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ABSTRACT

Misitano, Giovanni
Enhancing the decision-support capabilities of interactive multiobjective optimiza-
tion with explainability
Jyväskylä: University of Jyväskylä, 2024, 100 p. (+included articles)

Real-life decisions often involve balancing conflicting criteria, which are modeled
as objective functions in multiobjective optimization problems. These problems
have multiple optimal solutions that cannot be ordered from worst to best without
input from a domain expert—a decision maker. To help a decision maker choose
their most preferred solution, many multiobjective optimization methods use pref-
erences expressed by the decision maker to identify promising solution candidates.
Interactive multiobjective optimization methods are particularly useful as they
involve the decision maker in the solution process by allowing them to iteratively
provide preferences and review solutions until a satisfactory one is found.

However, when utilizing interactive methods, decision makers often lack in
the support they get for providing preferences and understanding the optimal
solutions. This thesis explores how explainability, a concept from the field of
artificial intelligence, can tackle these issues and enhance the support provided
by interactive methods. Explainability can help make complex systems more
intelligible, and we demonstrate how the concept can improve interactive methods
by making them easier for decision makers to apply and understand.

We introduce three new interactive methods that utilize explainability. The
first, R-XIMO, helps decision makers give preferences and understand their impact
on the computed solution candidates. The second, INFRINGER, uses explainable
rule-based models to effectively capture and model a decision maker’s prefer-
ences. The third, XLEMOO, uses rule-based models to explain solution candidate
characteristics that align with the decision maker’s preferences. Lastly, the open
source DESDEO software framework supports these methods by enabling their
implementation and development, and it is therefore discussed as well.

This thesis lays the groundwork for the new field of explainable interactive
multiobjective optimization, offering methods that are openly available for further
research and practical use. By enhancing interactive methods with explainability,
this novel line of research can lead to more transparent and justifiable decision-
support tools in diverse real-life decision-making problems involving decision
makers, preferences, and multiple conflicting objective functions.

Keywords: explainable decision-making, multi-criteria optimization, interactive
multiobjective optimization, decision-support, explainable artificial
intelligence, evolutionary multiobjective optimization, open source
software



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Misitano, Giovanni
Interaktiivisten monitavoiteoptimointimenetelmien tarjoaman päätöksenteon tuen
tehostaminen selitettävyyden avulla
Jyväskylä: University of Jyväskylä, 2024, 100 s. (+artikkelit)

Monet päätöksenteko-ongelmat edellyttää usein ristiriitaisten kriteerien tasapai-
nottelua. Nämä ongelmat voidaan mallintaa monitavoiteoptimointiongelmina,
joissa tavoitefunktiot kuvaavat kriteerejä. Näissä ongelmassa on useita optimaa-
lisia ratkaisuehdokkaita, joita ei voida järjestää paremmuusjärjestykseen ilman
asiantuntijan, eli päätöksentekijän, panosta. Erilaisia monitavoiteoptimointime-
netelmiä, jotka hyödyntävät päätöksentekijän mieltymyksiä, voidaan käyttää
päätöksenteontukena lupaavien ratkaisuehdokkaiden tunnistamisessa. Interak-
tiiviset monitavoiteoptimointimenetelmät ovat erityisen hyödyllisiä, sillä niissä
päätöksentekijä on osa ratkaisuprosessia, mikä sallii heidän ilmaista iteratiivisesti
mieltymyksiään ja tarkastella ratkaisuja, kunnes tyydyttävä ratkaisu on löytynyt.

Interaktiiviset menetelmät tukevat kuitenkin harvoin päätöksentekijää miel-
tymysten ilmaisemisessa ja optimaalisten ratkaisujen ymmärtämisessä. Tässä väi-
töskirjassa tutkitaan miten selitettävyys, joka on konsepti tekoälyn alalta, voisi
vastata tähän tuen puutteeseen ja parantaa interaktiivisten menetelmien tarjoamaa
tukea. Selitettävyys voi tehdä monimutkaisista järjestelmistä ymmärrettävämpiä.
Väitöskirjassa tutkitaan miten selitettävyys voi parantaa interaktiivisia menetelmiä
tekemällä niistä helpommin sovellettavia ja ymmärrettäviä päätöksentekijöille.

Väitöskirjassa esitellään kolme uutta interaktiivista menetelmää, jotka hyö-
dyntävät selitettävyyttä. R-XIMO-menetelmä tukee päätöksentekijöitä mielty-
mysten ilmaisemisessa ja ymmärtämään miten ne ovat vaikuttaneet laskettuihin
ratkaisuihin. INFRINGER-menetelmä käyttää selitettäviä sääntöpohjaisia malle-
ja päätöksentekijän mieltymysten selvittämiseen ja mallintamiseen. XLEMOO-
menetelmä käyttää sääntöpohjaisia malleja selittämään niiden ratkaisuehdokkai-
den ominaisuuksia, jotka vastaavat päätöksentekijän mieltymyksiä. Myös väi-
töskirjan aikana kehitettyä avoimen lähdekoodin DESDEO-ohjelmistokehystä
käsitellään, sillä se on mahdollistanut esiteltyjen menetelmien kehittämisen.

Tämä väitöskirja luo perustan uudelle selitettävän interaktiivisen monita-
voiteoptimoinnin tutkimusalalle. Esitellyt menetelmät ovat vapaasti saatavilla
jatkotutkimusta ja käytännön sovelluksia varten. Tehostamalla interaktiivisia me-
netelmiä selitettävyydellä, tämä uusi tutkimusala voi johtaa läpinäkyvämpiin ja
perustellumpiin päätöksenteon tukityökaluihin monissa erilaisissa päätöksenteko-
ongelmissa, joissa tuetaan päätöksentekijää ristiriitaisten tavoitefunktioiden tasa-
painottelussa heidän mieltymyksiä hyödyntäen.

Avainsanat: selitettävä päätöksenteko, monikriteerioptimointi, interaktiivinen mo-
nitavoiteoptimointi, päätöksenteontuki, selitettävä tekoäly, evolutio-
näärinen monitavoiteoptimointi, avoimen lähdekoodin ohjelmisot
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FOREWORD

This thesis is, first and foremost, a collection of ideas and their proof-of-concepts.
At the time of writing this thesis, these ideas are nothing but freshly planted seeds
that are yet to sprout. Ideally, these seeds will grow into something bigger—tools
for supporting humans tackle decision-making problems with multiple conflicting
criteria in an understandable and justifiable way, without having to blindly trust
computers and algorithms. Most importantly, I hope my research can eventually
help us keep the human factor alive and present in decision-making despite the
rapid advancements we have seen in artificial intelligence in the last few years.
I also wish that my work can encourage humans to consider many of the other
factors in decision-making, in addition to just maximizing profits—something
many policy-makers these days seem to solely focus on. I do not believe—or
rather, I do not want to believe—that this narrow-mindedness is out of pure greed.
I am naïve enough to be convinced that most people simply do not know better.
That is why I want to research and develop tools that would help us consider
multiple perspectives and the bigger picture in important decision-making tasks.
I am strongly of the opinion that if people have the means to do better, they will.

Naturally, the journey that has led to the conception of this thesis was not
traveled alone. First, and foremost, I want to express my deepest gratitude to
my thesis supervisor, Kaisa Miettinen, for always taking the time to share her—
seemingly endless—wisdom in many academic, and not-so-academic, matters; and
for investing her ever more elusive time to provide me with the best constructive
feedback I have ever got—and I fear I will ever get. I must also thank Bekir Afsar
for his time and patience as well in supervising my thesis work. Somehow, he
has often been able to find new perspectives and point out details that even Kaisa
might have missed, which only speaks in favor of his great expertise as well. Since
this paragraph is clearly dedicated to thanking supervisors, it would be a crime
to not mention Jussi Hakanen. He had the chance to mentor me only during the
beginning of my PhD pilgrimage, but nonetheless, Jussi has played a critical role
in introducing me to the topic of explainability, and its potential application to
multiobjective optimization. When it comes to supervision, I had the privilege to
be in very good hands.

The Multiobjective Optimization Group has also provided a highly welcom-
ing environment. I felt like I was part of the team since day one when I was
but a research assistant. Our research group has a very diverse array of people
from different parts of the world, which is evident in the just as diverse points
of view and set of opinions that often emerge in the many discussion we have
had. I would love to tell some of my personal experiences related to each group
member, but it would inflate the contents of this Foreword too much. Therefore, I
will simply thank all of our group members, current and past, with whom I had
the privilege to collaborate, discuss various matters, and generally interact with.
So thank you Bhupinder Sing Saini, Juuso Pajasmaa, Babooshka Shavizapour,
Giomara Lárraga, Atanu Mazumdar, Johanna Silvennoinen, Eero Lantto, Risto



Heikkinen, Adhe Kania, MaoMao Liang, Juho Roponen, Michael Emmerich, and
Pouya Aghaei pour—in no particular order. There are also many collaborators
and acquaintances outside of our research group that I have had the pleasure to
meet, collaborate, and share ideas with. Too many to name them all, but I am
nevertheless sincerely thankful for these interactions. Lastly, I want to thank the
reviewers of this thesis, Jian-bo Yang and Juergen Branke, for taking the time to
carefully read and evaluate my thesis.

While I am defending my thesis in the field of computer science, my academic
roots reside in the field of physics. It is during my physics studies that I have
met many of my current friends, and had many delightful interactions—too many
to list all. Therefore, I will limit the following name dropping to my closest
posse during my studies, namely, Teemu Loippo, Topi Löytäinen, Niina Mäkelä,
and Kirsi Mäki. Thank you for being such an important part of my academic
journey, and contributing to the lovely atmosphere of the FYS4 room, where
we spent numerous evenings tackling physics problems of many sorts. In fact,
my interactions with Kirsi have been so enjoyable that we ended up pursuing a
non-platonic relationship, which, for the time being, has lasted quite a few years
already. And I truly hope it would last for many more years to come. Apart from
Kirsi, I have spent most of my time during my thesis work with our cats: Hiisi,
Olio, Örkki, and the late Nadia. These fur balls (and one skin ball) have kept me
awake many a night, interrupted my work, and just been generally a nuisance. In
other words, they have provided the occasional, but invaluable, respite from my
never-ending work. For that, I am thankful.

There is also the rest of my family, who has supported me on my academic
endeavors for most of my life. My mother, Tuija, and late father, Giuseppe, have
always made sure my basic needs are met, so that I may focus on my studies;
and they have always encouraged me in my academic pursues. It has also been
very inspiring following my brother’s, Giacomo’s, journey as a book author—we
both seem to have a natural knack when it comes to writing. That said, here is an
awkward transition to me acknowledging the financial support I have got during
my thesis journey. For this, I wish to warmly thank the Väisälä Fund.

Lastly, there is Lady Luck, to whom I must express my gratitude as well.
Being born in a prospering country, with all the necessary resources that have
allowed me to pursue my academic interests, is solely thanks to being in Fortuna’s
favor. So are many other factors that have more or less aided me on my path that
ultimately led to the writing of this thesis. While it is mostly up to chance when it
comes to the cards we are dealt with in life, we must still play our hand cleverly.
There have undoubtedly been a lot of stupid misplays from my part, but in the
bigger picture, I think I have been mostly in the black. I will keep making the best
plays I can, and I will remind myself daily that I am in a very privileged position
being able to strive for my scholarly goals relatively worry free. There are many
people less blessed than I, from whom Tyche has turned her gaze afar. It would
therefore be foolish—even inconsiderate—of me to waste good cards and fold
unnecessarily, when many are still waiting for their very first hand being dealt to
them. It is up to us, the prosperous ones, to make sure that there are enough chips



for everyone in the future.
I hope the ideas presented in this thesis will ultimately bud into something

substantial. But for that to happen, the eventual saplings will have to be tended to
before they may grow into their full splendor. This is not a one-person job, and
future collaborations will have to be established, and existing ones will have to be
nurtured. I will strive to be part of as many of these cohorts as I can, and I hope to
be able to enjoy at least some of the fruits these efforts will eventually bear. Alas,
the sweetest of nectars will be enjoyed only by the generations to come, once I will
be long gone, for the march of science is a slow thing. But such is life—it is finite.
That is why we should make the most of it, and make it as enjoyable as possible
for all living beings. But to pursue such undertakings, we, as a society, will have
to face many difficult decision-making problems. To be able to tackle these, and
to be able to make the best possible decisions, we will need the right tools for the
job. This thesis is a small and humble, yet important, step toward achieving such
means.

Giovanni Misitano
Jyväskylä 8.5.2024
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1 INTRODUCTION

Decision-making can be found in many aspects and areas of our society. It is both
a daily occurrence in our individual lives and an integral part of the curricula of
larger corporations and governments, e.g., online shopping (Stankevich, 2017),
city landscape planning (Ordóñez et al., 2019), electric vehicle adoption in the
European Union (Biresselioglu et al., 2018), and medicine and healthcare (Kaplan
and Frosch, 2005). Some decision-making problems are simple, consisting only of
a few non-conflicting criteria. In these simpler tasks, the decision alternatives are
readily enumerable and the best solution is unambiguous. However, life is often
more complicated than that, and we have to face far more challenging decision-
making problems, where there are many conflicting criteria and a large number of
decision alternatives—sometimes an uncountable or unknown amount, or both.
It is these more challenging types of decision-making problems that researchers
have found to be intriguing and worth researching in the field of multiple criteria
decision-making (Köksalan et al., 2011), a branch of operations research (Gass and
Assad, 2005).

If we think of decision-making as a process to find the best possible solution
to a problem, given certain circumstances, then it is not far-fetched to think of it as
a form of optimization. In fact, some decision-making problems can be modeled so
that the criteria themselves are to be optimized. In such a case, we are dealing with
so-called multiobjective optimization problems (Nakayama, 1995; Miettinen, 1999).
Instead of conflicting multiple criteria, in multiobjective optimization we deal
with multiple conflicting objective functions. These functions are dependent on
decision variables. Furthermore, the decision variables can be subject to constraints.
Different objective function values can be found by altering the decision variable
values subject to the constraints.

Consider the example of designing a wooden table as a multiobjective opti-
mization problem, as illustrated in Figure 1. This problem aims to maximize the
table’s surface area while minimizing the thickness of the tabletop, deviation from
an industry-standard height, and manufacturing cost. The objective functions
depend on various decision variables, including the amount of wood, different
dimensions of the table, and manufacturing quality. Constraints include the mini-
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Surface area (max)
Thickness of the tabletop (min)

Height devia�on (min)

Cost (min)

Objec�ve func�ons

Decision variables
Wood amount

Width

Manufacturing quality

Length

Depend on

Length
Width

Constraints
Length > minimum length

Width < maximum width

Limited by

Top mass / height  > stability threshold 

Height

Height

FIGURE 1 Designing a wooden table as a multiobjective optimization problem. There
are four objective functions: maximize (max in the figure) the surface area
of the tabletop, minimize (min in the figure) the thickness of the tabletop,
minimize the table’s height from an industry standard, and minimize the
manufacturing cost of the table. The objective functions then depend on one
or more decision variables that characterize the table and its manufacturing
process, which are the amount of wood utilized in manufacturing the table,
its dimensions, and the overall manufacturing quality of the table. Lastly,
there are constraints on the minimum length and the maximum width of the
tabletop, and a stability constraint on the ratio between the table’s height and
top mass.

mum length and maximum width for the tabletop and a limit on the ratio of its
height and mass to assure stability. These objectives outline the decision-making
aspects of the table’s design, focusing on optimizing the objective functions rather
than manipulating the decision variables directly. The relationship between objec-
tives and variables is often complex, influenced by the problem’s modeling.

The nature of the objective functions in multiobjective optimization problems
often leads to conflicts between them. Continuing with the example in Figure 1, for
instance, a larger surface area might necessitate a thicker tabletop and shorter legs
for stability, increasing wood usage and cost. Conversely, a shorter table height
can reduce costs and improve stability, but deviate from the standard height, an
undesirable sacrifice. A feasible solution to this multiobjective optimization prob-
lem, and multiobjective optimization problems in general, involves identifying
a set of decision variables that meet all constraints and result in some desirable
objective function values. But when exactly can we talk about an optimal solution
to a multiobjective optimization problem? And when can the objective function
values of a solution be considered desirable? According to whom?

The very defining property of multiobjective optimization problems is worth
reiterating here: the objective functions are in conflict, which means that no solution
exists that results in all the objective functions reaching their optimal value simul-
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taneously. This gives rise to the unique property of multiobjective optimization
problems: multiple optimal solutions, known as Pareto optimal solutions, exist.
By definition, a Pareto optimal solution is such that there are no other feasible
solutions that would improve any of the objective function values without causing
a degradation in at least one other objective function value. For this reason, we
often limit our attention to inspecting only the Pareto optimal solutions1 of a
multiobjective optimization problem.

Due to the nature of Pareto optimal solutions, we cannot switch from one so-
lution to another in hopes of improving the value of a particular objective function
without deteriorating the value of at least one other—we have to inevitably make
some trade-offs between the objective function values. For instance, in the example
in Figure 1, if we wish to design a table with a very thick and large tabletop,
requiring an increased amount of wood, we must be ready to pay more for the
table—we cannot expect to find a table that is both cheap and massive. Therefore,
there is a trade-off between the cost of the table and the surface area and thickness
of the tabletop. Moreover, because the objective function values that characterize
Pareto optimal solutions are represented by vectors consisting of numerical values,
they cannot be fully ordered, e.g., from worst to best, on a mathematical basis
alone. In other words, Pareto optimal solutions are incomparable.

At this point, we might wonder: if multiobjective optimization problems
have multiple Pareto optimal solutions, then how can the best solution to a multi-
objective optimization problem be determined if the solutions are incomparable?
The judge of this is a decision maker. The decision maker is an expert with knowl-
edge on the domain of the problem being solved. It is their task to explore the
available solutions and make a final decision on which solution is the best or most
desirable. This means that the best solution is subjective and depends on what
the decision maker prefers. Returning once more to the example in Figure 1, one
decision maker may prefer a massive and costly table, but does not care much
about its height deviation from a standard; while another decision maker could
instead be looking for a cheap and light table, and is very adamant that the height
deviation from the standard is as small as possible.

Because multiobjective optimization problems often have an uncountable
amount of Pareto optimal solutions, it is infeasible to expect a decision maker to
explore all the available alternatives. Thus, many methods have been developed
to support decision-making in multiobjective optimization problems, aiding the
decision maker in exploring the available Pareto optimal solutions (Hwang and
Masud, 1979; Sawaragi et al., 1985; Miettinen, 1999; Branke et al., 2008; Brockhoff
et al., 2023). These methods aid decision makers in finding their best solution.
They do so by utilizing preferences expressed by the decision maker.

A decision maker can express preferences in multiple ways and at different
times in respect to the optimization process. In fact, multiobjective optimization
methods that utilize preferences can be divided into three categories based on

1 As we will see in Chapter 2, we might also limit our attention to the approximations of
Pareto optimal solutions or so-called non-dominated sets.
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when the preferences are utilized (Miettinen, 1999)2. In the first category, prefer-
ences are expressed before the optimization process. When decision makers are
certain about their preferences, their feasibility, and the nature of the trade-offs
between the objective functions, these methods can prove useful. However, if
the decision maker is unsure about any of these aspects, providing preferences
and finding the best solution to the problem may prove to be challenging. In the
second category, preferences are expressed after the optimization when a set of
Pareto optimal solutions has been computed. These methods are useful when
the problem being solved is simple enough, e.g., has only a couple of objective
functions, and a representation of all the Pareto optimal solutions can be readily
communicated, for example, visualized, to the decision maker. But if the number
of objective functions increases and the set of Pareto optimal solutions becomes
very complex—making it hard to communicate the nature of the solutions in an
understandable manner to a decision maker—then expressing preferences and
understanding the trade-offs between the objective functions becomes challenging.

Instead of the decision maker providing preferences before or after the opti-
mization process, they can also provide them during the process. This brings us to
the third category of methods, which are known as interactive multiobjective opti-
mization methods (Miettinen, 1999; Branke et al., 2008). Interactive methods allow a
decision maker to iteratively provide preferences and see what kind of solutions
are available. In practice, the decision maker is incorporated in the optimization
process. Interactive methods allow the decision maker to express preferences
multiple times during the optimization process, which allows the decision maker
to also adjust them. Moreover, because the computed solutions depend on the
preferences provided, it is possible to show the decision maker smaller samples of
the available Pareto optimal solutions that are the most compatible with the pref-
erences. This means that interactive methods do not just allow a decision maker
to explore the problem being solved, e.g., the nature of the available solutions and
their trade-offs, but also allow the decision maker to adjust their preferences to be
more realistic given the available solutions. In other words, interactive methods
enable the decision maker to learn about the problem being solved and their own
preferences. Because in this thesis we are most concerned about how to better
support decision makers in solving multiobjective optimization problems, we will
focus solely on interactive methods in which the decision maker plays a central
role.

Therefore, at its core, multiobjective optimization is about developing meth-
ods to support a decision maker in finding their best solution to a multiobjective
optimization problem. Because the problems being solved are often real-life prob-
lems, the decisions made based on the found solutions have real-life consequences.
This means that when developing multiobjective optimization methods, we must
consider other aspects than just the efficient search for Pareto optimal solutions

2 There are also multiobjective optimization methods that omit the decision maker and
preferences altogether, known as no-preference methods. But because this thesis focuses on
the decision-support aspects of multiobjective optimization, we will omit any discussion of
these methods.
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to the problem being solved. Because of the possible consequences of the deci-
sions made, a decision maker might have to justify their decision at some point
to themselves and any possible stakeholders, for instance. While the preferences
expressed by the decision maker are utilized to find potential solution candidates,
the process of finding optimal solutions can still present itself like a black-box to
the decision maker. Needless to say, relying on black-boxes in potentially critical
decision-making tasks does not promote confidence in the decision maker or the
parties subject to the consequences of the decisions made, which makes justifying
any decision challenging. One might also question whether relying on black-boxes
in any form of decision-making is good decision-making at all.

A very similar problem with black-boxes has been previously identified in
the field of artificial intelligence, where powerful black-box machine learning
models have found many practical uses and applications in a wide array of data
analysis tasks (MacKay, 2003; Bishop and Nasrabadi, 2006; Kaplan, 2016; Jordan
and Mitchell, 2015). It has been realized that when decisions are to be made based
on the predictions generated by black-box models, we must be able to understand
why and how a particular prediction has been made by the model. Only then we
can expect to be able to also justify the decisions to stakeholders and the parties
subject to their consequences.

To address the issue of the black-box nature of many machine learning
models, the field of explainable artificial intelligence was born (Biran and Cotton,
2017; Gunning and Aha, 2019; Arrieta et al., 2020; Kamath and Liu, 2021). While
the field has a rich history, beginning in the early to mid 18th century, it is hard
to pinpoint its exact conception. However, the introductory chapter of the book
by Kamath and Liu (2021) gives a fair historical overview of explainable artificial
intelligence. In the field, the concept of explainability has been adapted to shine a
light on the wide variety of black-boxes found in machine learning applications
and research to better understand the models and how they work. This, arguably,
can lead to better machine learning aided data analysis and decision-making.

However, explainability is much more than just an academic curiosity. The
importance of the explainability of decisions made utilizing algorithms and data-
based methods is reflected in the General Data Protection Regulations set by the
European Union, especially in Recital 713, part of which states that: “In any case,
such processing should be subject to suitable safeguards, which should include
specific information to the data subject and the right to obtain human intervention,
to express his or her point of view, to obtain an explanation of the decision reached
after such assessment and to challenge the decision.” The focal part in this extract
is the right to an explanation. As argued by Goodman and Flaxman (2017), while
these regulations can pose large challenges for industries heavily relying on black-
box data-based machine learning approaches, the regulations can also challenge
researchers to develop new algorithms and methods for decision-making (support)
that promote explainability.

3 https://www.privacy-regulation.eu/en/r71.htm, accessed May 9, 2024.
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In this thesis, we have taken the initial steps to answer the call to promote
and explore explainability in the context of interactive multiobjective optimization
to support better decision-making. This brings us to the three research questions
of this thesis:

RQ1: In which ways can explainability aid a decision maker in finding their
most preferred solution to a multiobjective optimization problem when
applying an interactive multiobjective optimization method?

RQ2: Does incorporating explainability in interactive multiobjective optimiza-
tion methods improve their decision-support capabilities?

RQ3: In which ways can explainability improve the justifiability of the decision
made when applying interactive multiobjective optimization methods?

We explore these three research questions from three different perspectives pre-
sented in Articles I, II, and III.

To begin, we will discuss the needed background to understand the contents
of this thesis in Chapter 2. Then, we will present the first of the three perspectives
in Chapter 3, where we will see how explainability can aid a decision maker in
providing and understanding the impact of preferences in an interactive multiob-
jective optimization method. Here, we will see how we can generate suggestions
based on explanations, and the wishes expressed by a decision maker, to aid the
decision maker in providing new preferences. That is, we leverage explanations to
aid the decision maker in modifying the preferences expressed during an interac-
tive method. The preferences modified with the aid of the explanation can lead to
solutions that better match the expectations of the decision maker.

The second perspective is presented in Chapter 4, where we will explore
the potential of explainability in modeling the preferences of a decision maker
in an interactive multiobjective optimization method. Because the availability of
preferences is paramount to the success of interactive methods in finding preferred
solutions, the modeling of said preferences can be advantageous, e.g., it can
allow us to fully rank the available Pareto optimal solutions to a multiobjective
optimization problem according to the modeled preferences. A preference model
is, however, not easy to elicit from a decision maker, and the model can also be
hard to understand. If the preference model could be not only expressed but also
primed by the decision maker in terms of understandable “if-then. . . ”-rules, then
we could be able to learn explainable preference models. While we do not quite
reach this goal in the presented article, we have set the gears in motion towards
future studies to explore these possibilities in more depth.

And lastly, we will discuss the third perspective in Chapter 5. We will see
how explainable machine learning has the potential to help decision makers better
understand the connection between decision variables and objective function
values near their preferred solutions. We will see how the vast populations of
solutions generated by population-based evolutionary multiobjective optimization
methods (c.f., Section 2.1.3) can be exploited to learn an explainable rule-based
machine learning model that classifies solutions based on whether they are close
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to the preferences expressed by a decision maker or not. These rules then describe
these solutions in terms of the decision variable values. This information can
be especially useful to more technically inclined decision makers, such as engi-
neers tackling design problems, supporting them in providing further preferences,
and giving them insights about the formulation and model of the multiobjective
optimization problem itself.

All of the three works discussed in Chapters 3, 4, and 5 will present a new
interactive multiobjective optimization method that incorporates explainability
in different ways to support the decision maker. In developing these methods,
one of the fundamental goals has been in not just devising the method but also
making its implementation freely available to others. Hence, we will discuss
the importance of open source software in developing and applying interactive
multiobjective optimization methods in Chapter 6 where we will discuss DESDEO,
the open source software framework for interactive multiobjective optimization
presented in Article IV. DESDEO has played a critical role in enabling the devel-
opment and experimentation that has led to the conception of the three interactive
multiobjective optimization methods discussed in Chapters 3, 4, and 5. Its open
source nature means that it is fully available to others to freely use and build
on. Hence, DESDEO will enable future research and exploration of interactive
methods incorporating explainability.

Lastly, in Chapter 7, we will discuss the conclusions of this thesis. We will
return to the three research questions (RQ1–3) and provide explicit answers to
them from the three different perspectives explored in Chapters 3, 4, and 5. In
addition, we will discuss the many future research directions and questions the
work presented in this thesis has brought forth. To support these directions,
DESDEO, discussed in Chapter 6, will inevitably play an important role in the
foreseeable future as well. In sum, after the conclusions, we will have an initial
picture of the possibilities of explainability for supporting decision makers who
apply interactive multiobjective optimization methods, as well as the potential of
the concept of explainability in future works to come. Therefore, this thesis begins
to establish the foundation of a new field in multiobjective optimization: explainable
interactive multiobjective optimization, by laying some of its first foundational bricks.



2 BACKGROUND CONCEPTS

In this chapter, we introduce the concepts needed for the rest of this thesis. We
begin our discussion in Section 2.1 where we delve into the central theoretical
concepts in multiobjective optimization and examine approaches for solving multi-
objective optimization problems, particularly scalarization-based and evolutionary,
or rather population-based, methods. Then, in Section 2.2, we discuss in more
depth the decision-support aspects of multiobjective optimization focusing on
the decision maker, preferences, and interactive methods in particular. We then
discuss some central ideas of machine learning and explainability in Section 2.3,
giving a brief introduction of the topics. Our discussion then naturally flows
into Section 2.4 in which we discuss explainability as a concept in the context of
multiobjective optimization and give a brief survey on how explainability and
similar concepts have been studied in the literature.

2.1 Multiobjective optimization

The theory and concepts discussed in this section are fundamental in multiobjec-
tive optimization. The contents of Section 2.1.1, where we discuss the multiob-
jective optimization problem definition and its central concepts, are based on the
books by Miettinen (1999), and Sawaragi, Nakayama, and Tanino (1985). Like-
wise, the contents of Section 2.1.2 discussing scalarization and scalarization-based
methods are also based on the book by Miettinen (1999). The contents in the last
section, Section 2.1.3, are based on the collection edited by Branke, Kalyanmoy,
Miettinen, and Slowiński (2008). These books, and the collection, have been the
most influential elementary texts regarding the work presented in this thesis.

2.1.1 Problem definition

A multiobjective optimization problem can be defined as:

min
x∈X

[F(x) = ( f1(x), f2(x), . . . , fk(x))] . (1)
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In (1), F(·) is a vector valued function with k ≥ 2 components fi(·) and i ∈ 1, . . . , k,
which are known as the objective functions to be minimized. The objective functions
are assumed to be scalar valued and are functions of the decision vectors x with n
components x = [x1, x2, . . . , xn]

⊤ known as the decision variables. The collective
domain and co-domain of the objective functions are known as the decision space
and the objective space, respectively. The elements of the objective space are known
as objective vectors, and are represented by Z, i.e., Z = F(x), where x ∈ X.

The set X in (1) is known as the feasible set of the decision variables, and
it is defined by the constraints of the multiobjective optimization problem. The
constraints are either box-constraints, which define a lower and upper bound for
each decision variable; or constraint functions, which consist of functions of one
or more of the decision variables, and are expressed as inequality or equality
expressions, e.g., g(x) ≤ 0 or h(x) = 0, where g, h : Rn → R are constraint
functions. When defining a multiobjective optimization problem, it is practical
to treat all of the objective functions to be either minimized or maximized. In the
case we wish to maximize an objective function instead of minimizing it, we can
multiply the function by −1.

To define what an optimal solution to a multiobjective optimization prob-
lem (1) means, we employ the concept of Pareto optimality. Pareto optimality is
defined as follows: a decision vector x∗ ∈ X is said to be Pareto optimal if, and
only if, there does not exist another decision vector x ∈ X such that

1. fi(x) ≤ fi(x∗) for all i = 1, . . . , k, and

2. f j(x) < f j(x∗) for at least one j ∈ {1, . . . , k}.

In other words, x∗ is Pareto optimal if no other decision vector makes all the
objective functions better or equal, and at least one of them strictly better. In fact,
the preceding definition defines what is known as strong Pareto optimality, but we
will refer to it as simply Pareto optimality. Another type of Pareto optimality is
weak Pareto optimality, which is defined as: a decision vector x∗ ∈ X is said to be
weakly Pareto optimal if there does not exist another decision vector x ∈ X such
that fi(x) < fi(x∗) for all i = 1, . . . , k. In other words, x∗ is weakly Pareto optimal
if no other decision vector strictly improves all the objective functions. Other types
of Pareto optimality also exist, but for the purpose of this thesis, the concepts of
Pareto optimality and weak Pareto optimality are sufficient.

The set of all Pareto optimal solutions is known as the Pareto optimal set,
and its image—consisting of objective vectors—as the Pareto optimal front, or just
Pareto front. One important characteristic of the Pareto front is that we cannot
change from one selected objective vector to another in hopes of improving a
certain objective function’s value without worsening the value of at least one other
objective function. That is, a decision maker has to be mindful of various trade-
offs when selecting and comparing different objective vectors on the Pareto front.
The full extent of the Pareto front is rarely known, because the number of Pareto
optimal solutions is often uncountable, especially if we assume a continuous
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decision space. In practice, we are generally able to only approximate1 the Pareto
optimal front.

To characterize the Pareto front, the concepts of an ideal point, z⋆, and a nadir
point, znad, are defined. The ideal point is defined to consist of the best values
of each objective function on the Pareto front. Its components can be readily
calculated by simply optimizing each objective function individually, while still
adhering to the underlying constraint functions. The nadir point is then defined
to consist of the worst objective function values on the Pareto front. However,
calculating the nadir point is not straightforward because it may not correspond
to the image of a feasible solution. The true nadir point would require knowledge
on the full extent of the Pareto front, which is generally not available.

The nadir point is therefore often approximated. A payoff table is a common
method to get a rough estimate of the point (Benayoun et al., 1971). However,
the components of the nadir point computed with the payoff table can be inaccu-
rate, e.g., far too low or far too high, as explored by Korhonen et al. (1997) and
Weistroffer (1985). Another approach to approximate the nadir point is to utilize
heuristics, such as evolutionary metaheuristic (c.f., Section 2.1.3) approaches (Deb
and Miettinen, 2009; Deb et al., 2010), or other heuristic approaches (Dessouky et
al., 1986; Korhonen et al., 1997), for instance. There are cases in which an exact
nadir point can be calculated, but these are often special cases, and require the
multiobjective optimization problem to be, e.g., linear (Isermann and Steuer, 1988;
Alves and Costa, 2009). However, these exact approaches tend to be much more
computationally demanding than heuristic-based approaches, and do not scale
very well with an increasing number of objective functions. Computing the nadir
point is nonetheless still an active subject of research in the field of multiobjective
optimization. And as we shall see, the nadir point plays an important role in the
works discussed in the included articles as well.

Another important concept closely related to Pareto optimality is dominance,
which is defined as follows: an objective vector z1 ∈ Z is said to dominate another
objective vector z2 ∈ Z, if, and only if,

1. z1
i ≤ z2

i for all i = 1, . . . , k, and

2. z1
j < z2

j for at least one j ∈ {1, . . . , k},

where the sub-indices of z1 and z2 refer to the components of the objective vectors.
Utilizing dominance, a dominance relation can be established for any two objective
vectors z1 and z2, which can be notated as z1 ≻ z2. Likewise, weak dominance can
be defined much like weak Pareto optimality, that is, z1 is said to weakly dominate
z2 if z1

i ≤ z2
i for all i = 1, . . . , k, and can be expressed as z1 ⪰ z2.

1 Approximate can come in two types: i. we compute a representation of the Pareto front, i.e., we
compute some, but not all, of the vectors on the front, which are Pareto optimal; or ii. we
compute a set of objective vectors that are an estimate of the true Pareto optimal front, but
the vectors are not Pareto optimal, instead, they are mutually non-dominating (introduced
shorty). In reality, approximations of Pareto fronts are often combinations of both types i.
and ii., i.e., we compute a representation of an estimate of the true Pareto optimal front,
which we call an approximation in this thesis, unless noted otherwise.
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Dominance is an important concept, especially in evolutionary multiobjective
optimization discussed in Section 2.1.3, because it allows us to establish a partial
ranking of an arbitrary set of objective vectors. That is, we can take any set of
objective vectors and establish a subset of the vectors that are not dominated by
any of the other vectors in the set. Such a set is then called a non-dominated set.
Notice that the Pareto front is, by definition, a non-dominated set, but that any
non-dominated set is not necessarily a Pareto front. Nevertheless, in practice, non-
dominated sets are often used to approximate the Pareto front of a multiobjective
optimization problem.

Thus far, we have only discussed the definition of a multiobjective opti-
mization problem (1) and the characteristics of its optimal solution set, i.e., the
concepts of Pareto optimality, the ideal and nadir points, and dominance. Next,
we will have a look at two of the central approaches when it comes to finding
these optimal solutions and solution sets—and their approximations—in Sections
2.1.2 and 2.1.3.

2.1.2 Scalarization-based optimization methods

The quintessential conundrum in solving multiobjective optimization problems (1)
lies in the matter that we cannot optimize each of the objective functions si-
multaneously. To circumvent this, we can transform the original multiobjective
optimization problem into a single-objective optimization problem, which we
know how to solve. This transformation is known as a scalarization, and can be
formally defined as a higher-order function S : (F : X → Z) → (X → R). The
function S is known as a scalarization function. That is, the function S transforms a
multiobjective optimization problem with domain X and co-domain Z into a scalar
valued function. Multiobjective optimization methods that utilize scalarization are
known as scalarization-based (multiobjective optimization) methods (Miettinen, 1999).

To solve a multiobjective optimization problem with scalarization, we first
need to define a scalarized problem

min
x∈X

S (F(x); p) , (2)

where p is a vector of one or more parameters of the scalarization function S. As
we can notice, the scalarized problem in (2) is now a single-objective optimization
problem, which can be solved readily with an adequate single-objective optimizer,
such as sequential quadratic programming methods (Nocedal and Wright, 1999)
and methods based on the Broyden–Fletcher–Goldfarb–Shanno algorithm (Avriel,
2020)2.

Before we discuss about the properties of the solutions found by solving a

2 These mentioned methods are adequate for non-linear (un)constrained continuous problems,
and they assume the problem to be differentiable, e.g., they are gradient-based. However,
these methods cannot guarantee the global optimality of a found solution, unless the problem
being solved is convex. To put it simply, it is extremely important that, when solving a
scalarized multiobjective optimization problem, a proper single-objective optimization
method is chosen, which is suitable given the characteristics of the problem.
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scalarized problem (2), we will look at a couple of concrete examples of scalariza-
tion and their corresponding scalarized problems. We begin with the weighted sum
defined as

Sws(F(x); w) =
k

∑
i=1

wi fi(x),

where wi ≥ 0 and
k

∑
i=1

wi = 1;

(3)

and its corresponding scalarized problem

min
x∈X

Sws (F(x); w) . (4)

In (3) and (4), the vector w = [w1, . . . , wk] consists of weights, and it is an example
of the parameters p of a scalarization function. We can quickly notice that by
varying the values of the weights, we can emphasize the contribution of certain
objective functions over the others in the first sum term in (3). Likewise, by altering
the weights and solving the scalarized problem, we are able to produce a diverse
set of solutions.

However, a solution to (4) is Pareto optimal only if it is unique or the weights
are greater than zero. Otherwise, the solutions are weakly Pareto optimal. Beyond
these limitations, the weighted sum can only find Pareto optimal solutions that
lie on the vertices of the Pareto front, that is, any solution that lies on the edges
of the front, cannot be found by the weighted sum. In other words, even in
problems with convex co-domains, the weighted sum struggles to find some
Pareto optimal solutions. And needless to say, for problems with a non-convex
co-domain, the weighted sum is not able to find all Pareto optimal solutions either.
For a mathematical discussion on the properties of the weighted sum, see the work
of Censor (1977).

Another issue with the weighted sum scalarization (3) is the question of
how to set the weights. From a decision-support perspective, the weights can
be given by a decision maker, but issues arise in this. Weights are often hard to
interpret by a decision maker, which means that they might not be able to express
their preferences adequately when supplying weights. But even more serious
is the issue with the weights not necessarily producing solutions that reflect the
preferences implied by the weights. That is, a weighted sum can produce solutions
with the worst value in the objective function that has the greatest weight, which is
very counter intuitive as illustrated in the works by Steuer (1986) and Tanner (1991),
for instance.

The problems of not being able to generally find all the existing Pareto
optimal solutions to a multiobjective optimization problem, and the ambiguity
of weights to a decision maker, make the weighted sum scalarization (3) not
desirable from a decision-support perspective. But the weighted sum can still
be used as an easy-to-understand example of scalarization due to its simplicity
and its illustratory power on the potential drawbacks of utilizing a poorly chosen
scalarization function in scalarization-based methods. However, it should never
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be used in any serious application. This motivates the need for better scalarization
functions than the weighted sum.

In light of the shortcomings of the weighted sum (3), we can require three
properties from scalarization functions, which make them much more desirable
from a decision-support perspective (Sawaragi et al., 1985):

1. when optimized, a scalarization function can be used to find any Pareto
optimal solution;

2. every solution found by minimizing a scalarization function is Pareto opti-
mal; and

3. if aspiration levels are used, the solution found by optimizing a scalarization
function is satisfying given that the aspiration levels are feasible.

In property 3, aspiration levels are values expressed by a decision maker. As the
name suggests, the decision maker aspires to find a solution to a multiobjective
optimization problem with the expressed aspiration levels. Moreover, when the
objective function values of a solution found meet, or are better than, the aspiration
levels, a solution is deemed satisfying. We made evident that the weighted sum
scalarization does not generally meet the first and second properties. As for the
third property, the weighted sum does not make use of aspiration levels, and as
we discussed earlier, the weights do not do a good job in reflecting the decision
maker’s preferences.

An example of a scalarization function that can meet the three properties
for scalarization functions listed above, is the achievement scalarizing function
(Wierzbicki, 1980, 1982) defined as

SAS(F(x); z̄, z⋆, znad) = max
i=1,...,k

[
fi(x)− z̄i

znad
i − (z⋆i − δ)

]
+ ρ

k

∑
i=1

fi(x)
znad

i − (z⋆i − δ)
, (5)

where z⋆ =
[
z⋆1 , . . . , z⋆k

]
and znad =

[
znad

1 , . . . , znad
k

]
are the ideal and nadir points

of a multiobjective optimization problem (1), respectively. Moreover, in (5), z̄ =
[z̄1, . . . , z̄k] is a reference point consisting of aspiration levels z̄j, where j = 1, . . . , k,
provided by a decision maker, while ρ and δ are small scalar values. The term
(z⋆i − δ) in (5) is sometimes labeled as a utopian point, which is an objective vector
that is strictly better in each of its components compared to the ideal point, and
it is included to avoid division by zero. The sum term in (5) is also known as an
augmentation term. Thanks to the augmentation term, when the corresponding
scalarized problem of (5) is solved, the solutions found can be guaranteed to
be Pareto optimal3. Examples of other scalarization functions that can fulfill
the three desirable properties are the scalarization function used in the STOM4

method (Nakayama, 1995) and the augmented version of the scalarization function
based on the GUESS method (Buchanan, 1997; Miettinen and Mäkelä, 2002). For a
3 Given that we use an appropriate solver. In fact, the solution found is properly Pareto

optimal (Miettinen, 1999) since the trade-offs are bounded.
4 Standing for the satisfying trade-off method.
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collection of scalarization functions and their varying properties, see the work by
Miettinen and Mäkelä (2002).

Thus, the type of scalarization function chosen can guarantee the solutions
of a scalarized problem to be (weakly) Pareto optimal. But it is also important to
choose an appropriate solver to have a guarantee of the optimality of the solutions
found. A successful choice of a solver necessitates knowledge on the properties
of the multiobjective optimization problem being solved, such as variable types
(e.g., binary, integer, or continuous), and the properties of the objective functions
(e.g., (non-)linearity, (non-)convexity, and (non-)differentiability). Additionally,
if the problem has constraint functions, the selection of a solver depends on the
properties of these functions as well. If we have access to all this information,
then utilizing scalarization-based methods is ideal. However, many real-world
problems are based on data, and are modeled in a way that the corresponding
multiobjective optimization problem is a black-box. For example, this can be the
case with simulation-based problems. In such cases, we have hardly any guarantee
of the optimality of the solutions found by scalarization-based approaches. This
also means that computing only a single solution at a time, which is typical in
scalarization-based approaches, makes less sense, since the solution is most likely
not even Pareto optimal. This calls for alternative multiobjective optimization
methods, which are able to produce more than one solution at a time, and fare
well in the absence of exact knowledge on the properties of the multiobjective
optimization problem being solved. We will talk about a particular class of such
methods in the next section.

2.1.3 Population-based evolutionary multiobjective optimization methods

Whereas scalarization-based approaches are adequate for producing single and
accurate solutions, evolutionary multiobjective optimization methods (Schaffer, 1985;
Ishibuchi et al., 2008; Zhou et al., 2011)—referred to as just evolutionary meth-
ods—are capable of generating multiple solutions at a time to a multiobjective
optimization problem (1). Evolutionary methods are based on metaheuristic, rely-
ing on stochastic methods. Therefore, there is no guarantee of the Pareto optimality
of the solutions found. As already mentioned, evolutionary methods are often em-
ployed in solving multiobjective optimization problems with a black-box nature,
such as in data-based, surrogate-based5, and simulation-based problems, where
the exact properties of the objective and constraint functions being optimized are
not known. However, evolutionary methods can also be used to solve scalarized
problems (2). In such cases, multiple solutions are produced as well, but any
guarantee of optimality is lost. Thus, the comparison between scalarization-based
methods—where the problem properties are known and a proper solver is utilized
to compute an accurate optimal solution—and evolutionary methods, boils down
to quality vs quantity.

A central concept in evolutionary methods is a population, which is the reason

5 For example, when objective functions are modeled with machine learning.
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they are also called population-based methods6. A population consists of indi-
viduals that each represents a candidate solution to a multiobjective optimization
problem. An evolutionary method is then a method that tries to iteratively modify,
or evolve, a population in hopes of improving its individuals in each iteration, or
generation. How an evolutionary method evolves a population, can be described
in terms of six general steps, or operations acting on the population, which are

1. initialization,

2. evaluation,

3. selection,

4. variation,

5. elitism, and

6. termination.

Out of the above six steps, initialization and termination are usually done
only at the beginning and end of an evolutionary method, respectively. The
steps evaluation, selection, variation, and elitism are each iteratively applied to a
population once during each generation. Next, we will discuss each of the above
six steps in more detail.

Initialization consists of creating an initial population in an evolutionary method.
It is important that the initial population has enough variety and that it covers
as well as possible the whole domain of the multiobjective optimization problem
being solved. This way we can avoid the population converging prematurely. A
popular way to initialize the population is utilizing Latin hypercube sampling (Mckay
et al., 2000). Latin hypercube sampling is a sampling method that ensures a
more thorough and representative sampling of the domain of a multiobjective
optimization problem than, e.g., random sampling.

Evaluation consists of evaluating each individual in a population to compute
its corresponding objective vector and whether the solution represented by the
individual is infeasible or not. Moreover, a fitness function can be utilized to rank
each individual to achieve some ordering for the solutions. We get a fitness value
for an individual by evaluating the fitness function with the individual. This
allows the evolutionary method to choose which individuals of the population
continue to the selection step, e.g., by discarding individuals corresponding to
infeasible solutions—which is an example of an approach in evolutionary methods
to handling constraints7—and individuals whose fitness value fails to meet some
threshold value.

Selection consists of selecting individuals that are used in the variation step. Selec-
tion is often a stochastic procedure that aims to select above-average individuals
to continue to an intermediate mating pool during variation. An example of a
selection procedure is tournament selection (Miller et al., 1995). In tournament

6 Other population-based methods can also be utilized for multiobjective optimization, such
as particle-swarm and other nature-inspired methods, but these methods are beyond the
scope of this thesis.

7 For more examples of constraint handling in evolutionary methods, see, e.g., the work of Li
et al. (2016).
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selection, several individuals are chosen at random from the population and the
individual with the best fitness value is selected in a tournament-esque setting.

Variation involves creating new individuals, or modifying existing ones,
through various processes. Examples of these are mating, where individuals
from the selection step are combined into new individuals, for example, through
simulated binary cross-over (Deb et al., 1995), where two individuals are combined
to produce offspring by exchanging their decision variable values, mimicking the
biological cross-over; and mutation, where individuals are randomly modified, for
example by altering the decision variable values in the solution represented by
the individual. In other words, mating promotes exploitation of individuals with
an already good fitness value; while mutation promotes exploration by randomly
modifying individuals. Both mating and mutation are stochastic procedures and
are often both employed in the variation step. The variation step produces a new
population.

Elitism combines the new population generated by the variation step with the
older population from the selection step, and then chooses to keep the better
individuals from both populations, combining them into a new one. Elitism is
very similar to selection—both operations discard individuals, favoring the better
ones. The difference is that elitism is about combining two populations, whereas
selection is concerned only with a single population. Nevertheless, it is not
uncommon to see elitism and selection being combined in evolutionary methods,
as done in Article III, for instance. The purpose of elitism, and of selection as well,
is to ensure the overall monotonic and non-decreasing increase in the quality of the
population, i.e., by ensuring that individuals with a good fitness value are not lost.

Termination is the last step and plays an important role in determining when an
evolutionary method should stop based on a stopping criterion. This criterion can
be, for instance, a desired quality for a population—once this quality is achieved
by a population, the evolutionary method stops, and the population of the latest
generation is the method’s output. Another termination criterion is setting the
number of generations in advance. When the set number of generations is reached,
the method stops, and the final population of the method is its output.

Evolutionary methods can be categorized into three distinct types: indicator-
(Zitzler and Künzli, 2004), domination- (Deb et al., 2002), and decomposition-
based (Zhang and Li, 2007) methods. However, methods that do not fit into any of
these three categories also exist. For more recent reviews on existing evolutionary
methods, refer to the works of Antonio and Coello (2017), and Chugh et al. (2019).
However, regarding this thesis, indicator-based methods are of most interest to us,
therefore they will be described in more detail.

An indicator-based evolutionary method relies heavily on an indicator, which is
a measure that can tell us how “good” a population of solutions or an individual
is. Therefore, an indicator plays the role of the fitness function in indicator-
based methods. An example of a popular indicator is the hypervolume indicator,
which computes how good a population is based on the hypervolume spanned
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by the set of solutions represented by the population. This volume is computed
based on a point of reference, for instance, the (approximated) nadir point of the
problem. The hypervolume can tell us how much overall variety there is in a
population, but it cannot tell us how well the population is spread, i.e., is it mostly
clumped into one area or evenly spread across the whole volume. Indicators in
the context of evolutionary methods are a widely studied topic in the field of
multiobjective optimization. For an extended discussion of various indicators
and their mathematical properties, see the works by Zitzler et al. (2003), Pour et
al. (2022), and Afsar et al. (2023).

