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Figure 1: We devised a balancing game to study AI-based assistance that helps users in task switching. The game consists of two 
platforms where only one can be actively controlled at a time. The goal is to balance the balls as long as possible on top of their 
platforms. To support users, we implemented a reinforcement learning (RL) based attention management system (AMS) that 
automatically switches between the platforms (indicated by a sound and a change of the active platform’s color). The AMS 
agent has full access to the states of the subtasks and learns a policy to switch in a way that humans’ game scores increase. 

ABSTRACT 
Attention management systems aim to mitigate the negative ef-
fects of multitasking. However, sophisticated real-time attention 
management is yet to be developed. We present a novel concept for 
attention management with reinforcement learning that automat-
ically switches tasks. The system was trained with a user model 
based on principles of computational rationality. Due to this user 
model, the system derives a policy that schedules task switches by 
considering human constraints such as visual limitations and reac-
tion times. We evaluated its capabilities in a challenging dual-task 
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balancing game. Our results confirm our main hypothesis that an 
attention management system based on reinforcement learning can 
significantly improve human performance, compared to humans’ 
self-determined interruption strategy. The system raised the fre-
quency and difficulty of task switches compared to the users while 
still yielding a lower subjective workload. We conclude by arguing 
that the concept can be applied to a great variety of multitasking 
settings. 
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User interface management systems; Empirical studies in 
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1 INTRODUCTION 
Human attention is a limited resource, but it is stressed more than 
ever before in history [2, 81]. Permanently refocusing attention 
and alternating between activities and tasks comes with a price, 
including severe accidents [50] and significant socio-economic 
costs [2, 76]. Sequential multitasking [70] results in “switch costs”, 
which are characterized by the time and effort needed to stop one 
and engage in another task. Additionally, external interruptions 
increase stress, frustration, and error rates while impeding overall 
performance [6, 47, 52]. Still, multitasking should not, and cannot, 
be eliminated. In the future, cooperating with machines/algorithms 
while engaging in other tasks will be common in various domains 
such as mobility, manufacturing, or health. Consequently, it was 
argued that “managing user attention has emerged as a critical chal-
lenge” [15]. 

The negative effects of multitasking and task switching have 
led to calls for “Attentive User Interfaces” (AUIs) or “Attention 
Management Systems” (AMSs). AMSs are systems that “computa-
tionally seek to balance a user’s need for minimal disruption and the 
application’s need to efficiently deliver information” [5, 6] and try to 
manage user attention appropriately – for example, by precisely 
timing interruptions [80]. It is known that task interruptions are 
less detrimental when they happen at task boundaries (i.e., small 
breaks between subtasks) or when humans are relaxed [6, 37], and 
the application of AUI concepts have shown to be beneficial in vari-
ous settings from office work [6, 38, 39] to driving [84, 85]. However, 
beyond conceptual works and theories, AMSs in real-world settings 
hardly exist. Various contributions so far have evaluated the psy-
chological elements of task switching [40, 79] or modeling of user 
behavior [29, 42, 48]. Still, despite the existing theories and concepts, 
it is unknown how to develop an algorithm or system that inte-
grally cooperates with the user and helps them to multitask better. 
Many existing approaches hardly scale and suffer from problems 
such as (1) limited scope, (2) potentially inflexible or incomplete 
theories and heuristics, which in turn can lead to (3) highly complex 
architectures [5]. 

For example, existing concepts have dedicated components to 
detect potential breakpoints or subtask boundaries, where the un-
derlying data was labeled either by experts [38] or by the users 
themselves [48]. This makes such solutions hard to develop and 
difficult to transfer to other settings. In a real-time context, data 
labeling could be infeasible, since heuristics are restricted to our 
understanding of what constitutes “good” task switching (which 
has shown to be quite diverse between people [22]). Cognitive ar-
chitectures such as ACT-R in turn have issues in predicting “how 
task interleaving behavior adapts to changes in uncertainty related 
to the task states” [43]. This partly stems from the fact that the 
cognitive processes (i.e., the true costs of interruptions and users’ 
adaptations) are hardly observable. 

We claim that reinforcement learning (RL) and computational 
rationality (CR) could have a high potential to overcome these lim-
itations and help to build AMSs that benefit human multitasking 
for multiple reasons. First, AMSs must succeed in a probabilistic 
sequential decision problem: they need to continuously observe the 
process of humans operating on different tasks and derive a good 
strategy for interruptions (i.e., task switches). Thereby, rewards are 
sparse – the benefit of appropriate interruptions on users’ perfor-
mance are not immediately visible, while the negative effects of 
inappropriate switches accumulate over time. RL can build poli-
cies for sequences of actions to account for the issue of delayed 
rewards. Further, while approaches based on cognitive architec-
tures require scripted policies that become highly complex due to 
the sheer number of behavioral strategies, the policy of RL agents 
is learned and only driven by rewards. Second, RL has shown to be 
a suitable approach for improving human attention, cognition, and 
behavior in the field of HCI. To provide some examples, existing 
works have shown that RL can explain human behavior in task 
switching [29], determine timings for intelligent suggestions [91], 
support human-AI cooperation in visual search tasks [28], optimize 
physical activities embedded in just-in-time interventions [51], or 
to provide adaptive time pressure feedback to improve user per-
formance in arithmetic tasks [88]. Collectively, these studies show 
that RL can act as an enabler for intelligent interventions that fit in 
naturally with human activities. Third, RL in combination with com-
putational rationality (CR) can help to better understand users and 
build better cooperative agents [35]. Consequently, we believe RL 
can be used to coordinate operator resources (i.e., properly sched-
ule/assign tasks) in a way to optimize toward an objective function. 
This function could aim at increasing the overall performance of 
the user or optimize towards other parameters, for example, mini-
mizing physiological stress markers. 

We hypothesize, that an RL-based AMS that schedules 
tasks for users has the potential to improve their perfor-
mance in a multitasking setting, compared to a situation 
where the users themselves make the decision when to at-
tend to a particular task. 

Given the focus on task performance, it is not unthinkable that 
the algorithm reveals suitable strategies for switching that are 
unknown or even seem counter-intuitive, ultimately becoming 
a “superhuman” extension for the user. In this paper, we present a 
prototypical implementation of this concept and demonstrate its 
beneficial effect on overall performance in a dual-task setting (see 
Figure 1). Our contributions are as follows: 

• We introduce the concept of RL-based attention manage-
ment systems that observe the users’ environment(s) and 
automatically switch between tasks so that a defined reward 
(in our prototypical case, human performance) increases. 
• The concept was investigated on hand of a fast-paced dual-
task. Therefore, we implemented a simple game where the 
player has to balance two balls on two platforms, but only one 
platform can be controlled at a given time (see Figure 1). The 
game requires players to switch between tasks in a visual-
motoric activity with high temporal demand, representing a 
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real-time multitasking situation (similar to other skill-based 
tasks such as driving) that has not been extensively addressed 
by AMSs so far. The prototype is hosted on a public GitHub 
repository along with the code and all the utilized RL models 
and algorithms1 . We call for using, extending, and improving 
the tool for researching and designing future AMSs. 
• Implementing this concept requires training of the algorithm 
either on humans (which would demand a lot of resources 
and could yield frustration due to the random actions of 
the RL agents during training) or models that closely repli-
cate human behavior. We implemented two types of user 
models performing the balancing tasks to train the AMS. 
One model has unlimited access to perceiving the environ-
ment and acting instantly. The other model is built upon 
principles of “computational rationality” and uses “cognitive 
constraints” [35, 43] to simulate imperfect perception and 
reaction times. 
• The resulting systems were evaluated in a quantitative lab ex-
periment. We compared versions of the AMS that are trained 
with the two models (an unconstrained and a cognitive model) 
to users’ self-chosen task switching strategy (no supervisor 
condition) as well as a version where task switches were 
just indicated by the AMS and confirmed by the users them-
selves (notification condition). The results, based on a set of 
performance (game scores) and behavioral measurements 
data (reaction times, average time on task, etc.), show that 
the AMS trained with cognitive constraints can significantly 
improve human performance in the dual-task setting, con-
firming the main hypothesis of this work. 
• We provide a detailed but critical outlook and call for re-
searching the approach in other multitasking situations while 
experimenting with additional parameters, constraints, and 
reward functions. 

