In which professional contexts is English the leading 
language? 

a. Art, music, and sports. 

https://en.wikipedia.org/wiki/English_language
https://en.wikipedia.org/wiki/English_language
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b. Science, navigation, and law. 
Question 19: Which of the following countries has English as a 
majority native language? 

a. The Republic of Ireland. 
b. The Republic of Congo. 

Question 20: How many sovereign states have English as an ofcial 
language? 

a. 39. 
b. 59. 

Questions for the Boredom task: 
Question 1: When has Modern English spread around the world? 

a. 17th century. 
b. 18th century. 

Question 2: Which of the following countries infuenced the spread 
of modern English? 

a. The Great Britain. 
b. France. 

Question 3: How did English become the world’s leading language? 
a. Through word of mouth of the British Empire and the US. 
b. Through printed and electronic media of the British Empire 

and the US. 
Question 4: Is English the most spoken language in the world? 

a. Yes, it is. 
b. No, it isn’t. 

Question 5: Is English the most spoken native language in the 
world? 

a. Yes, it is. 
b. No, it isn’t. 

Question 6: What is the most spoken native language in the world? 
a. English. 
b. Chinese. 

Question 7: What is the most learned second language in the world? 
a. English. 
b. Spanish. 

Question 8: Which of the following categories has a larger number? 
a. People who speak English as a native language. 
b. People who learn English as a second language. 

Question 9: How many people speak English as of 2005? 
a. 2 billion. 
b. 3 billion. 

Question 10: Which of the following countries has English as a 
majority native language? 

a. India. 
b. New Zealand. 

Question 11: Which of the following languages belongs to the 
ofcial languages of the United Nations? 

a. English. 
b. Hindi. 

Question 12: What type of language is English? 
a. Germanic language. 
b. Latin language. 

Question 13: What is the most spoken Germanic language? 
a. German. 
b. English. 

Question 14: What percentage of Germanic speakers are English 
speakers? 

a. 70%. 
b. 80%. 

Question 15: Which of the following countries infuenced the spread 
of modern English? 

a. Australia. 
b. The United States of America. 

Question 16: Which of the following statements about English is 
true? 

a. It is the most spoken native language. 
b. It is the most learned second language. 

Question 17: Which of the following statements about English is 
true? 

a. It is the ofcial language in many professions. 
b. It is a leading language of international discourse. 

Question 18: When has Modern English spread around the world? 
a. 16th century. 
b. 17th century. 

Question 19: Which of the following countries has English as a 
majority native language? 

a. The Republic of Ireland. 
b. The Republic of Congo. 

Question 20: How many sovereign states have English as an ofcial 
language? 

a. 39. 
b. 59. 

Question 21: How did English become the world’s leading language? 
a. Through word of mouth of the British Empire and the US. 
b. Through printed and electronic media of the British Empire 

and the US. 
Question 22: Is English a co-ofcial language of the United Nations? 

a. Yes, it is. 
b. No, it isn’t. 

Question 23: Is English the most spoken Germanic language? 
a. Yes, it is. 
b. No, it isn’t. 

Question 24: Does English have the most speakers? 
a. Yes, it does. 
b. No, it doesn’t. 

Question 25: Does the US infuence the spread of modern English? 
a. Yes, it does. 
b. No, it doesn’t. 

Question 26: Is English widely used in many professions? 
a. Yes, it is. 
b. No, it isn’t. 

Question 27: Is English the native language in Australia? 
a. Yes, it is. 
b. No, it isn’t. 

Question 28: Is English widely spoken in South America? 
a. Yes, it is. 
b. No, it isn’t. 

Question 29: Is English a Latin language? 
a. Yes, it is. 
b. No, it isn’t. 

Question 30: Which type of language does English belong to? 
a. Germanic language. 
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b. Latin language. 
Question 31: Which of the following languages belongs to the 
ofcial languages of the United Nations? 

a. Swedish. 
b. English. 

Question 32: What is the most spoken native language in the world? 
a. Chinese. 
b. English. 

Question 33: What is the most spoken Germanic language? 
a. German. 
b. English. 

Question 34: Which of the following area is English widely spoken? 
a. South America. 
b. South Asia. 

The questionnaire at the end of experiment 1, and at the four 
stages of experiment 2 
Please refect the emotions you experienced during the task: 
0 = not experiencing this emotion at all, 5= experiencing this emo-
tion moderately, 10 = experiencing this emotion intensely 

0 1 2 3 4 5 6 7 8 9 10 
Joy 
Happiness 
Boredom 
Sadness 
Irritation 

C CORRELATION BETWEEN DIFFERENT 
EMOTIONS 

Pearson correlation coefcients between the self-reported emotions 
are displayed. 

Experiment 1: 

Table 4: Emotion response correlation in Experiment 1 

Happiness Joy Boredom Sadness Irritation 
Happiness 1 0.825 -0.145 -0.358 -0.684 
Joy 0.825 1 -0.27 -0.517 -0.56 
Boredom -0.145 -0.279 1 0.11 0.05 
Sadness -0.358 -0.517 0.112 1 0.43 
Irritation -0.685 -0.560 0.052 0.430 1 

Experiment 2: 

Table 5: Emotion response correlation in Experiment 2 Sec-
tion 1 

Happiness Joy Boredom Sadness Irritation 
Happiness 1 0.933 -0.201 -0.363 -0.514 
Joy 0.933 1 -0.096 -0.287 -0.469 
Boredom -0.201 -0.096 1 0.229 0.311 
Sadness -0.362 -0.287 0.229 1 0.527 
Irritation -0.514 -0.469 0.312 0.527 1 

Jiayi Eurus Zhang, Bernard Hilpert, Joost Broekens, and Jussi P.P. Jokinen 

Table 6: Emotion response correlation in Experiment 2 Sec-
tion 2 

Happiness 
Joy 
Boredom 
Sadness 
Irritation 

Happiness 
1 
0.958 
-0.391 
-0.389 
-0.5 

Joy 
0.958 
1 
-0.352 
-0.331 
-0.489 

Boredom 
-0.391 
-0.352 
1 
0.138 
0.232 

Sadness 
-0.389 
-0.331 
0.138 
1 
0.664 

Irritation 
-0.5 
-0.489 
0.232 
0.664 
1 

Table 7: Emotion response correlation in Experiment 2 Sec-
tion 3 

Happiness Joy Boredom Sadness Irritation 
Happiness 1 0.929 -0.249 -0.532 -0.572 
Joy 0.929 1 -0.224 -0.562 -0.544 
Boredom -0.249 -0.224 1 0.153 0.499 
Sadness -0.532 -0.562 0.153 1 0.503 
Irritation -0.572 -0.544 0.499 0.503 1 
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