While studies exist where it has been proven that in some cases the conver-
gence to Pareto optimality of the solutions found by evolutionary methods can be
guaranteed, e.g., (Deb et al., 2007, 2015), the assumptions made are problematic to
generalize to real-life problems, which are often data-driven and may consist of
online data—that is, new data becomes available in real-time, possibly even during
the optimization process. Another issue arising with the assumptions is the re-
quired time for an evolutionary method to converge. Elapsed time will be a critical
factor especially in the context of interactive multiobjective optimization methods,
which we will discuss in more detail in Section 2.2. Generally speaking, when
employing evolutionary methods, especially in real-life data-driven problems, it
is safer to assume a set of non-dominated solutions produced by an evolutionary
method to be always an approximation of the corresponding true Pareto optimal
set.

2.2 Decision-support in multiobjective optimization

Thus far, we have only discussed the properties of multiobjective optimization
problems and approaches to solve them in Section 2.1. In this section, we discuss
what kind of a role the decision maker can play in multiobjective optimization,
and consequently, how multiobjective optimization can be utilized as a decision-
support approach. We begin our discussion with a more in-depth discourse
concerning the decision maker in Section 2.2.1. We then look at how the preferences
of a decision maker can be accounted for in multiobjective optimization, first in
so-called a priori and a posteriori methods in Section 2.2.2, and then in interactive
methods in Section 2.2.3. Lastly, we take a brief dive into the topic of preference
modeling in multiobjective optimization in Section 2.2.4.

2.2.1 The decision maker and preferences

As already discussed in Chapter 1, a decision maker is an expert with domain
knowledge related to the multiobjective optimization problem being solved. When
discussing decision makers in the context of multiobjective optimization and
decision-support, a decision maker is assumed to convey some form of rationality.
The rationality of a decision maker is not a trivial concept and an extensive



34

discussion of it is well beyond the scope of this thesis. For an extended discussion
on what rationality might include, see the book by Bermúdez (2009).

That being said, we have made some assumptions when it comes to the
rationality of a decision maker. These assumptions are:

1. The decision maker will always prefer a non-dominated solution over a
dominated one, or a Pareto optimal solution over a non-Pareto optimal one.

2. The decision maker has preferences that can be utilized to order non-dominated
and Pareto optimal solutions alike.

3. The decision maker is able to provide said preferences in some quantifiable
form, e.g., as aspiration levels.

4. The decision maker is human and has limited cognitive capabilities.

To further elaborate on these assumptions, let us start from the first point, which is
often the main assumption made when a decision maker is assumed to be rational
in multiobjective optimization. Since a non-dominated or Pareto optimal solution
to a multiobjective optimization problem is strictly better, that is, it has better
values for all objective functions than a dominated or non-Pareto optimal solution,
there is no trade-off to be made when switching from the latter type of solution to
the former. The switch will lead to an objectively better solution. This assumption
heavily relies on the fact that the objective function values represent meaningful
values to a decision maker, and that the objective function values tell everything
the decision maker needs to know about the multiobjective optimization problem
when it comes to decision-making. In the case this assumption does not hold, it
means that the multiobjective optimization problem has been ill-defined. However,
sometimes the “goodness” of a solution may depend on other factors, such as
the decision variable values as has been noted in e.g., Article III and (Kania et
al., 2022), which can help a decision maker choose between non-dominated or
Pareto optimal solutions. This does not contradict our first assumption. However,
if a decision variable value causes a decision maker to prefer a dominated or
non-Pareto optimal solution over a non-dominated or Pareto optimal solution,
then the decision variable value should be modeled as an additional objective
function instead. Lastly, the first assumption is also the main reason we can focus
on just the Pareto optimal set or a non-dominated set of solutions in multiobjective
optimization methods.

The second assumption regarding the decision maker is important for us to
be able to order non-dominated and Pareto optimal solutions. This assumption
actually highlights the importance and role of preference information: it breaks the
stalemate in comparing non-dominated and Pareto optimal solutions in a purely
mathematical context without any auxiliary information available on top of the
problem formulation. Depending on the preferences available, we may be able
to fully order solutions or to further partially order them to narrow down the
available solutions to a set of interesting ones. This is crucial when we want to
utilize multiobjective optimization as a decision-support tool.
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The third assumption made regarding a decision maker is closely related
to the second assumption. In fact, it is a necessary prerequisite for the second
point to even make sense. We will later discuss the various types of preferences a
decision maker can be expected to provide.

The fourth, and last assumption, we make is perhaps the most intriguing
one. The decision maker being a human means they have human characteristics.
They have a mind of their own with their own experiences and opinions, they
can get tired, be inconsistent, and be forgetful. Likewise, they can also be very
adaptive and quick to learn, and have a fascinating intuition when it comes to the
multiobjective optimization problem being solved. These characteristics are just
scraping the surface, and it is well beyond the scope of this thesis to explore the
psychology and cognitive abilities of a human decision maker. But it is nonetheless
essential to keep these very important facts in mind—decision makers are human
beings after all. When it comes to this thesis, we can limit the human nature of
decision makers into two observations: i. the decision maker is able to learn, for
instance, about the available solutions to a problem and adjust their preferences
accordingly; and ii. the decision maker can get tired, e.g., in providing further
and further preferences, or when exploring a large amount of available solutions.
These observations play a central role and are a motivating factor in interactive
multiobjective optimization discussed later in Section 2.2.3.

Lastly, it is beneficial to briefly mention what kind of preference information
can be expected from a decision maker. The weights and the reference point
we already saw in Section 2.1.2 are types of preference information. Additional
types of preference information can come in the form of upper or lower bounds,
or both, for desirable objective function values. The decision maker may also
express which solutions from a discrete set of non-dominated or Pareto optimal
solution they prefer or do not prefer, or they may rank discrete solutions in various
ways, such as by comparing them pair-wise. These types of preferences are easily
quantifiable, but types of preference that are more qualitative in nature and bound
to the domain of the multiobjective optimization being solved, also exist. However,
in this thesis, we will focus on strictly quantifiable preference types, which are also
the type of preference that are considered in most of the literature on multiobjective
optimization.

2.2.2 A priori and a posteriori methods

As already mentioned in Chapter 1, when it comes to multiobjective optimization
methods, they can be divided into four categories based on when a decision maker
provides preferences, or if at all (Miettinen, 1999). Methods that do not incorporate
preferences are known as no-preference methods. These methods are employed when
there are no preferences available, often due to the absence of a decision maker.
From the perspective of this thesis, we are not interested in no-preference methods
and will not discuss them further. Instead, we will focus on preference-based
methods.

The first category of multiobjective optimization methods that incorporates
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preference information are known as a priori methods. As suggested by the name,
preferences are incorporated in the multiobjective optimization process before
optimization takes place. In these methods, a decision maker is first queried for
preferences. The preferences are then utilized to find one or more non-dominated
or Pareto optimal solutions to the problem being solved, and these solutions
then constitute the final solution. From a decision-support perspective, a priori
methods come with some innate issues. First, the decision maker is expected to be
able to provide preferences without much knowledge on the characteristics of the
available solutions—they are expected to rely heavily on their domain expertise
alone. A typical example of an a priori method would be solving the scalarized
problem (2) of the achievement scalarizing function (5) once with a single reference
point provided by a decision maker. The solution found is then the final solution
and the optimization process stops. This also shows us another innate problem
with a priori methods: the solution or solutions found depend heavily on the
method itself. If in our previous example we, for instance, chose to use the
GUESS scalarization function (Buchanan, 1997) mentioned in Section 2.1.2, the final
solution found will very likely be a different one. One may then ask the question,
is it enough to provide preferences once and be content with the solution(s)
found? Furthermore, if a found solution in one a priori method produces a
different solution than with some other a priori method with the same preference
information, then which solution is better? Because of the nature of a priori
methods—provide preferences once and then optimize—these questions are very
hard to begin answering. However, a priori methods do find uses, for instance,
when a decision maker has little time to provide preferences, in which case these
methods can prove useful.

The polar opposite of a priori methods are a posteriori methods. Again, as the
name suggests, in these methods preferences are incorporated after optimization.
Typically, the aim of evolutionary methods (c.f., Section 2.1.3) is to find a non-
dominated set of solutions that approximates the Pareto front of a multiobjective
optimization problem being solved. Once a front is available, a decision maker
is then expected to select one or more solutions from it. In selecting a solution(s),
the decision maker can express various types of preferences, like bounds on the
objective function values to help narrow down the number of options to better
fit the interests of the decision maker. While a posteriori methods do not expect
a decision maker to be content right away with any of the solutions found, they
do exert a lot of mental strain on the decision maker. The number of solutions
in a computed front can be very large (∼ 103). It is not feasible to expect a
decision maker to inspect all of the available solutions. It is actually safe to assume
that most computed solutions in a front are not interesting to a decision maker.
This raises another problem with a posteriori methods: a lot of the computed
solutions may be not useful from the perspective of the decision maker, therefore
wasting computational resources. This problem is hard to avoid because, by
their nature, a posteriori methods are required to compute as many solutions as
possible because we do not know beforehand what the decision maker prefers.
With computationally very expensive multiobjective optimization problems, this
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can become an incapacitating issue. On the other hand, limiting the number
of solutions computed by a posteriori methods is counterproductive—how to
limit the search if we do not know the preferences of the decision maker prior
to the optimization process? However, in the case a decision maker has very
little information about the available solutions, a posteriori methods can play
an important role in providing a needed initial insight, which can support the
decision maker in providing preferences in the future.

It is clear that a priori and a posteriori methods come with some issues. In the
next section, we will discuss the remaining category of multiobjective optimization
methods, which aims to address the issues raised in this section.

2.2.3 Interactive methods

The final category of multiobjective optimization methods is interactive methods. In
interactive methods, a decision maker takes an active role during the optimization
process by iteratively providing preferences and inspecting the solutions found. In
other words, the decision maker is able to change their preferences during the opti-
mization process and learn about not only the multiobjective optimization problem
and its solutions, but also about the feasibility of their own preferences (Miettinen
et al., 2008). This allows for solutions to always be computed based on some prefer-
ence information and allows the decision maker to change their preferences based
on what kind of solutions are available. This process of providing preferences and
inspecting solutions continues until the decision maker is happy with a solution
found or wants to otherwise stop. Once the decision maker has decided to stop,
the interactive method is considered terminated.

To give an example of an interactive method, let us recall the example given
in Section 2.2.2 on solving the scalarized problem (2) of the achievement scalarizing
function (5) utilizing a reference point provided by a decision maker. Instead of
utilizing the method purely as an a priori method, we now allow the decision
maker to provide new preferences once they see the solution based on the initial
preferences provided. By inspecting the solution and providing new preferences,
the decision maker is able to achieve at least two important things. First, the
decision maker gets an idea of the feasibility of their preferences. The distance of
the solution found from the provided reference point gives the decision maker a
chance to see how realistic their preferences are. For instance, if the reference point
is far worse than what is available (the reference point is said to be pessimistic), the
decision maker now knows they can be much more demanding in their subsequent
preferences. If, on the other hand, the reference point is way better than what is
available solution-wise (the reference point is said to be too optimistic or infeasible),
this can prompt the decision maker to reconsider their preferences and encourage
them to think of possible trade-offs when providing subsequent reference points.
This brings us to the second important thing the decision maker is able to achieve
in an interactive method: learning. The decision maker can learn during an
interactive solution process about not just the feasibility of their preferences, but
also about the array of available solutions based on their preferences. This last point
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is crucial, because in a posteriori methods this is not the case since solutions have,
by definition, been computed in the absence of preference information.

An astute reader may now be asking themselves “Did not the previous exam-
ple just describe an a priori method that is applied repeatedly?” Before answering
the question, let us consider the following point. An interactive multiobjective
optimization method is not as straightforward to define because, in theory, any
preference-based method can be applied recurrently making the process as a whole
seem like an interactive one. However, this misses the whole point of interaction.
It is not simply repeatedly applying an a priori method, we must, once again,
remember that the decision maker interacting with the method is a human who is
capable of learning. Therefore, we may confidently answer the questions with a
resounding “No.” because it misses the point on what interaction and interacting
is. For this reason, the author of this thesis likes to think of interactive multiobjective
optimization processes, which are enabled by interactive methods. This is because
interactivity is defined by the continuous interaction between a decision maker
and an optimization method, during which the decision maker can learn. For a
method to be an interactive one, it must support meaningful interaction between
a decision maker and the method itself. That being said, to avoid confusion,
we will still refer to interactive (multiobjective optimization) methods, which at least
in this thesis, will be synonymous with the described interactive multiobjective
optimization process.

While repetitively applying an a priori method can be mistaken to be a sort
of interactive method, there are multiobjective optimization methods that are
inherently interactive. These are clearly different from just applying an a priori
method repetitively. One example of such a method is the Synchronous NIM-
BUS method (Miettinen and Mäkelä, 2006), where the decision maker is asked to
provide preferences that are relative to an existing solution. The decision maker
is asked to classify the objective function values of a solution to either improve,
improve until some specified limit, impair until some specified limit, change freely,
or stay as they are. In the NIMBUS method, by design, the minimal interaction be-
tween a decision maker consists of first inspecting an existing solution, classifying
the objective function values of said solution (providing preferences), and then
inspecting up to four (the amount is specified by the decision maker) new solution
computed based on the preferences. This minimal interaction process does not
directly fit into the category of a priori or a posteriori methods. The initial solution
in the NIMBUS method has been computed without preference information, as
is done in a posteriori methods, but not in a priori methods. Consequently, the
preferences provided by the decision maker before the actual optimization process
are based on an existing solution, unlike in a priori methods. Based on these
observations, we see that the NIMBUS method can be classified as an inherently
interactive one.

If the above description did not yet convince the reader that interactive
methods are more than just repeatedly applied a priori methods, then consider
multiobjective optimization navigation methods, such as the NAUTILUS Navigator
method (Ruiz et al., 2019). In NAUTILUS Navigator, the solution process starts
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from the nadir point of the multiobjective optimization problem being solved
and ends on a solution on a non-dominated set or the Pareto optimal front, both
referred here as the final set of solutions. Proceeding from the nadir point to
the final set of solutions is known as navigating. During navigation, the decision
maker can provide a reference point and bounds on the solution in terms of
objective function values, and can change these at will. When navigating, the
method approaches the final set of solutions iteration by iteration (through so-
called navigation points) and the decision maker is able to see in real-time how
the possible set of solutions that are still reachable from each navigation point
changes without sacrifices in any objective function values. The decision maker
can stop the navigation process at any time and change their preferences. Needless
to say, the interaction between a decision maker and NAUTILUS Navigator is
critical, and this is true for all navigation methods (Allmendinger et al., 2017)
making them inherently interactive. The idea of starting from the nadir point and
iteratively approaching the final set of solutions is true for all methods belonging
to the NAUTILUS family of methods (Miettinen and Ruiz, 2016), and it is argued
that such an approach can help a decision maker avoid anchoring effects.

In addition to the examples of interactive methods discussed thus far, there
exist many more in the literature. For surveys of existing interactive methods,
refer to the overviews given by Miettinen et al. (2016) and Xin et al. (2018).

However, interactive methods do come with their own challenges. One of the
main issues arising in interactive methods, which is also addressed in this thesis,
is: how can we support decision makers in providing preferences? This is an open
research question (Belton et al., 2008). We will address this issue in three of the
included Articles I, II, and III. Another issue comes with comparing and assessing
the quality of interactive methods. Since the success of an interactive method as a
decision-support tool is very subjective—it depends on how well a method can
support a decision maker in a decision-making problem—comparing interactive
methods and assessing their performance is still an open challenge (Afsar et al.,
2021), but some attempts in this direction have recently been taken (Afsar et al.,
2023, 2024).

In this thesis, we will discuss three interactive methods in the later sections
presented as novel contributions to the field of interactive multiobjective opti-
mization. Two of these methods are based on the reference point as preference
information. The first of these is a scalarization-based method, presented in Ar-
ticle I, and the other is an evolutionary method enhanced by machine learning,
presented in Article III. The third interactive methods is based on pair-wise com-
parisons of solutions, presented in Article II, and it relies on machine learning to
find solutions according to the preferences of the decision maker.

2.2.4 Preference modeling

When it comes to the decision-support aspect of multiobjective optimization,
we have seen in Sections 2.2.1, 2.2.2, and 2.2.3 how preferences play a key role,
especially in interactive multiobjective optimization methods. We can go as far
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as to say that if we fully knew the preferences of a decision maker, solving a
multiobjective optimization problem would be trivial. However, this is seldom
the case. The natural question is then: could we model the preferences of a
decision maker? We do not need to ask the decision maker for preferences to solve
multiobjective optimization problems if we are able to model them.

Indeed, modeling the preferences of a decision maker in multiobjective op-
timization is not a new topic and has been studied in the literature (Keeney and
Raiffa, 1993; Pedro and Takahashi, 2013; Wang et al., 2017). However, modeling
preferences comes with many challenges. For instance, we need existing informa-
tion on the preferences of a decision maker. How to get this kind of data when
each decision maker is unique? Our best bet is to gather information on prefer-
ences during an optimization process, ideally during an interactive one. Still, if
we assume the decision maker to provide preferences, and be able to somehow
communicate how much they like each of the computed solutions in each iteration
of an interactive method, this still leaves us with very few data points—only 3 to 8
according to some studies (Gardiner and Vanderpooten, 1997). And even if we
assume to be able to gather enough data, then we may question how to model and
account for the decision maker’s learning?

Furthermore, when a decision maker learns about the multiobjective opti-
mization problem and their preferences, their preferences change, which can make
the previously gathered information on the preferences completely void at worst.
We may even assume an ideal case where we have enough data and have managed
to model learning; then the question is: how can we verify our preference model?
The ultimate judge is still the decision maker, and we need to somehow be able to
present the preference model in such a way that the decision maker can compare
it to their own preferences. This can be a very abstract concept for the decision
maker, which can then make it challenging for them to tell us whether the model
is good or not. In the worst case, presenting such a model can even introduce a
bias that may steer the decision maker to prefer solutions that they might not have
preferred in the absence of the preference model. Whether such a bias is good or
bad is subject to debate.

Nevertheless, a common approach in modeling a decision maker’s prefer-
ences is to assume a value function (or utility function) (Keeney and Raiffa, 1993;
Branke et al., 2008) defined as

V : Rk → R. (6)

A value function (6) maps objective vectors into scalar values, which can then
be used to order the vectors. The obvious challenge in this approach is figuring
out what the value function for a particular decision maker is—they obviously
cannot just tell us. As an example, machine learning has been employed success-
fully to some degree in modeling the preferences of a decision maker utilizing
value functions (Battiti and Passerini, 2010; Branke et al., 2014). However, typi-
cally value functions assume the preferences of a decision maker to be constant,
which makes accounting for memory effects—and by extension, learning as well—
challenging (Jarecki and Rieskamp, 2022). Nonetheless, value functions have been
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utilized as the underlying preference model, and it has been possible to learn the
function while applying interactive multiobjective optimization methods (Branke
et al., 2014). In fact, this idea has been explored in Article II, where some of the
shortcomings of the typical use of value functions could be addressed.

If we compare the value function to the fitness function discussed in Sec-
tion 2.1.3, we notice that they accomplish a very similar goal. The difference is that
a value function is meant to reflect the preferences of a decision maker, but this
may not be the case with a fitness function. However, a value function can also act
as a fitness function, or even as an indicator in an evolutionary method (Thiele et
al., 2009). This approach has also been explored in Article III.

2.3 Machine learning and explainability

As a concept, explainability, or at least how it is understood in this thesis, has its
roots in the field of artificial intelligence and machine learning. For this reason,
we will first briefly discuss what machine learning is in Section 2.3.1. Then, in
Section 2.3.2, we introduce the concept of explainability and how it connects to
machine learning.

2.3.1 Machine learning

Since even cognitive scientists struggle to define what intelligence is in the context
of artificial intelligence (Legg et al., 2007), the question is well beyond the scope
of this thesis, and consequently, we will not try to define the concept here either.
But the one thing we can confidently agree upon is that whichever way we define
intelligence, learning is an essential characteristic and necessary prerequisite of
it (Legg et al., 2007).

Unsurprisingly, machine learning is seen as a central element of artificial
intelligence. In fact, machine learning, as the name suggests, focuses on the study
and application of computer algorithms and programs that are able to learn pat-
terns from data (Bishop and Nasrabadi, 2006; Flach, 2012). These patterns can be,
for instance, recognizing the contents of an image; learning trends in data, such as
predicting prices in the housing market; or learning to classify tumors into benign
and malign types in computer tomography scans. From a data analysis perspec-
tive, machine learning can be predictive (“What could happen?”), descriptive
(“What has happened?”), or prescriptive (“What should we do?”) (El Morr and
Ali-Hassan, 2019; Roy et al., 2022). Likewise, machine learning methods can be cat-
egorized into supervised learning (e.g., neural networks), unsupervised learning
(e.g., k-clustering), and reinforcement learning (e.g., evolutionary models) (James
et al., 2013; Sutton and Barto, 2018). In this thesis, we have utilized mainly super-
vised learning and applied it in a descriptive and prescriptive manner in Articles I,
II, and III. For this reason, we will focus on supervised learning in the following
discussion.
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Training a supervised learning model can be described in terms of three
main steps: training, evaluating, and testing. Data plays a crucial role in supervised
learning so it is no surprise that a data set used for training the model is also
further divided into training data, evaluation data, and testing data. We will discuss
these three steps and their connection to the training data in further detail next.

Training. The first step, training, consists of supplying a supervised machine
learning model sets of input and output pairs. The inputs are often symbolized by
Xtrain, and the outputs by Ytrain. The inputs and outputs are further aggregated
into pairs, or tuples,

(
Xtrain

i , Ytrain
i

)
, where i = 1, . . . , N; and N = ∥Xtrain∥ =

∥Ytrain∥, where ∥ · ∥ is the number of elements in a vector. We expect a trained
model to be able to predict Ytrain

j given the input Xtrain
j for any j ∈ {1, . . . , N}. In

other words, a perfectly trained supervised machine learning model can be seen
as a general function

M : RD → RB, (7)

where D is the length of the elements8 in Xtrain and B the length of the elements
in Ytrain. Therefore, the term predict is nothing more than evaluating a function of
the characteristics of M. How M maps its inputs into predictions is assumed to
be defined by its internal parameter values represented by a vector p̄ ∈ P, where
P represents the set of all possible parameter values. The predicted values by M
form a set of predictions Ȳtrain ∈ RB.

The goal of the training step is to find a function M for the given training
data set. In practice, training consists of minimizing a loss function, sometimes also
referred to as an error function9. A general loss function can be defined as

L : RD × RB → R. (8)

In other words, the loss function (8) is a function that maps the outputs, often also
referred to as the true outcomes, and the predictions Ȳtrain to a scalar value. The
loss function is defined in a way that the smaller this scalar value is, the closer the
predicted outcomes are to the true outcomes. This value is referred to as simply
the loss. Training a supervised machine learning model is then nothing more than
finding the internal parameter values p̄ of M such that the loss is minimized. This
is an optimization problem that can be defined as

argmin
p̄∈P

L
(

M(Xtrain, Ytrain; p̄), Ytrain
)

, (9)

or in other words, find the parameter values p̄ of M that minimize the loss function
L. During training, the value of L, given the optimal parameters p̄, is called the
training loss.

Evaluating. After the parameter values p̄ that minimize (9) are found, the super-
vised machine learning model is evaluated. As in training, the evaluation data

8 We are assuming the dimensions of the elements in the input and output data sets to be all
the same. This might not be the case always, but in the context of this thesis, making this
assumption is safe.

9 Not to be confused with the Gauss error function “erf.”
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consists of inputs Xeval ⊂ RD and outputs Yeval ⊂ RB. The role of evaluating
the machine learning model is to assess how well trained it is given data that the
model has not “seen” during its training. In other words, how well the machine
learning model M can predict the outcomes Yeval, which is again measured by
the loss function (8). This loss value is computed with the optimal parameters p̄
found during training, and is known as the evaluation loss, or

evaluation loss = L
(

M(Xeval, Yeval; p̄), Yeval
)

. (10)

The evaluation loss gives an idea of how well the model M is able to generalize to
data outside of the training data. The evaluation loss is often higher (worse) than
the training loss, and it is typically more informative than the training loss as a
metric of the performance of M.

After evaluating, the model M is trained again, usually with new training
and evaluation data. Training and evaluation data form a collective pool from
which the training and evaluation data sets are picked before each training and
evaluation of the model. Therefore, the training and evaluation of the model
consists of an iterative process, which aims to improve the evaluation loss of the
model over time. This way, an iterative improvement of the machine learning
model can occur either by training multiple models and choosing the model with
the lowest evaluation loss, or models can retain information from a previous
training and improve upon themselves in subsequent retraining. However, in
some cases, it is enough to train a model only once.

Testing. After the evaluation loss of a supervised machine learning model has
reached some desirable threshold, the model can be tested. Testing data is utilized
to compute a loss similarly to how the evaluation loss is computed (10). It is crucial
that testing data consists of data that has never been used to train or evaluate
the model. The purpose of testing is to assess how well the model can generalize
beyond the data it has “seen” during testing and evaluation. A low loss computed
with the testing data indicates a well-trained model, which can be expected to
generalize well to new data.

It is important to note that we have made a fundamental assumption when dis-
cussing supervised machine learning models. The model in (7) relies on the
assumption that M can generalize to any data. This generalizability of machine
learning models has been explored in statistical and computational learning theo-
ries, such as the Vapnik–Chervonenkis theory (Vapnik, 1999). While an in-depth
discussion of these theories is beyond the scope of this thesis, it is nonetheless
important to remember that machine learning models are statistical tools, and they
should be treated as such. That is, with caution.

The description given in this section for training a supervised machine learn-
ing model is a very general one, and does not describe the myriad of nuances that
may arise in the process. It is not uncommon to hear researchers and practitioners
referring to training machine learning models to be as much an art as it is a sci-
ence. But still, the description given in this section captures the central essence
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of supervised learning models: existing data is utilized to train and evaluate the
model in hopes of ending up with a trained model that can generalize well to
new observations. To put it simply, a machine learning model is nothing else
than a statistical mapping from observations to outcomes based on—and deduced
from—already known data.

2.3.2 Explainability in machine learning

Given the description of a supervised machine learning model in Section 2.3.1,
one might stop and ask: “How does a machine learning model work, and why
does it make these predictions based on these observations?” Machine learning
alone cannot answer these questions, which, in turn, is a problem. This problem is
emphasized even more when machine learning is utilized as an aid in decision-
support, where the justifiably of the decisions made can be especially important.

The opaque nature of most machine learning models is perfectly captured
by (7)—we are often aware only of a model’s input and output, what happens
in between can be a kind of a mystery. Indeed, this black-box nature of machine
learning models has troubled researchers and practitioners to the point where
a whole new field has spawned to address this issue: explainable artificial intelli-
gence (Confalonieri et al., 2020; Kamath and Liu, 2021). As the name suggests, this
field is devoted to researching models that can be explained and understood on a
deeper level, going well beyond the information we can gather from an abstraction,
such as the one in (7).

The next natural question is then: “What is explainability?” Unfortunately,
even researchers in the field of explainable artificial intelligence find it challeng-
ing to define what exactly explainability is in the context of explainable artificial
intelligence (Flora et al., 2022). For the purposes of this thesis, we approach this
issue by defining first what explanations are, and then defining explainability as the
property of an explainable (machine learning) model to be able to produce such
explanations.

Before we continue our discussion, we must note that explainability and
interpretability are two common terms that are sometimes used interchangeably,
and sometimes they mean completely different things. We will not explore these
semantics further, and we will simply understand interpretability and explainabil-
ity to mean the same thing in the context of this thesis, unless specified otherwise.
That said, we give two definitions, adapted from the literature (Lipton, 2018), for
what an explanation is in the context of this thesis in Definition 1 and 2.

Definition 1 (local explanations). An explanation is a description of the relation-
ship between certain input values and the corresponding output values. E.g.,
an explanation can convey to a human information on how the output has been
affected by the input, possibly allowing the human to modify the input to achieve
a more desirable output.

Definition 2 (simulatability). An explanation is information that can tell a human
how a machine learning model works on a general level. E.g., a textual or pictorial
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representation of the machine learning model that can give a human a general
idea of how the model works so that given an arbitrary input, a human could
mentally “run through” the model and come to the correct output (according to
the model) without ever having to actually evaluate the model.

In fact, the two definitions given for what an explanation is are closely bound
to two main types of explainable machine learning models: inherently explainable
models, or interpretable models, and ad hoc models (Linardatos et al., 2020)10. Ad hoc
models aim to produce explanations for any kind of machine learning model by
observing the model’s inputs and outputs. The goal is to come up with rules or a
description that can tell us what kind of effect the inputs have had on the output,
i.e., if we change a particular input by a certain amount, what kind of change can
we expect in the output? Often these explanations are only local, which means
they are valid for a subset and specific value ranges of the model’s input features.
Therefore, the explanations produced by ad hoc models fit Definition 1. Examples
of ad hoc models are LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee,
2017).

The second type of explainable machine learning models, inherently explain-
able models, are models that are self-descriptive to at least some degree. For
instance, decision trees are a good example of a self-descriptive model. A human
can, in practice, take a trained decision tree, visualize it, and quite literally see
how the machine learning model works. In other words, in terms of explainability,
an inherently explainable model is self-sufficient—the explanation is the model.
Needless to say, this fits Definition 2 for explainability. There are arguments to
be made in favor of utilizing inherently explainable models instead of ad hoc
ones (Rudin, 2019). Part of the argument is that ad hoc models can give misleading
explanations that might not be true at all, possibly even resulting in serious bi-
ases (Slack et al., 2020). But on the other hand, being descriptive is not necessarily
enough to build any kind of understanding regarding the machine learning model,
as exemplified by the Chinese Room thought experiment (Searle, 1980).

So why even bother with ad hoc models then if inherently explainable models
exist? Unfortunately, the predictive power and how understandable a machine
model is—understandable in the sense of Definition 2 for explainability—are
inversely related. That is, the more predictive power a machine learning model
has, the less explainable it is (Gunning and Aha, 2019). However, this concept
is not exactly always true (Lipton, 2018). For instance, consider the inherently
explainable decision tree: while a shallow tree with a couple dozen nodes can
be interpreted by a human, a tree with nodes in the hundreds is already too
cumbersome for most humans to even bother looking at in more detail. The same
is true also for a machine learning model that is often taken to be not explainable,
such as neural networks: while a deep neural network with tens of hidden layers
and thousands of neurons is definitely not understandable, a neural network with
just a couple of hidden layers and a few neurons can be argued to be explainable.

10 These are also referred to as model agnostic and model specific machine learning models,
respectively.
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This is to say that the inherent explainability, or interpretability, of a machine
learning model is not a monolithic concept, as articulated by Lipton (2018).

While there are some dangers to utilizing ad hoc models, they are still
valuable because of their model agnostic nature. They can be applied to virtually
any machine learning model11. One just needs to be careful in interpreting the
explanations by these models, which also stands true for inherently explainable
models, or, in fact, any statistical model.

2.4 Explainability in multiobjective optimization

In this thesis, explainability is explored in the context of multiobjective optimiza-
tion and interactive methods. Because explainability in interactive multiobjective
optimization is a novel concept, and fleshing out this concept is one of the main
contributions of this thesis, we leave the more detailed discussion of explainability,
and examples of it, to Chapters 3, 4, and 5, where we discuss three of the articles
included in this thesis in more detail. Once we have discussed these examples,
we will be capable of further elaborating on the premise of explainability in inter-
active multiobjective optimization in the conclusions of this thesis in Chapter 7.
However, before we move onto the following chapters, we will first conclude this
Background chapter with a survey on how explainability and explainability-like
approaches have been explored in the context of multiobjective optimization by
others in the literature in Sections 2.4.1 and 2.4.2, respectively.

2.4.1 Existing explainable approaches

In this section, we will review some of the works in the literature where explain-
ability has been explored in the context of multiobjective optimization. The focus is
solely on works where explainability has been utilized to support a decision maker
during a multiobjective optimization process. We are not interested in applications
of multiobjective optimization in explainable artificial intelligence. Next, we will
introduce some of the most relevant works summarized in chronological order.

Wang et al. (2016) propose a diversified movie recommendation framework
using a decomposition-based evolutionary multiobjective optimization algorithm.
The authors emphasize the importance of diversity, novelty, and interpretability
in recommendation quality, acknowledging that these properties often conflict
with accuracy. The proposed framework integrates movie content information,
such as genre, into a diversity objective function, making recommendations more
explainable and relevant to user preferences.

Sukkerd et al. (2018) introduce a method to generate understandable justi-
fications for decisions made in multiobjective probabilistic planning problems.
This method emphasizes creating verbal explanations that clarify why certain
solutions are chosen over others and how conflicting objectives are balanced. The

11 Ignoring computational limitations.
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approach involves both an explainable planning representation and an algorithm
for generating contrastive justifications, effectively communicating the trade-offs
and reasoning behind each decision in a format that is understandable by humans.

Zhan and Cao (2019) explore enhancing multiobjective optimization in rein-
forcement learning by incorporating a novel method for explaining the trade-offs
between various objectives. They introduce a correlation matrix to represent the
relative significance of each objective function, allowing for a more detailed un-
derstanding of how changes in one objective may affect others. This approach
provides a clearer insight into the optimization process, particularly in scenarios
where objectives can conflict, which can aid in decision-making.

Lin et al. (2023) present an approach to urban tunnel construction optimiza-
tion under uncertain soil conditions by integrating machine learning with a robust
optimization algorithm. They use SHAP values and building information mod-
eling software, which collectively enhance the explainability and interactivity of
the optimization process. SHAP values are utilized to explain the outcome of the
optimization. The authors claim that this can potentially aid decision makers to
better understand and solve design problems related to tunnel construction under
uncertain conditions.

Osika et al. (2023) discuss advancements and possible future trends in multi-
objective optimization in their recent review. As an emerging research direction,
they explicitly mention explainable multiobjective optimization. They also note
that the field is still in its infancy.

Yadav et al. (2023) present a new navigation method where they have com-
bined Pareto race (Korhonen and Wallenius, 1988) with self-organized map visual-
izations. The authors claim the visualizations to be interpretable, thus capable in
aiding a decision maker during an interactive navigation process to provide pref-
erence information. In the interpretable visualizations, the authors visualize three
new metrics that they believe to be useful to a decision maker when exploring the
objective vectors of a multiobjective optimization problem.

Shavarani et al. (2023) developed an interactive evolutionary multiobjective
optimization method where the preference model of a decision maker is learned
with binary classification decision trees. The decision trees are utilized to predict
results of pair-wise comparisons from the perspective of a decision maker, which
aids the evolutionary optimization process in converging to solutions interesting
to the decision maker. Since decision trees are interpretable, the authors postulate
that this can help the decision maker in trusting the overall optimization process.

Corrente et al. (2024) introduce XIMEA-DRSA, an interactive method where
a decision maker’s preferences are captured through “if. . . , then. . . ” decision
rules using the dominance-based rough set approach (Greco et al., 2001). These
rules inform the multiobjective optimization process, guiding it towards the most
favorable solutions on the Pareto front. The authors claim that this approach
enhances the transparency and explainability of the optimization process, as it
can demonstrate how the decision maker’s expressed preferences influence the
algorithm’s search direction and outcome.
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2.4.2 Some explainability-like approaches in the literature

In this section, we review some other relevant lines of research that explore ap-
proaches that are similar to explainability, but do not make an explicit reference
to the concept. To begin, Deb and Srinivasan (2006) introduced the concept of
innovization, where techniques for multiobjective optimization are explored as
tools to innovate new designs12 in problems with conflicting objective functions.
Their methodology emphasizes the extraction of knowledge from the optimization
process, rather than just focusing on finding a single optimal solution. In other
words, innovization is a form of descriptive analysis for multiobjective optimiza-
tion. By analyzing trade-offs and commonalities among Pareto optimal solutions
in multiobjective optimization problems, innovization seeks to uncover underly-
ing principles that can aid a decision maker in design decisions. This approach
not only helps in finding optimal solutions for a given problem, but also provides
insights into the problem’s structure, offering a deeper understanding that can be
applied to future design tasks. We can therefore clearly see that innovization can
support a decision maker learn about the multiobjective optimization problem
from a design discovery perspective. Innovization has been widely applied in
different application fields since its conception, such as manufacturing (Dudas et
al., 2013) and healthcare (Goienetxea Uriarte et al., 2017) problems.

In their recent thesis, Smedberg (2023) explores the possibilities of data-
mining for knowledge discovery in interactive multiobjective optimization. Knowl-
edge discovery is a similar concept to innovization, but Smedberg criticizes that
the knowledge emerging in innovization is difficult to interpret for humans. To
address this, the thesis emphasizes the generation of explicit knowledge about
solutions to multiobjective optimization problems, focusing on the relationships
between input and output spaces to aid decision makers in understanding complex
problems. Despite existing methods like innovization, there is a lack of accessible
decision-support systems for practitioners to interactively extract and compre-
hend this knowledge. Moreover, Smedberg highlights the challenge of real-world
problems, which often involve stochastic elements and large scales, leading to
time-consuming optimization procedures. To better the efficiency of optimization
processes, the thesis proposes incorporating this knowledge directly into algo-
rithms, a process termed knowledge-driven optimization, which aims to enhance the
search by avoiding less preferred solution regions. While Smedberg does not coin
his approach as explainable per se, their thesis outlines an approach of combining
ideas from data-mining and interpretable machine learning to explicate—as in,
make explainable—interactive multiobjective optimization from a perspective
very similar to innovization.

While the reviews of existing works in this section, and Section 2.4.1, has by
no means been a comprehensive one, they capture some of the most emergent
trends when it comes to applying explainability, and similar concepts, to multiob-
jective optimization to support decision makers. One evident issue with exploring

12 These are particular sets or descriptions of (approximately, c.f., Section 2.1.3) Pareto optimal
decision variables.
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the literature for ideas similar to explainability is the vast and varying vocabulary
utilized to refer to the explication of a multiobjective optimization process to a
human decision maker. It would be a Sisyphean task to try and survey all the
existing literature to find every possible little nuance that could be interpreted
to be a form of explainability. There is a lack of established vocabulary, which
makes searching comprehensively for such literature very hard. This thesis is a
small step towards establishing the term explainable in the context of multiobjective
optimization, which will facilitate making more comprehensive surveys possible
in the future.



3 R-XIMO

One of the main issues in interactive multiobjective optimization is how to sup-
port a decision maker in providing preferences during an interactive optimization
process (Belton et al., 2008). This issue has been addressed with explainability in
Article I. The article proposes a new method, R-XIMO, which is able to support
a decision maker in providing preferences and understanding the connection
between preferences and the computed solutions in a multiobjective optimization
context. The preference type considered consists of a reference point. R-XIMO
explores a novel perspective on how explainability can be utilized to enhance
interactive multiobjective optimization by considering a multiobjective optimiza-
tion method to be a black-box, such as in (7). Then, the connection of the inputs
(preferences) and outputs (computed solutions) of a multiobjective optimization
method are explored and explained by an ad hoc type of explainable machine
learning model: SHAP values. The SHAP values are then utilized to generate
human-understandable text-based explanations that can guide a decision maker
in modifying their preferences so that they may achieve more desirable solutions.

We discuss SHAP values in more detail in Section 3.1, and give a detailed
outline of the R-XIMO method in Section 3.2. We conclude this chapter with Sec-
tion 3.3, where we discuss the limitations and advantages of the R-XIMO method,
and its potential impact in the field of interactive multiobjective optimization.

3.1 SHAP values

SHAP (SHapley Additive exPlanations) values, based on the SHAP framework
(Lundberg and Lee, 2017), offer a way to explain individual predictions of machine
learning models. SHAP values are model agnostic, which means they can be
trained in an ad hoc fashion to produce explanations for any kind of machine
learning model. The SHAP framework itself is based on Shapley values (Shapley,
1953), a concept with roots in game theory (Morgenstern, 1953). Shapley values
are based on the idea of assigning a value to each “player” (feature in a machine
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learning model) based on their contribution to the overall “payout” (prediction of
the machine learning model) of a game (the machine learning model).

To better understand the concept of Shapley values, imagine a team sport
or game1, where each player strives to achieve the best possible outcome for the
game, for instance, by maximizing a final score. Now, the same game is played
multiple times, over and over again. Each time certain players are present—that
is, they contribute to the game, and consequently to the final score—while other
players are absent, not contributing. After every possible game has been played
by iterating over all the possible combinations of present and absent players2, the
marginal contribution of each player to the overall final score of the game can be
computed. The marginal contribution reveals to us the quality and quantity of the
average contribution each player had to the outcome of the game. Needless to say,
this way of computing Shapley values scales poorly with an increasing number
of players, i.e., features. As it is often the case in machine learning models, the
number of features can be very large. SHAP values are a computationally efficient
way to accurately approximate Shapley values, which then tell us the contribution
of the input features to the output of a machine learning model.

SHAP values reveal the impact of features on the output of a machine learn-
ing model. The measure of the impact for each feature on each of the outputs is
quantifiable, which allows for a more nuanced understanding on how the ma-
chine learning model works. In addition, SHAP values ensure the theoretical
properties of local accuracy (for a specific input, the contribution of each feature to
the model’s output is accurately reflected by SHAP values); missingness (when a
feature is absent in the input to a machine learning model, that feature’s SHAP
value indicates no impact on the output); consistency (when a feature’s impact
on the output increases, its corresponding SHAP value will not decrease); and
uniqueness (SHAP values provide specific and exclusive explanations).

One of the drawbacks in computing SHAP values is the handling of missing
inputs (the “missing players”). Many machine learning models will not be able
to handle partial inputs without retraining the model, which is problematic. To
address this, Kernel SHAP (Lundberg and Lee, 2017) can be utilized. Kernel
SHAP is a specific implementation for computing SHAP values for any type of
machine learning model of the type described in (7). It handles the absence of
inputs by simulating “missing data”, which ensures that the input dimension of
the machine learning model stays constant. This eliminates the need to retrain the
model each time its input dimension changes. In the next section, we will discuss
how the properties, and possibilities, of SHAP values can be leveraged to enhance
an interactive multiobjective optimization method with explainability.

1 For example, a rowing competition with eight sculls, the crew of eight wants to reach the
goal as fast as possible.

2 We assume the players to never get tired.
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3.2 The R-XIMO method

In the R-XIMO method, SHAP values are computed by utilizing Kernel SHAP
for a reference point based interactive multiobjective optimization method with
a reference point as its input and an objective vector (the solution) as its output.
The interactive method considered in Article I is simple—it consists of computing
a solution based on a given reference point by utilizing different scalarization
functions and solving its corresponding scalarization problem (2). In practice, the
SHAP values computed for the described method are represented by a square
matrix with dimensions k × k:

SHAP values =




ϕ11 ϕ12 · · · ϕ1k
ϕ21 ϕ22 · · · ϕ2k

...
... . . . ...

ϕk1 ϕk2 · · · ϕkk


 , (11)

where each element ϕij, with i = 1, . . . , k, and j = 1, . . . , k, represents the average
effect of a given aspiration level on the components of a computed objective vector.
That is, the effect the jth aspiration level in the input has had on the objective
vector’s ith component in the output is represented by ϕij. The components of (11)
are real-valued, where a positive values indicates a positive correlation between
the jth aspiration level and the ith objective vector component, and likewise
a negative value indicates a negative correlation. A SHAP value of zero would
indicate that the aspiration level had no effect on the objective vector’s component.

Based on the information contained in the SHAP values (11), it is possible to
tell which aspiration levels affect which objective vector components, and how
much on average—if at all. This information can be further leveraged to tell a
decision maker how their preferences have affected the output of a reference point
based multiobjective optimization method. This is the core idea in the R-XIMO
method.

Once a decision maker has provided a reference point and has seen the ob-
jective vector computed based on the said point, the decision maker can express
which component in the objective vector they would like to improve. The compo-
nent the decision maker desires to improve is termed a target. The SHAP values
can then reveal us which aspiration level in the reference point has had the most
significant positive effect, or negative effect, on the target. This information can
then be used to build a text-based explanation that tells the decision maker which
aspiration levels have had the most significant effect on the target. As an example,
consider the decision maker is interested in improving the first objective function
to some multiobjective optimization problem with three objective functions, then,
an explanation could be: “In the solution, the first objective function value was
most improved by the aspiration level for the second objective function, and most
impaired by the aspiration level for the third objective function.”

Based on the explanation, we can then give a suggestion to the decision
maker on how to modify the reference point to achieve a new solution with a more



53

The decision maker has observed a 
previously computed solution

Decision
maker

I would like to 
improve the first 

objective

R-XIMO

New solution

Explanation and 
suggestion

Modified reference 
point

FIGURE 2 A diagram illustrating the main idea of the R-XIMO method. The sequential
steps in the R-XIMO method are illustrated, starting from the decision maker
observing the objective vector corresponding to a previously computed solu-
tion. Then, the decision maker desires to improve a specific objective function
in the observed solution. Next, the decision maker can utilize the explanation
and suggestion generated by R-XIMO to modify the reference point. The
modified reference point is finally utilized to compute a new solution with a
desired improvement in the objective function the decision maker originally
wished to improve.

desirable objective function value for the target. In the suggestion, the aspiration
level corresponding to the target is suggested to be always improved, while the
aspiration level with the most negative effect—or the least positive in the absence
of a negative effect—is suggested to be deteriorated. This suggestion is based
on the assumption that the objective vectors that have been computed are non-
dominated, which means that to improve the value of one of the objective functions
in the objective vector, at least one other objective function value should worsen.
This trade-off is all but trivial to the decision maker since it can be local and change
depending in which part of the co-domain of the multiobjective optimization
problem the trade-off is being made. In sum, without the suggestions produced
by R-XIMO, the decision maker is left guessing which aspiration level they should
be worsening in a reference point to achieve a more desirable result. An example
of a suggestion derived from the explanation in the previous example, where a
decision maker is interested in improving the first objective function, would be:
“Try improving the reference point component of the first objective and impairing
the component of the third objective.” The main idea of the R-XIMO method has
been depicted in Figure 2.

The correctness of the suggestions produced by R-XIMO was studied statisti-
cally in Article I. It was found that the suggestions will lead to desirable outcomes
most of the time. Three different scalarization functions were considered in the
tests: the achievement scalarizing function, the GUESS scalarization function, and
the STOM scalarization function (c.f., Section 2.1.2). R-XIMO performed simi-
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larly with different scalarization functions, which is encouraging in terms of its
generalizability to other scalarization functions. Moreover, the suggestions and
explanations were also tested in a small scale case study with a human decision
maker in a Finnish forestry management problem. The decision maker felt that
the suggestions were helpful, but the explanations were too verbose. This led to
the conclusions that the viewing of the explanations should be optional. Nonethe-
less, the suggestions remain explainable since they are directly derived from the
explanations. Overall, the tests conducted with R-XIMO showed clear potential in
the method and the underlying idea.

3.3 Discussion of the R-XIMO method

The R-XIMO method is an example on how existing methods for explainability
can be utilized to produce meaningful explanations in the context of an interactive
multiobjective optimization process. The main idea is to treat an interactive
method as a black-box with inputs and outputs, and then explaining the connection
of the inputs and the outputs. Here, we have leveraged the explanations to support
a decision maker in providing preferences in a reference point based interactive
multiobjective optimization method. While the idea was explored through a
concrete example, SHAP values can be utilized to potentially achieve similar
results in any kind of multiobjective optimization method that can be abstracted
to resemble a black-box model with the form of (7). One intriguing example of
this would be to explain the connection between the given classifications and
computed solutions in the Synchronous NIMBUS method (Miettinen and Mäkelä,
2006). We could communicate to a decision maker which classifications have
had the most significant impact on a computed solution, and how to modify the
classifications to achieve a more desirable solution.

Of course, the research presented in Article I comes with limitations as well.
To start, the suggestions are not always 100% accurate, and can lead to undesirable
solutions. Moreover, the suggestions do not contain any information on how
much an aspiration level in the reference point should change. Another limitation
in the suggestions produced by R-XIMO, is that only the most positive (or least
negative) SHAP value is considered, while any “second order effects” are ignored
(that is, the SHAP value with the second most positive value, or second least
negative value). On this note, R-XIMO is able to handle only requests from a
decision maker to improve a single objective function in a solution. Generating
suggestions for improving two or more objective functions simultaneously would
require additional research. While the suggestions were welcomed by the human
decision maker in the case study, the produced explanations were deemed to be
too verbose. The case study also considered only a single decision maker, which
makes the results of the case study anecdotal.

The limitations withstanding, we can still assert with confidence that R-
XIMO proposes a novel and promising direction for exploring explainability in
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the context of multiobjective optimization. The idea should be applied to different
types of multiobjective optimization methods. A particularly interesting line of
research is the study of how to formulate explanations and suggestions based
on SHAP values, and how to best communicate them accurately to a decision
maker—e.g., by utilizing specialized visualizations. While a lot of information
can be derived from SHAP values, we should be careful as not to overwhelm the
decision maker with too much information.



4 INFRINGER

As discussed in Section 2.2.4, modeling the preferences of a decision maker can
help us in finding preferred solutions that match the decision maker’s prefer-
ences. However, the uniqueness of each decision maker, potentially changing
preferences—due to learning, for instance—and the often small amount of pref-
erence information available, makes the prospect of learning a preference model
challenging. Withstanding these difficulties, learning a preference model for a
decision maker in interactive multiobjective optimization makes a lot of sense
because the decision maker is expected to express their preferences multiple times
during the optimization process. Moreover, the decision maker is also available to
audit the preference model as it is learned.

When it comes to explainability, it is not far-fetched to argue that an explain-
able preference model comes with many benefits. For one, explainability could
help the decision maker understand the model, which would not only help in any
auditing of it, but also increase the trust the decision maker has in any solutions
found by utilizing the model. Therefore, exploring the possibilities of modeling
preferences with an explainable model is very intriguing.

Following these deliberations, in Article II, we have proposed a novel in-
teractive multiobjective optimization method—the INFRINGER1 method—with
a learnable preference model. The method utilizes pair-wise comparisons of ob-
jective vectors to elicit preferences, and a belief rule-based system—utilized as a
machine learning model—to model the preferences. Belief rule-based systems
were chosen because of their apparent explainable properties. While the method
can learn a preference model of a decision maker and help them reach desirable
solutions, the explainable aspect of the model could not be exploited because of
the complexity of the resulting model. Nonetheless, the work presented in this
chapter has set the spark to ignite future research in this direction.