2 RELATED WORK 

2.1 Multitasking Theory 
Research on multitasking, i.e., “performing two or more activities in a 
short period of time” [83], has a long history. Salvucci et al. [70] pre-
sented the “multitasking continuum”, arguing that sequential and 
concurrent multitasking represent two sides of a spectrum rather 
than being different processes. While in concurrent multitasking 
“tasks are, in essence, performed at the same time”, task switching is 
characterized by longer phases dedicated attention towards activi-
ties [70], see Figure 2. Task switching and interruptions have been 
extensively addressed in past research [9, 12, 13, 16, 32, 34, 52, 66]. 
Interruptions can be defined as “introduction to a new task or tasks 
on top of the ongoing activity, often unexpectedly, resulting in con-
flicts and loss of attention on the current activity, failing to resume 
the work where it was interrupted” [5, 58], which requires humans 
to rehearse and clean the problem state. Consistently, studies have 
demonstrated that interruptions can disrupt cognitive processes, 
leading to performance decrease, as well as increased stress and er-
ror rates [6, 74, 87]. Interruption costs are influenced by factors such 
as task complexity, interruption frequency, duration, or the nature 

1https://github.com/reapphil/AITentiveMultitasking 

of the secondary task [13, 16, 32]. Resumption lags — the time taken 
to return to the before-interrupted task — also impact performance. 
The transitions require cognitive resources for task switching and 
reactivation of relevant information (recall, see Figure 2). 

Theories such as the Threaded Cognition Theory [11] try to of-
fer insights into these interruption-related phenomena. According 
to this theory, cognitive processes are not isolated but intercon-
nected threads that can operate in parallel [70]. Resources exe-
cute processes exclusively in service of one task thread at a time. 
Interruptions can disrupt these threads, resulting in conflicts for 
cognitive resources. The theory suggests that the cognitive sys-
tem dynamically allocates resources to various threads, adapting 
to task demands and priorities [69]. When an interruption occurs, 
the cognitive system must shift resources from the primary to the 
secondary task thread. Resuming the primary task requires the re-
allocation of resources back to the original thread, which involves 
cognitive effort and potential delays. Longer interruption- and re-
sumption lags can lead to interference between threads, resulting 
in performance decrements. The precise timing of interruptions, 
for example, between subtasks or in times of low mental work-
load [6], is a potential solution to mitigate the negative effects of 
interruption- and resumption lags. Multiple studies revealed that 
it is better to be interrupted between (sub)tasks than in the mid-
dle of a task [1, 36, 67, 85]. One of the explanations comes from 
the memory-for-problem-states theory, suggesting that individuals 
are more likely to have an active problem-solving state during the 
middle of a task, but not between distinct tasks [13]. 

2.2 Attention Management Systems 
A core idea of AMSs is to strategically time notifications to min-
imize interruption costs, enhance overall task performance, and 
provide users with a less stressful environment [5, 6]. Calls for 
AMSs range back to the early days of ubiquitous computing [5, 82]. 
Horvitz [33] suggested to “consider the status of a user’s attention in 
the timing of services [..] while considering costs and benefits of defer-
ring actions”, and also recent guidelines for human-AI interaction 
argue to “time services based on context” [4]. Regarding potential 
features, researchers have proposed to (1) find better timings for 
interruptions based on interruptibility and (2) adapt user interfaces 
in a way to ease task resumption. A large body of work has looked 
into gauging user interruptibility [93] and detecting opportune 
moments for notification delivery [24, 39, 63] by using sensors and 
machine-learning models. Subsequent mitigation strategies include 
not only interruption timing but also an indication of availabil-
ity status [92] or the use of aids to help users resume their tasks 
more effectively after an interruption occurs [75]. Considering task 
switching support, it has been shown that properly organized in-
terfaces can also ease task resumption [60] by providing cues. Task 
resumption cues can be designed in an explicit (providing specific 
information about the task) or implicit (guiding users’ attention, 
for example, their gaze) way, and they can be communicated before, 
during, and after interruptions using different modalities [72]. 

However, sophisticated real-time AMSs hardly exists. So far, pro-
posed concepts build upon computational models or perform a data-
driven approach [5]. Systems using computational models conduct 
decisions by predicting the behavior of users. Therefore, Brumby 
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Figure 2: The multitasking continuum describes the relationship between concurrent and sequential multitasking. The balancing 
task used for this project contains aspects of both concurrent and sequential multitasking (adapted from Salvucci et al. [70] 
left). Task switching results in switch costs given by the interruption and the resumption lags (right). 

et al. [14] distinguish between cognitive architectures (such as 
ACT-R), constraint modeling, and uncertainty modeling. A problem 
with systems that build upon computational multitasking models is 
that they “focus on a different grain size of behavior and/or different 
tradeoffs of aggregate behavior vs. individual behavior” and are not 
always flexible enough to cover the uncertainties and individual dif-
ferences in human behavior. In contrast, most existing data-driven 
approaches require data labeled by experts. In both cases, systems 
quickly become highly complex. For example, Okoshi et al. [58] 
proposed a system with multiple hierarchies of classifiers that de-
tect breakpoints in activities based on previously detected postures 
or movements [5, 58]. Finally, existing AMSs manage interruptions 
quite simply, i.e., by delivering them whenever task boundaries 
are detected or choosing between multiple interruption modalities 
(such as visual, auditory, or haptic) [5]. 

2.3 Computational Rationality 
A theoretical concept that may be able to more precisely model 
human multitasking behavior while accounting for various uncer-
tainties and individual differences is computational rationality [59]. 
In contrast to classical RL (where agents are typically trained to 
achieve superhuman performance, for example, to play computer 
games [53]), CR introduces constraints that incorporate human 
limitations to make agents behave similarly to humans. To provide 
an example related to this paper, while a classical RL agent would 
always see the true environment and react instantly to a task switch, 
a CR agent can incorporate constraints related to human visual 
perception to provoke a reaction time. This can be achieved by 
distinguishing between an internal (i.e., the agents’ “mind”) and an 
external environment in which it operates. The CR agent (i.e., the 
modeled user) interacts with the internal environment via obser-
vations and actions and with the external environment via stimuli 
and responses. The transition from the internal to the external en-
vironment involves the mentioned constraints. To build upon the 
example above, an external stimulus (such as a task switch mak-
ing the agent focus on another platform) could lead to inaccurate 
observations due to limitations in human vision. The subsequent 
action is performed based on the inaccurate internal state formed 
by the observation. The response to the external environment can 
again be subject to constraints (for example, limited by delays that 
mimic the human locomotor system). The internal environment 
can include psychological constructs such as memory (and their 
intrinsic limitations), signal noise, uncertainty, emotion, or stress 
and is updated based on the partially observable external environ-
ment. The internal representation can be modeled as a probability 

distribution over the possible states. With the help of a partially 
observable Markov decision process (POMDP) [8] (see 3.2) it can 
be described that the environment is only partially observable and 
the agent acts based on a belief state rather than the real state of 
the environment. The theory is called “Computational Rational-
ity“ because the control policy used for the action selection is the 
“rational“ (or optimal) policy taking into account the limits of the 
cognition, and the theory assumes that real humans would indeed 
perform optimally given their limitations. The great advantage of 
CR is its ability to simulate not only general but also individual 
behavior. Since the included constraints can be parametrized, the 
user model can be configured to perform stronger or weaker. Both 
an appropriate definition and parametrization of these constraints 
are necessary to find a suitable model for individual humans. CR 
was already applied to different kind of tasks like visual search [19], 
multitasking [44], typing [42], pointing [7], menu selection [18], 
decision making [62] or drawing [73]. Further, Gebhardt et al. [29] 
used RL to model human task interleaving behavior, suggesting 
that RL could become “a plausible model of supervisory control”. 

2.4 Summary 
We have discussed the theoretical aspects of task switching and 
how existing AMSs have been designed so far. As argued, human 
multitasking is a highly complex process, where both theory- and 
data-driven AMSs quickly become highly complex and suffer vari-
ous weaknesses such as inflexibility or difficulty in accounting for 
user differences. In contrast, computational rationality may be able 
to provide sophisticated models of human multitasking behavior 
that could be exploited by future AMSs. 

3 TASK SWITCHING SUPPORT WITH 
REINFORCEMENT LEARNING 

This work aims to evaluate the potential of an RL agent to develop 
an AMS that manages interruptions and controls human attention. 
We hypothesize, that an RL agent can learn a policy that automati-
cally detects moments for interruptions and coordinates operator 
resources (i.e., automatically and properly assigns tasks) in a way 
to improve overall performance. 

3.1 The Balancing Game as Example of an 
AMS-Supported Dual-Task 

Existing experiments on multitasking have used a multitude of 
natural (i.e., texting/chatting, data entry, driving, reading compre-
hension, object identification, etc.) and standardized tasks (tracking, 
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Figure 3: The architecture consists of the RL AMS agent that has unlimited access to the (virtual) environment and decides 
when to operate on one of the two platforms. To simulate a user playing the game, we implemented balancing agents with 
cognitive constraints for training the algorithm (left). In the subsequent evaluation phase (right), the AMS agent used the 
learned policy to switch between platforms when humans were playing the game. 

n-back, VCR task, pursuit, etc.) [13, 17, 55] with varying percep-
tual, cognitive, and physical demands that require skill-, rule-, and 
knowledge-based performance [65]. To evaluate our concept we 
have set up a novel continuous, motoric, fast-paced dual-task. Users 
control a computer game where they have to balance two balls on 
two dedicated platforms using the left stick on a gamepad (see Fig-
ures 1 and 3). Only one platform can be controlled at each moment 
in time to simulate a situation where users have to switch between 
the two platforms (i.e., tasks) sequentially. 