We begin our discussion by introducing belief rules and belief rule-based
systems in Section 4.1. Then, we present the INFRINGER method in Section 4.2.
We conclude this chapter in Section 4.3, where we discuss the implications of the
INFRINGER method to the field of explainable multiobjective optimization.
1 Derived from Interactive inference of preferences using belief rules.
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4.1 Belief rules and belief rule-based systems

The belief rules and belief rule-based systems introduced in this section, and
discussed for the remainder of this chapter, are ideas based on Bayesian probability,
Dempster-Shafer theory of evidence, and fuzzy set theory (Yang et al., 2006). While
intriguing topics on their own, discussing them further is way beyond the scope
of this thesis. In the following, we will limit our discussion to what is needed to
understand the work presented in Article II.

In this section, we first introduce belief rules in Section 4.1.1. Then, we
proceed to discuss how belief rules can be utilized to devise belief rule-based
systems in Section 4.1.2.

4.1.1 Rules, belief rules, and belief rule bases

A short primer on rules

Before introducing belief rules, a brief discussion on what is meant by a rule is
needed. In our case, a rule consists of three parts: a precedent, a condition, and a
consequent. For example, “If the traffic light is green, then cross the road.” In the
given example, the traffic light being green is the precedent, crossing the road is
the consequent, and the “if. . . then”-part is the condition. The precedent is often
one or more observations about the environment or a system, and the consequent
is some action to be taken. As for the condition, we can see that it ties together the
precedent and the consequent, or the observation and action.

However, in real life, we often make observations that do not simply boil
down to be either true or false. For instance, we may posit the following question:
“Is the traffic busy?” Unless we have a very specific definition of what “busy”
means, we would naturally answer this question with something vague, for
example: “not very” or “it is very busy.” To cover all the possible magnitudes
of “busy” would be a futile task. This same argument can also be made for
the consequent: “If it is cold outside, then dress warmly.”2 What exactly does

“warmly” mean? Does it consist of putting on a beanie? A beanie and mittens? Or
perhaps it is enough to swap one’s shorts into longer pants? Again, listing all
possible variants of the respective condition of “dressing” in a certain way, would
be pointless. To complicate matters even further, rules have often more than just a
single precedent, e.g., “If the traffic is busy and the weather is cold, then leave for
work now.” Imagine listing all possible variants of the respective conditions of
“busy”, “cold”, and “later”, and their possible variations, and we see that this is not
a practical task at all.

2 Of course, “cold” is also ambiguous here.
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Belief rules

It is quite obvious that simple if. . . then-rules are not very well suited to handle real-
world problems. Instead, we can use belief rules. Belief rules treat precedents and
consequents as collections of discrete (referential) values. For precedents, these
values are known as antecedent values, and for the consequents, consequent values.
To tell how well the different antecedent values represent a precedent in a belief
rule, and how well a consequent value represents a consequent, belief distributions
are utilized. As an example of a belief distribution, in case of the amount of traffic,
the antecedent values could consist of “busy” and “light”, then, an observation
of moderately busy traffic could be represented by the traffic being 70% “busy”
and 30% “light”, as an example. The same is true for the belief distributions for
consequent values. It is important to note that the antecedent and consequent
values are often chosen to be such that they convey a clear meaning. In belief rules,
we can now represent the precedent and consequent with belief distributions over
discrete, predetermined, and meaningful values. That is, we do not need to be able
to list, or even know, all the possible values precedents and consequents may take.
This is the main benefit of belief rules. For the rest of this thesis, the antecedent
and consequent values are assumed to be numerical.

More formally, a single belief rule can be represented as the following collec-
tion of sets:

belief rule = R = {I, A, C, F}, (12)

where I is the set consisting of all the inputs (observations); A is the set of the
antecedent values for each input in I; C is the set of consequent values; and F is
the logical operator connecting each condition in the precedent of a belief rule,
e.g., the conjunction and in the previous example: “If the traffic is busy and the
weather is cold, then leave for work now.” In this thesis, we consider only the and
conjunction. A summary of a belief rule, and its components, is given in Figure 3.

Furthermore, each antecedent value, consequent value, and the belief rule
itself (12), has an associated rule weight to them. Similarly, the antecedent values
have each an attribute weight associated to them. Each consequent value has a
belief degree associated to it, and each belief rule itself has its own weight. All
the weights, the antecedent values, and the consequent belief degrees become
important when we build a belief rule base, discussed next, and a belief rule-based
system, discussed in the following section.

Belief rule bases

When multiple belief rules are considered, then we have a belief rule base. A belief
rule base is a set containing belief rules (12):

belief rule base = {R1, . . . , Rl} = ⟨Ii, Ai, Ci, Fi|i = 1, . . . , l⟩, (13)

where Ri, i = 1 . . . , l; are belief rules, l is the number of rules in the rule base, and
⟨·⟩ represents a quadruple containing all the inputs, antecedent values, consequent
values, and logical mapping found in the rule base. However, a belief rule base in
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FIGURE 3 An example of a belief rule (12) and its components. I = {I1, I2} is the set
of inputs (observations) of the rule, A = {A1, A2} is the set of antecedent
values, C are the consequent values, and F is the logical mapping between the
conditions in the precedent of the belief rule. The antecedent and consequent
values are pictured. The precedent, consequent, and condition of the belief
rule are highlighted as well.

itself is not that useful. The base is just a collection of rules. In the next section,
we will discuss how belief rule bases can be utilized to build belief rule-based
systems.

4.1.2 Belief rule-based systems

A belief rule-based system is a type of expert system or decision support system
that combines elements of both rule-based systems and belief rules to make deci-
sions or draw conclusions. Belief rule-based systems are adequate for modeling
complex nonlinear systems, making effective use of semi-quantitative information,
including qualitative knowledge, incorporating uncertainty, and utilizing expert
knowledge and small sample data to obtain accurate results (Zhou et al., 2019).
Moreover, belief-rule based systems can be interpretable (Cao et al., 2020; You et
al., 2022). The belief rule-based system discussed in this section, and the remainder
of this chapter, is largely based on the RIMER methodology (Yang et al., 2006).
Likewise, the inference and the training of the belief rule-based system is partly
based on the work presented in (Chen et al., 2011).

The belief rule-based system in Article II has been divided into five compo-
nents. These components are: a belief rule base, input transformation, an inference
mechanism, calculation of activation weights, and output transformation. We will dis-
cuss each of these components, and how they combine into a belief rule-based
system, in the rest of this section. A more concrete example of a belief-rule based
system will be discussed in Section 4.2, where we discuss the INFRINGER method.

As already mentioned, a belief rule base is a collection of belief rules (13).
The various parameters of a rule base (antecedent and consequent values, attribute
weights, rule weights, logical mappings between consequent, and belief distri-
butions over consequent values) can all be either set as learnable parameters, or
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to constant values. The constant values can be based on expert knowledge—e.g.,
from a decision maker—or they may be determined otherwise. In Article II, the an-
tecedent values, the belief distributions over consequent values, and the attribute
and rule weights, have been left as learnable parameters, while the consequent
values and the logical mappings are treated as constants.

Inputs to each belief rule in a rule base are expressed as belief distributions
over antecedent values. Computing the belief distributions is done by the input
transformation component. The inputs are transformed such that belief distribu-
tions are calculated for each rule in the rule base of the belief rule-based system.
For each input, the values comprising the input’s belief distribution are assumed
to sum to unity3. As a simple example, consider the antecedent values {4, 8} and
the belief distribution {0.75, 0.25}. These would then represent an input of 5, i.e,
0.75 × 4 + 0.25 × 8 = 5. The belief distributions over the consequent values are
expressed with similar belief distributions as well. It is worth noting that belief
distributions are not necessarily unambiguous.

The inference mechanism calculates the combined belief degrees based on the
individual belief degrees calculated over the consequent values in the belief rule
base. We have assumed that each rule consists of exactly the same (and constant)
consequent values. To calculate the combined belief degrees, the inference mecha-
nism makes use of so-called rule activation weights, which, in turn, are calculated
(by the aptly named component) based on the belief degrees over the antecedent
values, attribute weights, and rule weights.

To learn the parameters of a belief-rule based system, a form of supervised
learning (c.f., Section 2.3.1) can be utilized. Given known training pairs consisting
of inputs (precedents) and outputs (consequents)—that is, known observation-
action pairs—a belief rule-based system can be trained to model different systems.
In other words, this means finding the optimal values for the parameters of the
system by solving an optimization problem similar to (9), so that it achieves a
desirable outcome. Concrete examples of an input and output will be discussed in
the next section.

Lastly, there is the output transformation component. The output trans-
formation aggregates the combined belief degrees computed by the inference
mechanism into a coherent output of the rule base. A utility function4 is utilized to
transform each consequent into a form that may be combined. This is useful when
the consequent values are expressed in qualitative terms, e.g., ”now” or “soon” (c.f.,
Figure 3). Then, the combined belief degrees, and transformed consequent values,
can be aggregated by, for example, a weighted sum, where each transformed
consequent value is weighted by its corresponding combined belief degree. This
allows us to express the output of a belief rule-based system as a numerical value.
And in turn, allows us to represent, understand, and utilize, a belief rule-based
system as a machine learning model (7). A summary of the belief rule-based

3 This assumption can be relaxed such that when belief distribution values do not sum to
unity, the deficit conveys a degree of uncertainty or “unknown knowledge” of the precedent.

4 The naming is unfortunate here and should not be confused with the function presented
in (6).
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FIGURE 4 The belief rule-based system considered in Article II. The system’s compo-
nents are represented by boxes. The solid arrows indicate how the different
parameters are related to each component, they do not represent any kind of
directed flow. The dashed arrows represent the input and output of the whole
belief rule-based system. The component the solid arrows originate from are
the sources of the parameters, while the component the arrows point to, are
dependent on the parameters. The input to the system is a set of observations
about the precedents found in the belief rule base. The output is aggregated
from the consequent values of the rule base. Notice that the belief rule base
component at the center only provides parameter values to the overall belief
rule-based system, its parameter values are the result of training the model.

system discussed in this section is given in Figure 4.

4.2 The INFRINGER method

The INFRINGER method is an interactive multiobjective optimization method
able to learn a preference model of a decision maker. The input of the method is a
representation of the Pareto front of a multiobjective optimization problem (1), and
the output is the value function (6) of the decision maker modeled by a belief rule-
based system, and one or more of the best solutions on the Pareto front, according
to the learned preference model. In addition to Article II, the INFRINGER method
has also been discussed in the master’s thesis of the author (Misitano, 2020).

At the start of the INFRINGER method, there is no value function. To remedy
this, an initial value function is modeled based on a reference point given by the



62

decision maker at the start of the method. In the case the decision maker does
not wish to, or cannot, provide a reference point, then, a point with each of their
components being the midpoint of the respective components in the ideal and
nadir point, is chosen as the reference point to model an initial value function.
After initializing the value function based on the reference point, the decision
maker then compares objective vector pairs by indicating which of the two vectors
they prefer, or if they deem the vectors equally preferable. When making pair-
wise comparisons, the decision maker is presented with multiple sets of pairs of
objective vectors. The objective vectors utilized to form the pair-wise comparisons
are taken from a non-dominated solution set representing an approximation of
the Pareto optimal front of the problem being solved.

The vectors chosen for each set of pair-wise comparisons are selected such
that the relative difference of the value function value between both objective
vectors in each pair exhibit a varying degree of variance, i.e., in some pairs the
value function values for both vectors are close to each other, and in other pairs
they are farther apart. In other words, the decision maker is prompted to compare
pairs of objective vectors, where some of the pairs are clearly distinct in terms of
their value function value, and some are less. This way, we posit to be able to elicit
both coarser and finer details about the decision maker’s preference model.

Based on the pair-wise comparisons conducted by the decision maker, the
belief rule-based system of the INFRINGER method is then trained to model
the decision maker’s preferences as a value function (6). The higher the value
function’s value, the better the assessed objective vector is regarded to be according
to the preferences of the decision maker. The modeled value function is assumed
to be monotonically increasing, i.e., when assessing an objective vector, the value
function’s value increases if any single objective vector component improves
without changing the others. This is based on the premise that the decision maker
will always prefer less to more, when an objective function is being minimized.

After modeling the value function, the decision maker is shown a visualized
representation of the Pareto front, where each objective vectors has been ranked
on a continuous scale according to the value function modeled by the belief rule-
based system. The “best” objective vector is highlighted as well. This gives the
decision maker an impression of their preference model; and whether they agree
with the ranking or not, indicates how well their value function has been modeled.
Afterward, the decision maker can choose to perform a new set of pair-wise
comparisons of objective vectors to further tune the modeled value function, or
they can choose to stop. If they choose to stop, the objective vectors with the best
value function values in the approximate Pareto optimal front of the problem
being solved are shown to the decision maker. This number of objective vectors
shown can be specified by the decision maker. From these, the decision maker can
then select a final solution, or solutions. Even if the preference model already tells
us the best objective vector according to the modeled preferences, we still offer
the decision maker the possibility to choose the final solution from the top-ranked
vectors in case the decision maker’s preferences have slightly changed, or they
wish to select multiple solutions. The INFRINGER method can also be set to stop
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once a desired loss function value (8), e.g., a threshold value, is reached during
training of the belief rule-based system.

The precedents in the rules of the belief rule-based system in the INFRINGER
method are objective function values, while the consequents are value function
values. The number of precedents in each rule is equal to the number of objective
functions in the multiobjective optimization problem being solved. As for the
consequents, there is only one for each rule. To give an example, consider the
belief rule (c.f., Figure 3) for inspecting an objective vector (the input) with two
components: “If the value of the first component is {0/50/100} and the value of
the second component is {120/200/225}, then the respective objective vector’s
value is {0/0.5/1}.” In the example, we have two objective functions in the
precedent each with three antecedent values. In the consequent of the rule, the
value function being modeled is represented by three consequent values. In the
belief rule-based system of the method, there are multiple belief rules similar to the
example given, but with different (and learnable) antecedent values, rule weights,
attribute weights, and belief distributions over the consequent values.

For training the parameters of the belief rule-based system of the INFRINGER
method, a loss function (8) is minimized by solving a problem equivalent to (9).
The formulation of the loss function is based on three assumptions. First, based on
the pair-wise comparisons conducted by a decision maker, we can infer the relative
value function values between the compared objective vectors. In other words,
if we know that the objective vector z1 is preferred to z2, then the value function
being modeled should reflect this so that z1 is evaluated to a greater (better) value
by the modeled value function than z2. Second, the ideal and nadir points of the
multiobjective optimization problem being solved should be evaluated such that
the modeled value function results in its highest possible value (best) by evaluating
the ideal point, and its lowest possible value (worst) by evaluating the nadir point.
And third, the modeled value function should be monotonically increasing, as
already described. Therefore, we do not have explicit data for outputs (i.e., known
objective vector and value function value pairs) when training the belief rule-
based system5, but rather, we have constraints based on the three aforementioned
assumptions. While there are no explicit training pairs, we are able to model a loss
function nonetheless based on the pair-wise comparisons, making the training
of the belief rule-based system of the INFRINGER method a form of supervised
learning. An overview of the INFRINGER method is given in Figure 5.

The INFRINGER method was tested with a human decision maker in a
case study considering a Finnish forest management multiobjective optimization
problem in Article II. Overall, the decision maker thought their preferences were
well-represented after a couple of iterations of the method. The final best objective
vectors shown to the decision maker made sense from their perspective. During
the interactive process, the decision maker felt that the ranking of the objective

5 A variant where a decision maker scores objective vectors (i.e., expresses the value function
values for each vector directly), instead of conducting pair-wise comparisons, was proposed
in (Misitano, 2020). However, with such data, it was found that the belief rule-based system
was very challenging to train successfully.
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FIGURE 5 An overview of the INFRINGER method. A decision maker provides pair-
wise rankings for objective vectors. These ranking are then used to train and
update a belief rule-based system, which in turn models the preferences of
the decision maker via a value function. The value function is then used to
rank the Pareto optimal objective vectors of the multiobjective optimization
problem being solved. These rankings are visualized and shown to the
decision maker. The decision maker can then choose to either continue to
provide new pair-wise rankings, which will lead to an updated model of
their value function. Alternatively, the decision maker may choose to stop
(indicated by the dashed arrows), in which case the best objective vectors,
according to the current value function, are shown to the decision maker, and
then the method stops.



65

vectors shown to them was gradually closing to what they were looking for. The
decision maker also noted that their preferences had changed during the course of
the method (probably due to the decision maker learning about their preferences),
and that the modeled value function was able to, presumably, keep up with these
changes. It was also noted by the decision maker that in some of the pair-wise
comparisons, they would have preferred to express “no preference” between two
objective vectors, but due to the lack of this option, they had expressed the two
vectors to be equal instead.

4.3 Discussion of the INFRINGER method

The INFRINGER method discussed in this chapter, and introduced in Article II, is
able to utilize belief rules and belief rule-based systems to learn a preference model
of a decision maker, eliciting it through pair-wise comparisons of Pareto optimal
objective vectors. It was shown in a case study that the method has the potential
to successfully learn a decision maker’s preference model, and also to support
them in finding solutions to a multiobjective optimization problem. Because
the preference model is retrained between pair-wise comparisons, comparing
consequent models can also reveal details about how the decision maker has
learned their preferences as well. Furthermore, the produced preference model
can also be utilized in other multiobjective optimization methods for solving the
same problem, even in absence of the decision maker.

However, the INFRINGER method comes with limitations. Again, as was the
case with R-XIMO (c.f., Chapter 3), the case study conducted involved only a single
decision maker, which does not allow the results to be generalized. In addition,
the INFRINGER method comes with some computational overhead. The training
of its belief rule-based system to model the value function can take a considerable
amount of time, which, unfortunately, can also vary a lot depending on the results
of the pair-wise comparisons. The considered model of preferences, namely, a
value function, comes also with known limitations, as discussed in Section 2.2.4.
Furthermore, as was mentioned by the decision maker during the case study,
the pair-wise comparisons were lacking, as in, there was no option to express
indifference between two objective vectors, and the decision maker was forced to
choose equality in cases where indifference would have been more appropriate.
Lastly, the INFRINGER method requires a precomputed approximation of the
Pareto front of the problem being solved, which must be computed by other means,
e.g., by an evolutionary method (c.f., Section 2.1.3). Thereby, the solutions found
by the INFRINGER method are also approximations of the true Pareto optimal
solutions.

Considering the title of this thesis, the reader might worry that we still have
not discussed explainability in the context of the INFRINGER method. Given
that the modeled value function is based on belief rules, which we saw to be
quite understandable, one could assume that these rules would be an easy way
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to also build explanations explaining the value function to the decision maker.
However, the reality is not that simple. There are 27 belief rules in the rule base
of the INFRINGER method presented in Article II, which in itself is already a
formidable number of rules to a human to interpret. We must also remember that
each belief rule comes with a myriad of parameters, complicating the situation
even more. Building any comprehensible explanations based on the rules, and
their parameters, will require additional research—not just to find a way to explain
the belief rule-based system, but to also understand how to reduce the number of
parameters and rules without compromising the accuracy and interpretability of
the results. Perhaps, by incorporating more expert knowledge from the decision
maker in the rule base, we could begin approaching this goal.

The presented work is also a testament to the notion that a machine learning
model’s explainability is not a monolithic concept (c.f., Section 2.3.2). In other
words, utilizing a method that, on the surface, seems explainable, does not guar-
antee its explainability if the method ends up being too complex. To the best of
our knowledge, there are no ways to extract explanations from belief rule-based
systems that could help a decision maker in the context of interactive multiobjec-
tive optimization and preference modeling. However, this is not to say that belief
rule-based systems would not have been used as explainable models in other appli-
cations. Quite the contrary in fact, as is evident in the works by Sachan et al. (2020)
and Yang et al. (2022), for instance. These works, and others, could inspire future
works in interactive multiobjective optimization where the explainable aspects of
belief rule-based systems are better leveraged.

While in the INFRINGER method we were not able to produce explana-
tions, we have nonetheless set the stage for future research on utilizing belief-rule
based systems as a potentially explainable machine learning model to enhance
decision-making in interactive multiobjective optimization. The shortcomings of
the INFRINGER method should not discourage the reader regarding the potential
of rule-based explanations. As we will see in the following chapter, rule-based
approaches can be very promising for enhancing interactive multiobjective opti-
mization with explainability.



5 XLEMOO

When we discussed evolutionary methods in Section 2.1.3, we noted that one of
their advantages is their ability to generate multiple, approximate Pareto optimal
solutions. However, most of the time only a few of these end up being useful to
a decision maker. Does this mean that the neglected solutions are useless? Not
necessarily. For instance, machine learning could be utilized to gain additional
insights about the solutions generated, namely, insights about the connection
between decision and objective vectors. Moreover, we do not need to utilize
machine learning in isolation from the evolutionary method. In fact, the two can
be combined into its own kind of method.

The work presented in Article III is about exploring the combination of evolu-
tionary methods and machine learning models. The work sets the stage for a new
type of interactive evolutionary methods: learnable and explainable evolutionary mul-
tiobjective optimization methods. The concept is, yet again, studied in an interactive
context. In addition, a software framework is provided, which allows others to
readily apply and explore learnable and explainable evolutionary multiobjective
optimization methods in their own works. The implementation of this framework
has been largely enabled by DESDEO, which will be discussed in the following
chapter, Chapter 6.

Before discussing the method proposed in Article III, we briefly discuss
learnable evolutionary models in Section 5.1, the basis of the work addressed in
this chapter. Then, in Section 5.2, we discuss the interactive method proposed in
Article III. Finally, we conclude this chapter in Section 5.3, where the implications,
limitations, and contributions of Article III are weighted.

5.1 Learnable evolutionary models

Learnable evolutionary models (Michalski, 2000) combine both evolutionary meth-
ods and machine learning for solving single-objective optimization problems. The
idea is to evolve a population of solutions (c.f., Section 2.1.3), and periodically
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employ a machine learning model to learn a so-called hypothesis based on the
best and worst performing solutions found in the population. The best and worst
performing solutions are found by dividing the population into high-performing
and low-performing groups—H- and L-groups, respectively. The division into these
two groups happens, e.g., by selecting solution percentiles that have the highest
(H-group) and lowest (L-group) fitness values. Then, a machine learning model is
trained to classify solutions in a population into these two groups. This learned
dichotomy by the machine learning model, the hypothesis, is then utilized to
generate new high- or low-performing solutions. Lastly, these newly generated
solutions are combined with the existing population, which can then be evolved
further with an evolutionary method.

In their original work, Michalski (2000) demonstrated that for some optimiza-
tion problems, the combination of evolutionary methods with machine learning
showed a clear boost in the search process for an optimal solution, characterized
by sudden improvements1 in the overall fitness of the population—typically man-
ifesting after machine learning had been employed to generate and introduce new
solutions into the population. This apparent boost to the search for an optimal
solution makes learnable evolutionary models compelling.

Learnable evolutionary models are characterized by two distinct operating
modes: a Darwinian mode2 (evolutionary method) and a learning mode (machine
learning). The learning mode is interesting because it is used to generate new
solutions, which is also referred to as hypothesis instantiation. This is a type of
descriptive machine learning (c.f., Section 2.3.1), i.e., we do not try to predict new
data from observations, but rather, try to learn a description of the data, which
can then be used to generate new data—a form of generative machine learning.
Consequently, when a machine learning model is selected for the learning mode,
it should be readily possible to utilize the model to generate new solutions based
on the learned classification. That is to say that not all machine learning models
are fit for being applied in a learning mode.

As an example of a suitable machine learning model, in Michalski’s work
(2000), AQ learning was employed in a learning mode. AQ learning is a form of
inductive learning based on attributional calculus (Michalski, 1983). AQ learning
generates rule-sets of attributional rules, which consist of a condition and a deci-
sion. The condition is a conjunction of attributional conditions, and the decision is
an elementary attributional condition. If the condition is true, then the decision
holds. Despite the different terminology, if we return to the example of a rule given
in Section 4.1 (“If the traffic is busy and the weather is cold, then leave for work
now.”), then the condition in AQ learning is synonymous to the precedent in the
example, and likewise, the decision is synonymous to the consequent. Continuing
with the previous example, “traffic is busy” and “weather is cold” are then a conjunc-

1 Described as quantum jumps by Michalski.
2 In (Michalski, 2000), both the Darwinian and Lamarckian theories of evolution were con-

trasted, and the proposed model employed specifically a Darwinian type of evolution
in the learning mode. An in-depth discussion and comparison of these two theories are,
unfortunately, outside the scope of this thesis.
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tion of attributional conditions (conjugated with the “and”), and “leave for work
now” is an elementary attributional condition. Unsurprisingly, rule-based machine
learning models are a prime candidate to be utilized in a learnable evolutionary
model’s learning mode, because they are easy to interpret, and therefore, readily
utilized to generate new solutions based on a learned hypothesis.

Apart from single-objective optimization problems, the application of learn-
able evolutionary models to multiobjective optimization has also been studied
in the literature, but to a small extent only. For example, in the works of Jour-
dan et al. (2005), Moradi et al. (2016; 2019; 2020), and Niu et al. (2021), learnable
evolutionary models have been employed to solve multiobjective optimization
problems from various application fields. A common finding in these works has
been that the inclusion of a learning mode to boost an evolutionary search process
has had an overall positive effect on the search of optimal solutions.

In Article III, learnable evolutionary models have been applied to create a
new interactive multiobjective optimization method. In the method’s learning
mode, an interpretable rule-based machine learning model, able to generate similar
rules as in AQ learning, is used. The work presented in Article III is first of its
kind in exploring learnable evolutionary models in the context of interactive
multiobjective optimization and explainability. We will discuss the interactive
method and its explainable qualities next.

5.2 The XLEMOO method

The interactive multiobjective optimization method proposed in Article III, the
XLEMOO3 method, is an indicator-based evolutionary multiobjective optimization
method (c.f., Section 2.1.3) combined with a rule-based interpretable machine
learning model: skope-rules (Goix et al., 2020). Skope-rules were chosen over AQ
learning because of the readily available implementation of the former. Skope-
rules are adept for learning interpretable and precise rules for scoping classes
in classification problems. They offer a trade-off between the interpretability of
decision trees and the modeling power of random forests. As an example of a
rule generated by a skope-rules model trained for bi-classification4, consider the
following: “If a1 > 0.8 and a2 < 0.3 then predict CLASS 1.”, where a1 and a2 are
attributes of the model modeled by skope-rules; and CLASS 1 is one of the two
classes the rule may classify an input characterized by a1 and a2 into. When the
two conditions in the precedent of the rule are true, then the input is classified
to belong to CLASS 1. Otherwise, the input is classified into the other class, e.g.,
CLASS 2. A skope-rule model may generate more than one such rule with varying
numbers of attributes in its precedent. Moreover, each rule is characterized by a
precision, which describes how many of the observed training inputs are described
by the rule. E.g., a precision of 0.45 means that the rule describes successfully 45%

3 Explainable and learnable multiobjective optimization
4 A machine learning classification problem where there are two possible categorical outcomes.
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of the samples in the training data. In other words, the higher the precision, the
more descriptive the rule is for describing the training data.

In the XLEMOO method, the skope-rules model is trained to classify decision
vectors in a population of solutions to a multiobjective optimization problem into
H- and L-groups. Whether a solution belongs to the H- or L-group, is determined
by the decision vector’s fitness. The fitness is calculated based on a scalarization
function (c.f., Section 2.1.2) and a reference point provided by a decision maker.
According to the scalarization function, the closer a decision vector is to the
reference point, the better its fitness, and consequently, the more likely it belongs
to the H-group. Naturally, the farther the decision vector is from the reference
point, the more likely it belongs to the L-group. The division of vectors into the two
groups is determined based on a top and bottom percentile, e.g., 10% of decision
vectors with the best fitness form the H-group, and likewise the 10% of decision
vectors with the worst fitness form the L-group. It is important for the two groups
to be distinct enough so that a clear-cut classification can be learned, which is also
why we do not simply split all the decision vectors evenly into the two groups.
When instantiating new solutions based on the learned classification, solutions
belonging to the H-group are generated and introduced to the population. To
summarize, the skope-rules in the XLEMOO method are used to classify decision
vectors into two distinct classes based on whether the decision vectors are, in
relative terms, closer or farther away from the preferences of a decision maker.

The Darwinian mode of the XLEMOO method is an indicator-based evolu-
tionary multiobjective optimization method inspired by the works of Zitzler et
al. (2004) and Thiele et al. (2009). In the XLEMOO method, the same scalarization
function from the learning mode is utilized as the indicator of the Darwinian mode
as well. Thus, in both modes, the XLEMOO method strives to find solutions that
are close to a reference point provided by a decision maker.

An iteration of the XLEMOO method consists of applying its Darwinian
mode to the population continually multiple times, and then applying its learning
mode once. Each time a decision maker provides a new reference point, the
XLEMOO method is iterated a few times before stopping. Once stopped, the
output of the method is a population of solutions that are close to the reference
point in the objective space, and a list of skope-rules. These rules describe the
decision variables of the solutions with the best fitness. Each rule can describe one
or more of the decision variables. The rules are then combined to describe the set
of solutions that abide to all the rules. If there are no rules describing a decision
variable, then that variable’s description is extracted from the final population of
the method as the variable’s minimum and maximum values. Then, a description
consisting of the minimum and maximum value of each decision variable in the
decision vectors close to the reference point provided by a decision maker, is
formulated and acts as an explanation.

The explanations provided by the XLEMOO method can provide valuable
information to a decision maker about the connection between the decision space
and the objective space near their preferences. This information can be valuable
for engineers and technically adept decision makers to whom the decision variable
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values convey important information, e.g., information about implementing a
solution, which can affect decision-making. An analyst, a person supporting the
decision maker by modeling the multiobjective optimization problem being solved,
can also benefit from the explanations. To the analyst, the explanations can provide
important information about the modeling of the problem, which can help in, e.g.,
troubleshooting and debugging the model, if unexpected relationships are found
among the decision and objective vectors. A showcase on how the explanations
can support a fictional decision maker5, with an engineering background, to solve
a multiobjective optimization problem optimizing the crash safety of a car has
been given in Article III.

The search performance of the XLEMOO method for solutions near a refer-
ence point was also studied in Article III. Two parameters unique to the learnable
evolutionary part of the method were varied. Namely, the switching frequency and
the H/L-split. The switching frequency determines how many times a Darwinian
mode is applied to a population before switching to a learning mode, while the
H/L-split determines the percentiles when dividing solutions of a population into
the high-performing and low-performing groups. It was shown that the perfor-
mance of the method (measured based on four different performance metrics)
was best with the lower switching frequencies, while the effect of the H/L-split
on the search performance was minor at best. The test results were promising
and indicated that the inclusion of a learning mode in the indicator-based method
presented in the work was beneficial to the overall search performance of the
method.

To summarize, the XLEMOO method can find solutions close to a reference
point and is able to explain the characteristics of the decision vectors that are closest
to the reference point. The inclusion of a learning mode to a simple indicator-based
evolutionary method was shown to boost the method’s search performance. By
iterating the method multiple times with a reference point provided by a decision
maker, the method can act as an interactive multiobjective optimization method
as well. The interactive solution process, and the XLEMOO method itself, have
been summarized in Figure 6.

In addition, a software framework, the XLEMOO framework (Misitano, 2023),
was provided in Article III for implementing learnable evolutionary multiobjective
optimization methods with interpretable machine learning. The framework is
implemented in Python, open source with an MIT license6, fully documented, and
first of its kind. The framework allows researchers and practitioners to experiment
with learnable evolutionary multiobjective optimization methods and apply them
to their own needs.

5 That is, the author of the article acting as a decision maker.
6 https://spdx.org/licenses/MIT.html, accessed: May 9, 2024
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Decision maker Popula�on
of solu�ons
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Outputs
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about the problem and preferencesStop

When
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FIGURE 6 Illustration summarizing the XLEMOO method. The decision maker can
provide a reference point, which is utilized in the XLEMOO method to com-
pute a population of solutions to a multiobjective optimization problem being
solved. The method outputs the population and skope-rules describing the
high-performing individuals of the population. One or more of the best solu-
tion(s) are then shown to the decision maker (in the objective space) along
rules describing all the high-performing solutions. The rules function as an
explanation explaining the characteristics of decision variables found in the
high-performing solutions. The decision variables x1 and x2 are given as
an example. The decision maker can then inspect the explanations and best
solutions, after which they may provide a new reference point, or stop if they
are satisfied with the found solution(s).
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5.3 Discussion of the XLEMOO method

The combination of a learnable evolutionary model with an indicator-based evolu-
tionary multiobjective optimization method shows promise in terms of the search
performance for optimal solutions. This observation is in line with previous stud-
ies (Jourdan et al., 2005; Moradi and Mirzaei, 2016; Moradi, 2019, 2020; Niu et
al., 2021). In addition, by employing an interpretable machine learning method
in the learnable evolutionary model, explanations can also be generated that can
support decision makers. The XLEMOO method presented in this chapter has
successfully combined these ideas to enhance the decision-support capabilities of
an interactive evolutionary multiobjective optimization method.

However, the work in Article III has also limitations. Firstly, no real decision
maker was included in the showcase demonstrating the usefulness of the expla-
nations generated by the XLEMOO method. While there are works with human
decision makers in which it is shown that decision variable values can be useful
from a decision-support perspective, e.g., as was found in (Kania et al., 2022), the
actual usefulness remains subject to interpretation and requires further studies
to properly address. Secondly, the XLEMOO method was tested with only one
type of evolutionary method in its Darwinian mode, and one type of machine
learning model in its learning mode. Again, a study that further delves into the
use of different evolutionary multiobjective optimization methods combined with
different machine learning methods, is needed. While rule-based explanations
are promising, other types of explanations should be explored in the future as
well. This is especially true for multiobjective optimization problems with a high
number of decision variables. The problems considered in Article III had only a
few variables.

The XLEMOO method, and the XLEMOO framework, present a preliminary
work in paving the road towards a new sub-field in evolutionary multiobjective
optimization. Learnable and explainable evolutionary multiobjective optimization
methods leverage one of the great strengths of evolutionary methods: their ability
to generate vast amounts of non-dominated solutions to a multiobjective optimiza-
tion problem. With sizeable populations, machine learning becomes a viable tool
in describing the population. These descriptions can then be readily formulated
into explanations. Naturally, interpretable machine learning models make this
task almost trivial. In addition to enabling explanations, the inclusion of a learning
mode can work potentially as a niching operator7 in evolutionary methods. The
XLEMOO software framework provided can make it easier for other researchers to
embark on novel studies, encouraging the exploration of the potential of learnable
evolutionary models in multiobjective optimization in the future. In light of its
encouraging results, and despite its limitations, the work presented in Article III
sets a promising avenue for many types of future works in exploring the emerging
field of explainable and learnable evolutionary multiobjective optimization.

7 An auxiliary operator in evolutionary methods utilized to encourage diversity in the popu-
lation during its evolution, and thus improving the search for optimal solutions.



6 DESDEO

In this chapter, we will discuss the open source software framework DESDEO
introduced in Article IV. DESDEO is specifically crafted to support the imple-
mentation and research of interactive multiobjective optimization methods—both
existing and novel. Consequently, it has significantly supported the integration
of explainability with interactive methods. DESDEO has been the main enabling
force in researching, developing, and implementing the three interactive methods
enhanced with explainability presented in Chapters 3, 4, and 5. Moreover, the
author of this thesis is also one of the main developers of DESDEO. For these
reasons, DESDEO has been included in this thesis as well.

We begin with Section 6.1, where we briefly introduce DESDEO. Then, in
Section 6.2, we elaborate in more detail on the role DESDEO has had in the other
works included in this thesis. Lastly, in Section 6.3, we shortly mention DESDEO’s
impact outside the scope of this thesis to outline its broader impact, discuss its
shortcomings, and conclude by discussing some of the future developments of
DESDEO to address its current limitations.

6.1 The DESDEO software framework

DESDEO is an open source software framework for interactive multiobjective
optimization implemented in Python, as described in Article IV. The framework
has been developed in a modular fashion to facilitate further contributions and
utilization of specific parts of the framework and interactive methods. Apart from
DESDEO, and according to the best of our knowledge, there are no other frame-
works that provide implementations of both scalarization-based and evolutionary
interactive multiobjective optimization methods.

DESDEO is composed of four core packages, each with a distinct role and
fulfilling specific needs in interactive multiobjective optimization. The first of
the packages is desdeo-problem. As the name suggests, the desdeo-problem
package contains tools and utilities to model multiobjective optimization problems.



75

In addition to modeling problems with analytical formulations, there is support for
data-driven and surrogate-based problems as well. Moreover, desdeo-problem
provides also implementations of ready-defined problems, such as various test
problems, e.g., the real-world engineering test problems (Tanabe and Ishibuchi,
2020).

The second package, desdeo-tools, contains utilities and functionalities
that are needed across different types of interactive methods. For instance, scalar-
ization functions, and interfaces to single-objective optimizers are found in this
package. In addition, desdeo-tools provides means to enable interaction be-
tween a decision maker and an interactive method, which are handled through
requests and responses. These are custom structures found in DESDEO that have
been crafted to meet the various needs of different interactive methods.

Interactive methods are implemented in the desdeo-emo and desdeo-mcdm
packages; evolutionary methods in the former, and scalarization-based methods
in the latter. Some of the interactive methods found in desdeo-emo include the
interactive variants of RVEA (Hakanen et al., 2016) and NSGA-III (Lárraga et al.,
2023); and PBEA (Thiele et al., 2009), for instance. Other interactive evolutionary
methods are implemented as well. Moreover, the desdeo-emo package contains
the non-interactive versions of many of the interactive variants, such as the pre-
viously mentioned RVEA (Cheng et al., 2016) and NSGA-III (Deb and Jain, 2013)
methods. Apart from evolutionary methods, desdeo-emo contains implemen-
tations of tools to handle populations and their evolution, namely evolutionary
operators suitable for multiobjective optimization. In other words, desdeo-emo
provides many tools to implement further evolutionary methods.

Lastly, the desdeo-mcdm package contains implementations of methods,
such as synchronous NIMBUS (Miettinen and Mäkelä, 2006), the reference point
method (Wierzbicki, 1982), and various methods belonging to the NAUTILUS
family of methods (Miettinen and Ruiz, 2016). Besides the listed interactive
methods, other methods are also implemented. In addition, the desdeo-mcdm
package contains utilities that are sometimes important in scalarization-based
methods, such as an implementation of the payoff table method (Miettinen, 1999).

Together, the four packages make up DESDEO. Being structured as such,
its users can readily find the necessary tools to implement interactive methods
to solve multiobjective optimization problems. However, DESDEO is far from
perfect, and it has been subject to further developments since the conception of
Article IV. Some of these developments, and the plans for the future development
of DESDEO, will be discussed in Section 6.3.

6.2 DESDEO’s role in this thesis

In this section, we will elaborate more on how DESDEO has enabled the devel-
opment and research involved in the interactive methods enhanced with explain-
ability presented in this thesis. Beginning with the R-XIMO method discussed in



76

Chapter 3, DESDEO’s role has been in primarily enabling the utilization of vari-
ous scalarization functions, and providing different multiobjective optimization
problems to experiment with. In addition, the evolutionary methods in DESDEO
have played a key role in producing the populations that were utilized when
generating SHAP values. Because the problems and scalarization functions used
were under the same framework, scalarizing different problems was seamless,
and did not require, e.g., redefining the problems or the functions each time they
had to be reused. The availability of different evolutionary methods allowed the
computation of various non-dominated solution sets, which were then combined
to produce an approximation of the Pareto optimal front for different problems
being studied. By combining the fronts generated by different methods, they
can better represent the solution set of a problem1. This, in turn, enabled the
computation of meaningful SHAP values in a feasible time. Consequently, this
also led to the generation of accurate explanations and suggestions to support the
decision maker in providing preferences in the R-XIMO method in an interactive
setting.

Similar to what was done in R-XIMO, in the INFRINGER method discussed
in Chapter 4, the evolutionary methods were used to compute a non-dominated
solution set used in training the underlying belief rule-based system. Moreover,
various tools found in DESDEO for manipulating and analyzing solution sets were
utilized, such as the non-dominated sorting of solutions, and the approximation
of the ideal and nadir points of a problem based on the available populations.

Lastly, in the XLEMOO method and its accompanying software framework,
which were discussed in Chapter 5, DESDEO has again been in a central role.
The availability of various multiobjective optimization problems, scalarization
functions, and evolutionary methods in the same software framework, has been
crucial. This has enabled the implementation of the XLEMOO interactive method,
and the experimentation related to the work. Especially the evolutionary op-
erators for multiobjective optimization, and the tools and utilities to calculate
and manipulate solution populations, have been in a key role in developing and
researching the XLEMOO method. Namely, the development of the XLEMOO
method required the implementation of a learnable evolutionary algorithm for
multiobjective optimization. The development of this algorithm was greatly expe-
dited by the availability of the evolutionary operators suitable for multiobjective
optimization found in DESDEO.

In essence, the fact that DESDEO provides different readily defined multiob-
jective optimization problems, scalarization functions, tools to handle solution sets,
and various methods for multiobjective optimization in the same framework, has
greatly supported the works related to Articles I, II, and III. Without DESDEO, the
research and development of the interactive methods enhanced with explainability
would have taken a lot more time. DESDEO has demonstrably enabled the re-use
of existing software for interactive multiobjective optimization. This last fact alone
makes DESDEO an important general asset in the research of other interactive

1 This is because different evolutionary methods have different strengths and weaknesses,
and can therefore generate diverse non-dominated solution sets.
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multiobjective optimization methods as well.

6.3 Discussion of the DESDEO framework

While DESDEO has enabled a significant amount of the work related to the inter-
active methods discussed in this thesis, these works themselves have also outlined
some of the flaws of DESDEO, at least in its current form. The current struc-
ture of DESDEO is not very suitable for implementing novel ideas as part of the
framework. In fact, the software artifacts related to the R-XIMO, INFRINGER,
and XLEMOO methods have not been made an integral part of DESDEO. But
rather, they are their own entities that utilize DESDEO, i.e., applications of DES-
DEO. This makes the available software for enhancing interactive methods with
explainability spread out and harder to find; even despite the fact that all the
software related to the aforementioned works is openly available as open source
software. One of the main reasons for why it is currently hard to implement tools
that enable explainability in DESDEO, is because each of its packages are in their
own repositories, and consequently under their individual version control systems.
This makes working on more than one package simultaneously very challenging.
Since explainability is an overarching concept, and it is related to multiple pack-
ages found in DESDEO, integrating explainability in the current framework is
unnecessarily complex. However, it is also true that explainability in interactive
methods is still a very novel concept. Therefore, generalizations and core ideas
for explainability are yet to mature. This, in turn, makes the implementation of
explainability related tools and utilities in DESDEO challenging as well.

Because of the nature of interactive multiobjective optimization methods, a
user interface plays an important role in enabling decision makers to interact with
the methods. DESDEO, as described in Article IV, was developed to mainly sup-
port the implementation of the algorithmic parts of various interactive methods.
The inclusion of any user interfaces was left mostly open in the original work. This
has made it challenging to experiment with any visualizations or interfaces for any
of the interactive methods enhanced with explainability. Thus, the explanations
were mostly communicated in a textual format to decision makers, which might
not be optimal.

As the development of DESDEO has actively continued after the publication
of Article IV, more efforts have been made in including a user interface in DESDEO,
and also enabling DESDEO and the interactive methods therein to be accessed
from any software application implementing a user interface. In fact, more recent
developments in this direction are evident in the articles (Afsar et al., 2023, 2024),
where DESDEO has been utilized in subject studies with human participants for
comparing interactive methods. In these works, DESDEO has been connected to
a custom web-based interface through a web-facing application programming
interface, or web API. This enables any interface capable of handling HTTP-
requests to connect to DESDEO and utilize the methods found in it. The concept of



78

a web API for DESDEO was first explored by the author of this thesis in (Hakanen
et al., 2022). When it comes to explainability, testing the actual benefits of the
explanations should be assessed and studied with real decision makers as well.
Therefore, having a user interface available can also expedite further studies on
enhancing interactive methods with explainability. This will enable many future
studies as well.

It is evident that DESDEO needs to be further developed to better meet
the needs of explainability in interactive multiobjective optimization. Especially
the inclusion of explainability related tools into the core framework, such as
user interfaces and visualizations. The overall structure of DESDEO needs to be
also rethought so that it will be more welcoming to the needs of explainability.
Therefore, the works included in this thesis have also provided valuable insights
to direct the future development of DESDEO. These, and other, enhancements
will enable many future research directions in enhancing interactive methods with
explainability.

In fact, the raised issues concerning DESDEO are already being addressed,
and the development work required to address these is currently being spear-
headed by the author of this thesis. This overhaul will result in a complete restruc-
turing of DESDEO leading to a more versatile and flexible software framework
capable of addressing a much wider assortment of needs in interactive multiob-
jective optimization, and its more novel branches. After the ongoing overhaul
resulting in a DESDEO 2.0, a web API will be made an integral part of the frame-
work enabling its connection to other software, and the framework will provide
its own user interface, and many visualizations suitable for interactive methods.
Moreover, the structure of the framework will be made much more welcoming to
novel ideas, such as explainability, but also other emerging ideas, such as group
decision-making in interactive methods (Pajasmaa, 2023), for instance. This over-
haul will bring many other changes to DESDEO as well, including support for
more types of multiobjective optimization problems, such as mixed-integer prob-
lems, more interfaces to connect DESDEO to existing single-objective optimizers,
and a database (Saini et al., 2023) enabling many further aspects important in
interactive methods, such as the archiving and comparison of solutions generated
by different interactive methods, and the switching between interactive methods.
The availability of these features will promote exploring and researching the po-
tential of enhancing the decision-support capabilities of interactive multiobjective
optimization to the next level.

Ultimately, the overhauled version of DESDEO, DESDEO 2.0, will be home
to the ideas related to explainability discussed Chapters 3, 4, and 5, and much
more. While the software artifacts related to the included works are currently
freely and openly available, they are scattered. To enable the seamless future
research of explainability in interactive methods, some of these existing ideas
will be re-implemented in the overhauled version of DESDEO. This will bring
explainability related enhancements closer to a myriad of different interactive
methods, user interfaces, visualizations, and other tools for interactive multiobjec-
tive optimization. But most importantly, it will bring explanations for interactive
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methods much closer to other researchers and practitioners, and decision makers.
As DESDEO continues to be developed further—by the author of this thesis, and
others—it will become a central hub for openly available implementations of
interactive methods enhanced with explainability.



7 CONCLUSIONS AND AUTHOR’S CONTRIBUTIONS

Thus far, we have seen examples on how explainability can be utilized to enhance
the decision-support capabilities of interactive multiobjective optimization meth-
ods in Chapters 3, 4, and 5. We also discussed the role and importance of the
DESDEO framework in integrating explainability with interactive methods in
Chapter 6. In this chapter, we synthesize the main contributions of this thesis, and
provide general future research directions for enhancing interactive multiobjective
optimization with explainability.

This chapter is structured as follows: we begin with Section 7.1, where we
outline the author’s contributions in Articles I, II, III, and IV. Then, we shift the
discussion to the main research questions of this thesis in Section 7.2, where we also
provide a synthesis of the main findings and limitations of our work. Finally, we
conclude this chapter—and consequently this thesis—with Section 7.3, where we
discuss the future research directions and the role of this thesis in the conception
of the novel field of explainable interactive multiobjective optimization.

7.1 Author’s contributions

In this section, we will give a brief overview of the author’s role and contribution
in the included articles that have been co-authored. In all of the included articles,
the author was the first and corresponding author. Particularly, in Articles II and
III, the author was the sole author, and his contributions to these works do not
require further elaborations.

In the work related to R-XIMO, in Article I, the author was in charge of
the development and implementation of the proposed method, setting up the
numerical tests and analyzing their results, conducting the experiments with a
real decision maker, and writing the major part of the article. The author was also
in a key role in the revision of the article based on the referees’ feedback.

In the work related to DESDEO, in Article IV, the author has been in a major
role in developing the DESDEO framework, focusing particularly on the devel-
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opment of the desdeo-problem, desdeo-tools, and desdeo-mcdm packages.
The author was also involved in drafting the overall manuscript, with an emphasis
on providing the examples involving scalarization-based interactive methods and
their hybridization with evolutionary methods, and the section showcasing the
potential user interface. The author also led the revision process in addressing the
referees’ comments.

7.2 Main conclusions

We have seen different perspectives in applying the concept of explainability to
interactive multiobjective optimization in the works discussed in Chapters 3, 4,
and 5. We are now in a position to return to the three main research questions
of this thesis, which were presented in Chapter 1. We will answer each research
question, RQ1–RQ3, in Sections 7.2.1, 7.2.2, and 7.2.3, respectively. Naturally, our
answers to the research questions are not meant to be exhaustive, but rather act
as examples and proof-of-concepts, providing us with valuable insights on the
potential of explainability in interactive multiobjective optimization. Lastly, we
synthesize the answers and highlight the main findings in Section 7.2.4.

7.2.1 The first research question

Our first research question (RQ1) was “In which ways can explainability aid a
decision maker in finding their most preferred solution to a multiobjective op-
timization problem when applying an interactive multiobjective optimization
method?” With R-XIMO (c.f., Chapter 3), we are able to provide a decision maker
with an explanation on how the preferences they have provided have affected
the computed solution in a reference point based interactive multiobjective opti-
mization method. Furthermore, we also support the decision maker in providing
further preferences by generating suggestions based on the explanations. The
explanations can also provide the decision maker with insight on the trade-offs
between the objective functions near solutions of interest. Moreover, these sugges-
tions can potentially help a decision maker in reaching their preferred solution in
fewer iterations.

From the perspective of the INFRINGER method (c.f., Chapter 4), explain-
ability could play a role in modeling the preferences of a decision maker. While
this was not directly explored in the presented work, belief rule-based systems
have the option to incorporate knowledge provided by the decision maker when
building the rule base. By incorporating such knowledge, the rules modeling
the preferences, and the corresponding belief degrees, may provide the decision
maker with valuable information on their preferences, possibly supporting their
learning. Moreover, by modeling the rules according to the knowledge of the
decision maker, we could also elicit the preference model in a way, which is more
understandable to the decision maker. This, in turn, can help the decision maker
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in providing preferences.
Lastly, in the XLEMOO method (c.f., Chapter 5), the populations generated

by an evolutionary method, and the preferences expressed by a decision maker,
can be utilized in an interactive setting to generate explanations on the connection
of the found non-dominated solutions and their corresponding objective function
values. The explanations then provide the decision maker with information on
the characteristics of the decision variable values of the solutions that best match
their preferences. This can provide the decision maker with insights that would
otherwise, in the absence of explanations, not be available. The explanations
can also support the decision maker in providing preferences when applying an
interactive method.