Considering the multitasking continuum, this task shows aspects 
of both, sequential and concurrent multitasking (i.e., players can see 
both platforms all the time but can only operate on one platform, see 
Figure 2). We argue that the continuous real-time nature of the task 
involves visual-cognitive demands, requires both skill-based and 
strategic components, and can act as a proxy for similar tasks (for 
example, the lane-keeping task in driving research [57]). Further, 
performance in the task can easily be assessed concerning the game 
score (i.e., the duration the balls are successfully balanced on the 
platforms), which allows the formulation of a simple reward. Finally, 
in its monotask version, the balancing task has a comparably small 
state space and allows for fast training. 

In our dual-task version of the game, users can either switch 
between the platforms themselves (using the shoulder buttons of 
the gamepad) or are assisted by the developed AMS. The difficulty 
level steadily increases by reducing the drag value of the balls over 
time. This value defines the decay rate of the ball’s linear velocity. 
Therefore this value is used to simulate drag, air resistance, or 
friction. The starting value is 0.8 and is reduced every 5 seconds 
by a value of 0.025, where negative drag values are allowed so 
that the ball would get faster over time. If the ball moves slowly, 
a force towards its current direction is applied to prevent them 
from lying still which would mean that no further adjustment of 

the rotation of the platforms would be necessary. When a ball 
falls off the platform, the game ends. This design allows a clear 
measurement of performance (i.e., the longer the game time, the 
higher the score), which is relevant for training the RL agents and 
quantifying users’ performance in the subsequent evaluation. We 
implemented the game in Unity and utilized the ml-agents library 
[45]. Every episode starts with a 5 seconds lasting countdown. The 
balls fall down from a random position inside the inner third of 
the platforms. An episode ends in case one of the balls falls off the 
corresponding platform. When assisted by the AMS, a switch is 
announced by a short audio signal as well as by coloring the target 
platform white. This announcement is performed 0.3 seconds before 
the actual switch. After a switch, the source platform moves towards 
its horizontal rotation with a speed of 10 degrees per second. 

We designed an algorithm that supports users by automatically 
switching between the platforms at appropriate moments. Strictly 
speaking a “moment” is nothing else than a particular configuration 
of the environment, with time being a series of subsequent envi-
ronment states. Configurations that are suitable for a task switch, 
in turn, can be considered as moments. Thereby, the AMS agent is 
supplied with a comprehensive representation of the problem space, 
including the environments of the involved tasks (see Figure 3). 
Based on this state space, the agent acts by either waiting (letting 
the user continue the task in the foreground) or switching to a 
particular task that demands attention. The agent is rewarded by 
interrupting and assigning the user properly (i.e., increasing the 
game score, see Section 3.3 for implementation details). 

To be able to train the AMS agent, we designed a computation-
ally rational balancing agent with cognitive constraints using RL to 
simulate a human playing the game (balancing agents, see Figure 
3, left). The CR agent does not observe the true but an internal 
environment [35], where various aspects (i.e., ball positions and 
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speeds) are included in a belief state. The AMS agent on top ac-
tivates either the left or right balancing agent via task switches. 
For example, when a balancing agent is deactivated by the AMS 
agent (i.e., switching to the other platform), the balancing agent is 
cut off from the real environment and gradually “forgets” the true 
position/velocity of the ball, leading to a deviation of the true state 
and the belief state. This is illustrated on the right (blue) platform 
in Figure 3. Here, the white ball represents the believed position 
and velocity of the ball, which is different from the true ball in 
the background. When the AMS agent switches to a platform, the 
corresponding balancing agent is activated, and the belief state 
is gradually updated again, simulating a regain of attention and 
reaction time of a human. After some (reaction) time the true and 
believed ball position match closely again (Figure 3, left). By using 
the constraint balancing agents, the AMS agent is forced to train 
a task switching policy adjusted for humans. The CR balancing 
agent is adapted based on different parameters to describe to what 
extend a certain constraint is present (for more details see 3.5). 
Consequently, diverse parameter assignments represent CR models 
that engage in the balancing game tailored for different individuals. 

After training, the policy learned by the AMS agent can be used 
for automated task switching when real humans play the game. 
This means, that the CR model for the balancing agents are cut off 
from the system as the balancing task is solely performed by the 
human (see Figure 3, right). Additional technical details about the 
ml-agents training process in combination with Unity can be found 
in the supplementary materials. 

3.2 Markov Decision Process 
In RL, an agent performs an action 𝑎 in a state 𝑠 of an environment 
at time step 𝑡 , which results in a change to the successor state 
𝑠 ′ with a probability of 𝑝 to reach a certain predefined goal by 
maximizing a reward signal 𝑟 . This work includes two different 
agents which can be distinguished by the observability of the state 
space. The AMS agent can access the true state space describing 
the current conditions of the platforms. This completely observable 
RL problem can be defined based on a Markov decision process 
𝑀𝐷𝑃 (𝑆, 𝐴, 𝑃, 𝑅, 𝛾 ; ) where the upper case letters describe the sets 
of the former mentioned corresponding elements. 𝛾 describes a 
discount factor where 0 ≤ 𝛾 ≤ 1 and is used to weight recent 
rewards more strongly than rewards from the past. Usually, RL 
algorithms estimate so-called value functions which indicate the 
expected return an agent gets in a certain state. Value functions 
are defined based on the behavior of an agent, called policy 𝜋 . The 
goal of RL is to learn a policy 𝜋 to maximize the value function and, 
therefore, the expected reward. The policy is defined as a mapping 
of states 𝑠 to the probabilities of the selection of certain actions 
𝑎 in this state, such that 

 
𝑎 ∈𝐴 𝜋 (𝑎 |𝑠 ) = 1. Finally, based on this 

information, the state-value function can be defined [77]: 

𝑣𝜋 (𝑠) = 
∑︁ 

𝑎 ∈𝐴 

𝜋 (𝑎 |𝑠) 
∑︁ 

𝑠 ′ ∈𝑆 

∑︁ 

𝑟 ∈𝑅 

𝑝 (𝑠 ′ , 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾 𝑣𝜋 (𝑠 ′ )] for all 𝑠 ∈ 𝑆 

(1) 
Therefore, to calculate 𝑣𝜋 (𝑠 ), the rewards 𝑟 of the different pos-

sible successor states 𝑠 ′ must be summed with their corresponding 
expected rewards 𝑣 (𝑠 ′ ) resulting in a recursive calculation. The 

values of 𝑣 (𝑠 ) for all 𝑠 ∈ 𝑆 can be learned in an iterative way and 
saved in a table starting with initial values of 0. This work has a 
continuous state space that prevents tabular methods from work-
ing. Therefore, it uses approximation techniques like neural nets to 
generalize this continuous state space. 

The former definition assumes that the agent is aware of its cur-
rent state but there are scenarios where this assumption does not 
hold due to the only partial observability of the environment. This 
is the case for the cognitive balancing agent which can only observe 
its state if the platform is currently active otherwise the uncertainty 
over the state space grows over time leading to imprecise actions. 
Those problems are defined as a partially observable Markov deci-
sion process 𝑃𝑂𝑀 𝐷 𝑃 (𝑆, 𝐴, 𝑃 , 𝑅, 𝛾 ; 𝐻 , Ω, 𝑂 ) where 𝑆 , 𝐴, 𝑃 and 𝑅 are 
equal to the definition of the 𝑀𝐷𝑃 . Ω is a finite set of observations 
𝑜 ∈ Ω the agent can perceive. 𝑂 denotes the observation function. 
𝑂 (𝑠 ′ , 𝑜, 𝑎) describes the probability that an agent gets in state 𝑠 ′ 

making observation 𝑜 after performing action 𝑎. Since the agent 
does not know the true state, it must aggregate a belief state 𝑏 (𝑠 ) 
based on the previous experience. The belief state is updated via 
the following equation: 

𝑏 ′ (𝑠 ′ ) ∝ 𝑂 (𝑠 ′ , 𝑜 |𝑠, 𝑎) 
∑︁ 

𝑠 ∈𝑆 

𝑝 (𝑠 ′ |𝑎, 𝑠 )𝑏 (𝑠 ) (2) 

Here, 𝑝 (𝑠 ′ |𝑎, 𝑠) denotes the transition probability to state 𝑠 ′ after 
performing action 𝑎 in state 𝑠 . In the context of this work, 𝑂 (𝑠 ′ , 𝑜, 𝑎) 
is calculated based on a fixed parameter 𝑜𝑝 like in Formula 5. A belief 
state 𝑏 is a probability distribution over 𝑆 , such that 


𝑠 ∈𝑆 𝑏 (𝑠 ) = 1 

and 0 ≤ 𝑏 (𝑠 ) ≤ 1. This probability distribution is updated during 
the execution of the environment. The policy uses 𝑏 (𝑠 ) instead of 𝑠 
since 𝑠 is not known to the agent. 