7.2.2 The second research question

The second research question (RQ2) was: “Does incorporating explainability in
interactive multiobjective optimization methods improve their decision-support
capabilities?” This question is tricky to answer because evaluating the decision
support provided by an interactive method can be a very subjective matter. How-
ever, both the R-XIMO method and the INFRINGER method were tested by a
decision maker with expertise in the domain of the problem being solved. In the
case of R-XIMO, the decision maker clearly expressed that the suggestions derived
from the explanations were useful. Likewise, the decision maker expressed the
solutions computed by the INFRINGER method to match their expectations, but
this was not directly attributed to explanations. Lastly, in the XLEMOO method, it
was demonstrated in a hypothetical showcase how the explanations describing
decision variable values related to solutions near the preferences could prove
informative to a more engineering oriented decision maker. For such decision
makers, the decision variable values can play an important role in the overall
decision-making process.

7.2.3 The third research question

The third research question (RQ3) was: “In which ways can explainability improve
the justifiability of the decision made when applying interactive multiobjective
optimization methods?” Beginning with the R-XIMO method, the addition of
explainability to understand the connection between the provided preferences and
the computed objective vectors can help the decision maker to justify the trade-offs
made when they change their preferences. To exemplify this, we can consider a
case where the decision maker wishes to improve the objective function value
of a certain objective function, but does not know how they should modify the
reference point. Instead of guessing, the suggestions derived from the explanations
in R-XIMO directly tell the decision maker how the preferences have affected the
output of the interactive method. This gives the decision maker grounds to make
the decision on how to modify their preferences, and thanks to the explanations,
they can justify their choices in modifying the preferences. I.e., they can justify to
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themselves, and possibly other stakeholders, the worsening of a certain component
in a new reference point, when compared to the previous one, with the knowledge
that the change will very likely lead to the best possible gain in the value of the
objective function they wish to improve. Therefore, the preferences given by
a decision maker, that have led to a decision in an interactive method, can be
justified to the decision maker, and other stakeholders, based on the explanations.

When a belief rule-based model is utilized to model the preferences of a
decision maker during an interactive multiobjective optimization method, the rule
base utilized could be directly initialized based on information provided by the
decision maker. The belief rule-base model can then be improved by querying
the decision maker, as was done in the INFRINGER method, to fine-tune the
preference model during the course of an interactive method. This can lead to
an understandable model, where the trained rules and associated belief degrees
can be communicated to a decision maker in an explainable way. This means
that the preference model becomes understandable by the decision maker, which
can support them to understand why an interactive method generated certain
solutions. Consequently, a decision maker can then take an active role in not
just providing the preferences to train the preference model, but possibly also in
auditing it, which is made possible by the model’s explainable nature. Instead
of guessing if a preference model is correct or not, a decision maker may be able
verify it. If a decision maker can be confident that a preference model utilized
is indeed in accord with their own preferences, then the decision maker can
justify to themselves, and to other stakeholders, the solutions found based on the
observation that the preference model accurately represents their values and goals.
This, in turn, can increase the confidence and trust the decision maker has in the
optimization process and its outcomes.

In the XLEMOO method, the justifiability of the solutions found is again
improved thanks to the available explanations. The decision maker can base
the changes in their preferences on the characteristics of the decision variable
values of the solutions found near their preferences. Moreover, if the decision
maker is a more technically inclined person, and is familiar with the formulation
of the problem being solved, the characteristics of the decision variable values
communicated by the explanations can also support the decision maker in auditing
the problem formulation itself. This can either promote confidence or raise doubts
in the decision maker, when it comes to the problem model. These aspects can help
a decision maker in justifying to themselves, and other stakeholders, the changes
made in the provided preferences during an interactive process, and the reliability
of the solutions found.

7.2.4 The enhancements provided by explainability

Table 1 presents a summary of the responses to the three research questions, as
interpreted in the context of the three interactive multiobjective optimization meth-
ods enhanced with explainability presented in this thesis: R-XIMO, INFRINGER,
and XLEMOO. These methods have approached explainability from varying per-
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spectives. Therefore, we are left with varied answers to the research questions as
well.

TABLE 1 Summary of the answers to the three main research questions of this thesis.
The questions where RQ1: “In which ways can explainability aid a decision
maker in finding their most preferred solution to a multiobjective optimization
problem when applying an interactive multiobjective optimization method?”;
RQ2: “Does incorporating explainability in interactive multiobjective optimiza-
tion methods improve their decision-support capabilities?”; and RQ3: “In
which ways can explainability improve the justifiability of the decision made
when applying interactive multiobjective optimization methods?” The answers
have been provided from the perspective of the three explainable interactive
methods discussed in this thesis: R-XIMO (c.f., Chapter 3), INFRINGER (c.f.,
Chapter 4), and XLEMOO (c.f., Chapter 5).

R-XIMO INFRINGER XLEMOO

RQ1 providing
preferences,
understanding the
connection
between
preferences and
objective function
values, learning
about trade-offs

understanding
and learning about
preferences,
providing
preferences

understanding the
characteristics of
preferred solutions
in terms of
decision variable
values, providing
preferences

RQ2 yes, explanations
contribute directly
to
decision-support

maybe,
explainable model
used, but
explanations do
not directly
contribute to
decision-support

maybe,
explanations
contributed
directly to
decision-support,
but not assessed
by a real decision
maker

RQ3 help the decision
maker explicate
the changes in
their preferences

allow the decision
maker to audit a
preference model
used to find
solutions

help the decision
maker explicate
the changes in
their preferences,
audit the
correctness of the
problem’s model

From Table 1, we notice that explainability offers a very promising aid to
decision makers (RQ1) when providing preferences in interactive methods. In
addition, explanations can also provide the decision maker with knowledge on
aspects of the problem, the solutions, and their own preferences, that can be
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of further aid in finding solutions during the course of applying an interactive
method. In other words, the explanations enable the decision maker to learn
about these aspects. That being said, it is important to highlight the fact that
in the INFRINGER method, explainability was posed as an advantage of the
utilized belief rule-based model, but was not directly utilized because of the
complexity of the model. This limitation withstanding, a simpler model, with a
less complicated rule-base, could deliver the previously discussed advantages
related to the INFRINGER method.

However, whether explanations really improve the decision-support capa-
bilities of interactive methods (RQ2) is not completely clear from the research
presented in this thesis. As seen from Table 1, only in the R-XIMO method we
are confident that explanations have improved an interactive method’s decision-
support capabilities. But even there, we only have feedback from a single decision
maker to rely on. Moreover, in the INFRINGER method, explainability did not
directly play a role in supporting the decision maker, and in the XLEMOO method,
the explanations were not assessed by a real decision maker. These are notable
limitations of the presented works as well.

The justifiability that explanations provide (RQ3) in interactive methods has
clearly the most potential when it comes to a decision maker being able to justify
the preferences used to themselves and other stakeholders, as seen from Table 1.
Of course, justifiability can also be a subjective matter, and may depend on the
situation in which the justifications are needed. However, explainability has a
promising potential to offer grounds to decision makers to justify the provided
preference that have led to a decision in an interactive method. Explanations
related to the connection of decision variable values and their corresponding
objective functions values may also provide grounds to decision makers to justify
the validity of the solutions found by interactive methods. That being said, any
justifications derived from explanations in the context of interactive methods,
should ultimately be judged by a decision maker.

In summary, explanations have clearly the most potential when it comes
to supporting a decision maker in providing preferences, learning about their
preferences, and understanding the connection between their preferences and
the computed solutions in interactive multiobjective optimization. Other aspects,
where explanations can play a key role in enhancing the decision-support capabili-
ties of interactive methods, lie in explicating how a decision maker’s preferences
have been modeled, the characteristics of preferred solutions in other terms than
just objective function values—in this case decision variable values—and verifying
the utilized problem model. Whether these truly improve the decision-support
capabilities of interactive methods remains an open question, and deserve further
studies beyond the scope of this thesis. Furthermore, the ways that explanations
improve the justifiability of the decision made with the aid of interactive methods,
are also subject to further debate. Despite these loose ends, it is nevertheless
clear that the further study and research on the application of explainability to
enhance interactive multiobjective optimization methods, is not just a promising
new research avenue, but also necessary if we wish to provide increasingly bet-
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ter decision-support to decision makers in tackling multiobjective optimization
problems in the future as well.

7.3 Future directions

We already outlined potential future research directions for the three interactive
methods in their respective chapters (Chapters 3, 4, and 5). And we presented
some of the future steps in the development of DESDEO in Chapter 6 as well.
However, in this section, we outline some of the general future research directions
that are needed, and have the most potential, based on the overall findings and
limitations of this thesis.

First of all, the communication of explanations to a decision maker requires
further research. In this thesis, all explanations have been presented in a textual
format. While text explanations are easy to generate, they are also limited in their
capability to convey more complex information in an understandable way. For
instance, in the R-XIMO method, the decision maker found the explanations to be
too verbose. Likewise, the rules generated by the XLEMOO method can become
harder to interpret as the number of decision variables in the problem being
solved increases. Not to mention the complexity of the preference model in the
INFRINGER method. Specialized visualizations for communicating explanations
in the context of interactive methods could address these issues, as they could be
suitable for communicating more involved explanations in a comprehensive way.
For instance, SHAP value are often communicated via so-called waterfall and bee
swarm plots in machine learning applications1. However, the usefulness of these,
and other existing visualizations, and the possibility of developing specialized new
visualizations to address the challenges unique to interactive methods, remains an
open research direction.

Another direction is to apply explainability to other existing interactive meth-
ods. When it comes to explaining the connection between preferences and gener-
ated solutions, methods with different types of preference information, such as
those belonging to the NAUTILUS family and the synchronous NIMBUS method
(c.f., Chapter 2), would be promising next steps. For instance, the trade-off free
nature of the NAUTILUS methods would perhaps benefit from counterfactual
explanations, providing the decision maker with detailed insights on the solutions
they are approaching as they near the Pareto optimal front. Different interactive
methods will likely benefit from different types of explanations.

The large number of solutions generated in evolutionary multiobjective opti-
mization methods makes them also succulent to be studied further by enhancing
them with explainable machine learning, as was done in the XLEMOO method
in an indicator-based evolutionary method. In addition, applying an explainable

1 C.f., https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%
20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html. Ac-
cessed: May 9, 2024.
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classifier to study the properties of the rankings and decomposition produced
by domination- and decomposition-based interactive methods, respectively (c.f.,
Chapter 2), is as well an interesting research direction. It was also noted that
the incorporation of learnable evolutionary models can also result in improved
performance of evolutionary methods, which is certainly also a matter worth of
further research.

Additionally, it is obvious from the results of this thesis that we need fur-
ther studies with real decision makers to accurately measure the actual benefits
of explainability introduced to interactive methods. This is also related to the
matter of auditing potentially explainable preference models, as present in the
INFRINGER method. These kinds of studies could provide insights on what
kind of explanations can serve decision makers best when it comes to enhanc-
ing decision-support. The previously discussed visualizations for explainable
interactive methods should also be explored in these kind of studies.

The future research directions discussed thus far are very experimental in
their nature. To support these directions, the availability of interactive methods for
researchers to experiment with freely will be very important. The DESDEO frame-
work will be in a key role in these future studies as well. As our understanding
on how to best enhance interactive methods with explainability increases, so will
the software needs evolve. To best facilitate these endeavors, DESDEO must be
constantly developed to meet the various emerging requirements of explainability.
Additionally, to supplement these experimental research directions, theoretical
studies should be pursued as well. These studies could leverage the mathemati-
cal properties unique to multiobjective optimization problems for enhancing the
explainability of interactive methods.

In essence, the main general research directions put forth by this thesis can
be condensed into three:

1. researching novel ways to communicate explanations to decision makers in
interactive methods,

2. applying explanations to a wider range of different interactive methods, and

3. studying the benefits of explanations in interactive methods in studies with
real decision makers.

These encompass, however, only the tip of the iceberg, and by applying a hint of
imagination, one can easily come up with a lot more additional research directions
to enhance interactive multiobjective optimization with explainability.

To conclude, based on the results of this thesis, explanations are still a very
fresh concepts in the context of interactive multiobjective optimization. It is evident
that the further study of explanations to enhance interactive methods is more than
warranted. This thesis has laid one of the foundational bricks on the road paving
our way towards a new breed of interactive multiobjective optimization methods
enhanced with explainability. We posit with confidence that the field of explainable
interactive multiobjective optimization will gain more and more traction in the coming
decades.
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Ultimately, the efforts in pursuing research in the direction outlined by this
thesis will amount to better decision-support tools for solving multiobjective
optimization problems across different problem domains. These problems will be
accompanied by a diverse assortment of decision makers, each of them equipped
with a similarly diverse array of decision-support needs. And part of these needs
will be met by enhancing the decision-support tools utilized with explainability.



YHTEENVETO (SUMMARY IN FINNISH)

Tässä väitöskirjassa esiteltiin kolme uutta interaktiivista monitavoiteoptimointi-
menetelmää: R-XIMO, INFRINGER ja XLEMOO. Nämä menetelmät hyödyntävät
vaihtelevasti selitettävyyttä tukien päätöksentekijää monitavoiteoptimointion-
gelmien ratkaisemisessa. Myös avoimen lähdekoodin DESDEO-ohjelmistokehys
esiteltiin, koska se on tukenut edellä mainittujen menetelmien kehittämistä.

Väitöskirjan johtopäätökset osoittavat, että selitettävyydellä on selkeästi
potentiaalia tukea päätöksentekijöitä interaktiivisessa monitavoiteoptimoinnis-
sa monilla eri tavoilla. Selitettävyys voi auttaa päätöksentekijöitä mieltymysten
ilmaisemisessa, sekä ymmärtämään miten mieltymykset ovat vaikuttaneet ratkai-
suprosessiin ja ratkaisujen laskemiseen. Selitettävyys voi lisäksi myös tukea pää-
töksentekijää perustelemaan tehtyjä valintoja ja päätöksia muille asianomaisille,
itselleen, sekä se voi paljastaa tärkeää tietoa liittyen monitavoiteoptimointiongel-
man mallinnukseen. Selitettävyys voi myös auttaa päätöksentekijän mieltymysten
mallintamisessa ja näiden mallien ymmärtämisessä.

Esitetyn tutkimuksen selkeimpiä rajoitteita oli selitettävyyden tutkiminen ra-
joitetulla määrällä interaktiivisia menetelmiä. Lisäksi, itse selitettävyyden hyötyjä
päätöksentekijälle on vaikea arvioida ilman laajempaa otantaa, jossa useamman
päätöksentekijän kokemuksia selitettävyyden tuomista hyödyistä voisi mitata.
Erityisesti päätöksentekijän mieltymysten mallintamisessa, selitettävyyden hyö-
tyä ei saatu varmuudella selvitettyä, vaikkakin sen hyödyntäminen vaikuttaa
lupaavalta.

Tulevaisuuden tutkimussuuntauksia selitettävyyden hyödyntämisessä inte-
raktiivisessa monitavoiteoptimoinnissa tunnistettiin myös paljon. Nämä voidaan
tiivistää kolmeen pääsuuntaukseen: 1. uusien menetelmien tutkiminen, joiden
avulla selityksiä voidaan tehokkaammin kommunikoida päätöksentekijöille, kuten
erilaiset visualisoinnit; 2. selitettävyyden soveltaminen muiden, kuin tutkimukses-
sa esiteltyjen, interaktiivisten menetelmien parantamiseen; sekä 3. selitettävyyden
tuomien etujen arviointi tutkimuksissa, joihin osallistetaan oikeita päätöksente-
kijöitä. DESDEO-ohjelmistokehys voi auttaa paljon näiden suuntauksien tavoit-
telemisessa, mutta itse kehystä täytyy myös ensin parantaa, jotta selitettävyyttä
voidaan soveltaa paremmin interaktiivisissa menetelmissä.

Kaiken kaikkiaan, väitöskirja osoittaa kuitenkin, että selitettävyyden sovelta-
minen interaktiivisessa monitavoiteoptimoinnissa on hyvin lupaavaa. Tämä voi
johtaa uusien interaktiivisten menetelmien kehittämiseen, ja voi myös auttaa ole-
massa olevien menetelmien parantamisessa. Väitöskirja on luonut pohjan uudelle
tutkimussuuntaukselle, eli selitettävälle interaktiiviselle monitavoiteoptimoin-
nille. Selitettävyyden avulla voimme jatkossa kehittää työkaluja päätöksenteon
tukemiseksi, jotka ovat ymmärrettäviä, läpinäkyviä, sekä auttavat päätöksente-
kijöitä löytämään parhaan mahdollisen ratkaisun ongelmiin, joissa on useampi
ristiriitainen tavoite.
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J. E. Rowe, P. Tiňo, A. Kabán & H.-P. Schwefel (Eds.) Parallel Problem Solving
from Nature - PPSN VIII. Springer, 832–842.



ORIGINAL PAPERS

I

TOWARDS EXPLAINABLE INTERACTIVE MULTIOBJECTIVE
OPTIMIZATION: R-XIMO

by

Misitano G., Afsar B., Lárraga G., Miettinen K. 2022

Autonomous Agents and Multi-Agent Systems, 36 (2), 43

Reproduced with kind permission of Springer.



Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2022) 36:43
https://doi.org/10.1007/s10458-022-09577-3

1 3

Towards explainable interactive multiobjective optimization: 
R‑XIMO

Giovanni Misitano1   · Bekir Afsar1 · Giomara Lárraga1 · Kaisa Miettinen1

Accepted: 6 July 2022 / Published online: 13 August 2022 
© The Author(s) 2022

Abstract
In interactive multiobjective optimization methods, the preferences of a decision maker are 
incorporated in a solution process to find solutions of interest for problems with multi-
ple conflicting objectives. Since multiple solutions exist for these problems with various 
trade-offs, preferences are crucial to identify the best solution(s). However, it is not nec-
essarily clear to the decision maker how the preferences lead to particular solutions and, 
by introducing explanations to interactive multiobjective optimization methods, we pro-
mote a novel paradigm of explainable interactive multiobjective optimization. As a proof of 
concept, we introduce a new method, R-XIMO, which provides explanations to a decision 
maker for reference point based interactive methods. We utilize concepts of explainable 
artificial intelligence and SHAP (Shapley Additive exPlanations) values. R-XIMO allows 
the decision maker to learn about the trade-offs in the underlying problem and promotes 
confidence in the solutions found. In particular, R-XIMO supports the decision maker 
in expressing new preferences that help them improve a desired objective by suggest-
ing another objective to be impaired. This kind of support has been lacking. We validate 
R-XIMO numerically, with an illustrative example, and with a case study demonstrating 
how R-XIMO can support a real decision maker. Our results show that R-XIMO success-
fully generates sound explanations. Thus, incorporating explainability in interactive meth-
ods appears to be a very promising and exciting new research area.
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1  Introduction

Real-life optimization problems seldom consist of only a single objective to be opti-
mized. Instead, multiple conflicting objectives are to be considered simultaneously. 
These problems are known as multiobjective optimization problems and many solutions, 
known as Pareto optimal solutions, exist with various trade-offs between the objectives. 
The characteristics that define the best solution to be implemented in practice depend on 
the problem and subjective information. This information can be obtained from a human 
domain expert, known as a decision maker (DM). If the DM provides their preferences, 
we can find the DM’s best (i.e., most preferred) solution.

The type of preferences a DM can provide varies a lot (see, e.g., [1–3]). When the 
preferences are incorporated into the solution process also matters. The DM can provide 
preferences before the optimization, but they can be too optimistic or pessimistic. Alter-
natively, a representative set of Pareto optimal solutions can be generated for the DM to 
choose from, but this can be both computationally and cognitively demanding. In con-
trast to these, in interactive multiobjective optimization methods [4, 5], preferences are 
incorporated iteratively during the solution process [1]. Interactive methods are many 
and vary in various aspects, such as the type of preference information required from 
the DM and how preferences are incorporated in the optimization process [4, 6, 7].

Moreover, the course of an interactive solution process can be divided into a learning 
and a decision phase [5]. Roughly speaking, as the name suggests, in the learning phase, 
the DM learns about the trade-offs and the feasibility of one’s preferences to identify a 
region of interest and, in the decision phase, one converges to the most preferred solu-
tion in that region. Unfortunately, interactive methods typically offer little support to the 
DM during the learning phase making it hard for the DM to learn. This lack of support 
is an open issue in interactive multiobjective optimization [8, 9], which we will address 
in our work.

An example of preference information is a reference point consisting of desirable 
objective function values. We propose an approach to support the DM in applying inter-
active reference point based methods [10, 11], where explanations are provided to the 
DM about why an interactive method has mapped their preferences to certain solutions. 
Reference point based methods are classified, e.g., in [12], as ad hoc methods arguing 
that they do not support the DM in directing the solution process to provide preferences 
for the next iteration. Thus, these methods may seem like black-boxes to DMs. There-
fore, explanations can help the DM learn about the trade-offs between the objectives in 
the problem, for instance. The general concept of an iteration of a reference point based 
interactive methods is illustrated in Fig. 1. The DM provides a reference point per itera-
tion to get desirable values for objective functions. There are many ways a solution can 
be computed based on a reference point, e.g., by minimizing an appropriate scalarizing 
function that maps the reference point to the closest Pareto optimal solution. Thus, by 
modifying the reference point, different solutions can be found.

In addition, by utilizing the explanations, we can also support the DM by deriving 
suggestions from the explanations that provide information about how preferences can 
be modified to achieve some desired results, such as improving a certain objective func-
tion value in a solution of the next iteration. An example of the second iteration where 
we want to support the DM is illustrated in Fig. 1. There, the DM wishes to improve 
Objective 2 in the initial solution and wonders how the initial reference point should be 
modified to achieve this goal. Indeed, according to the advice given in [13], we consider 
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two central questions in interactive multiobjective optimization which can arise in the 
mind of the DM: 

1.	 Why  preferences have been mapped to the computed solution(s)?
2.	 How  can preferences be changed to affect the computed solution(s)?

We borrow ideas from the field of explainable artificial intelligence (XAI) [14]. We do 
not attempt to create a new interactive multiobjective optimization method. Instead, we 
present a method that is able to explain the behavior of reference point based methods and 
support the DM in learning about the multiobjective optimization problem and providing 
preference information. There are methods in the field of XAI that can be used to formu-
late explanations for the predictions made by black-box machine learning models. Most 
of these methods have the advantage of being model agnostic, which means that they can 
be applied to any kind of (machine learning) model [15]. We show in our work that these 
methods can be applied in interactive multiobjective optimization methods as well and 
used to successfully formulate explanations.

Our main contribution is developing the concept of explainable interactive multiobjec-
tive optimization (XIMO) by exploring reference point based interactive multiobjective 
optimization methods. The ideas introduced in this paper are applicable to other interactive 

Fig. 1   The general concept of reference point based interactive multiobjective optimization methods illus-
trated with a problem with two objectives to be minimized. The questions of why a reference point has been 
mapped to a specific solution and how the reference point could be changed to achieve a desired result are 
highlighted
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methods as well. XIMO is a very broad topic and our paper will, hopefully, lead to more 
follow-up research exploring the application of the concept of explainability in multiob-
jective optimization. Our proposed method, R-XIMO, derives explanations and supports 
a DM in providing a reference point to reflect desired changes in the objective functions. 
This method is also ideal to be incorporated as an agent in a multi-agent system supporting 
the DM in an interactive multiobjective solution process as discussed in [16].

Our paper is structured as follows. In Sect.  2, we introduce the background concepts 
required to understand the ideas discussed in the paper. Then, we introduce our proposed 
method R-XIMO in Sect. 3. In Sect. 4, we give an illustrative example on how R-XIMO 
can support a DM in practice, and we also present a case study with a real DM solving a 
multiobjective optimization problem in Finnish forest management. We validate R-XIMO 
further numerically and present the results in Sect. 5. We discuss the results of Sects. 4 and 
5, as well as future research perspectives of R-XIMO, and XIMO in general, in Sect. 6. 
Lastly, we conclude our work in Sect. 7.

2 � Background

2.1 � Concepts of multiobjective optimization

Multiobjective optimization [1] consist of multiple conflicting objective functions to be 
optimized simultaneously. Such problems can be mathematically formulated as follows:

where fi(�) , i = 1,… , k are objective functions (with k ≥ 2 ), and � = (x1, ..., xn)T is a vec-
tor of n decision variables belonging to the feasible set S ⊂ ℝn . For every decision vector 
� , there is a corresponding objective vector �(�) . In the rest of this article, we refer only 
to minimization problems, but the conversion of a function to maximization is trivial (i.e., 
multiplying by -1).

Because of the conflict between the objective functions, not all of them can achieve 
their optimal values simultaneously. Given two feasible solutions �1, �2 ∈ S , �1 dominates 
�2 if and only if fi(�1) ≤ fi(�2) for all i = 1,… k , and fj(�1) < fj(�2) for at least one index 
j = 1,… , k . A solution �∗ ∈ S is Pareto optimal if and only if there is no solution � ∈ S 
that dominates it. The set of all Pareto optimal solutions is called a Pareto optimal set, 
and the corresponding objective vectors constitute a Pareto optimal front. A feasible solu-
tion �∗ ∈ S and the corresponding objective vector �(�∗) in the objective space are weakly 
Pareto optimal if there does not exist another feasible solution � ∈ S such that fi(�) < fi(�∗) 
for all i = 1,… , k.

The ideal point �∗ and nadir point �nad represent the lower and upper bounds of the 
objective function values among Pareto optimal solutions, respectively. The ideal point is 
calculated by minimizing each objective function separately. The nadir point represents the 
worst objective function values in the Pareto optimal set. Obtaining its value is not straight-
forward, as it requires computing the Pareto optimal set. However, it can be approximated 
[1]. The components of a utopian point �∗∗ are derived by improving the components of the 
ideal point with a small positive �.

(1)
minimize �(�) =

(
f1(�),… , fk(�)

)

subject to � ∈ S,
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As mentioned, typically, solving a multiobjective optimization problem involves a DM 
who has deeper knowledge of the problem. The DM is responsible for finding the most pre-
ferred solution among the conflicting objectives.

There are different types of methods for solving multiobjective optimization problems, 
for example, scalarization based and population based (like evolutionary) methods [17]. 
Scalarizing functions convert a multiobjective optimization problem into a single objective 
one [1, 11]. They usually also incorporate the preference information of the DM. Prob-
lem (1) can be converted into a scalarized one as

where � is a set of parameters required by the scalarizing function s. Several scalarizing 
functions have been proposed in the literature [1, 11]. We are interested in scalarizing func-
tions [18] that consider a reference point z̄ provided by the DM. As mentioned, a refer-
ence point consists of desirable objective function values, also known as aspiration levels. 
As examples, we utilize scalarizing function from different methods (for more information 
about reference point based scalarizing functions, see [10, 11]).

The scalarizing function of the GUESS method [19] is the following

From the STOM method [20], we get

and from the reference point method (RPM) [18, 21] we get

Scalarizing functions (4) and (5) contain an augmentation term with a small, positive mul-
tiplier � . This term guarantees that the solution will not be weakly Pareto optimal, as can 
be the case for (3). Actually, the solutions of (4) and (5) are properly Pareto optimal (for 
further information, see [1]). For the three scalarizing functions, the denominator must not 
equal zero. In fact, it is positive when z∗

i
< z̄i < znad

i
 for all i = 1,… , k.

As mentioned in the introduction, we consider reference point based methods, where in 
each iteration, the DM provides a reference point and the method generates one or some 
Pareto optimal solutions reflecting the preferences. Depending on the method, the scalar-
izing function used to generate the solution(s) varies (it can, e.g., be one of the three func-
tions above). The DM can iteratively compare the obtained solutions and provide new ref-
erence points until the most preferred solution is found.

2.2 � Explainable artificial intelligence and SHAP values

The central goal of machine learning methods [22] is to approximate, or predict, new 
information based on past observations. State-of-the-art machine learning methods, 

(2)
minimize s(�(�);�)

subject to � ∈ S,

(3)GUESS(z̄;�, �nad) = min
�∈S

max
i=1,...,k

[
fi(�) − znad

i

znad
i

− z̄i

]
.

(4)STOM(z̄;�, �∗∗) = min
�∈S

max
i=1,...,k

[
fi(�) − z∗∗

i

z̄i − z∗∗
i

]
+ 𝜌

k∑
i=1

fi(�)

z̄i − z∗∗
i

,

(5)RPM(z̄;�, �∗∗, �nad) = min
�∈S

max
i=1,...,k

[
fi(�) − z̄i

znad
i

− z∗∗
i

]
+ 𝜌

k∑
i=1

fi(�)

znad
i

− z∗∗
i

.
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such as deep neural networks, have shown vast potential for various applications across 
many fields, see, e.g., [23–26]. It is typical for the most accurate machine learning mod-
els, which are often the most complex ones, to be also the most opaque [27], but not 
necessarily always [28]. These models are often employed in high-stakes domains, such 
as healthcare [29] and self-driving cars [30], where their opaque black-box nature can 
become problematic, see, e.g., [31, 32].

Because the true value of a prediction of a machine learning model is often unknown, 
the validity of the predictions cannot be checked by comparing it to the true value. 
Therefore, the viability of the prediction needs to be validated in some other way. An 
example is to provide some explanation justifying the prediction. Based on this explana-
tion, a human, or humans, can then decide whether the prediction is sound or not.

XAI [14] sheds light on black-box models to understand how they make predictions. 
Many different XAI methods exist [33]. Usually, they try to explain the predictions 
made by black-box models, which have already been trained, as is done by LIME [34], 
for instance. The explanations are therefore not a result of the model itself, but an exter-
nal tool. This kind of explanation is known as post-hoc. Another typical approach is to 
come up with new, inherently explainable, machine learning models, such as Bayesian 
rule lists [35]; or to simply tap into the explainability inherently found in interpretable 
models, such as decision trees [36]. Explanation models that do not depend on the type 
of machine learning model are known as model agnostic ones. Typically, these models 
can explain any machine learning model. For example, they are able to explain the pre-
diction of an individual input for some previously trained model. And as we will later 
see in our work, some model agnostic explanation models can also be utilized to explain 
black-boxes that are not machine learning models at all. For reviews on the recent 
advancements in XAI, see, e.g., [15, 37].

Typically, a machine learning model g is trained on input–output training set pairs 
consisting of vectors with M features (also known as attributes) � and output values y. 
Training consists of finding internal parameter values for g so that when g is evaluated 
with some new observation �∗ , which was not present in the training set, the output of g, 
g(�∗) = y∗ , would be as close as possible to the true output value, i.e., y∗ ≈ ytrue , which 
is often unknown. The output of the model g is also known as a prediction.

In our work, we focus on ad-hoc explanation methods unified by the SHAP frame-
work [38]. The reason for this is that the SHAP framework guarantees certain theoreti-
cally sound properties (local accuracy, missingness, consistency, and uniqueness; see 
[38] for an in-depth discussion on their implications). By utilizing the SHAP frame-
work, so-called SHAP values can be computed. SHAP values are based on Shapley val-
ues [39], which in turn are based on game theory [40].

Shapley values can be used to assign a value to the contribution of a single player to 
the payout in an n-player game. In other words, Shapley values can be used to character-
ize the contribution of a single entity (i.e., an attribute in an input to a machine learn-
ing model) when multiple entities collaborate to achieve a common goal (i.e., make a 
prediction). Thus, Shapley values can be used akin to sensitivity analysis to explore how 
a prediction made by a machine learning model changes when certain combinations of 
attributes are present or missing in the input, but with the added value of also having 
the four properties listed above. For instance, for some input � and prediction g(�) , a 
positive value for a Shapley value �i would indicate that the value of the attribute ai ∈ � 
has overall contributed positively (i.e., increasingly) to the output value g(�) , and vice 
versa for a negative value for �i , and when �i is zero, attribute i has not contributed to 
the output value. With this kind of information, it is possible to come up with plausible 
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explanations on how the machine learning method has made some particular prediction 
for a given input.

However, a typical machine learning model is not able to work with missing attributes; 
at least not without retraining the model, which in most cases can be very time-consuming. 
This makes Shapley values not directly applicable when generating explanations for some 
arbitrary machine learning model. That is why SHAP values are used, instead. In particu-
lar, kernel SHAP [38], which combines the idea behind Shapley values and LIME [34], is 
of particular interest because it is a model agnostic approach for computing SHAP values. 
Kernel SHAP requires so-called missing data, which is used to replace attributes in the 
input to a machine learning model to simulate missing attributes when explaining its pre-
dictions. In this way, the input to the machine learning model has always the same number 
of attributes, and the model does not have to be retrained when computing SHAP values. 
We use kernel SHAP to compute SHAP values in R-XIMO, proposed in Sect. 3, when it is 
validated in Sect. 5.

2.3 � Explainability in multiobjective optimization

In what follows, we provide a brief literature review on explainable multiobjective optimi-
zation. The emphasis here is not on studies that use multiobjective optimization methods to 
generate explanations, but rather on studies that apply the existing explainable methods (or 
propose new ones) for multiobjective optimization.

A diversified recommendation framework based on a decomposition-based evolutionary 
algorithm was proposed in [9]. The authors modeled the recommender system as a multi-
objective optimization problem and applied MOEA/D [41] to generate explainable recom-
mendation lists for each user while maintaining a high recommendation accuracy.

A method explaining the reasoning behind the solution found for a multiobjective prob-
abilistic planning problem was proposed in [42]. Their method generates verbal explana-
tions about why it chose a specific solution among the other alternatives and also about the 
trade-off made between conflicting objectives in the final solution. Explaining trade-offs 
among various objectives was also studied in [43] via reinforcement learning by utilizing a 
correlation matrix that represents the relative importance between objectives.

There are some recent initiatives in the literature that incorporate explanations into inter-
active methods. For the sake of explainability, the interactive method called INFRINGER 
[44] utilized belief-rule-based systems to learn and model the DM’s preferences. Similarly, 
in [45], the authors modeled the DM’s preferences by using “if..., then...” decision rules, 
which were then used to explain the impact of the DM’s preferences on the obtained solu-
tions. They proposed a method called XIMEA-DRSA, which uses the decision rules as a 
preference model to guide the search in the solution process.

3 � R‑XIMO

In this section, we introduce the method proposed in this paper, R-XIMO, to explain 
how reference point based interactive multiobjective optimization methods map prefer-
ence information into solutions. We start by describing the setting and general assump-
tions made in Sect. 3.1. In Sect. 3.2, we describe in detail how SHAP values are used 
to interpret a black-box that maps reference points to the Pareto optimal front. Finally, 
in Sect.  3.3, we discuss how the SHAP values are used to generate explanations and 
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suggestions for a DM to allow them to make meaningful trade-offs regarding the prefer-
ences they have expressed.

3.1 � Setting and assumptions

In general, a DM has domain expertise about the multiobjective optimization problem, 
allowing them to understand the existence of conflicts among the objectives (i.e., gain-
ing in one objective in a Pareto optimal solution will result in a loss in at least one 
other objective). Assuming that a DM acts rationally (see, e.g., [46] for a discussion 
on rationality), they are only interested in Pareto optimal solutions. But a DM does not 
necessarily understand how the interactive method transforms the preference informa-
tion into solution candidates during the solution process. According to these character-
istics of DMs, we will assume that they perceive interactive multiobjective optimization 
methods as black-boxes.

Let us consider black-boxes mapping reference points z̄ to objective vectors � on the 
Pareto optimal front for a problem (1) with k objectives. We define such a black-box as

where the subterm Pareto means that the objective vectors and the reference points are 
mapped to solutions that lie on the Pareto optimal front.

In particular, we use black-boxes, which minimize reference point based scalarizing 
functions [1, 11]. As mentioned, as examples, we consider the scalarizing functions (3), 
(4) and (5), and the DM provides preferences as a reference point. We assume that the 
DM is informed of the values for the ideal and nadir points when providing reference 
points, as it was originally assumed in [21]. This will allow the DM to provide more 
realistic reference points. Depending on the type of black-box  (6) considered, it may 
also be necessary to assume that each aspiration level in the reference point is between 
the objective’s respective components in the ideal and nadir points. Lastly, we assume 
the DM to be interacting with an interactive method that acts like the black-box defined 
in (6) over the course of a few iterations until they find a most preferred solution.

3.2 � Using SHAP values to explain reference point based black‑box models

The idea behind SHAP values discussed in Sect. 2.2 can also be applied to other types 
of black-boxes, not necessarily related to machine learning models. We apply the idea to 
an interactive multiobjective optimization method explaining its behavior to a DM. We 
limit the discussion to a simple case of an interactive method (6), where a DM is only 
required to provide a reference point over the course of a few iterations. Then, the input 
to the model is the reference point provided by the DM and the prediction is the result 
of solving problem (2) with some scalarizing function s.

We can use SHAP values to formulate explanations for models adherent with (6). 
Since the reference point provided by a DM and the output of (6) have k ≥ 2 dimen-
sions, the SHAP values computed are represented by a k × k square matrix Φ with ele-
ments �ij , i, j = 1,… , k:

(6)�(z̄) ∶ ℝ
k → ℝ

k
Pareto

,
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The average effect of a reference point on a solution is represented by  (7). How the ith 
component in the resulting objective vector has been affected by the jth component in the 
reference point, is represented by the value of the element �ij in (7). Thus, the SHAP val-
ues in (7) can be used to induce how, on average, the input z̄ has affected the output � . 
Expanding on the discussion given for the interpretation of Shapley values in Sect. 2.2, a 
positive value for �ij means that on average, the jth component in the reference point had 
an increasing effect on the value of objective i in the solution, and vice versa for negative 
values. A value of zero for �ij means that there was no effect between the two. When objec-
tives are minimized, an increasing effect means impairing, and a decreasing effect means 
improving.

We know that in multiobjective optimization, the objectives are conflicting. Therefore, 
we can say that when two objectives have an increasing effect on each other (i.e., both 
�ij and �ji are positive for some i,  j) the aspiration levels set by the DM in the reference 
point are not simultaneously achievable on the Pareto optimal front. This is because in the 
specific region of the front the reference point was mapped to, objectives i and j are con-
flicting. Note that in case i = j , the value of �ij is understood as the objective’s effect upon 
itself. It is important to mention that not all objectives need be always conflicting, and that 
the conflict can be between more than two objectives, but in our work, we only consider 
conflicts between pairs of objectives for the sake of simplicity. Therefore, the exact con-
flicting nature of two considered objectives depends on which region of the Pareto optimal 
front is observed.

Because of the properties mentioned in Sect.  2 for SHAP values, we know that the 
values are local and unique. Especially, the local nature of the SHAP values is important 
because it guarantees that the SHAP values computed describe the conflicts among objec-
tives in a local region of the Pareto optimal front. Moreover, a direct consequence of the 
uniqueness of the SHAP values warrants that the explanations derived from the SHAP val-
ues can be assumed to be unique (albeit the way the values are interpreted can lead to dif-
ferent explanations, but any reasoning based solely of the actual numerical values should 
lead to the same conclusions). This is why we have decided in our work to utilize SHAP 
values.

We use SHAP values (7) to deduce how a component in a given reference point affects 
the solution computed by a black-box (6). Particularly, we can gather information about the 
conflict between two objectives. We can then communicate this information to the DM giv-
ing them support in formulating new reference points. Thus, an explainable support system 
can be created to support the DM in achieving their goals in an interactive solution process 
utilizing SHAP values. How this kind of system can be realized, is discussed in the next 
subsection.

3.3 � Utilizing explanations and suggestions to aid a decision maker

We choose to demonstrate the plausibility of utilizing SHAP values for explaining interac-
tive multiobjective optimization methods with a simple application as follows. Consider a 
DM has provided a reference point z̄ to a black-box (6) and has been presented with a 

(7)Φ =

⎛⎜⎜⎜⎝

�11, �12, … , �1k

�21, �22, … , �2k

⋮ ⋮ ⋮ ⋮
�k1, �k2, … , �kk

⎞
⎟⎟⎟⎠
.



	 Autonomous Agents and Multi-Agent Systems (2022) 36:43

1 3

43  Page 10 of 43

solution � . Now the DM wishes to see an improvement in the value of the ith objective in � . 
We designate this objective as the target and define its index as itarget . We can then use the 
computed SHAP values to find the component in �̄ , which had the most impairing effect on 
the target in � (i.e., �itargetj

= max�ij,i=itarget
Φ ). We name this objective with the most impair-

ing effect as the rival with index jrival . Therefore, we can formulate explanations for the 
DM on how the solution � relates to the given reference point z̄ from the perspective of the 
target, and how the DM can change the reference point for the next iteration to achieve a 
better value in the target.

The general idea of our proposed method is depicted in Fig.  2. Since our method 
enhances reference point based interactive methods with explanations, we call it R-XIMO.

The details of the procedure to compute the rival and generate an explanation in 
R-XIMO are given in Algorithm 1. The input to Algorithm 1 are the black-box �  (6), a 
reference point z̄ , the solution � computed utilizing the black-box and the reference point, 
missing data Zmissing needed in computing SHAP values, and the index of the target objec-
tive itarget provided by the DM. The missing data is used by the routine shap_values in 
Algorithm 1 to calculate the SHAP values. The routine shap_values can be any routine 
able to compute SHAP values like in (7) (e.g., kernel SHAP). The output of Algorithm 1 is 
the index of the rival objective jrival and an explanation explanation on how the refer-
ence point z̄ given has affected the solution � computed.

When choosing the missing data Zmissing to be used in R-XIMO, it is important that such 
data is available in the vicinity of the reference point being explained to assure the local-
ity of the explanations. Therefore, missing data should be generated as evenly as possible 
in the domain space of (6), but since we assume a DM to provide reference points with 
component values bounded by the respective components of the ideal and nadir points, 
it is enough for the generated missing data to be bound in a similar way. However, when 

Fig. 2   Illustration on how R-XIMO interacts with the interactive method and the DM. R-XIMO is aware of 
both the reference point provided by the DM and the solution computed by the interactive method. After the 
DM selects a target, R-XIMO can provide a suggestion and explanation with information on the rival. In the 
figure, a single iteration of an interactive method combined with R-XIMO is depicted
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experimenting, we found that we could use a representation of the Pareto optimal front of 
the original multiobjective optimization problem as the missing data without any loss in 
performance of R-XIMO. This, we believe, is because the Pareto optimal front character-
izes the trade-offs among the objectives in the problem, which is what we are primarily 
interested in.

For computing the index of the rival jrival in Algorithm 1, the general idea is to find the 
element �itargetj

∈ Φ with the largest positive value. If this value exists and it is not the target 
itself, then the index j of the element found is defined as worst_effect. Otherwise 
worst_effect is set to be −1 indicating that it does not exist. Likewise, we can also find 
the element �itargetj

 with the smallest negative value and define its j index as best_effect. 
The routine why_objective_i in Algorithm 1 computes both of these values. In cases 
where worst_effect does not exist, we can find the element �itargetj

 with the largest nega-
tive value and set its j index as least_negative as is done in Algorithm 1. Lastly, if 
worst_effect = itarget , we can find the element �itargetj

 with the second largest value and 
define second_worst to be equal to j. The value of jrival returned by Algorithm  1 is 
therefore always either worst_effect, second_worst, or least_negative. An 
implementation of Algorithm 1 is discussed in Sect. 5.1.
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The nine possible explanations (indexed by � = 1,… , 9 ) returned by Algorithm 1 are 
listed in Table 1. From each of the explanations, a suggestion is derived to support the DM 
in achieving their goal of improving the value of the target in the solution. The explana-
tions tell the DM how the given reference point z̄ is related to the solution � , and how the 
components of z̄ have affected the value of the target in � . In supporting the DM, the sug-
gestion derived from the explanation is most relevant. However, the explanation can help 
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Table 1   Explanations explanation_n returned by Algorithm 1 for indices � = 1,… , 9

Index n Explanation part Suggestion part

1 Each objective value in the solution is worse when compared to the reference 
point. The reference point was too demanding. The component worst_
effect in the reference point had the most impairing effect on objective itarget 
in the solution.

Try improving the component itarget and impairing the component worst_effect

2 Each objective value in the solution was worse when compared to the reference 
point. The reference point was too demanding. The component itarget in the 
reference point had the most impairing effect on objective itarget in the solution. 
The component second_worst had the second most impairing effect on 
objective itarget.

Try improving the component itarget and impairing the component second_
worst

3 Each objective value in the solution had a better value when compared to the 
reference point. The reference point was pessimistic. The component itarget in 
the reference point had the least improving effect on objective itarget in the solu-
tion. The component second_worst had the second least improving effect 
on the objective itarget.

Try improving the component itarget and impairing the component second_
worst

4 Each objective value in the solution had a better value when compared to the 
reference point. The reference point was pessimistic. The component worst_
effect in the reference point had the least improving effect on the objective 
itarget in the solution.

Try improving the component itarget and impairing the component worst_effect

5 None of the components in the reference point had an improving effect on the 
objective i

������
 in the solution. The component worst_effect in the refer-

ence point had the most impairing effect on objective itarget in the solution.

Try improving the component itarget and impairing the component worst_effect

6 None of the objectives in the reference point had an impairing effect on objec-
tive itarget in the solution. Objective least_negative in the reference point 
had the least improving effect on objective itarget in the solution.

Try improving the component itarget and impairing the component least_nega-
tive

7 The objective itarget was most improved in the solution by the component best_
effect and most impaired by the component worst_effect in the reference 
point.

Try improving the component itarget and impairing the component worst_effect

8 The objective itarget was most impaired in the solution by its component in 
the reference point. The component second_worst had the second most 
impairing effect on the objective itarget.

Try improving the component itarget and impairing the component second_
worst



	
Autonom

ous Agents and M
ulti-Agent System

s (2022) 36:43

1 3

43 
Page 14 of 43

Table 1   (continued)

Index n Explanation part Suggestion part

9 The objective itarget was most improved in the solution by its component in the 
reference point. The component worst_effect had the most impairing 
effect on objective itarget.

Try improving the component itarget and impairing the component worst_effect

From each explanation, a suggestion is derived. When the suggestion is followed, it leads to the improvement of the value of objective itarget in the solution. How these expla-
nations are communicated to the DM exactly can vary (e.g., based on the problem and general setting of the solution process)
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the DM gain additional insight related to the multiobjective optimization problem, and it 
can help the DM build confidence in the suggestion given as well. Therefore, in practice, 
the explanation should be shown to the DM only when they request to see it. The sugges-
tion should be always provided to the DM. Examples of utilizing R-XIMO are given in 
Sect. 4.

The first four explanations in Table 1 are relevant in cases where the components of the 
given reference point are either worse in regard to every objective value when compared 
to the solution ( � = 1, 2 ), or the components in the reference point are all better than in 
the solution ( � = 3, 4 ). Such reference points can be expected to arise when the DM is 
still in an early stage of the interactive solution process and is therefore still learning about 
the problem. In case of � = 2 , the suggestion still prompts the DM to improve the target 
component in the reference point despite the target having the most impairing effect on 
the target objective in the solution. This can feel counter intuitive, but it is done because 
worsening the rival component in the reference point can lead to a situation where some 
other objective than the target improves, if the target component is left unchanged. By still 
improving the target component in the reference point, we try to guarantee that the DM 
will see an improvement in the target objective in the solution.

The following two explanations in Table 1 arise when none of the components in the 
reference point had an improving effect on the target ( � = 5 ), or when none of the compo-
nents had an impairing effect on the target ( � = 6 ). In the first case, the DM may want to 
be careful when improving the value of the target in the next reference point since in the 
area of the Pareto optimal front the solution resides, the other objectives seem to be all in 
conflict with the target objective. In the second case, the DM may want to experiment with 
improving the value of the target objective in the next reference point since none of the 
other objectives had any impairing effects on the target.

The seventh explanation in Table  1 ( � = 7 ) is the explanation that one can expect to 
arise in most cases after the DM has gained some insight about the problem and its trade-
offs. In this case, some component in the reference point had an improving effect on the 
target objective in the solution and some other component had an impairing effect. In this 
case, neither best_effect nor worst_effect is the target objective.

The last two explanations in Table 1 ( � = 8, 9 ) arise when the condition of the first four 
explanations are not met and the most impairing or improving effect on the target objec-
tive’s value in the solution was due to the target objective’s component in the reference 
point. The eighth explanation (� = 8) is something the DM does not probably desire to see 
when they care about the target objective, and could therefore be a reason for the DM to 
mistrust the interactive method. On the other hand, the last explanation ( � = 9 ) is probably 
the one a DM would expect to see as they deem the target objective to be the most impor-
tant, when providing a reference point.

We can think of impairing a component of the reference point as a way to gain more 
room in terms of improving some other objective value in the solution. This is why the 
suggestion in Table 1 always prompts the DM to improve the target component in the ref-
erence point. In this way, we can assume that the room gained in impairing the rival is 
reflected in the improvement on the target. We can justify this on basis of the objectives 
being in conflict in multiobjective optimization problems.

Validating the explanations in Table 1 (i.e., how useful the explanation and suggestion 
is to a human DM) is impossible without either human participants or advanced artificial 
DMs. To our knowledge, no artificial DMs exist that could help validate the explanations. 
In Sect. 4.1 we provide an illustrative example how the explanations (and suggestions) gen-
erated by R-XIMO, can support a hypothetical DM. In Sect. 4.2, we demonstrate R-XIMO 
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in a case study with a real DM. We also validate the suggestions derived from the explana-
tions in Sect. 5 numerically—i.e., does improving the target and impairing the rival com-
puted by R-XIMO lead to an improvement in the value of the target in the solution? As we 
will see, the suggestions generated by R-XIMO can reveal to the DM the best component 
to be impaired in a reference point when a given target objective is to be improved. This 
alone can be very valuable information to a DM.

4 � Example and case study

In this section, we show how R-XIMO can be applied in solving multiobjective optimi-
zation problems interactively. We demonstrate this both with an illustrative example in 
Sect. 4.1, and a case study involving a real DM in Sect. 4.2.

4.1 � Illustrative example

In this subsection, we demonstrate with an example how R-XIMO supports a DM by pro-
viding explanations and suggestions (Table 1) in an interactive solution process. An analyst 
(one of the authors) acted as the DM to illustrate the support R-XIMO provides in solving 
a real-world multiobjective optimization problem. The problem considered was originally 
proposed in [47] and modified in [48]. A Python notebook with the described solution pro-
cess is available online.1

4.1.1 � Problem description

The problem describes a (hypothetical) pollution of a river. There is a fishery company and 
a city in a valley along the river. The company is located near the head of the valley, and 
it causes industrial pollution on the river. The city is located downstream from the fishery 
and is the source of municipal waste pollution on the river. Water quality is measured in 
terms of dissolved oxygen level (DO), while industrial and municipal pollution is quanti-
fied in pounds of biochemical oxygen demanding material (BOD). There are some exist-
ing treatment facilities that reduce the BOD in the water, and their costs are paid by the 
company and the city. To deal with the water pollution, additional water treatment facilities 
should be built, which would incur higher costs, raising the city’s tax rate and decreasing 
the company’s return on investment.

The two decision variables, x1 and x2 , control the amount of BOD removed from water 
in two treatment plans located in the company and in the city, respectively. The original 
problem had four objectives; f1 maximizing DO in the city, f2 maximizing DO at the state 
line downstream from the city, f3 maximizing percent return on investment at the company, 
and f4 minimizing the additional tax rate in the city. We use the modified version of the 
problem [48], in which the fifth objective ( f5 ) is added to describe the functionality of the 
treatment facilities. Thus, the multiobjective optimization problem has five objectives and 
two decision variables (we consider it as a minimization problem by multiplying the first 
three objectives by -1), as follows:

1  https://​github.​com/​gialm​isi/​shap-​exper​iments/​blob/​d7ac3​97c8b​2e76b​ea3a0​83b68​dae66​36abd​03ff4/​noteb​
ooks/​river_​pollu​tion.​ipynb
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4.1.2 � Solution process

We can now describe the interactive solution process using R-XIMO with a DM. To sca-
larize  (8), we used STOM  (4) and an approximation of the Pareto optimal front of  (8) 
computed utilizing evolutionary methods (NSGA-III [49], MOEA/D [41], and RVEA 
[50]). The scalarized version of (8) was solved by finding the objective vector that mini-
mizes (2) in the Pareto optimal front. At the beginning of the solution process, the ideal 
(− 6.34,−3.44,− 7.5, 0, 0) and nadir (− 4.75,− 2.85,− 0.32, 9.70, 0.35) points were calcu-
lated based on the approximation of the Pareto optimal front and shown to the DM.

Iteration 1. First, the DM set the ideal point as the reference point to see 
how difficult it is to achieve these promising values. The obtained result was 
(− 5.75,− 2.91,− 6.91, 0.20, 0.13) . The DM desired to improve the water quality in the city 
( f1 ) and R-XIMO returned the following suggestion: “ Try improving the 1st component 
and impairing the 3rd component.”

Iteration 2. Since the reference point had been too optimistic, and the DM realized that 
to improve f1 , he needed to impair f3 (the return on investments). Therefore, he adjusted 
all aspiration levels accordingly but most impairments were made in the 3rd one, and he 
set the next reference point as (− 6.00,− 3.20,− 6.00, 0.10, 0.10) . As a consequence, the 
following solution was obtained: (−6.00,−2.92,−6.26, 0.21, 0.20) . He was happy with the 
return on investments ( f3 ), the addition to the tax ( f4 ), and the efficiency of the treatment 
facilities ( f5 ). However, the water quality after the city ( f2 ) was inadequate, so he wanted to 
improve that objective with the support of R-XIMO, which made the following suggestion: 
“ Try improving the 2nd component and impairing the 4th component. ”

Iteration 3. Based on the given suggestion, the DM realized the trade-off between 
f2 and f4 . He followed the suggestion and impaired the 4th aspiration level, set the ref-
erence point (−6.00,−3.20,−6.00, 1.00, 0.10) and obtained the corresponding solu-
tion (−5.90,−3.06,−6.60, 1.21, 0.16) . There was a good improvement on f2 , but the DM 
wished to improve it even further, if possible. R-XIMO provided the following suggestion 
in response to the DM’s request of improving the value of f2 : “ Try improving the 2nd com-
ponent and impairing the 5th component.”

Iteration 4. To improve f2 , the DM needed to impair the aspiration level for f5 and 
kept the same aspiration levels for the other objectives as in the previous reference point: 
(− 6.00,− 3.20,− 6.00, 1.00, 0.20) . As a consequence, the following solution was obtained: 
(−6.09,−3.09,−5.79, 1.44, 0.24) . As can be observed, the water quality in and after the 
city ( f1 and f2 ) improved, while the economic objectives ( f3 and f4 ) and facility efficiency 
( f5 ) deteriorated. The DM was not satisfied with the last three objectives, particularly the 

(8)

minimize f1(�) = − 4.07 − 2.27x1
minimize f2(�) = − 2.60 − 0.03x1 − 0.02x2

−
0.01

1.39−x2
1

−
0.30

1.39−x2
2

minimize f3(�) = − 8.21 +
0.71

1.09−x2
1

minimize f4(�) = − 0.96 +
0.96

1.09−x2
2

minimize f5(�) = max{|x1 − 0.65|, |x2 − 0.65|}

subject to 0.3 ≤ x1, x2 ≤ 1.0.
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last one. He wished to improve it, and the following suggestion was made to achieve his 
purpose: “ Try improving the 5th component and impairing the 3rd component.”

Iteration 5. Therefore, he reduced his economic expectations ( f3 ) and improved the 
efficiency ( f5 ) in his reference point: (−6.00,−3.20,−5.50, 1.00, 0.12) . The DM was 
almost happy with the returned solution (− 5.94,− 3.08,− 6.49, 1.38, 0.17) since he nearly 
obtained what he desired without sacrificing the third objective. However, he wanted to 
ensure that the addition to the tax rate ( f4 ) could be decreased without jeopardizing other 
objectives. To understand whether this is possible, the DM requested an explanation in 
addition to the suggestion for improving the tax rate. R-XIMO returned the following: 
“ None of the components in the reference point had an impairing effect on objective f4  
in the solution. The 1st component of the reference point had the least improving effect 
on objective f4  in the solution. Try improving the 4th component and impairing the 1st 
component.”

Iteration 6. The DM improved his aspiration level for the fourth objective based on 
the suggestion and kept the others the same as before: (−6.00,−3.20,−5.50, 0.80, 0.12) , 
because none of the components had an impairing effect on objective f4 based on the given 
explanation. The solution obtained was (− 5.95,− 3.06,− 6.45, 1.25, 0.18) . As can be seen, 
the return on investments ( f3 ) was relatively higher than his aspiration level for that objec-
tive, he obtained sufficient water quality for the city ( f1 ), and after the city ( f3 ), the addi-
tion to tax ( f4 ) was slightly improved from the previous solution, and the efficiency of the 
facilities was nearly identical. The DM was satisfied with this solution and decided to stop 
the solution process.

4.1.3 � Observations

Clearly, the suggestions made by R-XIMO assisted the DM in recognizing the trade-offs 
among the objectives and efficiently providing his preference information to get more 
preferred solutions. Having the option to request an explanation was also beneficial to 
the DM; for example, in iteration 5, the DM benefited from the explanation provided by 
R-XIMO. At that point, the DM gained sufficient insight into the problem and was mostly 
aware of the existing conflicts among the objectives. He was almost satisfied but wanted 
to improve one specific objective further, if possible. That is why he requested an expla-
nation from R-XIMO whether he missed some other existing conflicts or not. Based on 
the given explanation, he understood that there were no other objectives impairing his tar-
get objective. Therefore, he followed the first part of the suggestion (improving the target 
objective) but not the second part, which suggested impairing some other objective having 
the least improving effect on the target objective (which he learned from the explanation). 
As experienced, the DM was not forced to follow the suggestions but benefited from the 
explanations.

4.2 � Real case study

As a proof of concept, we consider a multiobjective optimization problem with a domain 
expert as the DM in a case study in Finnish forest management. We first briefly outline the 
problem and then describe the setting and solution process with the DM. We also report 
the DM’s opinions and feedback regarding R-XIMO and the support it provides.
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4.2.1 � Problem description

Finnish forests are divided into managerial areas known as stands. In a forest management 
problem, for each stand, a particular management strategy is to be chosen to be employed 
over a certain time period. Some examples of available strategies are, for instance, that 
trees in a stand are cut down or thinned out, or the stand is left untouched. Depending 
on which strategy is employed for a stand, corresponding consequences will ensue. These 
consequences can be regarded as objectives, and by considering multiple consequences at 
the same time, the forest management problem can be modeled as a multiobjective optimi-
zation problem.

In our case, we have three objectives to be maximized simultaneously over the consid-
ered time period: income from sold timber (Income), carbon dioxide stored in the trees 
(Stored CO2 ), and the combined habitat suitability index indicating how habitable the for-
est is for fauna (CSHI). Solutions to the problem will be represented by objective vectors of 
the form (Income, Stored CO2 , CSHI). These objectives are in conflict; for instance, cutting 
down trees and selling the timber  for increased profit will release stored carbon dioxide 
and make the stand inhabitable for the fauna; or thinning out a stand can increase its com-
bined suitable habitat index, but it will also release stored carbon, and it can be financially 
unprofitable; or leaving the stand as it is will maximize the stored carbon dioxide and pro-
vide zero income.

The objective values for each stand in the considered forest (consisting of multiple 
stands) are aggregated, which means that the objectives represent the whole forest instead 
of single stands. Therefore, a solution to the multiobjective optimization problem consists 
of choosing a managerial strategy for each individual stand, and then summing each objec-
tive over all available stands, i.e., for the whole forest. We have computed a representative 
set of Pareto optimal solutions based on simulated data. For details on the problem and 
how the solutions have been generated, see Chapter 5 in [51] and [44]. The representation 
of the Pareto front used in the case study is available online.2

4.2.2 � Setting

The forest management problem was solved utilizing a simple interactive method, where 
the DM provides a reference point in each iteration. R-XIMO was used to generate sugges-
tions and explanations. Based on the reference point, a new solution was then computed 
utilizing a scalarizing function (5). Prior to the experiment, the DM was already familiar 
with this kind of interactive multiobjective optimization process. Before the solution pro-
cess, the DM was informed about the support R-XIMO offers, namely, that after a solution 
is computed based on a provided reference point, he may express whether he would like 
to improve any of the objective function values computed based on the reference point. 
Before starting to solve the problem, the DM was asked whether he would like to see the 
explanations generated by R-XIMO in addition to the suggestions, to which he agreed.

Overall, the forest management problem was solved twice by the DM (with different 
strategies behind the preferences). All the information related to the solution processes 
shown to the DM was in textual or tabulated formats. No visualizations were used. After 

2  https://​github.​com/​gialm​isi/​shap-​exper​iments/​blob/​c3c66​df02f​1c5d7​ef994​a3d5d​ce00b​17ede​4724c/​data/​
forest.​csv
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the two solution processes, the DM was asked some additional questions. In what follows, 
we describe the two solution processes, followed by the answers to the presented questions 
and some general observations. Two Python notebooks are available online with the con-
tents of the two optimization processes described next.3,4

4.2.3 � First solution process

Iteration 1. First, the DM was shown the ideal and nadir points shown in Table 2. With 
the first reference point, the DM wished to achieve a solution with a moderate amount of 
income and a moderate CSHI, with “quite a bit” of stored carbon dioxide. This reference 
point is shown in Table 2.

Iteration 2. The solution with the objective function values shown in Table 2 was com-
puted based on the reference point given in the first iteration. The first thing the DM noted 
was how close the objective function values were to the reference point given. He then 
wished to improve either the stored carbon dioxide or the CSHI value by lowering the 
income. He decided that he would like to improve the CHSI value. Therefore, CHSI was 
chosen as the target in R-XIMO, which produced the following suggestion: Try improving 
the CSHI and impairing the Stored CO2 . In formulating a new reference point, the DM did 
not, however, wish to improve CHSI any further. The reference point given by the DM in 
the second iteration is shown in Table 2.

Iteration 3. After seeing the newly computed solution shown in Table 2, the DM won-
dered what should be changed to improve the income. R-XIMO provided the following 
suggestion: Try improving the Income and impairing the Stored CO2 . But the DM did not 
wish to impair the stored carbon dioxide anymore. Instead, he wanted to improve the stored 
carbon dioxide next, which was set as the target in R-XIMO. The provided suggestion by 

Table 2   The solutions and reference points of the first solution process

The Incomes shown are scaled down by a factor of 10e-7, the Stored CO2 by a factor of 10e-9, and the 
CSHI values by a factor of 10e-4. The ideal and nadir points of the representative set of Pareto optimal 
solutions considered are also shown

Ideal point Nadir point

Income Stored CO2 CSHI Income Stored CO2 CSHI

6.285 8.269 3.244 1.877 6.733 2.139

Current solution Reference point

Iteration Income Stored CO2 CSHI Income Stored CO2 CSHI

1 – – – 4.500 7.750 2.800
2 4.599 7.833 2.823 4.500 7.650 2.800
3 4.657 7.705 2.872 4.400 7.705 2.800
4 4.613 7.772 2.854 – – –

3  https://​github.​com/​gialm​isi/​shap-​exper​iments/​blob/​b446c​696ae​74c51​fa9e1​ee4a1​0aada​98b1b​c7f81/​noteb​
ooks/​CaseS​tudyS​oluti​onPro​cess1.​ipynb
4  https://​github.​com/​gialm​isi/​shap-​exper​iments/​blob/​b446c​696ae​74c51​fa9e1​ee4a1​0aada​98b1b​c7f81/​noteb​
ooks/​CaseS​tudyS​oluti​onPro​cess2.​ipynb
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R-XIMO was: Try improving the Stored CO2 and impairing the Income. The DM thought 
that the suggestion was what he expected and proceeded as suggested. The reference point 
given by the DM is shown in Table 2.

Iteration 4. The solution in Table 2 was shown to the DM. After seeing the solution, 
the DM thought it was a “good and reasonable solution”, was happy with it and stopped the 
solution process.

4.2.4 � Second solution process

Iteration 1. After the DM completed the first solution process, he wished to solve the 
problem once more from a more ecological point of view. Thus, he preferred high values 
for the stored carbon dioxide and CSHI. The nadir and ideal points were naturally the same 
as earlier. He provided the first reference point shown in Table 3.

Iteration 2. The computed solution in Table  3 was shown to the DM. He was quite 
happy with it, but wished to still improve CSHI, which was set as the target. R-XIMO 
provided the following suggestion: Try improving the CSHI and impairing the Stored CO2 . 
The DM did as suggested and provided the reference point shown in Table 3.

Iteration 3. The first thing the DM noticed once he saw the computed solution shown in 
Table 3 was that the income also improved in addition to CSHI. The DM was happy with 
this solution and decided to stop the solution process.

4.2.5 � Questions and answers

After the two solution processes, the DM was asked a few questions regarding R-XIMO 
and the support it provides. Below, we present the questions and the DM’s answers. The 
answers have been slightly paraphrased to improve comprehensibility.

How useful did you find the suggestions? “I really liked them. I liked how easy they 
were to understand. The fact that something was to be improved and something was to be 
impaired was nice. I liked that a lot. But I did not always understand why one [of the objec-
tives] was highlighted over another.”

How easy were the suggestions to understand? “Generally, quite easy. Could be still 
simpler.”

Did you pay any attention to the explanations? “No, they were too long. I did not 
want to read them.” (At this point, the DM went back to the explanations to read them out 
of curiosity.)

Did you find the explanations and suggestions supporting during the interactive 
solution process? “Yes, I think so. The suggestions sort of highlighted where I should put 
my attention. Normally, I would just randomly change things until I get to where I want to 
go. I think I got where I wanted to be with fewer iterations.”

Table 3   The solutions and 
reference points of the second 
solution process. See the caption 
of Table 2 for additional details

Current solution Reference point

Iteration Income Stored CO2 CSHI Income Stored CO2 CSHI

1 – – – 3.500 7.850 3.000
2 3.720 7.983 3.057 3.500 7.750 3.100
3 3.579 7.810 3.136 – – –
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Did you find the suggestions too repetitive or otherwise frustrating? “No, because I 
did not have to iterate very often. Normally, I would find it frustrating to go back and forth 
[between iterations], but this time it was not frustrating because the suggestions were high-
lighting where I should focus, which made finding a solution a little bit easier.”

Would you have preferred the suggestions or explanations, or both, to be visual-
ized? “I do not think so. If I had provided the reference points in a visual way, then yes.”

4.2.6 � Observations

The suggestions generated by R-XIMO were well received by the DM. It was also 
observed that each suggestion, when followed, led to an improvement in the target objec-
tive expressed by the DM. Even though in the second iteration of the first solution process 
(Table 2) the DM did not improve the target component in the reference point, but instead 
only impaired the rival, the computed solution had a better value for the target objective 
when compared to the previous solution. It was also interesting to note that in the third iter-
ation in the first solution process, the first suggestion given by R-XIMO was not preferable 
in the opinion of the DM, which prompted him to change his preferences regarding how 
he would like to improve the solution. While the suggestions were well received by the 
DM, the explanations were practically ignored. The main reason for this was their length 
according to the DM. Nevertheless, the support R-XIMO provided to the DM decreased 
the number of iterations needed to reach a preferred solution, according to the DM. Saving 
the DM’s time is naturally desirable.

5 � Validation and results

In this section, we discuss how we have numerically validated R-XIMO. We begin with a 
general description of the validation setting, assumptions made, and give an example of a 
possible implementation of R-XIMO in Sect. 5.1. Then, we describe the numerical valida-
tion process to study how well and how often the suggestions generated by R-XIMO lead 
to desirable outcomes in Sect. 5.2. After that, we discuss the results of the validations and 
the observations made in Sects. 5.3 and 5.4, respectively.

5.1 � Setting and implementation

In the numerical validation, R-XIMO is utilized according to the following pattern: 

1.	 An initial reference point z̄0 is randomly generated.
2.	 An initial solution �0 is computed by utilizing z̄0 and the black-box � (6).
3.	 An objective itarget is selected. Details about selecting the target are given later.
4.	 According to Algorithm 1, objective jrival is computed and an explanation provided.
5.	 In the next iteration, a new reference point z̄1 is provided, where the component itarget 

is changed by a value � ; and the component jrival is impaired by the same value � . The 
value � is a constant scalar value relative to the range of the respective objective function 
(i.e., the difference of components of the ideal and nadir points).

6.	 A new solution �1 is then computed with z̄1 and �.
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Our goal is to compare �0 with �1 . The expected result is that objective itarget should have 
a better value in �1 when compared to �0 in cases where the component itarget is improved 
and the component jrival is impaired in z̄1 relative to z̄0 . The value � represents the change 
the DM makes in the components corresponding to the target and the rival in the reference 
point. We have limited the value � to affect just itarget and jrival since R-XIMO generates sug-
gestions only concerning these two.

In the validation, we deal with two multiobjective optimization problems, the river pol-
lution problem [47] (river problem, also considered in Sect. 4) and the vehicle crash-wor-
thiness design problem [52] (car problem, described in more detail in the Appendix). Both 
problems have all objectives to be minimized. The river problem has five objectives and 
two decision variables, while the car problem has three objectives and five decision vari-
ables. In both problems, variables are subject to box constraints.

We consider three black-boxes  (6) defined with the scalarizing functions (3), (4), and 
(5). We are only interested in whether the solutions computed by the considered black-
boxes can be improved by utilizing the suggestions generated by R-XIMO or not. Thus, 
we are not comparing the performances of the scalarizing functions. We have chosen these 
scalarizing functions because they can generate different solutions [11]. Therefore, using 
them to validate R-XIMO shows how well it works for different black-boxes.

The version of R-XIMO utilized in the validations was implemented in Python utiliz-
ing the DESDEO software framework [53] for defining and solving multiobjective opti-
mization problems. The SHAP library [38] was used to compute SHAP values. The kernel 
SHAP method was selected because it can be applied to any kind of black-box models to 
generate SHAP values.

The source code of the R-XIMO implementation is available online on GitHub.5 Like-
wise, the numerical data generated during the validation is also available online.6

5.2 � Validation

We generated approximations of the Pareto optimal fronts for both problems considered 
utilizing evolutionary multiobjective optimization methods (NSGA-III [49], MOEA/D 
[41], and RVEA [50]). Following the discussion in Sect. 3.3, we utilized the fronts as the 
missing data Zmissing (referred to in Algorithm 1) in the kernel SHAP method to compute 
the SHAP values for the considered black-boxes. The ideal and nadir points were calcu-
lated for both problems based on the approximations of their Pareto optimal fronts.

When calculating the SHAP values, the missing data was also used as an approximation 
to the original multiobjective optimization problem. This is because kernel SHAP requires 
evaluating the original black-box many times over the course of computing the SHAP val-
ues. However, the solutions �0 and �1 were computed using the original (analytical) formu-
lations of the underlying multiobjective optimization problems. This was done to get more 
accurate solutions. In other words, the approximation of the Pareto optimal fronts were 
used only when calculating SHAP values.

During the course of the validations, many experiments were conducted. One experi-
ment consisted of running R-XIMO 200 times (a single batch) for each objective. This 
amount of runs was empirically found to give statistically enough data, while taking a 

5  https://​github.​com/​gialm​isi/​shap-​exper​iments.
6  https://​nextc​loud.​jyu.​fi/​index.​php/s/​2R4FB​Dy7m5​33C2E.
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moderate amount of time to compute. In each batch, one of the objectives was always set 
as the target. For the river problem, this meant a total of 1000 iterations, and for the car 
crash problem, this meant a total of 600 iterations. The initial reference point z̄0 was gener-
ated randomly and resided in the objective space bounded by the ideal and nadir points for 
each problem. Between the experiments, the problem, the value � , and the scalarizing func-
tion, were varied. Four different � values were considered: 5%, 10%, 15%, and 20%. These 
values were relative to the distance between the ideal and nadir points of the considered 
problem and respective component being changed. Therefore, the � values were constant 
and depended only on the range of the objective being changed. We decided to choose four 
different � values to test how much the amount the components in the initial reference point 
are changed affects the change seen in the solution �1 when compared to �0 . The reason for 
choosing these four values for � is based on empirical testing; we found that increasing � to 
be greater than 20% of the range of the respective objective, started to yield wildly varying 
results. In the numerical validations conducted, we found the chosen four values to give the 
best insight on the effect the value of � has on the performance of R-XIMO, at least for two 
problems considered.

In the validation, we considered five possible ways a reference point may be changed in 
respect to the target and rival. These ways are characterized by the following strategies: A) 
the target is improved and the rival is impaired in the reference point z̄0 ; B) only the target 
is improved; C) the target is improved while some other component than the rival or the 
target is impaired; D) the target is not improved and the rival is impaired; and E) the target 
is not improved while some other component than the rival or the target is impaired. These 
strategies have been listed in Table 4.

Strategy A is equivalent to following the suggestion of R-XIMO fully. Strategy B repre-
sent the naive, or business-as-usual, course of action of only improving the target. Strate-
gies B-D represent scenarios where the suggestions of R-XIMO are followed only in part. 
These strategies are included to check how the suggestions provided by R-XIMO work if 
followed only partly, and especially to check if the provided suggestion really is the best 
course of action if the target is to be improved. Partly following the suggestions is also a 
realistic behavior that can be expected from a real DM. The last strategy, strategy E, repre-
sents the case of not following the suggestion at all. This strategy has been included purely 
for validation purposes. Comparing how the target objective’s value varies between solu-
tions �0 and �1 when employing different strategies, gives a good indication on the perfor-
mance of R-XIMO (strategy A) when compared to alternative courses of action (strategies 
B-E) in respect to the target and rival. Especially, the comparison of strategy A to strategy 
B gives a fair idea of the added value of R-XIMO to the DM, since strategy B represents 
the naive course of action a DM would take without the support provided by R-XIMO.

Table 4   The five strategies employed in the validation of R-XIMO

Strategy Description

A Do as suggested, improve the target and impair the rival in the reference point
B Business-as-usual, only improve the target in the reference point
C Improve the target and impair a random component, which is not the target or 

the rival, in the reference point
D Do not improve the target and impair the rival in the reference point
E Do not improve the target and impair a random component, which is not the 

rival or the target, in the reference point
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Table 5   Numerical validation results for the river problem. All listed values are percentages

Delta SF Strategy Success Neutral Failure median MAD min max �95 �MAD

5 RPM A 81.80 0.00 18.20 − 3.36 2.30 − 7.83e+01 1.71e+04 − 3.54(8.00) 3.42
5 RPM B 74.30 0.40 25.30 − 1.16 0.58 − 4.77e+01 3.46e+01 − 1.19(4.60) 0.87
5 RPM C 71.80 0.10 28.10 − 1.21 2.26 − 4.69e+01 8.98e+01 − 1.45(6.50) 3.34
5 RPM D 71.80 0.30 27.90 − 1.85 1.90 − 9.17e+01 1.82e+02 − 1.52(6.60) 2.81
5 RPM E 49.40 0.30 50.30 0.00 0.43 − 5.67e+01 1.18e+02 0.03(3.20) 0.64
10 RPM A 83.80 0.10 16.10 − 6.58 4.16 − 5.99e+01 2.45e+01 − 5.90(10.50) 6.17
10 RPM B 74.50 0.20 25.30 − 2.19 1.10 − 6.31e+01 2.83e+02 − 2.34(3.40) 1.63
10 RPM C 76.00 0.10 23.90 − 2.48 4.11 − 6.94e+01 2.66e+03 − 2.48(8.00) 6.09
10 RPM D 72.90 0.20 26.90 − 1.61 3.56 − 6.52e+01 4.64e+02 − 2.25(8.50) 5.27
10 RPM E 52.30 0.50 47.20 − 0.00 2.26 − 5.02e+01 1.22e+02 0.07(3.20) 3.34
15 RPM A 85.50 0.00 14.50 − 9.64 5.99 − 6.18e+01 4.11e+01 − 9.08(10.80) 8.88
15 RPM B 77.30 0.00 22.70 − 3.23 1.42 − 8.66e+01 7.76e+03 − 3.14(3.80) 2.11
15 RPM C 76.40 0.00 23.60 − 3.84 6.75 − 7.30e+01 2.14e+02 − 4.49(10.10) 10.01
15 RPM D 71.50 0.20 28.30 − 0.39 3.07 − 5.22e+01 1.24e+02 − 1.80(5.10) 4.55
15 RPM E 51.50 0.30 48.20 − 0.00 0.71 − 6.82e+01 4.03e+05 0.05(2.60) 1.06
20 RPM A 86.50 0.10 13.40 − 13.75 8.43 − 8.41e+01 5.80e+01 − 12.74(12.40) 12.50
20 RPM B 81.50 0.00 18.50 − 4.78 2.13 − 7.12e+01 9.11e+05 − 4.79(3.50) 3.16
20 RPM C 75.10 0.20 24.70 − 4.79 7.96 − 1.15e+02 2.90e+02 − 4.83(9.40) 11.81
20 RPM D 71.90 0.10 28.00 − 2.01 6.40 − 7.93e+01 9.30e+01 − 3.87(8.00) 9.49
20 RPM E 50.60 0.30 49.10 0.00 1.89 − 7.27e+01 3.37e+02 − 0.04(2.10) 2.80
5 GUESS A 80.50 0.00 19.50 − 2.21 1.37 − 8.75e+01 1.94e+05 − 2.37(6.10) 2.03
5 GUESS B 73.20 0.10 26.70 − 0.90 0.57 − 4.03e+01 1.64e+02 − 0.91(3.70) 0.85
5 GUESS C 70.00 0.00 30.00 − 0.88 1.87 − 5.45e+01 1.96e+05 − 1.03(5.00) 2.77
5 GUESS D 71.10 0.30 28.60 − 1.15 1.23 − 6.65e+01 2.74e+04 − 1.08(6.00) 1.82
5 GUESS E 49.70 0.10 50.20 0.00 1.26 − 5.21e+01 9.55e+03 0.21(3.50) 1.86
10 GUESS A 80.50 0.00 19.50 − 4.40 2.53 − 7.08e+01 4.71e+04 − 4.31(5.70) 3.76
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Table 5   (continued)

Delta SF Strategy Success Neutral Failure median MAD min max �95 �MAD

10 GUESS B 73.90 0.10 26.00 − 1.86 0.97 − 5.62e+01 4.79e+03 − 1.83(5.00) 1.44
10 GUESS C 68.10 0.00 31.90 − 1.56 3.51 − 6.80e+01 1.85e+09 − 1.17(3.90) 5.20
10 GUESS D 74.80 0.10 25.10 − 2.33 2.15 − 8.82e+01 2.65e+09 − 2.22(5.60) 3.18
10 GUESS E 50.40 0.50 49.10 0.00 1.99 − 8.91e+01 2.65e+09 0.15(3.20) 2.95
15 GUESS A 82.70 0.10 17.20 − 6.43 3.98 − 1.54e+02 2.71e+08 − 7.35(6.10) 5.90
15 GUESS B 76.60 0.00 23.40 − 2.72 1.36 − 4.80e+01 1.81e+07 − 2.95(4.10) 2.01
15 GUESS C 69.50 0.10 30.40 − 2.47 5.78 − 7.46e+01 1.69e+09 − 3.42(4.90) 8.56
15 GUESS D 73.10 0.20 26.70 − 3.64 3.71 − 1.04e+02 9.79e+03 − 3.63(6.10) 5.49
15 GUESS E 48.00 0.60 51.40 − 0.00 4.10 − 9.44e+01 8.90e+08 − 1.19(2.50) 6.08
20 GUESS A 83.40 0.00 16.60 − 9.54 4.78 − 9.18e+01 8.60e+09 − 10.34(5.50) 7.09
20 GUESS B 78.60 0.40 21.00 − 3.18 1.30 − 6.46e+01 2.99e+03 − 3.06(4.20) 1.92
20 GUESS C 70.60 0.20 29.20 − 4.53 8.02 − 1.00e+02 4.17e+05 − 5.10(3.60) 11.89
20 GUESS D 74.20 0.30 25.50 − 5.16 4.77 − 1.06e+02 1.82e+09 − 5.07(6.40) 7.07
20 GUESS E 51.70 0.20 48.10 − 0.10 4.84 − 8.41e+01 8.93e+08 1.20(2.80) 7.17
5 STOM A 71.90 0.10 28.00 − 1.81 3.42 − 1.47e+02 2.81e+03 − 2.14(4.80) 5.08
5 STOM B 72.30 0.10 27.60 − 1.13 1.54 − 1.24e+02 6.71e+03 − 1.21(2.80) 2.28
5 STOM C 71.40 0.20 28.40 − 1.19 2.78 − 9.54e+01 4.68e+03 − 1.86(5.20) 4.13
5 STOM D 66.30 0.20 33.50 − 0.30 1.00 − 1.95e+02 1.62e+02 − 0.33(3.10) 1.49
5 STOM E 55.30 0.20 44.50 − 0.01 1.12 − 8.89e+01 5.58e+02 − 0.16(3.60) 1.66
10 STOM A 73.20 0.00 26.80 − 3.23 7.49 − 3.54e+02 1.20e+03 − 5.65(5.80) 11.11
10 STOM B 66.60 0.20 33.20 − 1.56 1.83 − 1.05e+02 2.95e+03 − 1.75(3.30) 2.71
10 STOM C 68.00 0.00 32.00 − 2.26 5.01 − 1.79e+02 1.17e+04 − 3.22(6.00) 7.42
10 STOM D 68.00 0.20 31.80 − 0.52 2.67 − 3.18e+02 1.81e+02 − 0.24(4.30) 3.95
10 STOM E 55.50 0.20 44.30 − 0.01 1.56 − 7.63e+01 4.85e+02 − 0.07(3.50) 2.32
15 STOM A 66.60 0.00 33.40 − 3.98 9.20 − 3.13e+02 4.04e+03 − 9.05(4.80) 13.64
15 STOM B 63.00 0.00 37.00 − 2.31 2.82 − 1.40e+02 1.12e+03 − 3.35(3.10) 4.18
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Table 5   (continued)

Delta SF Strategy Success Neutral Failure median MAD min max �95 �MAD

15 STOM C 62.40 0.10 37.50 − 2.51 6.68 − 2.26e+02 5.01e+03 − 4.43(5.10) 9.90
15 STOM D 67.10 0.10 32.80 − 0.63 3.84 − 3.60e+02 1.27e+03 − 1.64(4.60) 5.69
15 STOM E 53.60 0.40 46.00 − 0.01 2.06 − 1.33e+02 7.99e+01 − 0.73(3.30) 3.05
20 STOM A 68.60 0.10 31.30 − 7.12 12.91 − 4.22e+02 1.79e+04 − 11.33(7.40) 19.14
20 STOM B 62.00 0.10 37.90 − 2.95 4.33 − 1.20e+02 2.11e+03 − 3.65(2.30) 6.42
20 STOM C 61.80 0.00 38.20 − 2.83 10.52 − 2.66e+02 1.31e+03 − 4.91(5.40) 15.59
20 STOM D 66.60 0.10 33.30 − 0.52 3.20 − 2.89e+02 1.70e+03 0.05(2.80) 4.74
20 STOM E 53.50 0.20 46.30 − 0.01 3.39 − 1.76e+02 6.77e+02 − 0.39(3.70) 5.03

The values in bold face are the highest success rates in the column Success and the smallest values of the median changes of the target in the column median for each Delta for 
all scalarizing functions (SF) considered
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Table 6   Numerical validation results for the car problem. All listed values are percentages

Delta SF Strategy Success Neutral Failure median MAD min max �95 �MAD

5 RPM A 72.00 18.00 10.00 −  1.80 1.80 −  1.96e+01 8.33e+00 −  1.86(26.33) 2.67
5 RPM B 69.50 21.67 8.83 −  1.50 1.23 −  1.76e+01 6.40e+00 −  1.27(28.67) 1.82
5 RPM C 71.83 17.67 10.50 −  2.03 1.76 −  1.92e+01 2.41e+01 −  1.97(26.00) 2.61
5 RPM D 60.33 21.50 18.17 −  0.13 0.34 −  1.77e+01 6.24e+00 −  0.16(8.50) 0.51
5 RPM E 56.17 22.83 21.00 −  0.02 0.16 −  1.88e+01 2.78e+01 −  0.03(8.00) 0.23
10 RPM A 77.67 12.33 10.00 −   3.45 2.53 −   2.19e+01 1.01e+01 −  3.46(26.67) 3.76
10 RPM B 74.17 20.00 5.83 −   2.96 2.26 −   1.91e+01 5.18e− 01 −   2.43(30.00) 3.35
10 RPM C 78.83 12.00 9.17 −   3.45 2.70 −   2.06e+01 3.62e+01 −   3.88(24.83) 4.00
10 RPM D 63.50 17.17 19.33 −   0.42 1.26 −   2.05e+01 3.16e+01 −   0.62(14.17) 1.87
10 RPM E 50.50 22.00 27.50 −   0.02 0.70 −   2.06e+01 9.05e+00 −   0.10(8.83) 1.04
15 RPM A 87.33 6.33 6.33 −   6.81 3.34 −   2.45e+01 1.31e+01 −   6.36(24.33) 4.95
15 RPM B 78.00 15.50 6.50 −   4.24 3.23 −   2.08e+01 1.27e+00 −   3.55(28.83) 4.79
15 RPM C 82.00 9.67 8.33 −   5.59 3.22 −   2.26e+01 4.14e+01 −   5.37(24.83) 4.77
15 RPM D 67.83 15.00 17.17 −   0.81 1.90 −   2.25e+01 3.47e+01 −   1.18(14.00) 2.82
15 RPM E 55.67 16.17 28.17 −   0.23 0.91 −   2.24e+01 4.50e+01 −   0.36(9.83) 1.35
20 RPM A 85.00 5.00 10.00 −   8.12 4.06 −   2.44e+01 3.07e+01 −   8.45(22.83) 6.02
20 RPM B 81.50 13.00 5.50 −   5.86 2.69 −   2.25e+01 2.13e+00 −   4.80(30.00) 3.99
20 RPM C 83.17 9.67 7.17 −   7.61 3.58 −   2.41e+01 4.32e+01 −   6.57(27.17) 5.31
20 RPM D 66.33 11.67 22.00 −   1.23 2.86 −   2.17e+01 4.14e+01 −   1.82(17.67) 4.25
20 RPM E 55.83 18.67 25.50 −   0.01 0.55 −   2.17e+01 3.52e+01 −   0.10(7.33) 0.82
5 GUESS A 63.50 21.17 15.33 −   1.23 1.31 −   1.81e+01 4.67e+01 −   1.34(15.33) 1.94
5 GUESS B 64.17 24.17 11.67 −   0.87 0.87 −   1.62e+01 2.94e+01 −   0.98(16.67) 1.29
5 GUESS C 63.00 22.83 14.17 −   1.30 1.32 −   3.19e+01 3.86e+01 −   1.45(17.33) 1.96
5 GUESS D 54.50 21.33 24.17 −   0.15 0.86 −   1.64e+01 4.67e+01 −   0.44(17.50) 1.28
5 GUESS E 48.67 23.33 28.00 −   0.03 0.62 −   2.39e+01 4.21e+01 −   0.22(7.67) 0.91
10 GUESS A 71.50 13.33 15.17 −   3.31 3.31 −   2.22e+01 5.26e+01 −   3.66(22.00) 4.90
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Table 6   (continued)

Delta SF Strategy Success Neutral Failure median MAD min max �95 �MAD

10 GUESS B 68.17 21.33 10.50 −   2.14 2.14 − 2.24e+01 3.69e+00 −  2.28(21.33) 3.17
10 GUESS C 64.33 18.00 17.67 −  2.26 2.34 −  2.69e+01 3.82e+01 −  2.10(14.83) 3.47
10 GUESS D 55.00 20.33 24.67 −  0.31 2.20 −  1.98e+01 5.56e+01 −  1.03(16.83) 3.27
10 GUESS E 49.33 21.33 29.33 −  0.05 1.10 −  2.71e+01 3.96e+01 −  0.51(10.00) 1.63
15 GUESS A 72.17 12.00 15.83 −  6.06 4.91 −  2.43e+01 5.26e+01 −  6.33(20.83) 7.28
15 GUESS B 72.50 19.50 8.00 −  2.95 2.95 −  2.31e+01 9.16e−01 −  3.29(24.50) 4.38
15 GUESS C 70.33 10.17 19.50 −  5.54 5.29 −  3.18e+01 3.81e+01 −  4.89(20.00) 7.84
15 GUESS D 55.50 18.67 25.83 −  0.36 2.74 −  2.18e+01 5.76e+01 −  2.10(17.67) 4.06
15 GUESS E 50.17 16.33 33.50 −  0.06 2.90 −  2.99e+01 5.02e+01 −  1.00(10.83) 4.30
20 GUESS A 73.33 8.67 18.00 −  7.10 5.30 −  2.58e+01 4.87e+01 −  7.96(19.83) 7.85
20 GUESS B 76.17 17.83 6.00 −  3.59 3.54 −  2.77e+01 7.60e+00 −  3.93(22.50) 5.25
20 GUESS C 68.17 9.67 22.17 −  6.37 6.25 −  3.35e+01 4.99e+01 −  5.79(20.50) 9.27
20 GUESS D 57.83 13.67 28.50 −  0.72 4.16 −  2.15e+01 6.45e+01 −  2.41(18.50) 6.17
20 GUESS E 47.67 14.67 37.67 −  0.00 5.10 −  2.96e+01 5.14e+01 −  1.42(13.17) 7.56
5 STOM A 77.17 9.83 13.00 −  1.53 1.53 −  2.40e+01 1.05e+02 −  1.91(16.33) 2.27
5 STOM B 72.83 12.17 15.00 −  0.76 0.76 −  1.82e+01 1.48e+02 −  0.85(16.50) 1.12
5 STOM C 71.67 9.17 19.17 −  0.99 1.27 −  2.03e+01 1.15e+02 −  1.40(17.67) 1.88
5 STOM D 66.83 13.00 20.17 −  0.30 0.35 −  2.50e+01 7.80e+00 −  0.25(8.67) 0.51
5 STOM E 57.83 14.50 27.67 −  0.12 0.19 −  1.64e+01 9.17e+00 −  0.15(10.00) 0.28
10 STOM A 77.83 6.67 15.50 −  3.23 3.21 −  3.18e+01 1.22e+02 −  4.02(16.83) 4.76
10 STOM B 71.50 9.17 19.33 −  1.44 1.44 −  1.99e+01 1.21e+02 −  1.39(15.67) 2.13
10 STOM C 71.67 6.00 22.33 −  1.79 2.34 −  2.16e+01 1.14e+02 −  2.33(14.17) 3.47
10 STOM D 69.33 14.00 16.67 −  0.25 0.56 −  2.39e+01 4.08e+01 −  0.36(8.83) 0.82
10 STOM E 60.50 11.00 28.50 −  0.17 0.44 −  2.07e+01 3.95e+01 −  0.31(11.17) 0.65
15 STOM A 71.83 5.83 22.33 −  3.64 4.56 −  3.17e+01 1.27e+02 −  4.57(15.50) 6.76
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Table 6   (continued)

Delta SF Strategy Success Neutral Failure median MAD min max �95 �MAD

15 STOM B 71.83 8.33 19.83 −  1.89 1.90 −  2.38e+01 1.29e+02 −  2.01(14.33) 2.82
15 STOM C 72.50 4.00 23.50 −  2.86 3.35 −  2.22e+01 1.15e+02 −  3.97(15.33) 4.97
15 STOM D 74.33 8.50 17.17 −  0.78 0.81 −  2.66e+01 2.60e+01 −  0.57(9.33) 1.21
15 STOM E 61.67 7.83 30.50 −  0.47 0.61 −  1.96e+01 3.78e+01 −  0.44(11.50) 0.91
20 STOM A 72.17 5.00 22.83 −  5.87 5.60 −  3.26e+01 9.90e+01 −  7.03(16.17) 8.31
20 STOM B 69.83 4.33 25.83 −  2.60 2.92 −  2.42e+01 1.07e+02 −  3.26(12.17) 4.33
20 STOM C 70.33 2.00 27.67 −  3.25 4.82 −  2.31e+01 1.10e+02 −  5.33(13.67) 7.15
20 STOM D 73.67 9.17 17.17 −  1.17 1.20 −  2.86e+01 1.22e+01 −  1.06(11.67) 1.78
20 STOM E 63.50 7.17 29.33 −  0.56 0.90 −  2.18e+01 5.82e+01 −  0.60(11.33) 1.34

The values in bold face are the highest success rates in the column Success and the smallest values of the median changes of the target in the column median for each Delta for 
all scalarizing functions (SF) considered
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Each experiment with its variations was repeated for each strategy (Table  4). This 
resulted in 60 experiments performed for each problem. In each experiment, the refer-
ence points z̄0 and z̄1 , the solutions �0 and �1 , the index of the rival jrival and the index of 
the target itarget , and the type of the explanation and suggestion (Table 1) generated, were 
recorded.

5.3 � Results

The main results of the numerical validation runs are shown in Tables  5 and 6. All the 
numerical values shown in the tables are percentages. In what follows, change refers to the 
relative change of the target objective in �0 when compared to �1 . Since all the objectives 
in the experiments are to be minimized, a negative change means an improvement in the 
target and a positive change indicates an impairement of the target.

The first three columns (Delta, SF, Strategy) in Tables 5 and 6 show the value � , the 
scalarizing function (SF) used, and the strategy employed (Table 4), respectively. For each 
experiment, the overall rates of success (target was improved in �1 compared to �0 ), neutral 
(target was the same in �1 and �0 ), and failures (target was impaired in �1 compared to �0 ) 
are recorded in the columns Success, Neutral, and Failure, respectively.

To indicate how much the target objective’s value was changed after the reference point 
was modified, in each experiment the median of the change was computed. To show the 
variation in the change, the mean absolute deviation (MAD) was used. These values are 
listed in the columns median and MAD, respectively. The median was used because the 
target’s change had some very small and large values in the experiments making the mean 
an inaccurate measure. These values can be seen in the tables in the columns min and max, 
respectively. The MAD was used instead of the standard deviation for the same reason the 
median was used. In other words, the median and the MAD were used because they are 
more resilient to outliers when compared to the mean and the standard deviation.

Utilizing the MAD and assuming the changes of the target in the experiments would 
follow a normal distribution, a standard deviation �MAD was computed for the changes 
observed in each experiment and recorded in the last column of Tables 5 and 6. Again, 
assuming a standard distribution, the median, and the computed standard deviation �MAD 
(centered on the median) were used to introduce a cut−off, where the values of change 
residing inside the 2�MAD confidence interval were used to compute a mean �95 recorded in 
the penultimate column in each table. The parentheses following the values listed on this 
column show, in percentages, how many samples were cut−off in each experiment when 
calculating �95 . The purposes of the last two columns are to give the reader quantities that 
are perhaps more familiar and easier to interpret than the median and MAD. The quantities 
�95 and �MAD are less accurate than the median and MAD, respectively. The �95 and �MAD 
should therefore be considered with some care.

5.4 � Observations

Some observations of the results in Tables 5 and 6 are worth mentioning. The average rates 
for a success, neutral, and failure for each strategy across all the experiments are shown in 
the stacked bar graphs in Fig. 3 for the river and car problem. We can see that the average 
rates are very similar for strategies A, B, C and D for the river problem; and for strategies 
A, B and C for the car problem, while for strategy D the success rate seems a little lower, 
yet notably higher than strategy E. Strategy E seems to have the lowest success rate and 
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highest failure rate for both problems. Looking just at the success rates, it seems that the 
desired result of improving the target can be achieved by just improving the target compo-
nent in the reference point z̄0 ; it does not seem to matter which component is impaired, or 
if another component is impaired at all. If we do not improve the target and impair a com-
ponent, which is not the rival (strategy E), then the success rates seem to be the worst for 

Fig. 3   Average of the success, neutral, and failure rates observed for each strategy for the river (left) and car 
(right) problems. The error bars show the standard error for each rate

Fig. 4   The average of the median changes observed in the target for each strategy and � value for the river 
(left) and car (right) problems

Fig. 5   The average of the �95 means observed in the change of the target for each strategy and � value for 
the river and car problems
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both problems. Lastly, the rate for a neutral outcome is very low for the river problem and 
significantly higher for the car problem across all strategies.

The average median of the changes observed for each value � is grouped by strategy for 
both problems and shown as grouped bar charts in Fig. 4. It is evident that, on average, the 
greatest negative changes in the target objective can be achieved by employing strategy A 
in both problems. The changes observed for strategy E seem to average out at zero for both 
problems. While strategies B, C, and D seem to yield somewhat similar results for the river 
problem, for the car problem, strategy D is clearly inferior to strategies B and C, while 
strategy C seems to be better than strategy B. Looking at Fig. 5, we can see similar results 
to what we see in Fig. 4—the average values of the medians are very close to the respective 
values of the average means. With the cut-off introduced, the mean values are close to the 
medians.

Looking at the average values of the MADs of the changes observed in the target shown 
in Fig. 6, we can observe the greatest variation for strategies A and C, for both problems. 
For the river problem, the variations for strategies B and E seem similar, while the varia-
tions for strategy D are a little bit higher than for B and E. For the car problem, the varia-
tions for strategies B, D, and E are more similar, with the variations in strategy B being still 
the highest. We can see a similar pattern for the average of the �MAD deviations shown in 

Fig. 6   The average of the median absolute deviation of changes in the target for each strategy and � value 
for the river and car problems

Fig. 7   The average of the �MAD deviations of changes in the target for each strategy and � value for the river 
and car problems
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Fig. 7. However, the values of the �MAD variations are noticeably larger than the medians 
across both problems.

In all Figs. 4, 5, 6, and 7, we can clearly see that the average changes and deviations of 
the changes increase systematically as the value of � increases. The average changes seem 
to be best for strategy A, but also the deviations seem to be greatest for strategy A. This 
means that while the best average improvement of the target can be observed by employing 
strategy A, it can also yield very varying results. The overall worst strategy seems to be 
strategy E, which results, on average, in no observed change in the target. The deviations 
for strategy E are also small, indicating that the average changes observed in the target are 
not just zero-centered but also very small. It is also evident that looking just at the success 
rates in Fig. 3 is not enough. For instance, just looking at the success rates for strategy A 
would indicate that it is no different from strategy B, while the average changes clearly 
indicate that a better result can be achieved by employing strategy A.

In summary, the results indicate that employing strategy A, that is, improving the target 
and impairing the rival, as suggested by R-XIMO, has the best chance of achieving the 
desirable result of improving the target and in the greatest amount. The choice of the rival 
objective seems to also matter, otherwise strategies A and C should be similar. Moreover, it 
also seems that strategy D (only impairing the rival and not improving the target) can yield 
improvements in the target objective. Overall, the improvement of the target component in 
the reference point seems to be a sound course of action to be always taken when the target 
objective is to be improved in the solution.

6 � Discussion

In this section, we discuss the validity of R-XIMO. In Sect. 6.1, we consider the results of 
the illustrative example given in Sect. 4.1, and in Sect. 6.2 we consider the results of the 
case study with a real DM conducted in Sect. 4.2. Likewise, in Sect. 6.3, we discuss the 
results of the numerical validations of Sect. 5. Lastly, in Sect. 6.4, we outline the overall 
potential of R-XIMO, its future prospects and XIMO in general.

6.1 � On the example

In Sect. 4.1, the usefulness of R-XIMO was demonstrated with the river problem and an 
analyst as the DM. R-XIMO generated explanations and suggestions at each iteration. The 
most important benefit for the DM was understanding the trade-offs among the conflicting 
objectives with the assistance of R-XIMO. The DM was able to learn about the conflicts 
between the objectives and the feasibility of their preferences, thanks to the explanations 
and suggestions. The DM noted that the assistance increased his confidence in the final 
solution because he gained enough insight into the problem throughout the solution pro-
cess. Moreover, this assistance made it easier for the DM to provide preference information.