3.3 AMS Agent 
This agent perceives the environments of the involved tasks (as 
states) and can either stay on the current platform or switch to 
the other (via actions). By training, it determines a policy so that 
switches occur in a way that maximizes the game score (reward, see 
Figure 3). The problem environment of the task switching challenge 
can be defined as a Markov decision process 𝑀𝐷𝑃 (𝑆, 𝐴, 𝑃, 𝑅). The 
state 𝑠 ∈ 𝑆 of the environment is defined by the coordinates of the 
balls, the angles of the surfaces, and the movement direction, or 
velocity, of the ball. The action 𝑎 ∈ 𝐴 is defined by either switching 
to a new platform or staying at the current one. This decision is 
requested every 200 ms. 𝑝 (𝑠 ′ |𝑠, 𝑎) ∈ 𝑃 describes the probability 
that the player moves the surface in a certain direction resulting 
in the successor state 𝑠 ′ . Therefore, only the sub-environments of 
the problem are stochastic. However, the selection of the instance 
by action 𝑎 directly causes the switch to the respective instance. 
Therefore, this selection process is deterministic, with 𝑝 (𝑠 ′ |𝑠, 𝑎) = 1. 
The reward 𝑟 ∈ 𝑅 is defined by the following function: 

𝑟𝑡 = 
1 

1 + 𝑒 −𝑒 2 (Δ𝑡𝑠 −0.5) 
(3) 

where Δ𝑡𝑠 describes the elapsed time since the last switch. Based 
on this function, fast switches result in a smaller value than those 
that are performed after one second leading to less often performed 
switches. This adjustment was made to avoid unnecessary switch-
ing observed in situations where both balls were near the center of 
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the platform (i.e., where switching would not result in any change 
in the reward signal). Consequently, we utilized a logistic function 
so that the agent avoids unnecessary switches within one second. 

3.4 Balancing Agents 
Through the application of the principle of computational rational-
ity [35], we were able to train the AMS without the need for human 
involvement. Therefore, we built and refined two distinct models: 
an unconstrained one and a model incorporating human cognition 
(cognitive model). 

3.4.1 Unconstrained Model. This model defines a ball balancing 
agent without any human constraints that can, therefore, achieve 
superhuman performance. This agent is used as a baseline to exam-
ine if any of the human cognition adaptions affect its capabilities to 
find the opportune moment for a task switch when used as input 
for the training of the AMS agent. It uses a sensor vector with a 
space size of 8 and the same observations as the AMS agent except 
that it only collects the information from its own platform. The 
action vector is continuous, has a size of 2, and defines how much 
the platform should be rotated on the x- and z-axis per action. It 
ignores the y-axis. The reward signal 𝑟 at time 𝑡 is defined by the 
following formula: 

𝑟𝑡 = 1 − 
𝐷𝑡 

𝑟 𝑎𝑑𝑖𝑢𝑠 
(4) 

Here 𝐷𝑡 is the distance of the ball to the center of the platform 
at time 𝑡 and 𝑟 𝑎𝑑𝑖𝑢𝑠 is the radius of the platform. 

3.4.2 Cognitive Model. The human modeling agent mimics the 
behavior of a human playing the balancing game. Human players 
are subject to certain constraints in perceiving the actual state of 
the game. The following constraints were defined: 

1. Adaptation of the internal representation (velocity and posi-
tion) of the ball after a task switch. 

2. Imprecise values of the following objects due to limitations 
in visual perception: 

2.1. Position of the ball 
2.2. Velocity of the ball 
2.3. Angle of the platform 

The imprecise position, for instance, can be explained by the per-
ception being more challenging due to the camera position (camera 
angle to the platform). The adaption of Point 1. depends on the 
difference between the states of the platforms, s.t. the modification 
of the internal representation towards the true state is fast if both 
states are similar (similar ball velocity and position per platform) 
or slow if they are significantly different. Furthermore, not only 
their similarities are relevant. It could be the case that a human 
remembers the approximate state since the last task switch. There-
fore, the uncertainty of the state of the currently inactive platform 
grows over time. This noise could cause a non-ideal or delayed 
action by humans. These restrictions and the underlying internal 
representation can be defined by a partially observable Markov 
decision process 𝑃𝑂 𝑀𝐷𝑃 (𝑆, 𝐴, 𝑃, 𝑅, Ω, 𝑂 ). The state space of the 
balancing agent is continuous, s.t. the belief state 𝑏 (𝑠 ) could be 
either described with a density function or based on a discretiza-
tion into bins. To reduce the computational complexity, this work 

uses a discretization of the ball position and velocity to model the 
belief state 𝑏 (𝑠). The transaction probabilities 𝑝 in Equation 2 are 
calculated based on a normal distribution of the ball velocity with a 
fixed parameter for the standard deviation 𝜎𝑃 and a mean value of 
a random value of an additional normal distribution. This random 
value is determined based on a fixed parameter for the standard 
deviation 𝜎𝑚𝑒𝑎𝑛 and the mean value of the estimated velocity. The 
estimated velocity equals the true velocity if the platform is ac-
tive. Otherwise, in the first step, the estimated velocity equals the 
random value of the additional normal distribution. The second 
step uses a new random value from the additional normal distri-
bution with the received random value from the first step as its 
mean value. Therefore, the estimated velocity gets more imprecise 
with every further update step due to the use of a random value 
from the additional normal distribution as the mean for the original 
distribution. Accordingly, the determination of a random value as 
the mean for the original distribution is used to generate a further 
deviation from the last observed velocity. 𝜎𝑚𝑒𝑎𝑛 is reduced every 
update step by a division of 2 according to the fixed update cycle 
of Unity. Consequently, the deviation from the actual velocity is 
determined shortly after the task switch and the trajectory of the 
belief state remains constant after an initial uncertainty. The obser-
vation probability 𝑂 in Equation 2 is calculated based on a fixed 
observation probability parameter 𝑜𝑝 : 

𝑂 (𝑠 ′ , 𝑜 |𝑠, 𝑎) = 

   

𝑜𝑝 if 𝑠 ′ is the true new state and platform active 
1−𝑜𝑝 
#𝑠 −1 if 𝑠 

′ is not the new state and platform active 

1 if the platform is not active 
(5) 

Here, 0 ≤ 𝑜𝑝 ≤ 1 applies. This definition of the observation 
probability leads to a fast update of the belief state to the true state 
if the platform is active and 𝑜𝑝 is not small. If the platform is not 
active, no observation is made, and therefore, 𝑂 (𝑠 ′ , 𝑜 |𝑠, 𝑎) = 1 for 
all 𝑠 ′ ∈ 𝑆 . Figure 4 illustrates the change of the belief ball posi-
tion over time. The update of the belief state (see formula 2) is 
performed during the execution of the environment in a prede-
fined interval 𝑢 . This is a new approach since older work calcu-
lated the transitions of the probability distributions in advance [42]. 
The update of the probability distribution is calculated in paral-
lel with the help of the Unity C# Job System in combination with 
the Burst Compiler [23]. The platform is discretized into 1000 bins. 
The new probability that the ball is inside one of these bins can 
be calculated independently by taking samples describing possi-
ble velocities from the normal distribution. A visitor bin 𝑗 can be 
determined by subtracting this sample velocity from the current 
position of a certain bin 𝑖 s.t. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗 ← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 − 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦. 
Iteratively all possible visitors are calculated and their current prob-
abilities are used to determine the updated probability of bin 𝑖 by 

New[𝑖 ] ← New[𝑖 ] + Current[ 𝑗 ] 𝑛𝑠
where New describes a vector with 

the updated probabilities, Current the current probabilities and 𝑛𝑠 
the number of samples. The resulting probability that the ball is 
inside bin 𝑖 is multiplied by the observation probability described 
in formula 5. Furthermore, the distribution of the previously active 
platform is considered for a certain time after a switch (described 
by 𝑑𝑡 ), to model the slow adaption of humans to a fast-changing 
environment. Therefore, the agent performs actions based on the 
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Figure 4: The change of the belief ball position over time. The white ball shows the currently believed ball position. The red 
line indicates the velocity with the highest probability of the normal distribution. The black line points to the average direction 
of the sample velocities. At step 1, the left platform is active (indicated by the green color). At step 2, an upcoming task switch 
is indicated by the white color of the target platform. At step 3, the task switch is performed resulting in an update of the 
belief ball position of the right platform: from an imprecise position in step 2 to the true position at step 3. In steps 3 to 6, the 
increasing mismatch, between the belief ball position and the true ball position on the left, inactive platform, can be seen. This 
ever-increasing mismatch is caused by the determined sigma values of the normal distribution. 

belief state of the previously active platform on the currently active 
platform for 𝑑𝑡 seconds after a switch. This approach is based on 
the assumption that a human player remembers the state of the 
previously active platform and its increasing inaccuracy over time 
but it does not model the chance that a human performs an action 
that was intended for the old platform after a fast task switch. This 
can be modeled by the introduction of a further parameter 𝑡𝑜𝑑 de-
scribing the duration an agent performs an action based on the 
belief state of the former active platform. 