When we pondered on the interactive solution process, we noticed that the DM was not 
aware of how strong the conflict degrees among the objectives were. This emphasizes the 
necessity of providing not just the trade-offs among the objectives, but also the degrees 
of conflict between them. Furthermore, we need to underline the importance of providing 
these explanations visually. We did not work on visualization perspectives of explanations 
because our aim was to demonstrate the benefits of explanations in interactive methods. 
However, this needs attention in the future.
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6.2 � On the case study

We utilized R-XIMO in the case study in Sect. 4.2 with a real DM. While the suggestions 
clearly supported the DM in the solution processes, it was also evident that the explana-
tions were too convoluted for a real DM, which led the DM to completely ignore the expla-
nations. Based on the DM’s answers to the questions presented, the suggestions generated 
by R-XIMO were valuable and aided the DM in both gaining a sense of direction on what 
to change in the reference point to achieve a desirable result and by reducing the number of 
required iterations. The DM did, however, state that the suggestions could be still simpler.

It is obvious that if explanations are to be presented to the DM, further studies are 
needed to make this information palatable for real DMs. However, this does not mean the 
explanations generated by R-XIMO are completely useless since the suggestions, which 
were found to be very useful, are derived from the explanations. Moreover, as seen in the 
example given in Sect. 4.1, the explanations can be useful to an analyst. We think the most 
valuable lesson from the case study is the observation that future studies on how the sug-
gestions and explanations are presented to the DM are definitely needed. We believe the 
right direction to pursue is the exploration of new visualizations and graphical user inter-
faces that better support conveying the explanations and suggestions to human DMs in a 
graphical format.

6.3 � On the numerical validations

From the success rates shown in Fig. 3, we notice that when the target component chosen 
by the DM is improved or the rival computed by R-XIMO is impaired in the reference point 
(strategies A-D in Table 4), the target is improved most of the time (around 70–80% of the 
time). When neither the target is improved nor the rival is impaired (strategy E in Table 4), 
the success rates are clearly the worst with a failure at around 50% of the time. Therefore, 
improving the target in the solution requires improving it in the reference point or impair-
ing the rival. A combination of these, improving the target and impairing the rival (strategy 
A in Table 4), seems to yield the best results when compared to the other strategies. Lastly, 
the higher rates of neutral outcomes observed for the car problem can stem from the more 
challenging shape of the Pareto optimal front of the problem, which may have been more 
challenging for the underlying optimization method used to minimize the scalarizing func-
tions considered. Thus, there may have been local minima that multiple different reference 
points were mapped to. However, the results of the numerical validations do not seem to 
have suffered from this in any major fashion.

The above has two important implications. First, improving the target in the reference 
point has a clear effect on the value of the target in the solution (strategies A-D). This is 
expected since the black-box considered in (6) finds a solution close to the given reference 
point. Secondly, because the success rates for strategy E are clearly worse than for strat-
egy D (not improving the target but impairing the rival) implies that the rival computed is 
indeed, on average, the best component to be impaired in the reference point. If this was 
not the case, then there should be no significant differences in the success rates between 
strategies D and E. Based on the success rates alone, we claim that the proposed method 
suggests a rival, which when impaired in the reference point, will yield better results for the 
target in the solution. This means that R-XIMO is able to capture (local) conflicts between 
the target and some other objective (the rival in our case).
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Success rates alone do not give strong evidence that improving the target and impairing 
the rival (strategy A) in the reference point would be significantly better than strategies 
B-D, but the results show that improving the target in the reference point is always a sound 
action if the value of the target is to be improved. As said, this is an expected result and 
gives us confidence in the numerical validations.

The results for the relative improvements of the target objective’s value in the solution 
(Figs. 4 and 5) indicate clearly that improving the target and impairing the rival in the ref-
erence point is the best strategy (strategy A). The results for strategies B, C, and D indicate 
that smaller improvements can be observed in the target’s value in the solution when either 
the target is improved or the rival is impaired in the reference point. Lastly, not improving 
the target and not impairing the rival in the reference point leads to almost no improvement 
in the target’s value in the solution (strategy E), and is therefore the worst course of action 
to be taken, which is expected.

The above observations are also confirmed when looking at Tables  5 and  6. We 
clearly notice from the median columns that the best improvements of the target’s value 
in the solution are achieved in almost all cases across both problems when strategy A is 
employed. The best success rates (in the column Success) are also found to belong to strat-
egy A in most cases, but not as often as the best improvement of the target.

Interestingly, strategies B (only improving the target) and C (improving the target and 
impairing something else than the rival) yield similar results for the river problem, while 
for the car problem, strategy C is somewhat better, when it comes to the relative improve-
ment of the target objective’s value in the solution (Figs. 4 and 5). One conclusion from 
this is that with more objectives, impairing some objective in addition to improving the 
target, is more important when compared to a problem with less objectives.

If we compare strategies A (improving the target and impairing the rival) and C 
(improving the target and impairing something else than the rival) in Figs.  4 and  5, we 
can see that the actual choice of the rival does also matter when the target component is 
improved. The results of strategy A in the river problem are clearly better than for strategy 
C, while for the car problem, the difference is less, but still notable. Again, this can be an 
indication that with less objectives, the actual choice of the rival is not as important when 
compared to a problem with more objectives.

Therefore, in the river problem, it is important to choose a rival, and choose it correctly 
for the best result, while in the car problem, the choice of the rival is not that critical and 
only improving the target (strategy B) can yield good results as well. This observation on 
the importance of choosing the rival correctly, with more objective functions present, is 
further confirmed by the results for strategy D (not improving the target and impairing the 
rival). With more objectives, in the river problem impairing only the rival will yield better 
results when compared to the same results for the car problem. It is also clear that impair-
ing at least some component in the reference point is always better than just improving 
the target, which is confirmed by the improvements for strategy C (improving the target 
and impairing something else than the rival) being always better than for strategy B (only 
improving the target), for both problems. Again, this kind of behavior is expected with 
trade-offs existing among the objectives.

From all of this, we conclude that the rival computed by R-XIMO is, on average, the 
best component to be impaired in the reference point when a DM wishes to improve the 
target in the solution. The correct choice of the rival seems to be more important in prob-
lems with more objective functions. For the best result, the target should be improved 
in the reference point as well. To make more general assumptions on how important the 
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choice of the rival is when the number of objective functions varies, further numerical 
studies are required.

The results for the deviations of the relative improvement of the target in the solution 
(Figs. 6 and 7) indicate that the best performing strategy (strategy A) is also the most vola-
tile because of the high values of deviation when compared to the other strategies. How-
ever, for strategy A, the average absolute values of the improvement of the target in the 
solution (in Figs. 4 and 5) are close to the deviations. This indicates that when the target 
fails to improve, its new value is probably closer to its original value in the previous solu-
tion. This is assuring because it means that if the explanations provided to the DM fail 
helping the DM reach the desired result, the magnitude of failure is small (i.e., the target 
has only a slightly worse value). Interestingly, improving the target and impairing a random 
component in the reference point (strategy C) is as volatile as strategy A. Strategy C is also 
the only other strategy, apart from A, where two components are changed in the reference 
point. This means that changing more components in the reference point yields more vary-
ing solutions, which is an expected behavior from the black-boxes considered (6). The vari-
ations of strategy D in the river problem are clearly greater than the variations of strategies 
B and E, while in the car problem, the variations of strategy B are greater than strategies 
D and E. It seems that the rival has a greater effect of the volatility of the results depend-
ing on the number of objectives at hand. Overall, when the average improvements and the 
average deviations are compared to each other, there are no conflicts with the success rates 
(Fig. 3).

Comparing the case study to the numerical validations conducted in Sect. 5, the changes 
in the components of the reference point expressed by the DM varied between � values 
of 2.3% and 9.0% . If the actions taken by the DM are compared to the strategies A-E, the 
DM pursued actions described by strategy A most of the time, with pursuing an action 
described by strategy D once. Based on these observations alone, any specific conclusions 
are hard to make. But if it is generally true that � values around 15 − 20% lead to greater 
improvements in the target objective, then some way of communicating the amount the 
DM should change the target and rival components in the reference point is worth explor-
ing in the future. In conclusion, the numerical validations have shown that the suggestions 
generated by R-XIMO can help the DM reach the desired outcome of improving the target 
in the solution.

6.4 � Potential of R‑XIMO and future prospects

Explainability clearly provides support to the DM, as discussed in Sects. 6.1 and 6.2, and 
R-XIMO is able to generate sound explanations (and therefore suggestions), as discussed 
in Sect. 6.3. R-XIMO supports the DM in learning about the multiobjective optimization 
problem and helps them in formulating new preferences in reference point based interac-
tive multiobjective optimization methods. These issues have been seldom addressed in past 
research, as mentioned in Sect. 1.

The importance of providing explanations to the DM in interactive multiobjective opti-
mization methods is emphasized when they are used to make real-life decisions affecting 
humans. Incidentally, in the member nations of the European Union, when decisions affect 
humans, individuals should have a right to an explanation on why, and on which basis, 
such decisions have been made [54]. Therefore, R-XIMO, and the concept of XIMO in 
general, has important societal implications.
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Making trade-offs in decision making is challenging, as discussed in [55]. R-XIMO sup-
ports the DM in this regard as well by suggesting trade-offs directly to the DM. Therefore, 
the cognitive load on the DM is lower in reference point based interactive multiobjective 
optimization methods with the support of R-XIMO. Moreover, not much research has been 
done on studying the local conflicts in multiobjective optimization as discussed in [56]. 
Because SHAP values are local, as discussed in Sect. 2.2, the interactions of the objectives 
represented by SHAP values reflect the local conflicts among them. Thus, R-XIMO can 
give insight to the DM about the trade-offs local to the current solution.

In our work, we did not utilize the SHAP values computed in R-XIMO to convey to the 
DM any information about the actual magnitude of the conflicts among the objectives in 
a multiobjective optimization problem. Moreover, no support was provided to the DM on 
how much the target and rival should be perturbed. We made the deliberate choice to only 
communicate simple and easy to understand ideas to the DM with the explanations gener-
ated by R-XIMO to not overburden the DM with additional information.

If we chose to numerically show the SHAP values to the DM, we run a risk of the DM 
starting to compare the SHAP values to each other, or to the objectives, instead of com-
paring the objectives. This would greatly reduce the actual support provided to the DM 
by R-XIMO. Therefore, it is important that information is communicated to the DM is an 
easily understood way, and in a way that minimizes the possibility for the DM to confuse 
different types of information. By keeping the suggestions and explanations textual, we at 
least have made a clear distinction between objectives (numerical information) and the sug-
gestions and explanations (textual information).

To further minimize the additional cognitive load on the DM imposed by R-XIMO, we 
decided to only show the suggestions derived from the explanations (Table 1) by default, 
and give the DM the option to see the more detailed explanation, if they so desire. The 
detailed explanations were formulated in a causal tone since it has been demonstrated 
previously that such explanations have high cognitive value to DMs [57]. Moreover, by 
separately providing a suggestion to the DM, we provide them with actionable insights 
(mentioned in [57]) on how they may reach their goal of improving a specific objective. 
However, the SHAP values can portray valuable information to the DM and can further 
help them in deciding how much the components of the reference points should change. 
This is something R-XIMO does not provide support for. We believe this information 
should be communicated to the DM graphically, but to find the actual best way of commu-
nication, further studies with human participants are required. The graphical communica-
tion of explanations in multiobjective optimization is also yet to be explored.

We argue that R-XIMO could help the DM in avoiding some cognitive biases as well, 
such as anchoring. Indeed, as argued in [58], a common reason for the anchoring effect in 
interactive methods is that DMs do not have time to spend in a long interactive process. 
R-XIMO can speed up an interactive process by eliminating some of the time required for 
a DM to think about trade-offs and possibly help the DM away from a previous solution 
aided by the suggestions. However, based solely on our work, we cannot make any defini-
tive claims regarding the cognitive support offered to DMs by R-XIMO.

R-XIMO can be readily scaled up to convey suggestions and explanations to the DM 
about the interaction between other components of the reference point and solution than the 
target and rival. For instance, the second order effects, i.e., the components in the reference 
point with the second greatest improving or impairing effect on the target in the solution. 
This information is already available in R-XIMO and remains only to be exploited. How-
ever, we believe that further research should be conducted on how to best convey explana-
tions to DMs in the context of multiobjective optimization before R-XIMO is scaled up. 
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This is also the reason why we decided to keep the suggestions and explanations simple 
and focused only on the most significant effects (i.e., the target and the rival).

As mentioned in the introduction, R-XIMO can be implemented as an agent to support a 
DM in various ways. A generic multiagent architecture for any type of interactive methods 
was proposed in [16], which allows more efficient and reliable interactive solution processes 
through the use of specialized agents. Moreover, the architecture enables a DM to select the 
most suited interactive methods based on their needs in different phases during the interac-
tive solution process. In the aforementioned architecture, a preference agent that interacts with 
a DM constructs their preference model by actively observing and learning the preferences. 
The preference agent notifies a DM whenever they provide uncertain or contradictory pref-
erences with the help of constructed preference model. R-XIMO does not currently keep a 
history of the DM’s preferences, but it clearly has the potential to be implemented as a prefer-
ence agent as part of the said architecture and can be extended to provide not only trade-offs 
among objectives, but also to explain uncertainties and/or contradictions in the provided pref-
erence information. This may enable a DM to provide more accurate and reliable preference 
information.

7 � Conclusions

We proposed the R-XIMO method to be applied with reference point based interactive mul-
tiobjective optimization methods to explain to a DM why their preferences have lead to solu-
tions shown and how the reference point may be modified to achieve a more preferred solu-
tion. Our method can be used with any reference point based interactive method. We have 
incorporated multiobjective optimization with ideas from explainable artificial intelligence, 
and utilized SHAP values to generate the explanations. We have demonstrated the useful-
ness of R-XIMO in practice with an illustrative example and a case study, and we validated 
it numerically. We can safely say that R-XIMO has a high potential as a decision support tool 
clearly augmenting the insight offered by the existing reference point based interactive meth-
ods. Nevertheless, in its current state, our work should still be regarded as a proof-of-concept. 
Future studies are needed to explore what kind of explanations best serve the needs of DMs 
in finding preferred solutions in multiobjective optimization problems. In the case study, we 
considered the opinion of only one DM, which is clearly a limitation. To properly assess the 
usefulness of explanations to humans in multiobjective optimization, studies with more DMs 
are still required.

In the future, other tools and methods apart from SHAP values should be explored in 
XIMO, and implementing new interactive methods with inherent explainability should be 
considered as well considering also different types of preference information. Some promising 
methods to explore in this regard are, for instance, individual conditional expectations [59], 
belief rule-based systems [60] (as already preliminarily explored in [44]), and scoped rules 
[61], just to name a few.

By supporting the DM in providing reference points and learning about the underlying 
multiobjective optimization problem, we provide answers to open questions in interactive 
multiobjective optimization. In addition, we also advance the field of explainable interactive 
multiobjective optimization, or XIMO, to new horizons. Our work can be regarded as pio-
neering and the first of its kind for explaining scalarization-based interactive multiobjective 
optimization methods. Our work investigates and proposes ideas that have a strong potential to 
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inspire a plethora of various future works exploring the concept of explainability in multiob-
jective optimization.

Appendix

The crash-worthiness design of vehicles problem [52] is a real-world engineering problem 
in which the frontal structure of vehicles is designed for crash safety. The vehicle’s frontal 
structure absorbs the energy created by the crash, increasing passenger safety. Improving a 
vehicle’s energy absorption capacity often increase the overall vehicle mass. On the other 
hand, lightweight designs are required to minimize a vehicle’s mass and, as a result, its 
fuel consumption. Therefore, higher energy absorption and lightweight design conflict with 
each other, and we must find a compromise between the two to achieve a proper design.

As design variables in this problem, the thickness of five reinforced components sur-
rounding the frontal structure affecting crash safety is chosen. The mass of a vehicle ( f1 ), 
deceleration during the full-frontal crash ( f2 , which influences passenger injuries), and toe 
board intrusion in the offset-frontal crash ( f3 , which affects the vehicle’s structural integ-
rity) are all defined as objectives to be minimized. Mathematical formulation of the multi-
objective optimization problem is as follows:

where fi (i = 1, 2, 3) represents the relevant objectives and the decision variable xj 
(j = 1,… , 5) represents the thickness of five components of the frontal structure. Objec-
tives have the following formulations:

More details about the crash-worthiness design of vehicles problem can be found in the 
original study [52].
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minimize F(�) = (f1(�), f2(�), f3(�))

subject to 1 ≤ xj ≤ 3, where j = 1,… , 5

f1(�) = 1640.2823 + 2.3573285x1 + 2.3220035x2 + 4.5688768x3

+ 7.7213633x4 + 4.4559504x5

f2(�) = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3 + 0.8364x4

− 0.3695x1x4 + 0.0861x1x5 + 0.3628x2x4

− 0.1106x2
1
− 0.3437x2

3
+ 0.1764x2

4

f3(�) = − 0.0551 + 0.0181x1 + 0.1024x2 + 0.0421x3 − 0.0073x1x2

+ 0.024x2x3 − 0.0118x2x4 − 0.0204x3x4 − 0.008x3x5

− 0.0241x2
2
+ 0.0109x2

4
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P.O. Box 35, Agora, 40014, University of Jyväskylä, Finland
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Abstract—Many real life problems can be modelled as multi-
objective optimization problems. Such problems often consist of
multiple conflicting objectives to be optimized simultaneously.
Multiple optimal solutions exist to these problems, and a single
solution cannot be said to be the best without preferences
given by a domain expert. Preferences can be used to find
satisfying solutions: optimal solutions, which best match the
expert’s preferences. To model the preferences of the expert,
and aid him/her in finding satisfying solutions, a novel method is
proposed. The method utilizes machine learning combined with
belief-rule based systems to adaptively train a belief-rule based
system to learn a domain expert’s preferences using preference
information gathered during an interactive process. Belief-rule
based systems are explainable generalized expert systems, which
have not been used before in the manner described in this paper
to model preferences of a domain expert for a multi-objective
optimization problem. In the case study conducted, the satisfying
solutions found using learned preferences are concluded to be
compatible with the preferences of the expert, which support the
proposed method’s viability as a decision making support tool.

Index Terms—multiple objective optimization, belief-rule
based systems, machine learning, Python, preference modelling,
decision making

I. INTRODUCTION

Many real-life problems can be modelled as multi-objective
optimization problems with multiple conflicting objectives.
Such problems can emerge in health care [1] and engineering
[2], for example. No single solution exists to these problems
and the aid of a domain expert, a decision maker, is involved.
The decision maker can give preferences, which can be used
to identify satisfying optimal solutions matching the given
preferences. To model the preferences of a decision maker,
a value function can be used [3]. The value function is not
explicitly known and must be inferred from the preferences
of the decision maker. If the value function is known, it
would allow finding the most satisfying solutions according
to the preferences of a decision maker, therefore aiding the
decision maker in finding satisfying solutions to a multi-
objective optimization problem.

In this paper, a novel method is proposed which utilizes ma-
chine learning and belief-rule based systems to learn the value

function of a decision maker. Belief-rule based systems are
generalized expert systems able to model non-linear systems.
Adaptive training is utilized in the proposed method, where
preferences given by a decision maker during an interactive
process are utilized to adaptively train a belief-rule based
system to model the value function of the decision maker.
Belief-rule based systems have been chosen to be utilized
in modelling the value function because they can be used
to build explainable models [4]. Explainability increases the
trust humans have in predictions made by computational
models [5]. However, the explainability of the method is not
explored in this work, and is left for future research.

Some recent works, where the value function of a decision
maker is inferred using machine learning can be found in
[6] and [7], for example. For more details on modelling
preferences for multi-objective optimization problems, see [8].

This paper is structured in the following manner: in Sec-
tion II the necessary background is given for understanding
how the proposed method works, in Section III the pro-
posed method – the INFRINGER method – is presented, in
Section IV the software implementation of the INFRINGER
method is briefly discussed, in Section V a case study in
forest landscape planning is conducted using the INFRINGER
method, and in Section VI the results of the case study
are discussed. Finally, in Section VII conclusions are made
regarding the feasibility of INFINGER as a method for solving
multi-objective optimization problems, and how successful the
method is in learning the preferences of a decision maker. This
paper ends with suggestions for future research topics related
to the INFRINGER method.

II. BACKGROUND

A. Multi-objective optimization

A multi-objective optimization problem consists of multiple
objective functions, which are to be optimized simultaneously
under certain constraints. Such a problem can be defined as

max
x∈X

f(x) = {fi(x) | i ∈ [1,m]}, (1)978-1-7281-2547-3/20/$31.00 ©2020 IEEE
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where f is a vector of m objective functions fi to be max-
imized. Each fi expects a decision variable vector x as its
argument. The decision variable vectors x with n elements
belong to the feasible set X ⊂ Rn, which is defined by
constraints imposed on x.

The objective functions in (1) are assumed to be conflicting,
which means that no solution in X is able to optimize
simultaneously all objectives fi. Instead, multiple optimal
solutions x∗ ∈ X exist, which form a set of optimal objective
vectors f(x∗) = z ∈ Z for all existing optimal solutions x∗.
For two vectors z, z̃ ∈ Z, the vector z dominates z̃ if, and
only if, zi ≥ z̃i is true for all i ∈ [1,m], and zi > z̃i is
true for at least one i ∈ [1,m], where the index i is used
to denote the ith element in the vectors. The Pareto optimal
set ZPareto is then defined to be the set containing all the
vectors z, which are not dominated by any other vector in
Z. However, in a real world scenario, the whole extent of
the Pareto optimal set for a problem is often not known.
Therefore, subsets of the true Pareto optimal set ZPareto, known
as representations of the Pareto optimal set, are used instead.
From the definition of the Pareto optimal set, and as long
as all relevant objectives are included in the definition of the
multi-objective optimization problem, we can assume that the
decision maker is only interested in the vectors present in the
set ZPareto.

Additionally, the nadir point znad and the ideal point z∗ are
defined. The nadir point consists of the worst values of each
objective in ZPareto, and the ideal point consists of the best
values respectively. The nadir and ideal points are used to
convey information on the attainable objective values of (1).
It is worth noting that the ideal point is not feasible, that is,
it cannot be computed from a decision vector x ∈ X . On the
other hand, the nadir point might or might not be feasible. In
practice, the ideal point is trivial to calculate, but because the
nadir point depends on the whole extent of the Pareto optimal
set, it is often impossible to calculate the true nadir point,
which is why estimates of the nadir are often used. In this
paper, a payoff table was used in the case study to calculate
the nadir point of the forest landscape planning problem. The
payoff table alongside an alternative method for approximating
the nadir point are discussed in [9].

Methods for solving multi-objective optimization problems
can be divided into three categories based on how the methods
incorporate a decision maker’s preferences. Methods utilizing
preferences before solving the multi-objective optimization
problem are known as a priori methods. Methods that make
use of preference information after the optimization process
are known as a posteriori methods. In this paper, an interactive
method is developed. In interactive methods, the preference
information is used and updated during the optimization
process. This requires for the decision maker to actively
take part in the optimization process by expressing his/her
preferences based for example on candidate solutions, which
are computed and presented to him/her during the process. For
a more detailed introduction to multi-objective optimization
and multi-objective optimization methods, see [3], and for a

Fig. 1. The general structure of a BRB system and the relation between its
components.

recent review discussing interactive multi-objective optimiza-
tion methods, see [10].

B. The value function

To model the preferences of a decision maker, a value
function of the form

Rm → R : fval(z) (2)

is assumed to exist. The value function maps each objective
vector z to a scalar value. The higher the value of (2) is for
an objective vector z, the more preferred z is according to
the preferences of the decision maker. By maximizing (2), the
most preferred objective vector(s) according to the decision
maker’s preferences can be found.

Assuming that a decision maker will always prefer more
to less regarding the objectives in a problem (1), the value
function (2) can be regarded to be monotonically increasing
as a function of the elements zi. This means that when one of
the elements zi is varied and the others are kept constant, the
value of (2) should increase as zi is increased.

It is unrealistic to assume a decision maker to be able to tell
what his/her value function is explicitly. Therefore, the value
function is otherwise inferred utilizing preference information
given by the decision maker. In this paper, the value function
is inferred utilizing a belief-rule based system and pair-wise
comparisons of vectors in ZPareto conducted by a decision
maker. Pair-wise comparisons are chosen because they are a
relatively simple way for a human decision maker to convey
preference information.

C. Belief-rule based systems

Belief-rule based (BRB) systems presented in this subsec-
tion are based on the RIMER methodology discussed in [11]
and [12]. The BRB systems described in this paper consist
of a belief-rule base, an inference mechanism, and a way to
transform observed data into inputs used in the rules of the
rule base. The BRB system can be trained by formulating a
cost function, which is then minimized to find a set of optimal
parameters for the BRB system.

The general structure of a rule base is summarized in
Figure 1. Concluding this subsection, the cost function and its
minimization problem are discussed The reader is advised that
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βn =

∏L
k=1(wkβn,k + 1− wk

∑N
i=1 βi,k)−

∏L
k=1(1− wk

∑N
i=1 βi,k)∑N

j=1

∏L
k=1(wkβj,k + 1− wk

∑N
i=1 βi,k)− (N − 1)

∏L
k=1(1− wk

∑N
i=1 βi,k)−

∏L
k=1(1− wk)

(5)

many of the symbols already used and defined in the previous
subsections are reused and redefined here. This has been a
deliberate choice by the author as not to inflate the number of
different symbols used in this paper and to keep the notation
similar to the notation found in the source literature.

The rule-base in a BRB system consists of L IF...THEN...
rules Rk, where an expression follows the IF, and an action –
referred to as a consequent – follows the THEN. An input to a
rule is a vector x of attributes with T elements xi, i ∈ [1, T ].
The attribute values xi are restricted to the values present in
the antecedents of the rule base defined to be a set of T vectors
Ai, i ∈ [1, T ] with each vector consisting of referential values.
Then, Ai,j denotes the jth available referential values for the
ith attribute xi, where the number of these referential values
may vary from rule to rule. The vectors of referential values
are aggregated in a set of vectors A = {Ai | i ∈ [1, T ]} called
the packet antecedent of the rule base.

Similarly, the output of each rule is restricted to N referen-
tial values in a packet consequent D = {Di | i ∈ [1, N ]}. The
element Di indicates the ith available referential value for the
consequents in the rule base.

Each rule Rk is also associated to a vector of belief-degrees
βi,k, where the index k indicates to which rule the degrees
are associated to, and the index i indicates the belief-degree
associated to the ith referential value Di ∈ D. The value of
the belief-degree indicates the likelihood for a referential value
Di being the consequent of a rule when the expression of the
rule is true. Additionally, each rule Rk has an associated rule
weight θk indicating how important the rule is in the rule base,
and an associated set of attribute weights δi,k, indicating how
important the ith attribute is in the expression of the rule.

The ideas presented so far can be summarized in the
definition of a single belief-rule with the AND-connective ‘∧’
aggregating the expressions:

IF x1 is Ak
1 ∧ x2 is Ak

2 ∧ . . . ∧ xTk
is Ak

Tk
,

Rk : THEN {(Di, βi,k) | i ∈ [1, N ]}, (6)
with an associated rule weight θk,
and attribute weights {δi,k | i ∈ [1, Tk]},

where Ak
i is an antecedent referential value vector, such that

Ak
i ∈ Ai, and Tk is the number of attributes in the input of

rule Rk. The parameters βi,k, θk, δi,k, and A, can be set by
an expert or learned.

Observed data H consisting of the elements hi, i ∈ [1, T ],
is transformed to a belief distribution before it can be utilized
in a BRB system. Given a packet antecedent A, hi can be

transformed into the belief distribution

αi =

{
min

(
max

(
Ai,j+1 − hi

Ai,j+1 −Ai,j
, 0

)
,

max

(
hi −Ai,j−1

Ai,j −Ai,j−1
, 0

)) ∣∣∣j ∈ [1, |Ai|]
}
, (7)

where |Ai| is the number of elements in Ai, Ai,0 = Ai,T ,
and Ai,|Ai| = Ai,1. That is to say, that the nth element in a
belief distribution αi denoted by αi,n indicates how well an
observed attribute hi matches the referential value Ai,n of a
rule base.

Once all hi have been transformed to a belief distribution
αi, an activation weight can be calculated for each rule as

wk = θk
∏Tk

i=1

(
αk
i,j

)δ̄i,k
/ ∑L

l=1

[
θl
∏Tl

i=1

(
αl
i,j

)δ̄i,l], (8)

where δ̄i,k = (δi,k)/(maxi∈Tk
(δi,k)). The sub-indices j in

the expressions α
k/l
i,j are determined by each belief-rule Rk

so that the values in α
k/l
i,j convey the information on how the

observed input H matches to the rule’s antecedent values Ak.
Then, the activation weights indicate how important each rule
is given a certain input to the rule base.

Using the computed activation weights, the combined belief
degrees βn can be calculated using (5). A combined belief
degree βn conveys the likelihood for an input x to be mapped
to the consequent referential value Dn ∈ D in the rule base.
Using a function R → R : u(Di), the combined belief degrees
can be transformed into a numerical output as

y =
∑N

i=1 u(Di)βi. (9)

The belief-degrees βi,k, the rule weights θk, the attribute
weights δi,k, and the antecedent referential values Ai, can be
denoted by P (βi,k, θk, δi,k, Ai). A minimization problem is
then defined

minP∈P ξ(P ), (10)

where ξ is a cost function used to train the BRB system, and
P denotes the set of feasible parameters P , which is defined
by the following constraints:

∑L
i=1 θi = 1, (11)

∑L
i=1 βi,k = 1, k ∈ [1, L], (12)

0 ≥ δi,k, i ∈ [1, T ] and k ∈ [1, L], (13)
Ai,n ≤ Ai,n+1, i ∈ [1, T ] and n ∈ [1, |Ai| − 1], (14)

where (11) and (12) are normalizations, (13) limits the attribute
weights to positive values to keep the multiplicand in (8)
less or equal to one, and (14) is used to keep the antecedent
referential values ordered, which is assumed in (7).

By formulating the cost function ξ to reflect a difference
between the numerical output (9) of the BRB system and a
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desired output, an optimization problem defined in (10) can
be formed using the formulated cost function, and can then
be solved for a set of optimal parameters P̃ ∈ P, which are
then used to update the BRB system to better reflect a desired
output effectively training the BRB system.

III. METHOD

A. The INFRINGER method

An interactive method for solving multi-objective optimiza-
tion problems, the INFRINGER1 method, is proposed. The
method models a decision maker’s preferences as a value
function, which is learned utilizing a BRB system. The BRB
system in the method is adaptively trained using a cost
function, which is formulated based on preference information
gathered during an interactive process where a decision maker
is asked to conduct pair-wise comparisons of Pareto optimal
objective vectors.

As its input, the INFRINGER method requires: (i) a set of
objective vectors representing a Pareto optimal set ZPareto in
a multi-objective optimization problem; (ii) the ideal point z∗

and the nadir point znad of the set ZPareto; and (iii) a fitness
threshold γth ∈ [0, 1] used as a termination criterion. The
output of the method consists of: (i) a trained BRB system
able to model the decision maker’s preferences using a learned
value function; and (ii) the vector in ZPareto with the highest
value according to the learned value function. It is assumed
that the vectors in ZPareto consists of real valued objectives
scaled between [0, 1] using the nadir and ideal points, such
that the nadir point’s objectives are zero and the ideal point’s
objectives are one.

In the INFRINGER method, it is assumed that the given
set of objective vectors representing the Pareto optimal set
is sufficiently diverse and spread-out in such a way that the
set can be assumed to represent the whole extent of the
Pareto optimal set. This kind of input set is easily computed
for a discrete data-based multi-objective optimization problem
modelled after a small and limited data set. However, for
non-discrete problems or problems modelled using very large
amounts of data, it is not always possible to know if a
representation of the Pareto optimal set is comprehensive
enough to warrant the assumptions made in the INFRINGER
method. Therefore, the INFRINGER method may act more as
an a posteriori multi-objective optimization method instead of
an interactive method, if the given representation of the Pareto
optimal set is not comprehensive enough.

B. Initialization

The decision maker is shown the nadir and ideal points and
is then asked whether he/she would like to give a reference
point z̄, a vector consisting of desired objective values. If the
decision maker does not wish to give a reference point, the
reference point is set to be in the middle of the nadir and ideal
points.

1Which stands for Interactive inference of preferences using belief rules

Next, the decision maker is shown the approximation of the
Pareto optimal set alongside the reference, nadir, and ideal
points. This is done to give the decision maker an idea of the
available objective values.

A BRB system is then initialized with a packet antecedent
A with m referential value vectors. Each Ai corresponds to
the ith objective, and consists of three referential values: Ai ={
znad
i , z̄i, z

∗
i

}
, where the index i refers to the ith component

in each of the vectors. The Cartesian product of the referential
value vectors in A is then taken resulting in 3m new vectors
labelled as Ak, where k ∈ [1, 3m]. These vectors are then used
to construct L = 3m belief-rules (6), where the rule Rk has
the antecedent referential values Ak.

The referential values for the consequent D in each rule are
chosen to be D = {0, 0.25, 0.5, 0.75, 1}, because it is assumed
that the numerical output of the BRB system modelling a value
function is limited to the continuous range [0, 1]. The choice
of five referential values in D has been a result of trial and
error – the choice has shown to yield a good balance between
computational efficiency and performance of the BRB system.

To define the belief-degrees βi for each rule Rk, an initial
value function (2) must be assumed. The value function is
assumed to be

fp(z) =
∑m

i=1 zi/m, (15)

which is chosen, because it is simple and clearly coherent with
the assumptions made in Section II-B. The initially assumed
value function (15) could also be chosen differently without
impairing the described method. Using the principle (15), and
an identity function u(Di) = Di in (9), a numerical output yk

can be computed for each Ak. This numerical output can then
be transformed into the belief degrees of each rule Rk using
(7) by substituting αi with βi, Ai,∗ with D∗, and hi with yk.
The rest of the parameters in the initial BRB system are set
to be θk = 1/L, and δi,k = 1, for all indices i, k, because no
further assumptions are made regarding the modelled value
function.

The initial belief-rule base has now been fully defined, and
a numerical output can be computed for an objective vector
z utilizing (7), (8), (5), and (9). This output represent a value
associated to z according to the value function modelled by
the BRB system. As a short hand notation

B(z) = ”value for z” (16)

is used to indicate the numerical output of the BRB system.

C. Pair-wise comparisons and fitness evaluation

Following the initialization of the BRB system, the decision
maker is shown pairs of vectors in ZPareto. Five pairs are
chosen to be shown, because it is a number of pairs low
enough to be grasped by the decision maker, and high enough
to still offer a decent representation of the available vectors. To
choose pairs with enough variety, the standard deviation and
mean are calculated from a distribution of values computed
using (16) to calculate a value for each vector in ZPareto. The
first three pairs are selected by finding two vectors, both being
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a multiple of the standard deviation apart from each other,
centered on the mean. The multiples of the standard deviation
are one, two, and three, for the first three pairs selected,
respectively. The fourth pair consists of the vectors with the
highest and lowest values in ZPareto according to (16), and the
fifth pair consists of two random vectors in ZPareto.

The decision maker is then asked for each pair if he/she
prefers the first vector, the second, or if the vectors are equally
preferable. According to his/her answers, it is assumed that the
value function of the decision maker results in a higher value
for the preferred vector, and an identical value for two equally
preferred vectors. This idea is contrasted to the output of the
BRB system (16), based on which a fitness γ is calculated.
The maximum value of the fitness γ is 1, which indicates that
the values of B computed for both vectors in all the pairs
agree with the preferences of the decision maker. A fitness
value of 0 indicates the opposite. For example, in case of
five pair-wise comparisons conducted, a fitness value of 0.6
would indicate that the BRB system compares three out of five
pairs similarly to how the decision maker compared them. The
preference information gathered in the pair-wise comparisons
is also used in a cost function described in the next subsection.

D. Adaptive training and visualization

To adaptively train the BRB system to model the de-
cision maker’s preferences using a value function model,
a cost function is defined and minimized. Three important
assumptions can be made regarding the value function being
modelled by the BRB system: the value of the nadir point
should be worse than any other vector in ZPareto, the ideal
point should correspondingly have the highest possible value,
and the value function should be monotonically increasing
as a function of the objective values. Additionally, a fourth
assumption is also made: the modeled value function should
reflect the preferences of the decision maker according to the
pair-wise comparisons conducted in the manner described in
Section III-C. To reflect the assumptions made, a cost function
is defined for each assumption, which has a higher value the
greater the disagreement between the modelled value function
and the made assumption is. The cost function used in the
INFRINGER method is therefore defined as the aggregation
of four cost functions as

ξ(P → B) = ξnadir + ξideal + ξmono + ξpair, (17)

where the notation P → B indicates that the underlying
BRB system is updated with the parameters P before the
cost function is evaluated, ξnadir has a higher value the greater
the absolute difference between B(znad) and 0 is, ξideal has
a higher value the greater the absolute difference between
B(zideal) and 1 is, ξmono has a greater value the less monoton-
ically increasing B is, and ξpair is the reciprocal of the fitness
γ discussed in Section III-C.

After a cost function (17) is defined, a minimization prob-
lem (10) is solved to find the optimal parameters P̃ . Using
the optimal parameters P̃ in the BRB system will result in
a modelled value function B congruent with the assumptions

made regarding (17) in the previous paragraph. The modelled
value function should therefore reflect the preferences of the
decision maker based on the pair-wise comparisons conducted,
and abide the assumptions made regarding the general nature
of a value function discussed in Section II-B.

To further improve the modelled value function in its ability
to model the decision maker’s preferences, more pair-wise
comparisons can be conducted, and the cost function ξpair
in (17) can be updated with the new preference information
gathered from the comparisons. Previously conducted pair-
wise comparisons are kept in the formulation of ξpair because
it is assumed that the preferences of the decision maker remain
constant.

To suggest the decision maker a best solution, and to give
him/her an idea of where their region of interest in ZPareto

might be according to their preferences learned by the BRB
system, the decision maker is shown a plot depicting a ranking
of the vectors in ZPareto according to the learned value function
B. The vector with the highest score in ZPareto is also indicated
in the plot. An example of such a plot can be seen in Figure 3,
where colors have been used to indicate the value of each
vector in a multi-objective optimization problem with three
objectives.

E. Termination

The pair-wise comparisons can be conducted again and the
BRB system can be adaptively trained multiple times. After
each adaptive training, the fitness γ of the value function
being modelled can be re-evaluated. If the calculated fitness
is equal or greater compared to the fitness threshold γth, the
INFRINGER method is terminated. Optionally, the method
can be terminated if the decision maker decides he/she does
not wish to continue – the decision maker gets tired, or is
happy with the solution(s) found. The decision maker is then
shown a desired number of the top valued vectors found in
the representation of ZPareto according to B.

As for the learned value function, the optimal parameter
P̃ found before termination can be saved for later use, for
example if the modelled value function of the decision maker
is needed later. The INFRINGER method is summarized in
Algorithm 1.

IV. SOFTWARE

A software framework to build and train BRB systems
discussed in Section II-C has been developed in Python [13].
Based on the aforementioned framework, the INFRINGER
method described in Section II-C has also been implemented.
The developed framework is a first of its kind. The source
code for the developed framework and method is available on
GitHub. 2.

V. CASE STUDY

In the case study described in this section, the developed
INFRINGER method, and its software implementation, were
used for solving a multi-objective optimization problem in a

2https://github.com/gialmisi/desdeo-brb (October 1, 2020)
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Algorithm 1 The INFRINGER method
INPUT: A representation of the Pareto set ZPareto, the ideal
and nadir points znad, z∗, and a fitness threshold γth.
OUTPUT: A BRB system trained to model a decision
maker’s preferences using a value function, and a desired
number of the highest valued vectors in ZPareto according
to the value function modeled by the BRB system.
Step 1: Show the decision maker z∗ and znad, and ask
if he/she would like to supply a reference point z̄ with
objective values bound by znad and z∗.
Step 2: If z̄ was given in Step 1, continue to Step 3.
Otherwise define z̄ to be an objective vector in the middle
of znad and z∗.
Step 3: Initialize a BRB system as described in Sec-
tion III-B.
Step 4: Conduct pair-wise comparisons of the selected
vectors in ZPareto as described in Section III-C.
Step 5: Formulate the cost function and minimize it as
described in Section III-D. Update the BRB system with
the optimal parameters P̃ found.
Step 6: Visualize the ranked ZPareto to the decision maker as
described in Section III-D using the current value function
modelled by the BRB system.
Step 7: Conduct a new pair-wise comparisons of vectors in
ZPareto and compute a fitness γ value as described in Section
III-C.
Step 8: If the computed γ ≥ γth or the decision maker
wishes to stop, go to Step 11. Otherwise continue to Step
10.
Step 9: Update the cost function related to the pair-wise
comparisons ξpair in (17) and minimize it as described in
Section III-D. Update the BRB system with the optimal
parameters P̃ found and go to Step 7.
Step 10: Visualize the highest valued vectors in ZPareto as
described in Section III-E.

forest landscape planning problem. A domain expert acted as
the decision maker in the case study.

A. The problem

The problem in the case study consisted of choosing dif-
ferent management strategies for different parts of a forest,
which are referred to as forest stands. A strategy could have
consisted of chopping down all the trees in the stand and
sell the timber, for example. Three indicators were chosen
to represent the consequences for the whole forest resulting
from choosing different strategies for each forest stand. These
indicators were: total average income, average stored carbon-
dioxide, and average combined habitat suitability index. The
listed indicators were chosen to be the three objectives of a
problem being solved and are to be maximized.

Simulated data were available in three CSV3-files, with
values for the three objectives for each forest stand. There

3Comma separated values.

were 59 available managements strategies, with data for 1475
forest stands whose development over a one hundred year time
horizon was simulated for all the available strategies using
SIMO [14]. In the case study, only 20 out of the 59 available
strategies were considered to lower the computational time for
calculating a Pareto optimal objective vector set from the data.

A comprehensive representation of the Pareto optimal set
was calculated based on the available data. The nadir and
ideal points of the Pareto optimal set were also computed.
The original data used and the source code to compute the
Pareto optimal set is available on GitHub4.

B. Solving the problem using INFRINGER

In what follows, each time a reference is made regarding
a Step followed by a number, it refers to a Step present in
Algorithm 1. Analyst refers to the author of this paper who
was in charge of operating the INFRINGER method since the
case study was conducted over a video call.

The fitness threshold γth required as one of the inputs to
the INFRINGER method was set to be 1 by the analyst. This
choice was made in an attempt to avoid premature termination
of the method and guarantee the BRB systems to be trained at
least a couple of times. This was done to improve the accuracy
of the modelled value function in modelling the preferences
of the decision maker.

According to Step 1, the decision maker was shown the
nadir and ideal points, and the Pareto optimal set. The decision
maker then wished to give a reference point, which was used
for initializing a BRB system according to Steps 2 and 3.
Then, pair-wise comparisons were conducted by the decision
maker according to Step 4. The interface shown to the decision
maker for conducting the pair-wise comparisons can be seen
in Figure 2. A spider plot was also available for each pair-
wise comparison to aid the decision maker in comparing the
two vectors in each pair. An example of a spider plot shown
can be seen in Figure 4. Based on the pair-wise comparisons
conducted, the cost function was formulated and minimized
according to Step 5. The BRB system was updated with the
optimal parameters P̃ found.

The decision maker was then shown the ranked Pareto
optimal set according to Step 6. A fitness was calculated
afterwards and compared to γth according to Step 8. The fitness
was less than the threshold, and the method was continued
according to Step 9. An additional five iterations of Steps 6
through 9 were conducted before the decision maker wished
to stop the method, and the highest valued vector was shown
to the decision maker as seen in Figure 3 according to Step
10.

C. General remarks

During the case study, the decision maker had made a couple
of important remarks that can be used to assess the potential
of the proposed INFINGER method as a tool to assist in
decision making: (i) the decision maker said to be happy with

4https://github.com/gialmisi/forest-opt (October 1, 2020)
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Fig. 2. The interface presented to the decision maker for pair-wise comparison of vectors (candidates) in ZPareto. For each pair shown, the decision maker
may specify a candidate on the left to be either better, worse, or as good as the candidate on the right by choosing an appropriate option from the drop-down
menu in the middle. Each pair can be further investigated by clicking the ’Plot’ button next to each pair, which will produce a spider plot as shown in Figure 4

Fig. 3. The ranked Pareto optimal vectors. The highest valued vector,
according to the learned preferences, is indicated by the circle. Values are
normalized between 0 and 1 according to the limits imposed by the nadir and
ideal points. The value of each vector is indicated by the shown color scale.
Red tinted vectors have the highest values while blue tinted vectors have the
lowest.

the highest valued vectors shown in iterations of Step 6, and
he said that he felt that the objective values in the vectors
shown were closing to what he was aiming at; (ii) the decision
maker said that his preferences had changed during the case
study; (iii) the decision maker wished for a fourth preference
option to be available in the pair-wise comparisons – there
should have been an option of no preference indicating that
no preference can be given based on the two vectors shown in
a pair – and he had chosen the option for equal preference to
indicate absence of preference instead. However, overall the
decision maker expressed to be happy in the highest valued
objective vectors shown.

Additional graphical and numerical data relevant the case
study is available. The material is available by request from
the author.

Fig. 4. A spider plot of two vectors in ZPareto (candidates) shown to the
decision maker to aid him/her in comparing the two vectors. In the spider plot
shown, the ideal and nadir point’s values for each objective are also shown
(outer radius and inner radius for the ideal and nadir values, respectively).

VI. DISCUSSION

The first remark in Section V-C, and the notion of the
decision maker being overall happy with the highest valued
Pareto optimal objective vectors shown, are clear indicators of
the INFRINGER method being able to aid a decision maker
to find satisfying solutions. The first remark indicates also that
the BRB system was able to learn a value function reflecting
the decision maker’s preferences in the case study.

However, the decision maker had also clearly stated that
his preferences had changed during the case study in the
second remark – a clear contradiction to the assumption made
regarding the preferences of the decision maker made at
the end of Section III-D. The change in preferences can be
attributed, for example to the decision maker learning about
the existing trade-offs between the Pareto optimal objective
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vectors. This would indicate that incorporating the previously
gathered preference information regarding the cost function
ξpair is not correct, and it should be reconsidered whether
preference information gathered in previous iterations should
be used in training the BRB system in the following iterations
as well.

It was also evident from the third remark that an option of no
preference should be available in the pair-wise comparisons.
During the case study, the option for equal preference had
been used, when the decision maker wished to actually give
no preference at all. This has probably lead to some error in
the learned value function, and the absence of a no preference
option should be addressed in future research related to
INFRINGER.

Moreover, the comments made in Section III-A suggest
that the INFRINGER method can be improved to work as an
interactive method in cases where a comprehensive represen-
tation of the Pareto optimal set is not available. For example,
the INFRINGER method could be enhanced by replacing the
input consisting of a pre-computed set of objective vectors
representing the Pareto optimal set with an evolutionary search
method, which can be used to find a set of non-dominated
objective vectors according to the current preference model
learned in each iteration of the INFRINGER method.

Lastly, many of the choices regarding the INFINGER
method have been a result of trial and error, which has been
the method of choice for defining the parameters because of
the novel nature of the method – there is no existing literature
which would suggest choices for optimal parameters for the
method proposed in this paper. Some examples of such choices
are the number of vectors shown in the pair-wise comparisons,
the number of antecedent and consequent referential values in
the BRB system, and the choice of the initially assumed value
function (15). Additional research should be conducted to find
the optimal choices for these parameters.

VII. CONCLUSION

Based on the results of the case study discussed in Section
VI, it is concluded that the proposed novel INFRINGER
method is able to aid a decision maker in reaching satisfying
solutions in a multi-objective optimization problem, and that
the method is able to model the value function of the decision
maker. However, it is also evident that the method can be
improved further with additional research. Lastly, it must be
noted that the BRB system used in the proposed method
has the potential to offer explainable results regarding the
modelled preferences of the decision maker. The explainability
of the learned preferences should therefore also be considered
in future works, and may aid in the choosing of the internal
parameters of the BRB system.
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Multiobjective optimization problems have multiple conflicting objective functions to be optimized simulta-
neously. The solutions to these problems are known as Pareto optimal solutions, which are mathematically
incomparable. Thus, a decision maker must be employed to provide preferences to find the most preferred
solution. However, decision makers often lack support in providing preferences and insights in exploring the
solutions available.

We explore the combination of learnable evolutionary models with interactive indicator-based evolution-
ary multiobjective optimization to create a learnable evolutionary multiobjective optimization method. Fur-
thermore, we leverage interpretable machine learning to provide decision makers with potential insights
about the problem being solved in the form of rule-based explanations. In fact, we show that a learnable
evolutionary multiobjective optimization method can offer advantages in the search for solutions to a multi-
objective optimization problem. We also provide an open source software framework for other researchers
to implement and explore our ideas in their own works.

Our work is a step toward establishing a new paradigm in the field on multiobjective optimization: explain-
able and learnable multiobjective optimization. We take the first steps toward this new research direction and
provide other researchers and practitioners with necessary tools and ideas to further contribute to this field.

CCS Concepts: • Theory of computation→ Bio-inspired optimization; • Computing methodologies
→Rule learning; • Information systems→Decision support systems; • Software and its engineering
→ Open source model;
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1 INTRODUCTION
The field of Multiobjective Optimization (MOO) [Miettinen 1999; Sawaragi et al. 1985; Steuer
1989] specializes in solving problems with multiple conflicting objective functions with various
tradeoffs. The objective functions depend on decision variables, which are often real valued. MOO
problems have many mathematically incomparable optimal solutions known as Pareto Optimal
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(PO) solutions. Because the solutions are incomparable without additional information, we must
employ the aid of a Decision Maker (DM) with domain expertise to identify the most preferred
solution. The DM provides preferences, which are utilized to find the best possible solution among
the PO ones. MOO problems are an omnipresent kind of problem in the real world, and it is there-
fore important that we are not only able to understand and solve these problems, but to also provide
the adequate decision support to DMs so that they may find the most preferred solution to make
the best possible decisions.