3.5 Training and Parameter Inference 
The AMS agent was trained based on a cognitive model defined 
by its parameters. They were determined by an inverse modeling 
approach, which describes the process of inferring parameters from 
behavioral data [56]. Therefore, the behavioral data of a single par-
ticipant with average gaming skills (value of 4 on a scale from 1 
to 7, where 1 is "I Don’t play at all" and 7 is "Professional Level") 
was collected by playing the game for 500000 actions with a “ran-
dom” AMS (i.e., random switching interval with a minimum of 0.2s) 
and a constant difficulty level (fixed ball drag value of 0.8). 2000 
different parameter assignments were evaluated and compared to 
the human behavior via a distance function. The parameterization 
of the model most similar to the human behavior was used for 
training and evaluation of the AMSs (Standard Deviation 𝜎𝑃 = .01; 
Standard Deviation 𝜎𝑚𝑒𝑎𝑛 = .2; Update Period 𝑢 = .4; Observation 
Probability 𝑜𝑝 = .4; Old Distribution Persistence Time 𝑑𝑡 = .1). The 

balancing agent was trained for 10 million steps in combination 
with the AMS agent which was trained for 5 million steps. A step 
is defined by a single decision. The training of both agents con-
verges after the corresponding steps. More technical details about 
parameter inference and the training process can be found in the 
supplementary materials. 

4 USER STUDY 

4.1 Experiment Design 
We evaluated the AMS prototypes in a lab experiment. Our main hy-
pothesis addresses the question of whether participants supported 
by the AMS achieve higher performance than when they decide 
which tasks to attend at each moment. Further, we aimed to investi-
gate if the AMS would work better when being trained on the user 
model with cognitive constraints, compared to the unconstrained 
model. Finally, we wanted to know how the AMS would perform 
when task switches are not automatically performed but indicated 
to the user via notifications. This yielded the following four con-
ditions, which were tested in a quasi-randomized within-subjects 
experimental design: 

• Cognitive Model: In this condition, participants played the 
game with the AMS trained on the user model with cognitive 
constraints. The AMS automatically switched between the 
platforms based on the learned policy (see Section 3.4.2). 
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• Unconstrained: In this condition, participants played the 
game with the AMS trained on the unconstrained user model. 
Again, the AMS switched between the platforms based on 
the learned policy automatically (see Section 3.4.1). 
• Notification: We wanted to know if the AMS would also 
benefit users when only notifying them. In this condition, 
the AMS used the policy trained using the cognitive model. 
However, task switches were not enforced automatically but 
had to be confirmed by the user by pressing a button. To allow 
for suitable comparisons, we decided to automatically switch 
to the target platform in case the user does not confirm 
within one second. 
• No Supervisor: In this condition, no AMS was present and 
the task of switching between the platforms was solely per-
formed by the participants. This condition acts as the base-
line control condition for investigating the main hypothesis. 

Strictly speaking, the evaluation procedure did not include the 
balancing models used for training the AMSs. For the sake of sim-
plicity, we still call the corresponding conditions based on the names 
of the underlying user models, i.e., condition cognitive model refers 
to the AMS trained on the cognitive model, while the condition 
uconstrained refers to the AMS trained using the unconstrained 
model. 

4.2 Participants 
In total, N=43 participants (30 male, 12 female, one preferred not 
to say, 𝑀 = 27.73, 𝑆𝐷 = 4.21 years; mainly students and univer-
sity staff) completed the experiment. Participants self-rated com-
puter/video game skills were close to the theoretical mean on the 
Likert scale from 1 to 7 (𝑀 = 3.83, 𝑆𝐷 = 1.88, 𝑀𝑒𝑑𝑖𝑎𝑛 = 4, 𝐼 𝑄𝑅 = 3). 
Regarding the amount of playing hours, the median answer was 
<1 hour per week. Participants’ tendency to actively engage in or 
avoid intensive technology interaction measured by Affinity for 
Technology Interaction (ATI) scale [26] showed above neutral result 
(𝑀 = 5.25, 𝑆𝐷 = 0.98). 

4.3 Procedure 
The experiment was performed directly in the Unity Editor. Par-
ticipants used a DualShock 5 gamepad, specifically its joystick, to 
control the angles of platforms and the shoulder buttons to switch 
between the platforms in the notification or no supervisor condi-
tions. The research was carried out within a laboratory setting, 
where we provided guidance to the participants throughout the 
study. Upon arrival, participants were briefed about the study and 
were asked for demographic data. Next, they completed a short 
training in each condition in quasi-randomized order (to account 
for order effects, one minute per condition). This was followed by 
the four experimental conditions, again in quasi-randomized order 
(following an experiment plan where 4 conditions result in 4!=24 
different arrangements, i.e., every 24 participant, all combinations 
of conditions appeared exactly once, and participants were assigned 
in the order they appeared). In each condition, we collected the 
results of five episodes that lasted longer than 5 seconds (i.e., we re-
moved shorter episodes since sometimes the random ball positions 
at the start of the episode were disadvantaging the player; the 5s 
were determined experimentally when configuring the difficulty 

of the task before running the experiment). Participants were told 
that the experiment would end automatically once enough data 
was collected. After each condition, participants completed a short 
post-condition survey. At the end of the study, the data collection 
was supplemented with a post-experiment survey and a short semi-
structured interview. Overall, the experiment lasted for about one 
hour per participant. 

4.4 Measurements 
To evaluate the discussed AMS and the baseline condition, we col-
lected performance- and behavior-related data as well as subjective 
ratings as follows: 
• Performance was assessed using participants’ final game 
score (i.e., time until the game was over) after each episode. 
Since the difficulty of the game steadily increases, the score 
represents a valid measure of participants’ capability to bal-
ance the ball on both platforms. Another indicator of perfor-
mance is the ball’s average distance to the platform center 
during an episode. Assuming that a good player would bal-
ance the ball close to the platform center, low values indicate 
high-performance and high values indicate low one. We 
calculated the geometric means for players’ repeated perfor-
mance in the respective conditions to be more robust against 
potential outliers [25, 71]. 
• Task Switching Behavior was assessed with multiple pa-
rameters. We collected the average time spent on a platform 
between the task switches (average time on task) and partic-
ipants’ reaction time. The reaction time was defined as the 
time between a task switch and the subsequent first joystick 
action, i.e., the threshold of the Euclidean distance between 
a zero vector and the averaged performed joystick input (a 
threshold of 0.19, similar to reaction time measurements in 
automated vehicles [20]). Further, we specified a set of values 
describing the state of the balancing game at the moment 
of a task switch. The source platform rotation describes the 
state of the currently active platform before the task switch 
(in degrees, deg °). The ball distances (in Unity units, u) and 
velocities (in Unity units per second, u/s) are other indicators 
of the task-switching behavior. Lower angle, distance, and 
velocity values on the source platform would mean that the 
situation was “cleared” before a task switch, while higher 
distance and velocity values at the target platform indicate a 
need for more urgent reactions. 
• Subjective Scales were included to assess participants’ 
workload and overall experience. After each condition, the 
workload was measured with the short version of the NASA-
TLX questionnaire [31]. Further, participants rated their sub-
jective experience after each condition on a single 7-point 
Likert scale item ("Please rate your overall experience of 
playing under this condition, from don’t like at all to like it 
very much"). 

5 RESULTS 
To evaluate the results between the four conditions, we used IBM 
SPSS V.24 to conduct Friedman tests with subsequent pairwise 
Bonferroni-corrected Wilcoxon tests or repeated measures ANOVA 
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Table 1: Players’ performance and subjective ratings in the different conditions. The absolute score resembles the game time in 
seconds until the game is over, the normalized score is based on players’ maximum performance over all episodes, and the 
distance to the center shows the average deviation of the balls to the platform centers in Unity units (i.e., “meters”). 