The challenge of solving MOO problems is twofold. First, there is the computational and
mathematical aspect of finding PO solutions. There are various approaches in this regard, such
as scalarization-based (see, e.g., [Miettinen 1999]) and Evolutionary Algorithms (EAs) (see,
e.g., [Branke et al. 2008; Coello et al. 2007]). By scalarizing a MOO problem, its objective func-
tions are aggregated into one and the problem is reduced to a single-objective optimization prob-
lem, a scalarized problem, using some scalarization function. Then, the scalarized problem can be
optimized utilizing appropriate, single-objective optimizers. The scalarization function must be se-
lected carefully to guarantee the resulting solution to be PO [Miettinen 1999; Sawaragi et al. 1985].
In turn, EAs work by iteratively evolving a population of solution candidates, gradually improving
the population. EAs are based on heuristics inspired by Darwinian evolution and cannot guarantee
the Pareto optimality of the solutions, but they are able to produce multiple, near-optimal solutions,
whereas by scalarizing a MOO problem one can find a single, but more accurate solution—under
certain assumptions even guaranteed to be PO [Miettinen 1999; Sawaragi et al. 1985]. EAs may
also be used to solve scalarized MOO problems. In addition to scalarization-based and population-
based methods, other types of set approximation methods like the ones discussed in the work of
Talbi et al. [2012] exist as well, but are not considered in our current work.

The second challenge of solving MOO problems lies in how to incorporate and utilize prefer-
ences provided by the DM to find the most preferred solution. Preferences can be incorporated in
the solution process in three ways [Hwang and Masud 1979; Miettinen 1999]: before (a priori) or
after (a posteriori) the optimization process, or interactively during the optimization process. Meth-
ods implementing the latter are known as interactive MOO methods [Miettinen 1999]. The main
drawbacks of providing preferences before or after the optimization process are, respectively, the
possible lack of knowledge the DM has about the characteristics of the solutions available, such as
the ranges of the objective function values and the tradeoffs between them, and the (often) over-
whelming amount of available solutions to choose from. Naturally, if a DM is very familiar with
the MOO problem being solved, then these drawbacks are diminished. However, interactive MOO
methods allow the DM to explore the problem by providing preferences iteratively and seeing what
kind of solutions are available. This allows the DM to learn about the MOO problem [Miettinen
et al. 2008]. Interactive MOO methods require little in terms of prior knowledge the DM has about
the problem, and they also vary in the type of preferences they accept, how the preferences are
incorporated, and what kind of information is shown to the DM [Afsar et al. 2021; Miettinen et al.
2016; Xin et al. 2018]. That being said, DMs often lack support when providing preferences in inter-
active MOO, which is still an open research question in the study of interactive methods [Belton
et al. 2008; Wang et al. 2016].

Recently, it has been argued that interactive MOO methods can be seen as black-boxes by the
DM [Misitano et al. 2022]: preferences go in the method which then generates new solutions,
but how? To remedy this, explainability was explored as a potential solution to provide the DM
with additional insights about how a scalarization-based interactive method maps preferences to
generate new solutions in the work of Misitano et al. [2022]. It was shown that explainability can
have the potential to support the DM in providing new preferences and reach their most preferred
PO solution in fewer iterations.
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In our present work, we will explore explainability in the context of EAs—specifically indicator-
based EAs—for solving MOO problems combining them with Learnable Evolutionary Models
(LEMs) [Michalski 2000]. LEMs are a class of optimization algorithms that combine EAs with
Machine Learning (ML) models. The idea is to use heuristics based on Darwinian evolution in
a so-called Darwinian mode to improve a population of solutions, then occasionally switch to a
so-called learning mode where ML is utilized to learn a hypothesis describing what characterizes a
desired solution. This hypothesis can then be used to further generate potentially desired solutions
to add to the population. A LEM algorithm then switches between a Darwinian and learning mode
iteratively. In our current work, we utilize an explainable and interpretable ML model in a LEM
to solve MOO problems and utilize the explanations to provide new insights to the DM about the
solutions computed for a MOO problem by explaining the connection between decision variables
and objective function values for solutions that are congruent with preferences expressed by the
DM. As a proof of concept, we develop a new interactive MOO method based on the idea of LEMs,
which utilizes an indicator-based EA and an explainable ML model.

It is safe to assume for a DM to be mainly interested in the objective function values of a MOO
problem [Miettinen 1999]—it is often the case that the number of objective functions in a problem is
much lower than the number of decision variables, and the problem is assumed to be modeled in a
manner where the objective functions represent important criteria to the DM. However, a DM can
often also be interested in some of the decision variable values of the computed solutions [Hakanen
et al. 2011, 2013; Kania et al. 2022]. We show that explainability can be leveraged in this aspect as
well by providing DMs with additional insights about the ranges of the decision variable values
in the proximity of a preferred solution. From a design perspective, where the decision variable
values of a problem can also matter, insight about the variables can lead to better decision making,
such as by helping DMs discover new designs and practical considerations of the solutions [Deb
and Srinivasan 2006; Ray et al. 2022; Smedberg and Bandaru 2022]. Our proposed approach should
be of special interest to more technical DMs, such as engineers, who are more accustomed with the
implications of different decision variable values in addition to being familiar with the objective
function values.

We are the first to explore the explainable aspects in solving MOO problems with LEMs. We
provide simple, rule-based explanations to help a DM make a connection between the variables
and objective functions in solutions found near a point of interest (from the perspective of the DM)
to a MOO problem. To achieve this goal, we implement our own explainable method for solving
MOO problems based on LEMs and a simple indicator-based EA. We also provide open source
software for others to implement and explore their own similar methods. In our work, we explore
the contribution of the ML model used to the performance of our method in finding approximate
PO solutions. Based on these contributions, we pave the way toward a new subfield in MOO:
Explainable and Learnable Evolutionary Multiobjective Optimization (XLEMOO).

To summarize, the contributions of our present work are the following:
(1) Following the core idea of LEMs, we combine an indicator-based Evolutionary Multiobjec-

tive Optimization (EMO) with an interpretable ML model to produce an XLEMOO method.
(2) We explore the performance of our Learnable Evolutionary Multiobjective Optimiza-

tion (LEMOO) method in its ability to find optimal solutions. We study this by varying
parameters that are specific to the LEM part of our approach.

(3) We demonstrate and discuss the potential benefits of the explanations produced by the in-
terpretable ML model to a DM in our LEMOO method in a showcase as a proof of concept.

(4) We provide an open source Python framework—the XLEMOO framework—to implement
and explore further ideas related to XLEMOO.
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The purpose of our work is to show that by combining interpretable ML models with EAs into a
new method, we can potentially achieve an overall better performance of the method (compared to
the EA part alone) and be able to provide valuable explanations regarding the connection between
decision variables and objective functions values to a DM. To the best of our knowledge, in the
context of applying LEMs to MOO, we are also the first to publish the software used and the results
of the experiments conducted in a manner that allows others to reproduce our work and build on
top of it promoting the openness and renewal of science.

This article is structured as follows. In Section 2, we present the necessary theory and back-
ground information, and give references to the most relevant works related to our work. In
Section 3, we present the general structure of a XLEMOO method and briefly discuss the XLEMOO
framework. In Section 4, we explore the impact of ML in our LEMOO method from a performance
point of view by varying parameters specific to the LEM part of our method. We then move to
Section 5, where we present a showcase on how the insights emerging from the explainability of
our LEMOO method can help a DM in an interactive MOO context, where a DM provides prefer-
ences iteratively during the optimization process. We present the results and implications of the
experiments and the showcase in Section 6, where we also discuss the further potential of explain-
ability in the context of LEMOO. The article is then concluded with Section 7, where we draw the
main conclusions of our work and propose future research directions in the field of XLEMOO.

2 BACKGROUND
In this section, we provide the background information necessary for the rest of the article. We
start with Sections 2.1 and 2.2, where we briefly present the basics of (interactive) MOO and EMO
focusing on indicator-based methods, respectively. In Section 2.3, we present the main ideas behind
LEMs and how these have been utilized in MOO in the past. Furthermore, we briefly discuss the
basics of Explainable Artificial Intelligence (XAI) and ML in Section 2.4. We conclude with
Section 2.5, where we will review the most notable past works in which explainability has been
explored in the context of MOO.

2.1 Concepts of MOO
A MOO problem can be defined as follows:

minimize F (x) = ( f1 (x), f2 (x), . . . , fk (x)),

s.t. x ∈ X ⊂ Rn ,
(1)

where f1, f2, . . . , fk are (k ≥ 2) objective functions, x = (x1,x2, . . . ,xn )T ∈ Rn is a decision vector
of n decision variables, and X is the set of feasible decision vectors. We assume the objective func-
tions to be real valued—that is, fi : Rn → Rk . The feasible set is often defined by box-constraints
on the decision variables (i.e., upper and lower bounds) or constraint functions, or both. A feasi-
ble solution to a MOO problem (1) is one that belongs to the feasible set X . When all k objective
functions are evaluated at some feasible decision vector x, the result is an objective vector z, with
components zi = fi (x) for i = i, . . . ,k , which forms the set of feasible objective vectors Z . We
assume all objective functions to be minimized without loss in generality—a function to be maxi-
mized can be converted to a minimized function by multiplying it by −1.

While objective vectors cannot be fully compared on a mathematical basis alone, we can define
the concept of dominance to help us order objective vectors. Suppose we have two feasible decision
vectors x1 and x2 with respective objective vectors z1 and z2. Now, x1 is said to dominate x2 if, and
only if, z1

i ≤ z2
i for all i = 1, . . . ,k and z1

j < z2
j for at least some j = 1, . . . ,k . We can then define

the set of PO solutions as the subset of feasible solutions, which when evaluated will result in a
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set of mutually nondominated solutions so that no other feasible solution exists that dominates
any of the solutions in the set. The set of objective vectors resulting from evaluating the set of PO
solutions is the set of PO objective vectors ZPareto, which we refer to as a Pareto set.

To characterize the Pareto set, we define the concepts of ideal and nadir points. When minimiz-
ing each objective function, the ideal point z∗ represent the lower bounds of the Pareto set. The
ideal point can be computed by minimizing each objective function in a MOO problem (1) indi-
vidually. Similarly, the nadir point znadir represents the upper bounds of the Pareto set. However,
computing the nadir point would require knowledge on the whole and true extent of the Pareto
set, which is generally unknown. Several methods exist to approximate the nadir point (e.g., [Be-
nayoun et al. 1971; Deb and Miettinen 2009; Deb et al. 2010]).

As mentioned, a MOO problem (1) can be scalarized using a scalarization function s : Rk →
R that transforms the original MOO problem into a single-objective optimization problem. The
achievement scalarizing function [Wierzbicki 1980, 1982] is an example of a scalarization function.
The single-objective optimization problem resulting from utilizing the achievement scalarizing
function is defined as

min
x∈X

sASF (F (x), z̄, z∗∗, znadir) = min
x∈X

max
i=1, ...,k

⎡⎢⎢⎢⎢⎣
fi (x) − z̄i

znadir
i − z∗∗i

⎤⎥⎥⎥⎥⎦ + ρ
k∑

i=1

fi (x)

znadir
i − z∗∗i

, (2)

where z̄ = (z̄1, . . . , z̄k ) is a reference point, a vector consisting of aspiration levels, which are pro-
vided by a DM; z∗∗ is a utopian point, defined as z∗∗i = z∗i − ε , for i = 1 . . .k , where ε is a small
positive scalar; and ρ is also a small positive scalar value. The aspiration levels in the reference
point represent objective function values a DM wishes to achieve.

The scalarization function in (2) is also able to incorporate the preferences of a DM in the op-
timization process in the form of aspiration levels in the reference point. As said, the aspiration
levels represent objective function values the DM wishes to achieve. When solved, (2) results in
a PO solution with an objective vector that is projected to the closest PO solution according to
the Tchebycheff [Miettinen 1999] distance of its components to the aspiration levels in the ref-
erence point. By utilizing different reference points z̄ in (2), we can find different solutions. The
summation term in (2) is known as an augmentation term that assures the Pareto optimality of the
solution found—actually, so-called proper Pareto optimality (for details, see, e.g., [Miettinen 1999;
Wierzbicki 1982]). Many scalarizing functions exist with different properties (see, e.g., [Miettinen
and Mäkelä 1999, 2002]).

2.2 Evolutionary Multiobjective Optimization
EMO methods [Branke et al. 2008; Coello et al. 2007] take inspiration from Darwinian evolution
to evolve a set (a population) of solutions (referred to as individuals) concurrently over multiple
generations, gradually improving the overall fitness of the population. EMO methods can be di-
vided into three subcategories: indicator-based [Zitzler and Künzli 2004], domination-based [Deb
et al. 2002], and decomposition-based [Zhang and Li 2007] methods. Although EMO methods can
generate multiple solutions at the same time, there is no guarantee for the solutions to be PO due
to the heuristic nature. This is why EMO methods can be considered to generate, at best, only
approximations of PO solutions and sets. Different EMO methods are more suitable for different
problems and may accommodate for different preference information as well. For recent reviews
on different EMO methods, see, for example, the work of Antonio and Coello [2017] and Chugh
et al. [2019].

We focus our current study on an indicator-based method, which evolves a population of so-
lutions over generations utilizing three simple evolutionary operators: crossover, mutation, and
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selection. The crossover, or mating, operator combines different individuals to form new ones, the
mutation operator applies random mutations to the individuals, and the selection operator is used
to select the individuals with a good fitness. In indicator-based methods, a quality (or performance)
indicator is used in the selection step to select individuals from the population with good fitness
values. The selected individuals then continue to the next generation.

By properly selecting the quality indicator, we can determine what kind of solutions the EMO
algorithm will strive to find. Usually, indicators measure the quality of the whole set of found
solutions by either comparing the set to another set or by producing an absolute measure of the
quality of an individual set [Emmerich and Deutz 2018]. The fitness of a single solution is then
determined by its contribution to the overall value of the indicator. When preference information
is available from a DM, the fitness of single solutions can be determined directly by utilizing a
scalarizing function, such as the one shown in (2).

When incorporating preference information in the indicator used, it is possible to focus the
search for solutions in an indicator-based EMO method to a subset of the approximate PO solutions
that is of special interest to a DM. In this case, there is no need to try to approximate the whole PO
set. Furthermore, when the DM is allowed to change the preferences and provide them iteratively
between the executions of the EMO method, we have an interactive method. From a decision-
making perspective, interactive methods are important since they allow the DM to learn about
the available solutions and the feasibility of their own preferences [Miettinen et al. 2008]. The
details of the proposed interactive indicator-based EMO method that incorporates explainability
are further fleshed out in Sections 3 and 4.

2.3 Learnable Evolutionary Models
LEMs are a special breed of EAs where the heuristic nature of EAs is augmented with the more
deterministic nature of ML methods. Proposed originally in the work of Michalski [2000], LEMs
are claimed to help an evolutionary process converge faster, as in fewer iterations, to an optimal
solution. Leveraging the power of ML is made possible in EAs because of the large number of
individuals generated during an evolutionary process. This allows an ML model to distinguish
between good and bad individuals and formulate a hypothesis on how to further generate new,
usually good individuals. This process can boost the overall search for optimal solutions by diver-
sifying the population and by finding better individuals. In the original work [Michalski 2000], it
was also suggested that the evolutionary part of a LEM may be replaced by ML, but we will not
explore this aspect in our current work. More details on how a LEM works are given in Section 3.1.

In the past, LEMs have been applied for solving MOO problems. We next describe some of these
works. Perhaps the earliest work in which LEMs have been applied for solving MOO problems
was presented in by Jourdan et al. [2005], where a LEM was applied to solve a MOO problem in
water system design. The authors were able to show that a LEMOO method offered notable per-
formance advantages when compared to NSGA-II [Deb et al. 2002]. In the work of Moradi and
Mirzaei [2016], a LEMOO method was merged with a knowledge base to successfully automate
complementary metal-oxide semiconductor (CMOS) analog circuit design. The inclusion of a LEM
was shown to considerably decrease the number of circuit evaluations. Likewise, in the work of
Moradi [2018], LEMs were applied for solving a multiobjective robot path-planning problem, and it
was shown that the approach led to a higher hypervolume and overall set coverage of the evolved
population when compared to other similar methods. The same author further applied their ap-
proach to a vehicle routing problem with stochastic demand with similar results [Moradi 2019].
Solving MOO vehicle routing problems was also explored in the work of Niu et al. [2021] with
results indicating better performance in terms of computation time and the quality of solutions
when compared to the state-of-the art EMO methods.
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Although the listed works have been successful in applying LEMs to solve MOO problems, none
of the works provide the software for implementing and applying LEMs to solve MOO problems,
nor do they provide the data of the experiments that were run. This not only raises issues with
the replicability of the results but also makes it very cumbersome for other researchers and prac-
titioners to apply LEMOO in their own works.

In our work, we provide an open source software framework for implementing and experiment-
ing with LEMOOs as an extension of the DESDEO software framework [Misitano et al. 2021] for
MOO, and we make the data and means to reproduce the experiments shown in later sections of
our paper openly available. We also provide insights for researchers and practitioners alike to start
building and experimenting with their own implementations of LEMOO methods.

2.4 ML and XAI
ML [Bishop 2006] is the study and application of software that can learn from data or its sur-
roundings, or both, to make conclusions about new observations. Often, ML is used to predict
new information, examples of which include the prediction of skin cancer in patients [Esteva et al.
2017] or the fault diagnosis in rotating machinery [Liu et al. 2018], for instance. However, when
used in decision support, ML can be problematic because of its black-box nature. The opacity re-
sulting from this black-box nature is not desirable if we wish to make transparent and justifiable
decisions. It is an unfortunate fact that the ML model complexity correlates positively with its
predictive power [Gunning and Aha 2019], but exceptions to this rule do exist [Lipton 2018]. The
more complex a model is, the harder it is generally to interpret and understand.

The field of XAI [Kamath and Liu 2021; Molnar 2022] focuses on the study of the explainable
aspects of Artificial Intelligence (AI), including ML, and the development of XAI methods. Fo-
cusing on explainable ML, there are two main ways that explainability can be incorporated into an
ML model. First, there is the model agnostic approach, which focuses on methods that are able to
explain any ML model. This is achieved by just observing the input and output of an ML model and
trying to build an understanding on the mapping between these two. Examples of model agnostic
explainability are SHAP values [Lundberg and Lee 2017] and LIME [Ribeiro et al. 2016]. Another
approach to incorporate explainability in ML is using inherently interpretable ML models. These
include, but are not limited to, rule- and tree-based models. Since rules and trees are easy to inter-
pret, there is no need to utilize external tools; instead, the rules and trees can be directly observed
to build an understanding on how the ML model makes predictions. Nevertheless, sometimes even
inherently interpretable ML models can become too complex to be feasibly interpreted by a hu-
man. This is the case with decision trees with a depth in the hundreds, for instance. As argued in
the work of Lipton [2018], model interpretability is not a monolithic concept; it also depends on
the specific model itself. For reviews on recent advancements in explainable ML and XAI methods,
see, for example, the work of Arrieta et al. [2020] and Linardatos et al. [2020].

In our work, we utilize skope-rules [Goix et al. 2020] as an ML model to learn highly inter-
pretable, and thus explainable, rule sets. Skope-rules utilize an ensemble of decision trees to learn
with a high precision instances of different classes. The trees are then reduced into simple and
interpretable IF...THEN... rules. For example, if skope-rules have been applied to learn and pre-
dict a binary classification (classes 0 or 1) on two real-valued variables a1 and a2 ranging from 1
to 10, then a learned rule set could look, for instance, as follows:

RULE 1: IF a1 < 8.2 AND a2 > 1.3 THEN PREDICT 1,
RULE 2: IF a1 > 5.5 AND a1 < 6.3 AND a2 < 1.4 THEN PREDICT 1,
RULE 3: IF a2 > 1.1 THEN PREDICT 1.
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Notice that the class of 0 is assumed to hold when no rules apply to an observed sample. Each rule
is also associated with a precision, which measures how many samples in the training dataset each
rule applies to. This precision ranges from 0 to 1, where 1 means a rule applies to all samples and
0 that it applies to none. For example in the preceding first rule, when a1 is less than or equal to
8.2, and a2 is greater than 1.3, then the predicted class for the instance is 1. Skope-rules have been
applied successfully in the literature to extract accurate rules to increase the explainability of ML
applications, for example, in the work of Bologna [2021] and Narteni et al. [2021].

From a societal perspective, explainability is an important concept that must be taken into ac-
count when utilizing ML in decision support. The European Union’s General Data Protection Reg-
ulation (GDPR) includes the notion for humans to have a right to an explanation (Recital 711) in the
context of algorithmic decision support, including the use of AI and ML [Goodman and Flaxman
2017].

2.5 Explainability in MOO
Since MOO methods serve primarily as decision support tools, it is no surprise that explainability
has recently begun to attract attention in MOO as well. Generally, we may speak of explainable
MOO when talking about MOO methods with incorporated explainability. In what follows, we
briefly review how explainability has been applied to MOO in the literature.

In the work of Wang et al. [2016], a MOO approach was utilized to build a movie recommenda-
tion system that accounts for both accuracy of the prediction and individual diversity oriented at
users. By taking into account the recommended items’ content (the movie genre) when defining
the lists’ diversity, the recommended lists were claimed to be explainable to the user. Explainability
was not, however, explored in the MOO method itself but rather in the problem formulation.

A framework to explain different policies in a multiobjective probabilistic planning setting was
presented in the work of Sukkerd et al. [2018]. The explanations of the policies were meant to in-
crease end users’ confidence in the different policies. The underlying preference structure leading
to each policy was also highlighted. The policy justification system was twofold: first, it described
which quality attributes had been considered in each policy, and second, it could argue why a
particular policy had been generated. The framework was able to argue why a certain policy was
superior, or at least not worse than another one. It achieved this goal by providing the user quali-
tative rather than numerical information.

So-called relationship explainable MOO was explored in the work of Zhan and Cao [2019]
through an actor-critic reinforcement learning method. The method was able to learn in a quantifi-
able way the inter-relationships between different objective functions by a novel concept, marginal
weights. By being quantifiable, the authors claimed that the relationships could also be explain-
able. This work focused on the study of the tradeoffs between the conflicting objectives in a MOO
problem.

Belief-rules were utilized in the work of Misitano [2020] to model the preferences of a DM during
an interactive MOO process. The preferences were modeled as a utility function, which was learned
through reinforcement learning by utilizing a belief-rule-based system as an ML model. Although
the rules learned by the model could be explained, the explainable aspect of the preference model
was only discussed as a potential of the proposed method.

Modeling the preferences of a DM was also explored by Corrente et al. [2021], where a
dominance-based rough set approach was used to model preferences based on the results of pair-
wise comparisons conducted by the DM. The preferences of the DM were then highly explainable

1https://www.privacy-regulation.eu/en/r71.htm
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because they were modeled based on human interpretable rules. In this work, an interactive EMO
method was studied.

Lastly, in the work of Misitano et al. [2022], SHAP values [Lundberg and Lee 2017] were utilized
to explain the relationship between preferences and computed solutions in an interactive MOO
method. Based on the explanations produced, suggestions were also formulated to aid the DM in
providing further preferences to help them achieve a desired goal of improving a certain objective
function value in the solution. A small case study was also conducted to validate the explanations
and suggestions, and it was found that the suggestions helped the DM reach his best solution in
fewer iterations and with less guessing.

In our work, we provide to a DM insights about the connection between decision and objective
vectors. However, we do not claim to be the first ones to explore this connection. This concept
has been studied previously and has been shown to provide important information to a DM when
exploring and selecting solutions in a MOO context. For example, the concept of innovization
coined by Deb and Srinivasan [2006] leverages EMO to not only find optimal solutions but to also
help unveil new design principles in engineering problems. This unveiling is based on building
an understanding of the relationship between decision variables and objective functions. More
recent examples of connecting the decision variables and the objective functions to support better
decision making, can be found, for example, in the work of Ray et al. [2022] and Nagar et al. [2022].

Related to innovization, data-mining approaches have also been explored in the past to find
design patterns and to discover knowledge in MOO problems. Although these approaches have not
been explicitly referred to as explainable, these approaches address similar issues that explanations
do. These data-mining approaches have been surveyed in the work of Bandaru et al. [2017a], and
more recent advancements have been discussed in another work by Bandaru et al. [2017b]. Data
mining for knowledge discovery has also been studied very recently in an interactive MOO setting
as well in the work of Smedberg and Bandaru [2022].

To the best of our knowledge, our work is the first to build a connection between decision and
objective vectors by utilizing explainability in particular emerging from leveraging interpretable
ML in a LEM to interactively solve MOO problems. As the explanations vary depending on the
ML model used, the software framework we provide makes it readily possible to explore other
ML models as well leading to different explanations, which may serve different DMs better than
others.

3 LEMOO AND THE XLEMOO FRAMEWORK
In this section, we present the general structure of a LEMOO method in Section 3.1. We then
discuss the potential of explainability in LEMOO methods in Section 3.2. We conclude this section
by discussing the proposed XLEMOO software framework to implement LEMOO methods with
explainable ML models in Section 3.3. In the following sections, Sections 4 and 5, we utilize our
own LEMOO method implementation built according to the framework discussed here.

3.1 LEMOO
In LEMOO, a population of solutions to a MOO problem (1) is evolved in two modes: in a Dar-
winian mode and in a learning mode. In both modes, the population can be iteratively evolved
multiple times before switching to the other mode. The rules to determine when the mode should
be switched can be defined in multiple ways. The simplest is to iterate each mode for a fixed
number of times. Another option is to switch modes when a certain condition is met—for exam-
ple, the fitness of the overall population has improved past a certain threshold. In our present
work, for simplicity, we will switch modes after a fixed number of times. Let ND (Darwinian) and
N L (learning) be the numbers of iterations each mode is iterated before switching to the other
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Fig. 1. The basic flowchart of a LEMOO method.

mode. Furthermore, let NT be the total number of iterations the LEMOO method is iterated over.
Iterating a LEMOO method once means evolving the population in a Darwinian mode ND times
and in a learning mode N L times. This concept is further clarified in Figure 1. According to Figure 1,
a LEMOO method starts by initializing the population of solutions. This can be done by utilizing
Latin hypercube sampling [McKay et al. 2000], for instance. Whether a LEMOO method starts in
a Darwinian mode or a learning mode can also be changed, but we assume that each iteration
of a LEMOO method always starts in a Darwinian mode. Notice that if ND = 0 or N L = 0, the
respective mode is skipped completely. How often a LEMOO method switches from a Darwinian
mode to a learning mode is defined by the learning mode switching frequency. A switching fre-
quency defines the number of iterations in a Darwinian mode to be completed before switching
to a learning mode. For example, a switching frequency of 10 means that after 10 iterations in a
Darwinian mode, the LEMOO method switches to a learning mode, which is equivalent to setting
ND = 10. Next, we further discuss the Darwinian and learning modes.

3.1.1 Darwinian Mode. In a Darwinian mode, the population is evolved utilizing an EA method.
In our present work, we apply an indicator-based EMO that first performs a crossover operation
on the population, then mutates it, and finally selects according to an indicator the best individ-
uals to continue to the next generation. We utilize the scalarizing function in (2) as an indicator
and utilize it directly to compute the fitness of individuals in a population. We have chosen the
scalarizing function in (2) as the indicator because it incorporates preference information in the
form of a reference point, which can be provided by a DM. Thus, we are able to focus the evolution-
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ary process to find solutions that are interesting from the perspective of the DM. The scalarizing
function in (2) also allows us to fully order solutions in a population based on the fitness values.
Moreover, when utilizing (2) to compute the fitness, dominated solutions will always get a worse
fitness when compared to the fitness of nondominated solutions. We are also able to avoid deterio-
rating effects by utilizing the scalarizing function in (2) as an indicator in the selection step of our
indicator-based method, which effectively implements elitism. It is also important to emphasize
that in our approach, we do not try to approximate the whole set of PO solutions. Instead, we focus
the search on a small subset of PO solutions that are close to a reference point provided by a DM.

Other indicators may also be chosen to compute the fitness in the described approach, but we
have utilized the scalarizing function in (2) throughout our current work. The EA used in Dar-
winian mode may not necessarily have to be an indicator-based EMO. Nonetheless, whichever EA
is selected, the learning mode in LEMOO is characterized by its heuristic nature. The main flow of
a Darwinian mode is depicted in Figure 2 (left).

3.1.2 Learning Mode. The idea of a learning mode is to employ an ML method to learn charac-
teristics of good solutions. Following the original work [Michalski 2000], ML is utilized for binary
classification. Individuals are classified into high-performing and low-performing groups: an H-
group and an L-group, respectively (which we call an H/L splitting). These groups are then used as
training data for the ML model. This phase is known as hypothesis forming. After the ML method
has been trained to learn a hypothesis, it is then used to instantiate new individuals. The best of
the new individuals are then combined with the H-group of individuals to form a new population.
Individuals may also be discarded when forming a new population if the size of the population is
desired to be kept constant. Depending on the ML model employed, generating new individuals
can be either straightforward, such as in the case of rule-based and tree-based ML methods, or it
can be more complicated, such as in the case of neural networks. Other than binary classification
of the solutions is also possible. For instance, an ML model could be used to learn rules to sort
solutions into the different fronts in an EMO algorithm like NSGA-II [Deb et al. 2002]. The model
can then be used to generate new solutions with different ranks, possibly improving the variety
of the solutions, for example.

The crucial difference on how ML is utilized in LEMOO is that ML is not used to predict infor-
mation; instead, it is used to describe and generate new data. One important choice with binary
classification to be made when implementing a LEMOO method is to decide how the H- and L-
groups are chosen. One option, and the one utilized in our current work, is to pick a percentile
of the best and worst individuals based on their fitness values and form the H- and L-groups, re-
spectively. We have utilized the fitness values computed based on the scalarizing function in (2),
which reflects the preferences of a DM. Furthermore, we assume the top and bottom percentage
to be always equal and represented by an H/L splitting ratio or just H/L split. The main flow of a
learning mode is depicted in Figure 2 (right).

As seen in Figure 2, both Darwinian and learning modes act on a population to improve it. In
a Darwinian mode, new solutions are produced based on heuristics and the best solutions are
selected based on the solutions’ fitness values. However, in learning mode, a hypothesis is learned
that describes good individuals and it is used to generate new, potentially good individuals. When
the rule learned is interpretable by humans, such as in rule-based ML, we have also access to
explanations and explainability.

3.2 The Potential for Explainability in LEMOO
When properly selected, the ML model in a LEMOO method not only gives a boost to the per-
formance of the method but also makes the method explainable for a DM. Explainability is what
can really elevate LEMOO methods as decision support tools when compared to traditional EMO
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Fig. 2. A pictorial representation of how the two modes of LEM, Darwinian mode and learning mode, act on
the population of solutions to create a new population.

methods. For example, by selecting an inherently interpretable ML model, such as a rule-based
model, the rules generated by the model can be used to provide the DM with additional insights
about the solutions in a population. In our current work, we have decided to utilize skope-rules
as an interpretable form of ML because of its low computational demands and the interpretability
of the generated rules. Usually, the final population has the solutions with the best fitness values,
which makes the ML model trained in the last iteration of a LEMOO method of particular inter-
est from an explainability perspective. For example, if a rule-based ML model has been trained to
classify individuals in a population into H- and L-groups based on the individuals’ decision vec-
tors, the learned rules can then be shown to a DM to provide additional information about what
kind of decision variable values constitute a good solution. In our present work, we have utilized
the scalarizing function in (2), which incorporates a DM’s preferences. This means that the infor-
mation extracted from the rules will describe solutions that pertain to the DM’s preferences in
the decision space of the MOO problem being solved. As mentioned in Section 1, the DM may
be expected to be mainly interested in the objective function values of the solutions, but from a
design and engineering perspective, the decision variable values can play an important role in the
final decision making. We will explore the explanations produced by our LEMOO method in an
interactive setting in Section 5 to further clarify the added benefits of explainability. We will also
see that the information extracted from the rules can support a DM in providing new preferences
addressing an open question in the field of interactive MOO: How to support DMs in providing
preferences in the context of interactive MOO methods? How these rules may be generated is
discussed in Section 4.

We believe that, when leveraged, the explainable aspects of LEMOO methods can provide sim-
ilar insights to a DM between the decision variables and objective functions as discussed in
Section 1 (c.f. innovization). However, to the best of our knowledge, in none of the past works
has the potential for explainability been explored in LEMOO methods to provide a DM with
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additional insights about the decision vectors in the computed solutions. Furthermore, past works
exploring LEMOO have not provided software or other means for researchers and practitioners
alike to start exploring and implementing LEMOO methods. Through the experiments conducted
in Section 4, we will provide novel insights about LEMOO methods for others to consider when
building their own LEMOO methods, and we will show how explainability can be combined with
LEMOO methods to provide DMs with important insights about the MOO problem being solved.
Thus, we give rise to the new breed of XLEMOO methods, where explainability and LEMOO have
been combined to provide DMs with additional information to support better decision making
when applying EMO methods. To help others get started with their own implementations and ap-
plications of XLEMOO, we provide the open source software framework, the XLEMOO framework,
as a bedrock for researchers and practitioners to lean on in their future endeavors. This framework
is discussed next.

3.3 The XLEMOO Framework
The XLEMOO (software) framework allows users to readily build and apply LEMOO methods to
solve MOO problems as described in Section 3.1. The fitness function, the evolutionary operators
in a Darwinian mode, and ML model in a learning mode can be easily switched or replaced with
custom implementations. The user has also access to the various parameters present in Darwinian
and learning modes. Although the framework is primarily built to accustom indicator-based meth-
ods in a learning mode, switching to another kind of EMO method is possible with moderately
little effort. We have also taken care to document the framework, which eases its use. The frame-
work is implemented in the Python language, which is a widely used language in data analysis,
and the framework is aimed at users with a moderate proficiency in the language.

We have implemented the XLEMOO framework as open source software extending the DES-
DEO framework [Misitano et al. 2021]. The XLEMOO framework is available on GitHub2 and
Zenodo [Misitano 2023a]. To our knowledge, this is the first time a framework for implementing
LEMOO methods has been made available to the public. The framework is also suitable for solv-
ing single-objective optimization problems. On top of the documentation, we have also provided
a Jupyter [Kluyver et al. 2016] notebook for users to get quickly started utilizing the framework.3

In the following section, we give a detailed example of our own LEMOO method implemented in
the described XLEMOO framework. We have utilized the implementation to run experiments and
explore the effects of a learning mode on the performance of a LEMOO method, and also showcase
the potential of the explanations emerging from the learning mode of the LEMOO method when
the ML model utilized is interpretable.

4 IMPLEMENTATION AND EXPERIMENTS
In this section, we present in more detail the implementation of our LEMOO method utilizing the
XLEMOO framework discussed in Section 3. The implementation and experimental setup are pre-
sented in Section 4.1. Then, in Section 4.2, we use our implementation to study the effects of the
switching frequency and the H/L split in a learning mode on the performance of our method in
numerical experiments. Last, we explore the potential for explainability offered by our method and
discuss how the explanations (i.e., rule sets) have been generated in Section 4.3. The implementa-
tion discussed in this section is later utilized in Section 5 as an interactive MOO method, where
the added benefit of explainability to a DM is showcased. The reader interested in the practical
benefits offered by our method can skip this section and go to Section 5.

2https://github.com/gialmisi/XLEMOO/tree/article_v1.1
3https://xlemoo.readthedocs.io/en/article_v1.1/notebooks/Showcase.html
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4.1 General Setup
We implemented our LEMOO method utilizing the framework discussed in Section 3.3. The fol-
lowing parameters were chosen in the method’s Darwinian and learning modes. This is the same
implementation that is utilized later in Section 5.

4.1.1 Darwinian Mode. We implemented a simple indicator-based EMO algorithm with the
achievement scalarizing function (2) as the indicator (i.e., the fitness function), which computes
a fitness value for computed solutions. The lower the fitness value, the closer the solution is to a
supplied reference point z̄, reflecting how well a solution aligns with the preferences of a DM rep-
resented by the reference point. In (2), ρ and ε were set to 10−6 throughout the experiments. The
population size was set to be N pop = 50 to keep computation times feasible. The initial population
was initialized using Latin hypercube sampling to achieve a uniform initial coverage of different
decision vectors. Three evolutionary operators, as shown in Figure 2 (left), were chosen. For the
crossover operator, simulated binary crossover [Deb et al. 1995] was utilized with a crossover
probability of 1.0 and a crossover distribution parameter equal to 30; bounded polynomial muta-
tion [Deb et al. 1995] was used as the mutation operator with a mutation probability of 1

n , where n
is the number of decision variables in a MOO problem, and a mutation distribution parameter equal
to 20; the selection operator was defined such that after crossover and mutation, the N pop best in-
dividuals were chosen to proceed to the next generation, keeping the population size constant in
each generation. The population from each generation was saved into an archive. With these op-
erators and their parameters, our method seemed to achieve acceptable results consistently, which
motivated their choice. We utilized the EMO operators implemented in the desdeo-emo package
[Misitano et al. 2021], version 1.4.1.

4.1.2 Learning Mode. We chose skope-rules implemented in the imodels Python pack-
age [Singh et al. 2021] as the ML model utilized in a learning mode to learn a rule set for binary
classification. Our choice was motivated by the computationally fast training of skope-rules, and
the interpretability of the generated rules (see Section 4.3 for examples of these rules). The mini-
mum rule precision considered was set to be 0.1, the maximum number of estimators to be learned
was set to 30, and we chose to bootstrap both samples and features. The rest of the skope-rules’
parameters were kept at their default values as defined in the imodels package, version 1.3.6. We
chose these values because we found them to work well from a performance perspective in our
case. To train the ML model, we considered the populations from all past generations computed
before the current learning mode iteration to maximize the available training data. Based on the
fitness values of the individuals, we chose a top (best fitness values) and bottom (worst fitness
values) percentage of the individuals from all past populations. Individuals with the best fitness
values were close to the reference point in (2), whereas individuals with the worst values were
farther away. When forming the H- and L-groups, only unique solution, based on their decision
variable values, were considered. This was done to boost the learning performance of the ML
model. Then, the ML model was trained to classify individuals into either a high-performing or a
low-performing group.

The trained skope-rules model was then used to instantiate γ inst × N pop high-performing new
individuals, where γ inst is an instantiation factor, which was set to 10. We chose a relatively high
instantiation factor to increase the changes of finding new high-performing solutions during the
instantiation. The individuals were instantiated based on the rule sets learned by the ML model.
Rules in the rule set were weighted based on their precision when instantiating new individuals:
rules with a higher precision were used more often to generate new individuals than rules with
a lower precision. Based on a rule, the decision variable values of instantiated individuals were
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Table 1. Computed Payoff-table for the Vehicle
Crash Worthiness Problem

Vehicle crash worthiness problem
Minimized f1 f2 f3

f1 1,661.71 8.30 0.071
f2 1,675.45 6.14 0.26
f3 1,692.02 10.56 0.042

The first column indicates which objective has been
minimized on each row. The minimum values in
each column for each problem are in bold, whereas
the maximum values are underlined.

randomly generated according to the upper and lower limits extracted from the rule. If a rule
did not describe an upper or lower limit for a variable, the upper and lower bound based on box
constraints of the variable were used instead, respectively. We did not consider problems with
function constraints on the variables, but implementing an instantiation strategy to account for
function constraints as well is possible in the XLEMOO framework. The new instantiated indi-
viduals and the high-performing group were then combined, and the selection operator from the
learning mode was used to select the best individuals, keeping the population size constant. The
new population generated in the learning mode was also saved in the population archive.

4.1.3 MOO Problem Setup. In the experiments conducted, we considered two real-life based
MOO problems. The first one is the vehicle crash worthiness problem discussed in Section 5. We
will present the results for the vehicle crash worthiness problem later in this section but have
included the results for the second problem in the appendix. We made this choice to maintain
the clarity of the main text and to not inflate the number of figures present in the text. We utilized
the problems as implemented in the desdeo-problem package [Misitano et al. 2021], version 1.4.6.

The second problem considered in the experiments, the car-side impact problem [Jain and Deb
2013], extended with a fourth objective from the work of Tanabe and Ishibuchi [2020], optimizes
the crash safety of a car in case of a side impact. The original problem had three objectives to
be minimized: the mass of the vehicle, the pubic force experienced by a passenger in case of a
crash, and the average velocity experienced by the V-pillar withstanding the impact load from a
crash. The fourth objective is the sum of the 10 constraints the decision variables of the problem
are subject to. The seven decision variables of the problem, which model the thickness of the
various car parts (in millimeters) that contribute to the crash safety of the vehicle, are subject to
the following box constraints: x1 ∈ [0.5, 1.5],x2 ∈ [0.45, 1.35],x3 ∈ [0.5, 1.5],x4 ∈ [0.5, 1.5],x5 ∈
[0.875, 2.625],x6 ∈ [0.4, 1.2], and x7 ∈ [0.4, 1.2].

Because the achievement scalarizing function (2) requires information about a problem’s ideal
and nadir points, we computed the approximations of these points by utilizing our LEMOO method.
We ran the method solely in a Darwinian mode for 2,000 iterations, optimizing each objective
function separately. The resulting objective vectors have been collected in Table 1 for the vehicle
crash worthiness problem forming a payoff-table [Miettinen 1999]. In the payoff-table, the ideal
point is located on the main diagonal, whereas the nadir point can be approximated by taking the
maximum value from each column. Then, from the payoff-table, we can approximate the ideal and
nadir points as z∗crash = (1,600.0; 6.0; 0.038) and znadir

crash = (1,700.0; 12.0; 0.30). Notice that from the
values shown in Table 1, we have chosen lower values for the ideal point components and higher
values for the nadir point components than shown in the table. This was done to assure that the
computed objective vectors during the experiments would fall between the ideal and nadir points
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in both problems, which is required in the achievement scalarizing function (2). We utilized the
payoff-table method to compute the approximations for the ideal and nadir points because of the
simplicity of the method, and because our experiments do not critically depend on the exact values
of the points—it is sufficient that computed solutions fall between the points, and the points can
also be updated during the solution process, if needed.

4.2 Exploring the Effects of the Learning Mode Frequency and the H/L Split on
LEMOO Performance

4.2.1 Setup. In this first experiment, our goal was to find out the effect of the choice of the H/L
split in the learning mode and the frequency of switching from a Darwinian mode to a learning
mode on the performance of our LEMOO method. We chose 10 different H/L splits ranging from 5%
to 50% in increments of 5%, and 11 different switching frequencies: 2, 4, 5, 8, 10, 20, 25, 50, 100, 200,
and 500. For each combination of an H/L split and switching frequency, we ran our LEMOO method
so that the total iterations would always sum to 1,000 (i.e., NT × (ND +N L ) = 1,000). However, as
mentioned in Section 3, we iterate the LEMOO in a learning mode always only once (i.e., N L = 1)
throughout the experiment. Each run was repeated 10 times for all problems considered to even
out statistical fluctuations arising from the heuristic nature of the method. This meant that our
LEMOO method was run 1,100 times in total for each problem considered. As for the reference
points chosen in our fitness function (2), we chose z̄crash = (1,650.0; 7.0; 0.05) for the vehicle crash
worthiness problem. The reference point was kept constant throughout the experiments so that
the results could be compared.

For each run, we measured and collected the following quantities related to the populations in
each of the iterations in Darwinian and learning modes: the decision vectors, the objective vectors,
the fitness function values for each individual, the best fitness function value, the average fitness
function value, the hypervolume (with the nadir point of the studied problem set as the point with
respect to the hypervolume is computed), and the cumulative sum of the number of unique decision
vectors. We measured the fitness function values to probe the performance of our LEMOO method
in finding optimal solutions. Likewise, we measured the hypervolume and the cumulative sums to
probe the variety of solutions in the populations. Since we are utilizing the scalarizing function
in (2) to compute the fitness, we are not trying to approximate the whole PO set; instead, the search
is focused on finding a small subset of the PO set residing near a reference point. It is therefore
feasible to assume the subset of the approximate PO set to form a front of relatively continuous,
connected, and smooth objective vectors, which makes the hypervolume and cumulative sums
appropriate measures for the variety of the solutions in our case. In addition, solutions close to
the reference point are assumed to have approximately a linear connection between the decision
variables and objective vectors. The measured and collected quantities were saved for each run in
files in a JSON format. Snakemake [Mölder et al. 2021] was used to manage the execution of the
experiments and to ensure the reproducibility and transparency of them. The data generated in the
experiments is openly available on Zenodo [Misitano 2023b], and the steps needed to reproduce
the data are documented in the online documentation of the XLEMOO framework.4

4.2.2 Results and Analysis. For each combination of an H/L split and learning mode switching
frequency, the data generated by the 10 repetitions of the experiment were aggregated by com-
puting the mean and the standard deviation of each measured quantity. By visual inspection, the
data seemed to be normally distributed with no significant outliers, which makes the mean and
the standard deviation sensible statistical measures for the data under study.

4https://xlemoo.readthedocs.io/en/article_v1.1/introduction.html#reproducibility
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Fig. 3. The aggregated measured data for the vehicle crash worthiness problem after 200 iterations. The data
is plotted for all the switching frequencies considered. The H/L split was kept constant at 20.

Fig. 4. The aggregated measured data for the vehicle crash worthiness problem after 1,000 iterations. The
data is plotted for all the switching frequencies considered. The H/L split was kept constant at 20.

The aggregated data was then further studied by plotting the means of the four measured quan-
tities for each iteration by varying the switching frequency and keeping the H/L split constant.
Plots as shown in Figures 3 and 4 were generated and studied for all problems considered. In these
figures, the H/L split was set to be 20 to serve as an example. It was quickly noticed that the mean
of the best fitness value and the average of the fitness values converged before the 200th itera-
tion in the problems considered, as can be seen by comparing Figures 3 and 4. The mean of the
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Fig. 5. The mean and standard deviations of the best fitness values for iterations 10, 50, 200, and 1,000 for
the vehicle crash worthiness problem.

hypervolume seems to quickly settle before the 200th iteration but clearly keeps decreasing until
the last iteration. The mean of the cumulative sums of unique solutions also keeps increasing until
the last iteration. The changes after the 200th iteration in all measured quantities seemed approx-
imately constant. The described behavior was true for all H/L splits. Based on these observations,
it seems that exploring the early iterations in our LEMOO method in more detail than the later
ones makes sense.

As a result of the preceding examination, we decided to study the aggregated data in more detail
for iterations 10, 50, 200 and 1,000 by visualizing the data in heatmaps as shown in Figures 5, 6, 7,
and 8 for the vehicle crash worthiness problem. In the heatmaps, each cell represents the values of
the aggregated measures for an H/L splitting and switching frequency combination. The color of
the cell indicates the mean, whereas the numerical quantity inside the cell indicates the standard
deviation. The standard deviation is expressed as a percentage of the mean—that is, a quantity’s
standard deviation of 5, and a mean value of 100, would be expressed as a percentage with a value
of 5%. The darker the cell, the lower its values, and the lighter, the higher. For the mean of the best
fitness and the average (mean) of the mean fitnesses, a lower value (darker color) is better, whereas
for the hypervolume and the cumulative sum of unique solutions, a higher value (lighter color) is
better.

4.2.3 Observations. Here we present the results of the experiment and highlight the most obvi-
ous observations that can be made based on the data. Our observations are general to all problems
considered in the experiment unless specified otherwise. We conclude by giving general remarks
about the results. The reader interested only in the final remarks may skip to the end of the obser-
vations.

Observing the mean of the best fitness values found in the vehicle crash worthiness problem in
Figure 5, we can see that in iteration 10, there is a darker hue on the left side of the heatmap. This
means that, on average, the best fitness values found were lower with a lower switching frequency.
This trend was also observed in other iterations but was not consistent throughout the problems
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Fig. 6. The mean and standard deviations of the average of the fitness values for iterations 10, 50, 200, and
1,000 for the vehicle crash worthiness problem.

considered—that is, there is a darker hue on the left of the heatmap for iteration 1,000 in the vehicle
crash worthiness problem, but this was not generally observed in all problems. We also notice that
there is no clear gradient in the vertical directions of any of the heatmaps in Figure 5. This means
that the choice of H/L split had no noticeable effect on the performance of our LEMOO method in
finding individuals with a better best fitness value.

For the mean of the average fitness values, we notice a similar trend of a darker hue on the left of
the heatmap of iteration 10 in Figure 6. A darker hue was again observed on the left of the heatmap
for iteration 1,000 for the vehicle crash worthiness problem but was not observed in all problems.
We also notice that with a combination of a low switching frequency and H/L split, there might
even be a detrimental effect on our method’s ability to improve the average of the mean fitness,
as seen by the lighter hue of the very left of the heatmap for iteration 50 in Figure 6. We again
observe no noticeable change in gradient in the vertical direction in any of the heatmaps, which
means that the H/L split had little effect on our method’s performance to improve the populations’
average means values.

Observing the mean values for the computed hypervolumes in the vehicle crash worthiness
problem show in Figure 7, we can in turn note that in the early iterations (10 and 50), there seems
to be a lighter hue on the left indicting higher (better) values for the mean value of the hypervolume
computed. For the vehicle crash worthiness problem, there seems to be a slightly darker hue in
the heatmap of iteration 1,000, indicating lower (worse) hypervolume values, but this was not
observed in all problems. And again, the choice of H/L split seems to have had little effect on the
mean values of the hypervolume since there is no noticeable gradient in the vertical direction of
any of the heatmaps.

If we study the mean values of the cumulative sums of unique solutions found in each itera-
tion for the vehicle crash worthiness problem shown in Figure 8, it seems that in early iterations
(10 and 50), with a combination of a low switching frequency and H/L split, our method seems to
perform better when finding unique solutions. However, in the other iterations, there seems to be
a lighter hue on the right of the heatmaps, indicating a higher (better) value for the cumulative
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Fig. 7. The mean and standard deviations of the hypervolumes values of the population in iterations 10, 50,
200, and 1,000 for the vehicle crash worthiness problem.

Fig. 8. The mean and standard deviations of the cumulative sums of unique solutions in iterations 10, 50,
200, and 1,000 for the vehicle crash worthiness problem.

sums. Unlike in the observations for the other measures, it seems that the choice of the H/L split
might have a minor effect on our method’s ability to find more unique solutions.

Last, observing the standard deviations of the measured quantities in the heatmaps in Figures
5 through 8, we can observe mostly low values between 0% to 10%, indicating a relatively low
statistical variance of our results. However, an exception to this observation can be seen in iteration
1,000 for the cumulative sums of unique solutions in Figure 8, where the standard deviations raise
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occasionally above 20%, and in some cases even above 50%. Nevertheless, in general, the statistical
fluctuations of our results were low.