Cognitive Model 
M (SD) 

No Supervisor 
M (SD) 

Unconstrained 
M (SD) 

Notification 
M (SD) 

Performance Data 
Absolute score (s) 36.29 (35.17) 25.99 (27.05) 19.71 (16.10) 20.03 (18.47) 
Normalized score .34 (.17) .26 (.15) .22 (.14) .23 (.15) 
Distance to center 3.12 (.30) 3.19 (.25) 3.11 (.26) 3.21 (.25) 
Reaction time (ms) 346 (151) 323 (179) 306 (94) 314 (143) 

Subjective Workload 
Mental demand 3.68 (1.57) 5.02 (1.39) 4.07 (1.53) 4.91 (1.44) 
Physical demand 2.32 (1.29) 3 (1.75) 2.41 (1.50) 2.84 (1.80) 
Temporal demand 4.02 (1.34) 4.09 (1.70) 4.55 (1.55) 5.18 (1.59) 
Effort 4.11 (1.50) 4.96 (1.31) 4.34 (1.52) 5.11 (1.45) 
Frustration 3.86 (1.67) 3.59 (1.62) 4.66 (1.31) 5 (1.46) 
Subj. performance 4.25 (1.28) 3.93 (1.56) 3.71 (1.05) 3.14 (1.44) 

User Preference 
Overall rating 4.39 (1.48) 4.43 (1.56) 3.48 (1.23) 3.05 (1.54) 

Figure 5: Participants’ absolute (left) and normalized (right) game scores in the four experimental conditions. A higher score 
indicates better performance. The normalized scores (based on players’ maximum performance over all episodes) allow for a 
better visual interpretation of the data since the absolute scores strongly varied between the participants. 

with post-hoc tests (depending on the data being normally dis-
tributed or satisfying the central limit theorem). Additionally, we 
utilized JASP [41] to generate Raincloud diagrams for our data and 
we confirmed our results with Bayesian repeated measures ANOVA. 
Finally, we conducted some exploratory comparisons between our 
highest-performing AMS agent (based on the cognitive model) and 
participants’ self-chosen task switching strategy (no supervisor). 

5.1 Performance 
Descriptive statistics and data plots of participants’ absolute and 
normalized game scores in the individual conditions can be seen 
in Table 1 and Figure 5. In contrast to the monotask version of the 
game (where 12 players could balance the ball on a single platform 
and without task switches for 𝑀 = 103.24 𝑆𝐷 = 56.25 seconds, 
see supplementary materials for details), participants of this study 

performed, depending on the conditions, three to four times worse 
in the dual-task versions. 

Regarding participants’ performance when playing in the four 
different conditions (the unconstrained and the cognitive models as 
well as the notification and no supervisor conditions), an ANOVA 
indicated a significant effect (Greenhouse-Geisser; 𝐹 (1.69, 70.82) = 
11.534, 𝑝 < .001, 𝜂 2 

𝑝 = .215). Pairwise comparisons with Bonferroni 
correction reveal that participants performed significantly better 
with the cognitive model compared to the unconstrained (𝑝 < .001), 
the notification (𝑝 = .004), and the no supervisor (𝑝 = .042) con-
ditions. In contrast, in the no supervisor mode players performed 
better than the AMS agent trained with the unconstrained model 
(𝑝 = .043). This result was confirmed with a Bayesian ANOVA 
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(𝐵𝐹𝑖𝑛𝑐𝑙 = 15579.798), with the cognitive model showing higher per-
formance than the unconstrained model (𝐵𝐹10,𝑈 = 179.19), the noti-
fication mode (𝐵𝐹10,𝑈 = 40.18), and the no supervisor (𝐵𝐹10,𝑈 = 5.36) 
mode. 

Another potential indicator of performance is the distance of 
the balls to the platform centers (averaged over an episode). In 
other words, high performance would mean that the balls are quite 
close to the platform centers, while lower performance would be 
indicated by larger distances. Although the ANOVA suggests a 
significant effect (Assumption for sphericity met; 𝐹 (3, 126) = 3.974, 
𝑝 = .01, 𝜂 2 

𝑝 = .086), none of the Bonferroni-corrected pairwise 
comparisons was significant (see Table 1 for the quite similar means 
in the respective conditions). 

Further, we investigated how participants’ individual perfor-
mance influenced the results. While 32 participants showed the 
highest performance when playing with the AMS agent trained on 
the cognitive model, 11 showed their best results in the no super-
visor condition. 8 of these players reside in the upper half when 
performing a median split on their performance (in the no supervi-
sor condition), compared to 3 in the lower half – in other words, 
the AMS worked better for low-performing than for highly-skilled 
players. Finally, we evaluated the order of conditions, in partic-
ular, whether a learning effect occurred that made participants 
perform better over time. However, a repeated measures ANOVA 
indicated no significant effect, and directly comparing the first 
(𝑀 = 23.4, 𝑆𝐷 = 29.0) and the last try (𝑀 = 23.0, 𝑆𝐷 = 18.1) in-
dependent of the experimental condition yielded no significant 
difference. 

5.2 Task Switching Behavior 
Regarding participants’ reaction times after switching the platform, 
we did not find any statistically significant differences between the 
experimental conditions (see Table 1). Further, we hypothesized that 
the reaction time could depend on how urgent a reaction is needed. 
For that, we calculated the set of task switching behavior measures 
as described in section 4.4. We hypothesized that the reaction times 
are partly depending on the difficulty of the upcoming task, i.e., a 
fast-moving ball with a high distance to the center is more difficult 
to resolve and needs a faster reaction than a slow ball placed in 
the center of the target. For both the balls’ velocity and distance to 
the center, we observed a significant but weak negative correlation 
with reaction times (velocity: 𝑅 = −.16, 𝑝 < .001; distance: 𝑅 = 
−.083, 𝑝 < .001). 

Additionally, we investigated if the task switching behavior of 
our best-performing AMS agent (the one trained using the cog-
nitive model) differs from the participants’ self-chosen interrup-
tion strategy (no supervisor condition) using Wilcoxon signed rank 
tests, see Figure 6. Participants stayed significantly longer on a 
platform when playing without an AMS (𝑀 = 4.46𝑠, 𝑆𝐷 = 1.61𝑠 ) 
compared to the cognitive model (𝑀 = 2.66𝑠, 𝑆𝐷 = .52𝑠 ; 𝑍 = 
−5.458, 𝑝 < .001, 𝐵𝐹10 = 9654.518). The rotation of the source 
platform (cognitive model: 𝑀 = 9.36°, 𝑆 𝐷 = 4.47°; no supervisor: 
𝑀 = 10.04°, 𝑆𝐷 = 4.02°; 𝐵𝐹10 = .292) and the ball distance at 
the target platform (cognitive model: 𝑀 = 2.95𝑢, 𝑆𝐷 = .25𝑢; no 
supervisor: 𝑀 = 2.97𝑢, 𝑆 𝐷 = .39𝑢; 𝐵𝐹10 = .177) did not differ. 

The cognitive model (𝑀 = 2.85𝑢, 𝑆𝐷 = .25𝑢) switched at signifi-
cantly larger deviations of the ball on the source platform than 
the participants themselves (no supervisor: 𝑀 = 2.66𝑢, 𝑆𝐷 = .39𝑢; 
𝑍 = −3.770, 𝑝 < .001, 𝐵𝐹10 = 173.515). Further, participants tended 
to slow down the ball on the source platform to a significantly 
lower speed (𝑀 = 1.12𝑢/𝑠, 𝑆 𝐷 = .30𝑢 /𝑠 ) before switching than 
the cognitive model (velocity at source, 𝑀 = 1.28𝑢 /𝑠, 𝑆𝐷 = .37𝑢/𝑠 ; 
𝑍 = −2.570, 𝑝 = .01, 𝐵𝐹10 = 12.902), while the cognitive model 
tended to switch at significantly higher ball speeds on the target 
platform (𝑀 = 1.17𝑢/𝑠, 𝑆 𝐷 = .34𝑢 /𝑠 ) than the participants in the no 
supervisor condition (𝑀 = 1.03𝑢/𝑠, 𝑆𝐷 = .28𝑢 /𝑠 ; 𝑍 = −2.795, 𝑝 = 
.005, 𝐵𝐹10 = 14.912). Overall, the results suggest that participants 
switched more cautiously between the platforms themselves (no 
supervisor condition) than when using the best-performing AMS 
(cognitive model). They spent more time on the platforms and acted 
more carefully regarding a stable situation on the source platform 
before switching. Further, they switched at lower speeds of the ball 
on the target platform than the cognitive model. 

Finally, we evaluated if the playing styles of less-skilled and 
higher-skilled players differ in the no supervisor condition using 
Mann–Whitney U tests (see Figure 7). Similar to the cognitive model, 
higher-skilled players switched more frequently and spent less time 
on a platform (higher-skilled: 𝑀 = 3.87𝑠, 𝑆 𝐷 = 1.15𝑠; lower-skilled: 
𝑀 = 5.06𝑠, 𝑆𝐷 = 1.80𝑠; 𝑈 = 122, 𝑝 = .013, 𝐵𝐹10 = 2.875). They also 
“cleared” the source platform closer to the neutral position before 
switching (higher-skilled: 𝑀 = 8.33°, 𝑆𝐷 = .2.66°; lower-skilled: 𝑀 = 
11.75°, 𝑆𝐷 = .4.47°; 𝑈 = 115, 𝑝 = .008, 𝐵𝐹10 = 2.557). Also regarding 
the other parameters of the source platform, skilled players slowed 
down the ball more (higher-skilled: 𝑀 = .94𝑢 /𝑠, 𝑆𝐷 = .18𝑢/𝑠 ; lower-
skilled: 𝑀 = 1.29𝑢/𝑠, 𝑆𝐷 = .30𝑢 /𝑠 ; 𝑈 = 70, 𝑝 < .001, 𝐵𝐹10 = 113.238) 
and kept it closer to the center before switching (higher-skilled: 
𝑀 = 2.46𝑢, 𝑆 𝐷 = .23𝑢; lower-skilled: 𝑀 = 2.87𝑢, 𝑆𝐷 = .41𝑢; 𝑈 = 
755, 𝑝 < .001, 𝐵𝐹10 = 34.361). 

5.3 Subjective Workload and Experience 
Considering the subjective workload as assessed by NASA-TLX, 
Friedman tests indicated significant effects for all sub-dimensions 
(Mental Demand: 𝜒 2 = 33.85, 𝑝 < .001, Physical Demand 𝜒 2 = 
14.01, 𝑝 < .01, Temporal Demand 𝜒 2 = 19.59, 𝑝 < .001, Effort 
𝜒 2 = 20.99, 𝑝 < .001, Frustration 𝜒 2 = 25.02, 𝑝 < .001, Subjective 
Performance 𝜒 2 = 19.37, 𝑝 < .001). 

Pairwise Wilcoxon test (with Bonferroni-Holm correction) 
showed that playing with the AMSs trained on the cognitive 
(𝑝 < .001) and the unconstrained (𝑝 < .01) models has signifi-
cantly lower mental demand, compared to the notification and the 
no supervisor conditions. Similar results were obtained for the phys-
ical demand. Also here, the cognitive and unconstrained models 
were rated significantly less physically demanding than no super-
visor and notification (𝑝 < .05). Regarding pace rush, both the no 
supervisor and the cognitive model conditions were rated signifi-
cantly less temporally demanding than the notification condition 
(𝑝 < .001). The no supervisor and notification conditions further 
received significantly higher scores for Effort than the two AMSs 
trained on the unconstrained and cognitive models (𝑝 < .05). Par-
ticipants felt significantly more frustrated with the unconstrained 
and the notification conditions than in the cognitive and the no 
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Figure 6: Comparisons between the best-performing AMS trained using the cognitive model and the no supervisor condition. 
The results indicate that the AMS prompted participants to switch faster and resolve more difficult situations, while they acted 
more cautiously when playing without the system. Higher values for platform rotation (degrees), ball distance (Unity units), 
and ball velocity (Unity units/s.) indicate more difficult situations. 

supervisor conditions (𝑝 < .01 and 𝑝 < .05). Considering subjective 
performance, the notification condition had significantly lower rat-
ings than the other conditions (𝑝 < .05). Additionally, the cognitive 

model had significantly higher ratings than the unconstrained one 
(𝑝 < .05). 

Finally, we assessed participants’ overall preference with a sin-
gle Likert-scale item (𝜒 2 = 22.05, 𝑝 < .001). Thereby, both the 
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Figure 7: Comparison of low and highly skilled players. Similar to the AMS, highly skilled players switched more frequently. 
They also “cleared” the source platform better before switching than the less skilled players. Higher values for platform 
rotation (in degrees) indicate more difficult situations. 

Figure 8: Pearson Correlation Matrix between skills in games 
and mode preferences. Non-significant variables are crossed 
out. 

AMS trained with the cognitive model as well as the no supervisor 
condition received significantly higher scores than the other two 
conditions (𝑝 < .001). 

Experienced Game Players prefer full under-human control mode. 
The Pearson correlation matrix revealed a significantly higher pref-
erence towards the no supervisor mode by respondents with good 
computer/video game skills (they also tend to assess the subjective 
overall experience of no supervisor mode higher). This was accom-
panied by a significantly lower preference for the RL models (see 
Figure 8 for details). 

Multiple Linear Model of predicting overall experience explains al-
most 60% of its variability by physical demand, amount of hard work, 
level of stress or annoyance, and subjective success in accomplishing 

the task. Multiple linear regression was used to test if variables of 
NASA-TLX significantly predicted the overall experience regardless 
of the mode. For this, we combined the answers in all modes to-
gether. Akaike Information Criterion (AIC) was applied to find the 
best model fit. The overall regression was statistically significant 
(R2 adjusted = 0.584, F(6, 153) = 38.08, p < .001). We found that 
physical demand (𝛽 = −0.14, 𝑝 = .012), effort (𝛽 = 0.17, 𝑝 = .006), 
frustration level (𝛽 = −0.39, 𝑝 < .001) and subjective performance 
(𝛽 = 0.58, 𝑝 < .001) with intercept 2.85 (𝑝 < .001) significantly 
predicted the overall experience. The final model explains 58.4% of 
overall experience variability. 

6 DISCUSSION 
The results of the experiment confirm our main hypothesis that an 
RL-based AMS that automatically switches between tasks can 
significantly improve human performance in a multitasking 
scenario. Consequently, we claim that this work has genuine im-
plications for the design of future attention management systems, 
which we discuss as follows. 

6.1 RL-Based Attention Management Demands 
Cognitive Models of User Behavior 

The proposed concept achieved comparably high performance only 
with the AMS trained on the cognitive model, compared to the un-
constrained model. This result was expected. The unconstrained 
model would, for example, be able to constantly switch back and 
forth within milliseconds as there are no interruption or resump-
tion lags. The results demonstrate that a user model with simulated 
human constraints is essential to achieve the desired result. On 
average, participants yielded 1.5 times higher scores using the AMS 
trained with the cognitive model compared to their self-determined 
interruption strategy in the no supervisor condition. Still, the AMS 
helped less skilled players more than highly skilled players. One 
explanation could be that the concept itself is not robust enough to 
improve the performance of all high-performing humans. However, 
there are multiple possibilities to further improve the performance. 
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First, while our study used a cognitive model based on a single 
person, greater improvements are plausible when participants use 
a cognitive model fitting their individual style of playing. We plan 
to use approximate Bayesian computation to directly infer param-
eter values of participants in future studies [46, 56]. Presumably, 
choosing the right model might help to improve all players’ perfor-
mance with the AMS. Second, we could try to improve our reward 
function for the AMS. Third, we did not excessively use compu-
tational resources when training our agents, and longer training 
with improved hyperparameters could yield a better result. Fourth, 
we plan to improve the cognitive model itself. For example, our 
architecture was based on the assumption that a player would only 
focus on the active platform. To better account for the concurrent 
multitasking aspect of the game (i.e., players could always see both 
platforms), the cognitive model can be improved by an additional 
agent sharing the visual attention even to the currently inactive 
task. 

6.2 The AMS Provoked Fast-paced Playing 
without Influencing Subjective Workload 

The task switching behavior induced by the AMS was quite different 
compared to the participants’ self-determined strategy. Participants 
spent more time on the platforms and aimed at a more stable situa-
tion before switching. This finding is in line with previous research, 
which suggested that humans tend to monotask until the work-
load in the primary task is reduced [68]. At the same time, they 
tended to switch to less urgent situations on the target platform 
than the AMS. These results can be interpreted in a way that the 
participants behaved more cautiously while the AMS fostered fast-
paced and intensive playing. Previous research has suggested that 
more frequent interruptions can be beneficial over less frequent 
switches [54] and that faster switching may benefit rehearsal and 
recovery [3]. Another explanation could be that participants’ load 
was better configured for the task [90]. One could interpret partic-
ular configurations of the source platform (small angle, little speed, 
and deviation of the ball) as being better suitable for task switch-
ing since such configurations are closer to “natural breakpoints” 
or times of “low mental load”. Interestingly, participants tended 
to switch during such configurations, while the AMS switched at 
higher angles, deviations, and speeds. This would contrast with 
the idea that task switching always works best in such situations. 
Interestingly, the higher pace and the more critical situations with 
the AMS were not reflected in participants’ subjective perception 
of workload. The AMS based on the cognitive model yielded signifi-
cantly lower effort as well as mental and physical demand compared 
to the no supervisor condition. This could result from the fact that 
automated switching without the need for monitoring leads to less 
overall workload. Another explanation could be that the game was 
very stressful, which in turn could have provoked players to act 
more cautiously without support. Furthermore, it could be observed 
that participants with higher skills behaved more similarly to the 
AMS in terms of their average duration on a platform. 

6.3 Automated Switching is Better than 
Interruptions in Fast-Paced Environments 

Interestingly, participants performed worst in the notification mode, 
where they had to confirm task switches using a button when be-
ing interrupted, despite the suggestions originated from our best 
performing AMS, the cognitive model. Past research has suggested 
that self-interruptions are more disruptive than external interrup-
tions [47]. Thus, it would be reasonable to assume that it could be 
easier for participants to be receptive to an interruption than to 
monitor both platforms and self-interrupt. However, the notification 
condition received the worst performance overall and was also sub-
jectively rated worst in terms of the NASA-TLX scores and users’ 
preferences. Presumably, the continuous demand of the balancing 
task combined with the need to confirm an upcoming interruption 
before acting has created an additional mental load. Another ex-
planation could be users’ tendency to defer interruptions to times 
of low workload or subtask boundaries even in fast-paced settings 
like driving [10]. Maybe participants unintentionally wanted to 
clean up the primary task before switching, despite this negatively 
influencing their performance. Research on AMSs in automated 
vehicles has proposed to prevent users from self-negotiating their 
receptivity to driving-related interruptions [84]. The results of the 
presented experiment confirm that automated switching has ad-
vantages over user freedom in the context of fast-paced scenarios. 
Still, we believe that this finding is strongly task-dependent and 
may differ in other, particularly less time-critical environments. 

6.4 Adaptability to other Multitasking Scenarios 
Multitasking can be categorized among various dimensions, such 
as the time spent on a task [67], task complexity, relation to the 
primary task, continuous vs. discrete tasks, and of course, the tasks’ 
demand on perceptual, cognitive, and physical resources [13]. In 
this work, we have demonstrated the potential of an RL-supported 
AMS in a dual-task balancing game. We believe that our concept 
can be generalized to fast-paced, visual-motoric, and continuous 
multitasking situations that demand urgent reactions (i.e., driving 
or remote control of multiple vehicles/drones, etc.). We observed 
a benefit already when operating on two instances of the same 
task. We argue that the AMS would show an even higher perfor-
mance gain with a higher number of platforms since it would be 
much more difficult for users to monitor all of them simultane-
ously. Also, our scenario allowed users to monitor both platforms 
concurrently. Real-life situations where this is not possible (for 
example, a driver focusing either on the outside environment or 
an in-vehicle display [43]) might even more benefit from an AMS 
that can utilize information outside of the users’ field of view. Sim-
ilarly, some multitasking situations require not only a refocus of 
attention and cognitive engagement but also a physical reaction 
(such as putting the smartphone in a safe place). Another impor-
tant aspect is to investigate different tasks. In our example, we 
simulated a situation with two identical versions of a “primary 
task”. We argue that the scenario did include interruption and re-
sumption lags, as participants had to quickly accommodate another 
platform with a different configuration (i.e., ball speed, direction, 
position, etc.). Nevertheless, the effects of task switching on cogni-
tive processes are higher when alternating between activities with 
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differing (perceptual, cognitive, and physical) demands and task 
structures [21, 30]. It will be interesting to see how the AMS is able 
to perform in such settings. Finally, the balancing game represents 
continuous tasks that progress independently from the user, where 
the AMS can learn that particular configurations require attention. 
In contrast, discrete tasks such as writing a text do not change 
their state while the user is engaged in another task [86]. This may 
require less focus of the AMS on the task environment (beyond the 
currently active task) and more inclusion of the users’ psychophys-
iological states. In the future, we will (1) integrate physiological 
measurements to assess constructs such as stress, cognitive load, 
or monitoring, (2) extend our reward functions (i.e., minimizing 
stress levels while maximizing performance), and (3) implement 
a wide range of different tasks with varying demands on skill-, 
rule-, and knowledge-based performance (such as lane keeping in a 
vehicle [57], an airport control tower simulation [89], and standard-
ized tasks like n-back [64], PASAT [78], etc.). We further call for 
downloading and extending our software, implementing additional 
tasks, or playing around with the cognitive models and algorithms 
to further improve performance and research of cooperative AMSs. 

6.5 Towards General Attention Management 
Systems 

One major downside of existing AMSs is that they are not task-
independent. Most existing concepts are based on theories or oper-
ate data-driven. Theoretical assumptions require expert knowledge 
of the involved tasks, and data-driven approaches require large, 
labeled datasets [5]. In contrast, a general and task-independent 
AMS would be transferable to any task without specific adaptations. 
Computational rationality requires modeling constraints and utili-
ties for the RL agents to reproduce human-like behavior [35]. Also 
our system relies on task-relevant data. We argue that given suffi-
cient training, the AMS agent itself would not necessarily require 
such data as long as a suitable reward can be extracted (similar 
to computer games that perceive pixel streams [53]). However, 
the cognitive model is constrained by assumptions regarding the 
perception of the environment (i.e., ball positions and velocities). 
Potentially, there exists a set of constraints to model interruption 
and resumption behavior of humans independent of particular tasks, 
or at least with a small set of task characteristics (such as the ex-
pected physical, perceptual, or cognitive load needed to manage 
clean-up and resumption). Assuming optimal human performance 
when fully attending a task, such model could be used to train a 
task-independent, general AMS that minimizes interruption and 
resumption costs. 

6.6 General Human Factors Considerations 
Participants’ subjective experiences were strongly driven by their 
self-rated gaming skills. Skilled players preferred the no supervisor 
condition of the AMSs. Nevertheless, the AMS based on the cognitive 
model was rated similarly in terms of the overall experience than the 
no supervisor condition. Additionally, overall subjective experience 
in a multitasking context depends on such characterises as effort to 
play, frustration level, physical demand, and subjective performance. 
Consequently, the development process should not solely focus on 
task performance but also on other important requirements such as 
users’ well-being. We will experiment with stress measurements as 

an additional factor for our reward function in the future, with the 
aim of fostering both performance and relaxation. Additionally, this 
project focuses on human-AI cooperation in a multitasking setting 
while not touching upon the general question how tasks should 
be distributed among AI systems and humans at all (i.e., “levels of 
automation” [61]). Given the simplicity of the implemented task, 
one can argue that the best-performing system in our case would 
be one solely controlled by AI and without a human in the loop. We 
argue that such considerations require researching carefully human 
preferences. For example, it is known that substituting humans with 
technology comes with the risk of loosing meaningful activities and 
interactions, while a proper distribution of activities can maintain 
user agency and the feeling of being in control [27, 49]. While 
answering this question is beyond the scope of the current work, we 
believe that RL agents operating on user models have the potential 
to also provide a more fine-grained and dynamic distribution of 
tasks in the future. 

6.7 Limitations 
Besides the issues discussed above, the following limitations must 
be considered. Most importantly, the scenario at hand does not 
represent a real-life task (beyond gaming). Both tasks (i.e., left and 
right platforms) are the same and have an equal state space and 
equal conceptual criteria like the goal state and condition-action 
rules. This makes it easier for humans to adapt to new situations as 
they change tasks compared to situations where the tasks are not 
equal. Therefore future work should investigate if the results of this 
work can also be observed for different tasks. Further, The AMS 
agent was trained based on a single cognitive model describing 
only the behavior of one participant. It can be assumed that the 
constraints of humans cover a wide range so a single cognitive 
model cannot be applied for all participants. For instance, this 
could be the explanation why there was no significant performance 
increase for some highly skilled players. For a simple task such 
as the one presented, a single model might have been appropriate. 
However, in situations where users can behave much more flexibly 
and have even greater variability in skills of different types (i.e., 
perceptual, cognitive, motor skills, etc.), personal adaptation will 
be essential. We also cannot rule out that participants adjusted 
their playing behavior based on the condition. Most likely, they 
sometimes also focused on the inactive platform, which was not 
represented in our cognitive user models. Finally, the system solely 
aims at productivity, which has ethical implications in a real-life 
context. To build successful AMSs, one also must take well-being 
and varying participant needs into account. 

7 CONCLUSION 
AMSs aim for better multitasking support for humans. Due to the 
complexity of human behavior and the involved environments, so-
phisticated AMSs hardly exist. In this work, we proposed to develop 
future systems with RL agents that utilize computational rationality. 
To demonstrate the capabilities of this idea, we implemented a fast-
paced visual-motoric balancing game where users had to switch 
between two tasks to balance balls on two platforms. Our aim was 
to design an AMS agent that finds opportune moments for interrup-
tions and automatically switches between the platforms. Therefore, 
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we used concepts of computational rationality to develop a model 
with cognitive constraints, which is used to train the AMS agent. 
The cognitive model is defined by its constraints and their extent, 
which are determined by means of parameters. We evaluated the 
approach in a user study with N=43 participants, who experienced 
four different conditions. We compared an AMS trained on the 
cognitive model with other AMS agents using an unconstrained 
model, as well as a notification mode where users had to confirm 
task switches. These conditions were compared to a baseline where 
participants themselves had to switch between the tasks. Thereby, 
we assessed performance (game scores), player/model behavior, 
and subjective ratings for workload. Our results show that the AMS 
agent trained on the cognitive model could significantly improve 
participants’ performance, in contrast to their self-determined in-
terruption strategies as well as the other conditions. Computational 
rationality was a key concept for our results as the unconstrained 
user model could not benefit human performance. Further, the 
best performing AMS using the cognitive model made participants 
switch between the platforms at a higher pace, while participants 
themselves acted more cautiously. Finally, cooperation with the 
AMS was rated best in terms of subjective workload according to 
multiple dimensions of the NASA-TLX. With this work, we have 
confirmed our hypothesis that RL and CR can be used to 
improve human multitasking performance and build more 
sophisticated attention management systems in the future. 
We will extend our system to include additional tasks with dif-
ferent user demands and re-evaluate our results. Additionally, we 
hope that the community uses our developed tool to research and 
evaluate AMSs for various purposes. Given the large amount of 
technology surrounding us, the time for attention management is 
now! 
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