Final Remarks. For each of the measured quantities (the best fitness value, the average of the
mean fitness value, the hypervolume, and the cumulative sum of unique solutions), the most no-
ticeable effects were observed in early iterations (10 and 50). The effects were positive. In all of the
heatmaps, the effect were noticed only when the switching frequency was lower than the iteration
represented by the heatmap—for example, in the heatmaps representing results for iteration 50, the
noticed effects were present only for switching frequencies lower than 50. For higher switching
frequencies in these cases, our LEMOO method has not engaged in a learning mode yet, meaning
that the method has operated purely in a Darwinian mode. This is an important observation, as it
is clear evidence that the addition of a learning mode has had an obvious effect on the performance
of our LEMOO method.

4.3 Explanations in LEMOO
Here, we explore in more depth the explanations emerging from the use of an interpretable ML
model in the learning mode of our LEMOO method. We also discuss how rule sets to support DMs
can be extracted from our method. These rule sets provide insights about the decision vectors with
the highest fitnesses found. We focus on the vehicle crash worthiness problem to give a concrete
example of the explanations generated. A showcase on how the rules can benefit a DM in practice
is given in Section 5.

4.3.1 Setup and Results. Here, we utilized our LEMOO method described in the previous sec-
tions. We chose the number of total iterations to be 200 and the switching frequency to be 20.
The H/L split value was set to 20%. These choices were based on the results of the experiments
conducted in Section 4.2. The other parameters of our LEMOO method were kept the same as de-
scribed previously. We ran the method once with four different reference points used in the fitness
function (2), which are listed in Table 2. The first reference point z̄1 was the same as used in the pre-
vious experiments. There was no particular criterion in choosing the other reference points other
than for the sake of providing more examples of possible rule sets emerging from our method to
study.

Each rule in the rule sets was generated as follows. Rules were extracted from the skope-rules
model from the final iteration of our LEMOO method. Each rule was then inspected, and the most
accurate rule was selected. From the most accurate rules, upper and lower limits for each variable
in the vehicle crash worthiness problem were searched for. If there was no rule describing a vari-
able’s lower or upper limit, the limit was taken from the final population computed in the LEMOO
method—that is, the population was inspected for the variable, and the lowest or highest value
found in the population was used as the lower or higher limit, respectively. If two rules extracted
from the skope-rules had the same accuracy and described the same variable, then the rule with a
stricter limit was selected—that is, if two lower (higher) limits were extracted from the rules, then
the lower (higher) limit with a higher (lower) value was selected.

The rule sets generated are shown in Table 2 for each reference point considered. The accuracies
of the rules from which the limits were extracted are also shown. An accuracy of −1 means that
no rule described a particular variable’s lower or higher limit, so the limit extracted from the
population was used instead. In Table 2, we also report the lower and upper limits extracted from
the final population to be compared with the respective limits extracted utilizing the rules from
skope-rules.

To study the spread of the possible solutions computed based on the rules in the rule sets gener-
ated, we randomly generated 100,000 decision vectors based on the rules—that is, for each variable,
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Table 2. Rule Sets Generated for the Four Reference Points Considered

Rule set 1: z̄1 = (1,650.0; 7.0; 0.05)
Variable Lower (R) Acc. Upper (R) Acc. Lower (P) Upper (P)

x1 1.0 (0.485) 1.0 (1.0) 1.0 1.0
x2 1.37958 (1.0) 1.43105 (1.0) 1.42731 1.42731
x3 1.0 (0.468) 1.00002 (1.0) 1.0 1.0
x4 1.0 (0.499) 1.00197 (1.0) 1.0 1.0
x5 2.31826 (1.0) 2.58524 (1.0) 2.38275 2.38275

Rule set 2: z̄2 = (1,600.0; 8.0; 0.07)
Variable Lower (R) Acc. Upper (R) Acc. Lower (P) Upper (P)

x1 1.0 (0.518) 1.00513 (1.0) 1.0 1.0
x2 1.0 (0.478) 1.0 (1.0) 1.0 1.0
x3 1.0 (0.404) 1.00004 (1.0) 1.0 1.0
x4 1.0 (−1) 1.00428 (1.0) 1.0 1.0
x5 1.0 (0.232) 1.0 (1.0) 1.0 1.0

Rule set 3: z̄3 = (1,700.0; 6.5; 0.18)
Variable Lower (R) Acc. Upper (R) Acc. Lower (P) Upper (P)

x1 1.0 (−1) 1.00001 (1.0) 1.0 1.0
x2 2.99992 (0.997) 3.0 (0.496) 3.0 3.0
x3 2.56003 (1.0) 2.57444 (1.0) 2.56865 2.56929
x4 1.0 (0.487) 1.00001 (1.0) 1.0 1.0
x5 2.97299 (1.0) 2.99937 (−1) 2.99717 2.99937

Rule set 4: z̄4 = (1,695.0; 6.1; 0.04)
Variable Lower (R) Acc. Upper (R) Acc. Lower (P) Upper (P)

x1 1.00001 (1.0) 1.00165 (1.0) 1.00001 1.00001
x2 2.99559 (1.0) 3.0 (0.987) 3.0 3.0
x3 1.0 (−1) 1.00001 (1.0) 1.0 1.0
x4 1.08398 (1.0) 1.1352 (1.0) 1.10772 1.10772
x5 2.99449 (1.0) 3.0 (−1) 3.0 3.0

The lower and upper limits extracted from the skope-rules and final population are listed in
columns ‘Lower (R)’ and ‘Upper (R),’ respectively, whereas the limits extracted from the final
population alone are listed in columns ‘Lower (P)’ and ‘Upper (P),’ respectively. The limits
extracted from a skope-rules are followed by the respective rule’s accuracy listed in the ‘Acc.’
columns, where 1 is the highest possible accuracy (equal to 100%) and 0 is the lowest. If a limit
was extracted from the final population instead, then the reported accuracy is −1.

we generated a random value between the lower and upper limits reported in the rule describing
the variable. We then plotted a histogram for each set of randomly generated decision vectors
showing the distribution of the vector’s fitness value. These histograms are shown in Figure 9.

The process of running our LEMOO method and generating the described rule sets can be found
in a Jupyter notebook.5 This notebook serves also as a good example of how our LEMOO method
can be, and has been, implemented in practice.

4.3.2 Observations. Observing the rule sets in Table 2, we can make some observations. First,
the rules extracted from skope-rules always describe a wider, or equal, range of possible decision

5https://xlemoo.readthedocs.io/en/article_v1.1/notebooks/How_to_extract_rules_example.html
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Fig. 9. The distributions of the fitness values of the decision vectors generated based on the rule sets ex-
tracted for the car-side impact problem. The best fitness function value found by our LEMOO method for
each reference point is also shown in the plots. The number of samples in each histogram is 100,000.

variable values when compared to the rules extracted from the final population alone. Second,
when the range is the same, or when there is no range—the upper and lower limits are the same—
the accuracies of the upper or lower limits extracted from skope-rules are in the range [0, 1). And
third, in most cases, at least one rule extracted from skope-rules was found to describe the lower
and upper limits of a variable.

Inspecting the histograms in Figure 9, none of the rule sets describe solutions that have fitness
values better than the best fitness value found. This is expected since after 200 iterations, our
LEMOO method was observed in Section 4.2 to have already converged in terms of best fitness
value and the average of fitness values in a population. Nonetheless, the rules in the rule sets
describe solutions with fitness values relatively close to the best. If we assume for the objective
vector corresponding to the individual with the best fitness value to be close to the reference
point considered when generating each rule set, we can also assume that the objective vectors
corresponding to the decision vectors generated based on the rule sets to be close to the reference
point. In the histograms for rule sets 1 and 2 in Figure 9, we can see an even distribution for the
solution fitnesses, whereas in the histograms for rule sets 3 and 4, we can see a slight bias in the
fitness values toward the best fitness value. Out of 100, 000 solutions generated based on the rules
in each rule set, none of the fitness values are significantly far from the best fitness values. This
means that by varying the decision vectors according to the rules in the rule sets, we find solutions
with respective objective vectors in the proximity of the objective vector with the decision vector
corresponding to the best fitness value. This also means that near the reference points considered,
we can approximate the relationship between objective function values and decision variables to
be linear.
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Final Remarks. The rule sets extracted from the interpretable ML model in our LEMOO method
are clearly more informative about the possible ranges of decision variable values close to a solu-
tion of interest from the perspective of a DM when compared to the respective information ex-
tracted from the final population alone. We also saw that the solutions generated according to the
rules in the rule sets are close to the original best solution. This can help a DM explore alternative
solutions close to the best one. Since the rule sets were learned based on past populations as well,
and not just the final one, we conclude that a better insight about the connection between deci-
sion vectors and objective vectors close to a solution of interest can be derived by considering the
population history, and that utilizing interpretable ML is one possible approach to generate these
insights.

5 SHOWCASE OF THE ADDED BENEFITS OF EXPLAINABILITY
In this section, we demonstrate in a proof of concept the benefits of the explanations extracted
from our LEMOO method, and how they can support a DM in solving a MOO problem. More
technical details on how the results have been computed and the rules extracted were given in
Section 4, where we reported more detailed experiments to explore the performance and explana-
tions provided by our LEMOO method, and presented the implementation of our method in more
detail.

5.1 LEMOO as an Explainable Interactive Method
We demonstrate how our LEMOO method, which combines an indicator-based EMO and skope-
rules, can be used as a reference point based interactive MOO method. The input is a reference
point provided by a DM. The reference point is utilized in the scalarizing function in (2), which
functions as the indicator in our method. Our method then computes a population of solutions from
which the solution with the best fitness value is shown to the DM. In addition, the method outputs
explanations, in the form of rule sets generated by skope-rules, describing the high-performing
solutions providing the DM with additional insights about the best-performing solutions gener-
ated near the reference point from the perspective of decision variables. This idea is visualized in
Figure 10. In addition, the DM has also the option to provide decision vectors, which are evaluated
into objective vectors, to explore different solutions inspired by the insights provided by the expla-
nations. This in turn can also provide support to the DM in providing further reference points in
subsequent iterations. In practice, an analyst operating the method can aid the DM when evaluat-
ing decision vectors specified by them. But in our case, we have assumed the DM to be an engineer,
who is familiar with the domain of the problem and its technicalities, including the meaning of
the decision vectors.

As a showcase of how our method can be utilized as an interactive MOO method, we show
three iterations with the author acting as the DM. We also comment on the insights provided to
the DM. We consider the vehicle crash worthiness problem [Liao et al. 2008] to optimize the crash
safety of a car. It has three objectives to be minimized: the frontal mass of the vehicle, the collision
acceleration experienced by passengers in case of a full frontal crash, and the toe board intrusion
in the case of an off-set frontal crash. The problem has five decision variables, which model the
thickness of five reinforced members in the frontal structure of the car. They have box-constraints,
where the thickness should be between 1 and 3 mm. The problem has no other constraints.

To support the DM in providing reference points, we assume that before the optimization pro-
cess, the DM has been informed of the approximated ideal and nadir points of the vehicle crash
worthiness problem: z∗crash = (1,600.0; 6.0; 0.038) and znadir

crash = (1,700.0; 12.0; 0.30). Details on how
these points were approximated are given in Section 4. The explanations provided to the DM dur-
ing the optimization process are the rule sets shown in Table 3. These describe the solutions with
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Fig. 10. An example of how our LEMOO method can be used as an interactive MOO method.

the best fitness values found in each iteration by means of lower and upper limits for each deci-
sion variable. Each limit has also an accuracy associated with it. The rule sets are extracted from
the skope-rules model used in our method. A more detailed description of how the rule sets have
been derived is given in Section 4.3. Next, we describe the three iterations and show how our
LEMOO method can support a DM in solving the vehicle crash worthiness problem and gaining
new insights.

Iteration 1. In the first iteration, the DM provided an optimistic reference point close to the
ideal point of the problem: z̄1 = (1,610.0; 6.2; 0.041), which resulted in the best solution (as defined
earlier) x1 = (1.00887; 3.0; 1.0; 1.37784; 1.00168) with the objective vector z1 = (1,669.28; 7.69556;
0.08126). The DM was also shown the rule set derived shown in Iteration 1 in Table 3. The DM
noticed that the objective vector was worse than the reference point in each component. Looking
at the rule set in Table 3 for Iteration 1, he noticed that the thickness of the second and fourth
member could perhaps be lowered while keeping the result otherwise similar to decrease the mass
(first objective) by a small amount. Driven by these insights about the optimal solutions, he then
tried evaluating the problem with the decision vector x′1 = (1.00887; 2.99985; 1.0; 1.36258; 1.00168),
which resulted in the objective vector z′1 = (1,669.18; 7.66459; 0.08166). Although the effect on
the mass was minimal, he noticed a more significant improvement in the collision acceleration
experienced by passengers (second objective). After learning of the minimal effect changing the
variables had on the mass, and the too optimistic value he had set for the mass in the aspiration
level of z̄1, he decided to explore the mass by providing a new reference point instead.

Iteration 2. In the next reference point, the DM decided to increase the aspirations levels for
the mass, keep the collision acceleration the same as in z′1, but increase the aspiration level for
the toe board intrusion (third objective) in hopes of achieving a lower mass than in the previous
iteration. Thus, he gave the reference point z̄2 = (1,680.0; 7.66459; 0.07), which resulted in the
best solution x2 = (1.0; 3.0; 1.0; 1.25473; 2.99988) with the corresponding objective vector z2 =

(1,677.23; 7.61449; 0.068647). The DM noticed that the objective values in the objective vector were
all better than in the reference point, but the mass was now clearly too high. After inspecting the
rules in the rule set in Table 3 for Iteration 2, he noticed that the fourth variable once again had
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a large range. The DM made a note of this and decided not to try other decision variable values
based on the rules in the rule set because the ranges for the variables were narrow and did not
encourage the DM to explore the solution in this iteration any further.

Iteration 3. The DM was satisfied with the value of acceleration experienced by passengers
(second objective) in the previous objective vector, z2; however, he still wished to find a solution
with a lower mass (first objective) and was ready to trade off for a slightly larger value for the toe
board intrusion (third objective). Thus, the third reference point was z̄3 = (1,670.0; 7.61449; 0.085),
which led to the best solution x3 = (1.00286; 2.99999; 1.00000; 1.30009; 1.03374) with the objective
vector z3 = (1,668.83; 7.53771; 0.083098). The DM was happy to see a lower mass (first objective)
and a lower acceleration (second objective) than in z2. After inspecting the rule set of Iteration 3
in Table 3, the DM noticed again that the fourth variable of the problem had the largest range of

Table 3. Three Iterations Featured in Our LEMOO Method’s Showcase

Iteration 1
Reference point: z̄1 = (1,610.0; 6.2; 0.041)
Best objective vector: z1 = (1,669.28; 7.69556; 0.08126)
Best decision vector: x1 = (1.00887; 3.0; 1.0; 1.37784; 1.00168)
Variable Lower Acc. Upper Acc.

x1 1.00887 (−1) 1.00973 (1.0)
x2 2.99985 (1.0) 3.0 (−1)
x3 1.0 (0.496) 1.0 (0.429)
x4 1.36258 (1.0) 1.37986 (1.0)
x5 1.00168 (−1) 1.0028 (1.0)

Iteration 2
Reference point: z̄2 = (1,680.0; 7.66459; 0.07)
Best objective vector: z2 = (1,677.23; 7.61449; 0.068647)
Best decision vector: x2 = (1.0; 3.0; 1.0; 1.25473; 2.99988)
Variable Lower Acc. Upper Acc.

x1 1.0 (−1) 1.00002 (1.0)
x2 2.99979 (1.0) 3.0 (0.496)
x3 1.0 (0.993) 1.0 (1.0)
x4 1.23885 (1.0) 1.25545 (1.0)
x5 2.99986 (1.0) 2.99988 (0.997)

Iteration 3
Reference point: z̄3 = (1,670.0; 7.61449; 0.085)
Best objective vector: z3 = (1,668.83; 7.53771; 0.083098)
Best decision vector: x3 = (1.00286; 2.99999; 1.00000; 1.30009; 1.03374)
Variable Lower Acc. Upper Acc.

x1 1.00184 (0.996) 1.00558 (1.0)
x2 2.7135 (1.0) 3.0 (0.48)
x3 1.0 (0.517) 1.00011 (1.0)
x4 1.21741 (1.0) 2.12628 (1.0)
x5 1.02602 (1.0) 1.04323 (1.0)

The reference point provided by the DM, the decision and objective vector corresponding to
the best solution, and the rules derived from our method are shown for each iteration. The
lower limits are shown in the ‘Lower’ column and the upper limits in the ‘Upper’ column.
Each limit is followed by its accuracy ranging from 0 (completely inaccurate) to 1 (completely
accurate). Refer to Section 4.3 for further details on how the rule sets have been generated.
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values according to the rules—this time noticeably larger than in the previous iterations. Although
the DM was already happy with the solution found, the insights from the rule set inspired him to
modify the decision vector according to the rules in hopes to decrease the mass by lowering the
thickness of the members represented by the decision variables x1,x2,x4, and x5. This led to the
modified decision vector x3

′ = (1.00184; 2.7135; 1.00000; 1.21741; 1.02602), with the corresponding
objective vector z3

′ = (1,667.49, 7.54346, 0.094955). The DM was quick to note that lowering the
thicknesses did not have a significant effect on the mass (first objective) or acceleration (second
objective), but it did noticeably increase the toe board intrusion (third objective), which was too
large a tradeoff for the DM to make.

In the end, the DM chose x3 as the final solution since he was most satisfied with the corre-
sponding objective values. However, the DM also learned that changing the thicknesses of the five
reinforced members in the frontal structure of the car represented by the decision variables had,
in general, a surprisingly small effect on the mass of the car and a more noticeable effect on the toe
board intrusion. Furthermore, the DM observed that the rule sets include larger ranges for variable
x4, as indicated in Table 3. The DM thought that this might diminish the impact of the variable
on the values of the objective function, particularly within his region of interest. The DM thought
that it may be a good idea to revisit the problem formulation to investigate this last point further
before making any decisions based on the final solution.

Final Remarks on the Showcase. As we saw, thanks to the explanations (rule sets), the DM
got important insights regarding the connections between decision variables and objective vectors,
and he got some support to provide new reference points. Moreover, the insights made the DM
question the formulation of the MOO problem, since changing the variables did not have the effect
he expected. This caused the DM to postpone any decision based on the final solution found. The
insights gained from the explanations (rule sets in Table 3) caused the DM to be more critical about
the solutions and also explore the decision space of the problem, which, in the end, affected the
whole decision making process.

6 DISCUSSION
In this section, we discuss the results of the experiments conducted in Section 4 and the results’
main implications in regard to our current work and future research. We also consider the impli-
cations of the practical showcase discussed in Section 5. We discuss the results of the experiments
related to the performance of our LEMOO method in Section 6.1, and the results regarding the
explanation aspects of our method and the showcase in Section 6.2. We then discuss the further
potential of the explanations in the context of LEMOO in Section 6.3. Finally, we conclude by
discussing the general implications of our work in Section 6.4.

6.1 On the Performance of LEMOO
Based on the observations made in regard to the performance of our LEMOO method in Section 4.2,
we can draw the following conclusions. First, a learning mode has a clear positive contribution
to the performance of our LEMOO method in finding individuals with better fitness values if the
frequency of switching to the learning mode is not too frequent nor too infrequent. This can help a
LEMOO method converge faster if compared to a method without a learning mode. However, if the
switching is too frequent, the population might not include enough individuals with clearly better
fitness values, which makes it difficult for the ML model in the learning mode to be able to build a
valid hypothesis for the high-performing group. In turn, if the learning frequency is too infrequent,
the populations can become too homogeneous, which again makes it hard for an ML model to learn
a distinction between a high-performing and low-performing individual. Interestingly, the choice
of an H/L split seems to have little to no effect on the performance of our LEMOO method unless
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combined with a low switching frequency, in which case it can have a detrimental effect on the
performance. The fact that LEMOO offers clear, although not immense, benefits in term of search
performance of finding solutions with a better fitness value is in line with the findings reported
in previous studies exploring LEMOO methods, which were discussed in Section 2.3. This gives us
confidence in the validity of our own experiment as well. But in these previous works, the effect
of the switching frequency or H/L split was not studied in detail.

The second conclusion we can make is that a low switching frequency can boost the diversity
of the populations found in our LEMOO method, but only during early iterations (up to 200 out
of 1,000 in our case). The observations for the computed hypervolumes and cumulative sums in
Section 4.2 are the evidence supporting this claim. This makes sense if we take into account the
first conclusion we made. In other words, because with a lower switching frequency, our LEMOO
method converges faster, and it also means that the populations become saturated with more simi-
lar individuals in earlier iterations, leading to a decrease of the learning mode’s performance in the
hypothesis forming. We did, however, observe that a low H/L split combined with a low switching
frequency can lead to a slight boost in the hypervolumes and cumulative sums of the populations,
but if we also take into the account the observation that this same combination of frequency and
split can have a detrimental effect on the fitnesses of the individuals found, the tradeoff between
finding good fitness values and a diverse population with a low frequency and split becomes evi-
dent. The potential of LEMOO boosting the diversity of computed populations was also observed
in the works discussed in Section 2.3; however, the potentially detrimental effect of a low switching
frequency was neither reported nor studied, or both, in these previous works.

It is important to also mention the limitations of our first experiment. First, we only considered
two MOO problems in Section 4.2, we did not vary any parameters of the Darwinian mode of
our method, we did not vary the ML model used in the learning mode of our method, we did not
consider other fitness functions than the scalarizing function in (2), and we did not vary the pa-
rameters of the ML model used. We did, however, explore these aspect during internal testing. We
chose to report the results for only two problems because we found no significant differences in
the results for other problems tested. This was also true for the fitness function chosen—we tried
other scalarizing functions as well with no significant changes in the performance of our LEMOO
method. Not surprisingly, the parameters in the Darwinian mode of our method did have a notice-
able effect on the performance, but the results showed still similar trends when compared to what
we reported in this study. The choice of our ML model to be skope-rules was mainly motivated
by its superior performance in finding rules. We compared it to a decision tree (C4.5 [Salzberg
1994] and CART [Breiman 2017]), boosted rule set [Freund and Schapire 1997], and slippery rule
set [Cohen and Singer 1999] but simply found their performance subpar compared to skope-rules.
One of the main factors in choosing an ML model, apart from its interpretable nature, is its per-
formance. It must be fast enough so that training it and generating new solutions is comparable
to the time it takes for the LEMOO method to finish iterating in a Darwinian mode. Otherwise,
the learning mode of a LEMOO method might be too slow to justify its inclusion. In our setting,
we found skope-rules to be able to find useful rules in a feasible time, which ultimately led us to
choose it as our ML method. The issue of exploring other ML models is also technical since the
trained models are used to generate new data, which is an atypical application of the models. This
means that it requires extra effort to develop the necessary utilities for the models to be utilized
in a LEMOO method. In our XLEMOO framework, we have provided the necessary utilities to use
the aforementioned ML models. That being said, our goal was to explore the effect of the H/L split
and the switching frequency to a learning mode in our LEMOO method.

We have not compared our numerical results to previous works. This is because similar
works with comparable results and reproducible experiments do not exist according to our best
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knowledge. However, we have taken care to report our results in a way that is reproducible so
that future works may be compared to ours. Because we propose our current method to be used as
an interactive MOO method, challenges arise since comparing interactive methods to each other
is an open research question [Afsar et al. 2021], which is further complicated by the inclusion of
explanations. The best works to compare our method to would be the ones presented in the work
of Corrente et al. [2021] and Misitano et al. [2022], since they both discuss an interactive MOO
method with explanations. However, there is no established way to compare such methods. To
best compare these methods, we suggest that in a future study, experiments with human partici-
pants should be conducted to compare the interactive methods (as suggested by Afsar et al. [2022]),
where the usefulness of the explanations to a human user is also assessed. That being said, our cur-
rent results can be used as a baseline when developing new and more advanced LEMOO methods,
and as an initial guideline when figuring out the H/L splitting ratios and switching frequencies,
for instance.

6.2 On the Explanation Aspects of LEMOO
In Sections 4.3 and 5, we studied the potential of the generated explanations in our LEMOO method
when the ML model employed in a learning mode is interpretable. In light of the showcase and
the observations made, we conclude the following. First, it is evident that the rules extracted from
the skope-rules provide much more potential insight for a DM about the decision variable values
near a reference point if compared to the rules extracted from the final population alone. It was
also observed that certain decision variables were clearly highlighted as being important when
different reference points were used. This importance was underlined by the fact that rules defining
a sensible—as in not being too narrow—range were found only for a couple of variables in each rule
set. This can help a DM learn about the MOO problem by helping them build an understanding
of which decision variables could be varied in the final solution while not steering too far from a
point of interest (i.e., the reference point). This can guide the DM in providing further preferences,
or in making a final decision based on the solutions found, as we saw in the showcase.

In addition, the accuracies of the rules in each rule set observed can prove to be useful for a
DM. When a rule defines a very narrow range, or no range at all, if the accuracy of the lower
or upper limit is low, it can encourage the DM to explore solutions beyond these more inaccurate
ranges. This can help the DM explore regions in the decision space of the MOO problem that could
otherwise be left unexplored but still potentially contain solutions of interest.

We believe that our LEMOO method can be best utilized as an interactive method, as was done
in Section 5.1, where a DM provides multiple reference points in subsequent runs of our method.
This way, the explanations may be exploited to their fullest by the DM helping them learn about
the MOO problem and explore the solution space.

Our experiments in Section 4.3 were of course subject to the same limitations as discussed in
Section 6.2. Furthermore, to better validate the actual usefulness of the rule sets generated based
on our LEMOO method in an interactive setting, experiments with real DMs should be conducted.
Although rule sets are, in general, easily interpretable by humans [van der Waa et al. 2021], it would
be interesting to compare different kinds of explanations in an interactive MOO context. The way
explanations are communicated to the DM in a MOO is also an unexplored area (e.g., how to best
visualize them?). Empirical experiments, such as the one presented by Afsar et al. [2022], could be
adapted to explore how explanations, and their usefulness, are perceived by DMs.

6.3 Further Potential of Explainability in LEMOO
In the showcase given in Section 5, we saw how the explainability provided by our LEMOO
method was able to offer support to a DM in gaining insights of the connection between decision
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variables and objective vectors in providing new reference points, and in assessing the formula-
tion of the MOO problem. For providing new reference points, it is also possible to present the
high-performing individuals in the final population of our method to the DM in the objective
space of the problem, effectively providing the DM with not only further solution candidates but
also a description of the candidates in the objective space. Showing the high-performing solution
candidates in the objective space can support a DM in providing further reference points as well,
which addresses the open issue in interactive MOO methods—that is, the lack of supporting DMs
in providing preferences during an interactive solutions process.

Although a more technical DM may appreciate the implications of explainability regarding a
MOO problem formulation, the explanations can also offer valuable information to an analyst for-
mulating the MOO problem. An analyst can explore a formulated problem by trying to generate
an approximation of its whole PO set of solutions instead of just a subset near a reference point,
as we have done in our current work. A whole set can be approximated by choosing the indica-
tor appropriately in an indicator-based method, or the EMO method in the LEMOO approach can
be switched to some other method altogether. Nonetheless, assuming an indicator-based method
with rule-based explanations, an analyst can gain important insights about the nature of the whole
approximated PO set. For instance, the rules may reveal that in the computed approximation, the
ranges of the decision variables may differ significantly from the box-constraints of the problem.
In turn, this can cause the analyst to revisit the MOO problem formulation by adjusting the con-
straints on the variables leading to a computationally more efficient problem formulation (achieved
by limiting the search space). Rules significantly differing from the box-constraints of the MOO
problem may also indicate that a search process for optimal solutions has been stuck on a certain
part of the PO set of solutions—a local minima, for instance—which can be the case with discontin-
uous PO solution sets. Thus, explanations can enhance the process of formulating and validating
MOO problems and assessing the effectiveness of the optimization methods chosen, for example,
when modeling MOO problems in collaboration between domain experts and analysts as described
in the work of Afsar et al. [2023].

In the example given in Section 5.1, we saw how a single solution could be accompanied by
descriptive rules describing similar solutions near it in terms of decision variables. This can also
facilitate communicating the found solution to other stakeholders, improving the transparency
of the decision making process. This can help DMs in justifying their decisions to not just stake-
holders but to other DMs as well, such as in a group decision making process [Lu et al. 2007]. For
instance, explanations can offer negotiation support between two or multiple DMs with different
preferences. It is possible that different objective vectors may share similarities in the decision
space, which can be unveiled by the kind of rule sets discussed in this section. This can support
multiple DMs in finding a compromise solution by considering decision variable values.

Thus far, we have considered the usefulness of explanations to a DM or analyst based on the
final population and the history of populations preceding it. As we saw in Section 4, the ML model
used, in our case skope-rules, was able to boost the search process for optimal solutions during the
optimization process based on intermediate populations, and we may also extract the explanations
generated on these intermediate populations during the optimization process to provide important
insights to a DM. Following the NAUTILUS philosophy6 [Miettinen and Ruiz 2016] and applying
it to the interactive method discussed in Section 5.1, we can choose to iterate the LEMOO method
only a few times and produce a suboptimal population of solutions, and show the high-performing
solutions of this population to the DM. This allows the DM to provide new preferences, which can
then be used in the indicator (in our case, the achievement scalarizing function in (2)) to steer the

6Starting an interactive process from the nadir point of a MOO problem and iteratively improving upon it until a solution
on the PO set is reached.
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optimization process toward solutions of interest from the point of view of the DM before actual
convergence is reached in the LEMOO method. This can promote the exploratory aspects of the
LEMOO method when employed as an interactive MOO method, and enables the DM to make a
tradeoff free decision during the interactive process. Unlike existing NAUTILUS methods, applying
the same philosophy to a LEMOO approach also provides information on the intermediate decision
variable values, which are not available in NAUTILUS methods. This can make the comparison of
intermediate solutions more meaningful from the perspective of the DM.

Although we have not explored the ideas discussed in this subsection explicitly in our current
work, the XLEMOO framework described in Section 3.3 enables researchers and practitioners to
readily start exploring the discussed ideas and more. Our current work provides a proof of concept
on the potential of explainability in the context of LEMOO promoting the overall paradigm of
explainable MOO.

6.4 General Implications of Our Study and Moving Forward
It is perhaps a little surprising that LEMs have not been explored more in the context of EMO
methods given the potential shown by our and past studies of LEMOO methods. The fact that a
lot of individuals are generated in the many populations of an EMO method makes the application
of ML models, which usually need significant amounts data to perform well, not only possible but
perchance even natural.

Based on our study, a simple addition of a learning mode to an indicator-based EMO method
could work as a niching operator to increase the diversity of individuals, or to boost the search
performance of the method when searching for individuals with better fitness values. By taking
into account the whole population history, a learning mode could also be a way to implement a
global search step in an EMO method. Moreover, as long as the populations generated in an EMO
method are saved in an archive, the same procedure to generate rule sets described in Section 4.3
could be applied to any EMO method, making the method more explainable. Of course, mixing
EMO methods with ML does come with an increase in computation cost, but as we have shown,
even simpler interpretable ML models, such as skope-rules, can work when utilized in a learning
mode.

Going forward, it would be interesting to see the concept of LEMs explored in other types
of EMO methods, such as in dominance-based and decomposition-based methods, and exploit
their unique nature. An ML model could be used to learn and explain the dominance rank-
ings in a dominance-based method, or to learn and explain different decomposition strategies in
decomposition-based methods. In addition to supporting DMs, these explanations could serve the
researchers or analyst operating and implementing the methods to build a better understanding
of which parameters to choose to achieve the best possible performance. If explainability is not a
goal, then exploring the potential of the more powerful ML models, such as deep neural networks
and support vector machines, could also be explored further in LEMOO methods.

Our study was also limited to rule-based explanations. In future studies, exploring different
kinds of explanations, such as causal and counterfactual explanations [Molnar 2022], would be
interesting. Moreover, explaining aspects of a MOO problem other than the characteristics of de-
cision vectors near a reference point should be studied further. For instance, explaining the con-
nection between preferences and computed solutions, as was done in the work of Misitano et al.
[2022] for reference point methods, could be pursued in the future studies of LEMOOs.

The future directions listed here, and especially in Section 6.3, are nothing but the tip of the
iceberg. However, the XLEMOO framework discussed in Section 3.3 provides other researchers
and practitioners alike with a solid starting point to explore the preceding ideas and more. Because
our framework is openly available and implemented as open source software, everyone is free
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to utilize and apply it, or extend it for others to use as well. This highlights the importance of
providing similar, open source, and openly available frameworks in future studies as well, and
collaborating on open source software to promote the openness and renewal of research.

7 CONCLUSION
We explored the potential of applying LEMs to solve MOO problems through our implementation
of a LEMOO method. We explored the performance aspects of our LEMOO method and showcased
the potential it can have in supplying a DM with additional explanations providing them insights
about the characteristics of decision variables near a solution of interest. We also discussed and
provided the openly available XLEMOO framework for others to utilize and implement their own
LEMOO methods with explanations.

Naturally, our work came with limitations, as discussed in Section 6, but also showed great
potential in terms of future research. LEMs are, without a doubt, an understudied area in the field
of EMO. Furthermore, when an interpretable ML model is utilized in a LEM’s learning mode, we
have the potential access to more insights about the characteristics of the populations generated
during the course of an EMO method. These insights can be expressed in the form of explanations,
as we did. To help the rest of the EMO community pursue their own research in studying the
application of LEMs in an EMO context, we provide the discussed XLEMOO framework as openly
available open source software.

Combining ideas of LEMs with ideas from EMO into LEMOO methods has vast potential to
unveil new and exciting ideas in the field of MOO. Moreover, utilizing interpretable ML models
in a learning phase in a LEMOO method has the potential to unlock additional insights thanks to
the vast number of individuals generated in a typical EMO setting. By leveraging these insights
into explanations, we have taken the first step toward establishing a new paradigm in the field of
MOO: explainable and learnable MOO. It is our hope that our work will inspire and enable future
studies and research to help develop this new field further.

A APPENDIX
Here, we present the main results of the experiments conducted in Section 4.2 for the car-side
impact problem. The ideal and nadir points of the problem were approximated from a payoff-table
(Table 4). The reference point used for the car-side impact problem was z̄car-side = (20.0; 3.5; 11.0;
0.1). The plots showing the aggregated measured quantities as a function of the switching fre-
quency, are shown in Figures 11 and 12. The heatmaps for the aggregated measured quantities are
shown in Figures 13 through 16. Refer to Section 4.2 for further details.

Table 4. Computed Pay-off Table for the
Car-Side Impact Problems

Car-side impact problem
Minimized f1 f2 f3 f4

f1 15.58 4.43 13.09 2.82
f2 36.71 3.59 11.87 14.19
f3 39.05 4.05 10.61 29.81
f4 23.72 4.30 12.91 0.14

The first column indicates which objective has been
minimized on each row. The minimum values in each
column for each problem are in bold, whereas the
maximum values are underlined.
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Fig. 11. The aggregated measured data for the vehicle crash worthiness problem after 200 iterations. The
data is plotted for all the switching frequencies considered. The H/L split was kept constant at 20.

Fig. 12. The aggregated measured data for the car-side impact problem after 1,000 iterations. The data is
plotted for all the switching frequencies considered. The H/L split was kept constant at 20.
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Fig. 13. The mean and standard deviations of the best fitness values for iterations 10, 50, 200, and 1,000 for
the car-side impact problem.

Fig. 14. The mean and standard deviations of the average of the fitness values for iterations 10, 50, 200, and
1,000 for the car-side impact problem.
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Fig. 15. The mean and standard deviations of the hypervolumes values of the population in iterations 10, 50,
200, and 1,000 for the car-side impact problem.

Fig. 16. The mean and standard deviations of the cumulative sums of unique solutions in iterations 10, 50,
200, and 1,000 for the car-side impact problem.
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ABSTRACT Interactive multiobjective optimization methods incorporate preferences from a human deci-
sion maker in the optimization process iteratively. This allows the decision maker to focus on a subset of
solutions, learn about the underlying trade-offs among the conflicting objective functions in the problem
and adjust preferences during the solution process. Incorporating preference information allows computing
only solutions that are interesting to the decision maker, decreasing computation time significantly. Thus,
interactive methods have many strengths making them viable for various applications. However, there is a
lack of existing software frameworks to apply and experiment with interactive methods. We fill a gap in the
optimization software available and introduce DESDEO, a modular and open source Python framework for
interactive multiobjective optimization. DESDEO’s modular structure enables implementing new interactive
methods and reusing previously implemented ones and their functionalities. Both scalarization-based and
evolutionary methods are supported, and DESDEO allows hybridizing interactive methods of both types in
novel ways and enables even switching the method during the solution process. Moreover, DESDEO also
supports defining multiobjective optimization problems of different kinds, such as data-driven or simulation-
based problems. We discuss DESDEO’s modular structure in detail and demonstrate its capabilities in four
carefully chosen use cases aimed at helping readers unfamiliar with DESDEO get started using it. We also
give an example on how DESDEO can be extended with a graphical user interface. Overall, DESDEO offers
a much-needed toolbox for researchers and practitioners to efficiently develop and apply interactive methods
in new ways – both in academia and industry.

INDEX TERMS Data-driven multiobjective optimization, evolutionary computation, interactive methods,
multi-criteria decision making, nonlinear optimization, open source software, Pareto optimization.

I. INTRODUCTION
Optimization in many real-life problems is typically char-
acterized by several conflicting objectives to be consid-
ered simultaneously. In these multiobjective optimization
problems, the presence of conflicting objectives results in
many so-called Pareto optimal solutions with different trade-
offs instead of a single optimal solution. These solutions
are incomparable without additional information. Therefore,
there is a need for a domain expert, referred to as a decision
maker (DM), to ultimately choose one of the Pareto optimal
solutions as the final one based on his/her preferences.

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

Different types of methods have been developed for solv-
ing multiobjective optimization problems in the multiple
criteria decision making (MCDM) (e.g., [1]–[3]) and evo-
lutionary multiobjective optimization (EMO) (e.g., [4], [5])
communities. Most MCDM methods incorporate a DM’s
preferences to focus on subsets of the Pareto optimal solutions
reflecting the interests of the DM. These methods have a
strong theoretical background and can guarantee Pareto opti-
mality (see, e.g., [3]). Most MCDM methods use so-called
scalarization or scalarizing functions to transform the origi-
nal multiobjective optimization problem with the preference
information into a scalarized problem (with a single objec-
tive) to be optimized. After this transformation, an appropri-
ate single-objective optimizationmethod is to be used to solve
the scalarized problem. By carefully selecting the scalarizing
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function, one can guarantee getting a Pareto optimal solu-
tion for the original problem so that the DM’s preferences
are considered. With different preferences, one can typically
get different Pareto optimal solutions. For comparisons of
different scalarizing functions, see, e.g., [6], [7]. In contrast,
EMO methods handle a population of solutions at a time and
generate several approximated Pareto optimal solutions to
represent different Pareto optimal solutions. They often start
from a random set of solutions and use different selection,
mutation and recombination operators to create the next gen-
eration of solutions. Because of their heuristic nature, they
cannot guarantee Pareto optimality, but they can be applied to
challenging problems with, e.g., discontinuous or nonconvex
functions.

One can classify different multiobjective optimization
methods based on when a DM with preference information
takes part in the solution process [1], [3]. A no preference
method is applied in absence of preferences. The DM may
provide his/her preferences before or after the solution pro-
cess in a priori or a posteriori methods, respectively. In a pri-
ori methods, theDMprovides hopes and expectations, and the
method tries to find the best matching solution. In contrast,
a representative set of Pareto optimal solutions is generated
in a posteriori methods for the DM to choose from.

The fourth class of methods, known as interactive multi-
objective optimization methods, involves the DM during the
solution process. In this way, the DM iteratively provides
his/her preferences while gradually gaining further insight
into the problem and learning about hidden limitations such
as the feasibility of the preferences and attainable solu-
tions [8]. Therefore, the DM has a chance to modify his/her
preferences based on new insight and learning. Moreover,
the cognitive load set on the DM (at a time) is usually
low compared to other methods, e.g., a posteriori methods.
Indeed, the DM can focus the search on a subset of solutions
and only consider Pareto optimal solutions of interest. This
also saves computational resources. Because of these reasons,
we consider here interactive methods. As mentioned, they
consist of iterations. At each iteration, the DM sees a solution
or some solutions reflecting the provided preferences and can
adjust the preferences to eventually find the most preferred
solution. Thanks to learning, the confidence of the DM grows
during the solution process.

The DM can provide various types of preference informa-
tion. Examples of them include so-called reference points
whose components represent desired values for objective
functions (also called aspiration levels), ranges for acceptable
objective function values, classification, pairwise compar-
isons and selecting desired or undesired solutions out of a
subset, to name a few (see, e.g., [3], [9]).

Over the years, different interactive methods have been
developed in the literature, and they have shown their poten-
tial in various applications, see, e.g., [10]. They differ
from each other mainly in terms of preference informa-
tion used, how solutions reflecting preferences are gen-
erated, and what kind of information is provided to the

DM [3], [8], [11]. However, their implementations are done
in isolation, and they are not readily available. Even though
most interactive methods utilize similar components (such
as types of preference information, scalarizing functions,
sampling techniques), each method has a different way
of implementation. These issues slow down the practical
usage of interactive methods from different perspectives
and introduces various challenges, which we have listed as
follows:

1) It is not easy to find implementations of different inter-
active methods to be applied.

2) Identifying the most suitable interactive methods to be
used in various real-life applications is challenging.

3) Comparing interactive methods is difficult because of
the lack of having various interactive methods within
the same framework.

4) Utilizing the implemented methods or some parts of
their implementation in new developments is hard,
so every new construction needs to be started from
scratch.

5) The lack of openness limits applicability.
6) The iterative nature of the interactive methods, together

with some standard components, enables switching
between methods in different iterations of the solution
process, at least in theory. Nonetheless, separate imple-
mentations have been preventing the chance of testing
this exciting idea.

To the best of our knowledge, only one framework has
been developed for interactive methods, which, to some
extent, aims to address the listed issues. It is the so-called
DESDEO framework [12]. However, the version discussed
in [12] had practical issues in its implementation, overall
structure, and modularity and was, thus, not ready for broader
usage and extensions. For these reasons, there was a need to
first re-structure and then to re-implement a new DESDEO
framework, which is introduced in this paper. The new frame-
work has a clear potential in addressing all the six listed
challenges.

The newDESDEO framework implemented in Python [13]
has a modular structure and , thus, involves reusable modules
that can be utilized for implementing new interactivemethods
or modifying the existing ones. DESDEO enables solving
computationally expensive simulation-based and data-driven
problems using surrogate models, including uncertainty con-
siderations. It contains implementations of several old and
new interactive methods by various developers covering
methods of bothMCDM and EMO types. Thanks to the mod-
ular structure, new or revised methods can be conveniently
included in the framework.

DESDEO consists of packages and modules. We introduce
them and also demonstrate how DESDEO can be applied
to solve problems with analytical expressions as well as
data-driven and simulation based problems. The strengths of
DESDEO include the option to hybridize scalarization based
and evolutionary methods and the convenience of comparing
different methods in the same environment. For instance,
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there is no need to specify the problem to be solved for each
method separately.

The modular structure enables hybridization between dif-
ferent types of methods. By hybridization, we mean the
ability to use final or intermediate results of one method
in another method, such as generating approximated Pareto
optimal solutions utilizing an EMO method and using the
solutions in an MCDMmethod or switching the method dur-
ing the solution process, e.g., when the DM wants to change
the type of preference information. This opens up new oppor-
tunities for utilizing different features of various methods
while the DM is not limited to using only one method or one
type of preferences. Various visualizations and a graphical
user interface are also being developedwith a similar modular
structure in mind. The methods implemented in DESDEO
can be utilized by anyone who has basic programming skills
in Python, which has become a widely-used programming
language in data and business analytics. Since the framework
is open source, it is readily available for various applica-
tions and can be conveniently tailored for different problems,
if needed. It is naturally also open to new contributions and
anybody interested is welcome to contribute.

The rest of the paper is structured as follows. In Section II ,
we outline the general concepts and notations of multiobjec-
tive optimization that we use in this paper, briefly review the
related open source frameworks for multiobjective optimiza-
tion in the literature, and overview some interactive methods
(referred to in this paper). Section III is targeted at readers
interested in contributing to the development of DESDEO.
For this, the framework structure introducing packages, mod-
ules, and external dependencies is described in detail. Those
who only wish to apply the framework for solving multiob-
jective optimization problems can skip Section III and focus
on four diverse illustrative use cases outlined in Section IV.
In Section IV, we also give a basic example of a graphical
user interface that can be implemented to ease interaction
between the interactive methods in DESDEO and the DM.
In Section V, we discuss the potential of the modular frame-
work, such as adjusting or hybridizing methods and creat-
ing user interfaces for various interactive methods. Finally,
we conclude in Section VI.

II. BACKGROUND
In this section, we first introduce the main notation and
concepts used in this paper. We then survey the state-of-
the-art of open source software frameworks available for
multiobjective optimization. Finally, we very briefly outline
some of the interactive methods referred to in the use cases
considered in Section IV.

A. MULTIOBJECTIVE OPTIMIZATION
We consider the following form of multiobjective optimiza-
tion problems minimizing k ≥ 2 objective functions [3]:

min f(x) = (f1(x), . . . , fk (x))

s.t. x ∈ S, (1)

where fi : S → R (i = 1, . . . , k) are objective functions
and x = (x1, . . . , xn)T is a vector of n decision variables in
the feasible region S ⊂ Rn defined by constraint functions.
Without loss of generality, we here assume that all functions
are to be minimized. If some function fi is to be maximized,
it is equivalent to minimize −fi.

A decision (variable) vector x∗ ∈ S is called Pareto optimal
if there exists no x ∈ S, so that for all i, fi(x) ≤ fi(x∗)
and for some j, fj(x) < fj(x∗). The image of Pareto optimal
decision vectors in the objective space Rk is called a Pareto
front and it consists of Pareto optimal objective vectors. In the
definition of Pareto optimality, a solution is not dominated
by any other feasible solution. As we deal with evolutionary
methods that cannot guarantee Pareto optimality, we also use
the term nondominated solutions. They are not dominated by
any solution in the solution set considered (typically referred
to as a population), but are not necessarily Pareto optimal.

The best and the worst possible values of objective func-
tions in the Pareto front are represented by an ideal and a nadir
point, respectively. The components of the ideal point can
be calculated by optimizing each objective function subject
to S as a single-objective optimization problem. In contrast,
computing the nadir point is difficult in practice as the set
of all Pareto optimal solutions is unknown. However, some
methods (e.g., a payoff table [14]) are available that can
approximate the nadir point (see e.g., [3] and references
therein).

B. DATA-DRIVEN MULTIOBJECTIVE OPTIMIZATION
As mentioned in the introduction, DESDEO can be applied
to solve different types of multiobjective optimization prob-
lems. Typically, the analytical forms of objective functions
and constraints cannot be formulated in most real-life prob-
lems. In some cases, simulation models can be used to
evaluate function values. In other cases, the objective or con-
straints values must be gained from some real experiences (or
laboratory experiments). In either case, evaluating the func-
tion values is usually expensive from different perspectives.
Therefore, so-called surrogate models can be utilized instead
of the original expensive models or experiments.

On the other hand, in today’s digital societies, various data
from different sources are continuously recorded, which can
be used as a new source of information in decision making.
Making the most of the data available can lead to data-driven
optimization problems. In this case, no other information than
the data is available, giving no other option than fitting surro-
gate models to formulate functions for optimization problems
based on the data. Then, surrogate models approximate the
objective or constraint values.

Different types of surrogate models, such as probabilistic
(e.g., Bayesian network [15] andMarkov chain Monte Carlo)
or machine learning techniques (e.g., radial basis func-
tions [16], Kriging or Gaussian processes [17], [18], support
vector regression [19], and neural networks [20], [21]) exist
and can be utilized to derive functions for multiobjective
optimization problems. Most of these techniques are freely
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available in different Python packages and libraries, which
can be used within the DESDEO framework.

C. LITERATURE REVIEW ON OPEN SOURCE
FRAMEWORKS FOR MULTIOBJECTIVE
OPTIMIZATION
Wehave surveyed open source frameworks for multiobjective
optimization problems. We do not consider closed source
and commercial software implementations because they do
not provide an opportunity to adjust the methods to one’s
needs in the way open source software does. Several open
source software frameworks have been proposed in the lit-
erature. Each of them has its own strengths and limitations
and differs in some nuances from the others. In general, many
aspects should be considered when selecting an appropriate
framework for one’s needs. For example, familiarity with the
programming language used to implement the framework, the
characteristics of the problem to be solved, the availability
of visualization tools, and an exemplary user interface can
influence the selection of a framework.

Table 1 summarizes well-known open source frameworks
proposed for solving multiobjective optimization problems.
We also list some common frameworks with a modular struc-
ture, where multiobjective optimization methods can be cre-
ated. Besides the name and the programming language used,
the table lists whether the frameworks focus onmultiobjective
optimization, includeMCDMor EMO types of methods, pro-
vide a decision-making mechanism where a DM can provide
his/her preference information and choose the most preferred
solution, visualization tools, and a user interface. The table
also states whether the framework has a modular structure
or not. In the following, we briefly describe each of the
frameworks.

DEAP [22] and Inspyred [23] do not focus specifically
on multiobjective optimization but provide Python imple-
mentations of e.g., genetic algorithms, simulated annealing,
and differential evolution. The (a posteriori) EMO method
NSGA-II for multiobjective optimization is also included.
Since these two frameworks have been developed with a
modular structure, moremultiobjective optimizationmethods
can be developed by using the modules available in the
framework. Inspyred includes further nature-inspired opti-
mization algorithms such as particle swarm optimization and
ant colony optimization.

vOptSolver [24] has been implemented in the Julia lan-
guage. It integrates several exact algorithms for multiobjec-
tive linear optimization problems (including mixed-integer
problems).

Platypus [25] involves Python implementations of several
well-known EMO methods concentrating, thus, on multi-
objective optimization. It also includes an analysis tool for
visual comparison of EMO methods by applying some per-
formance indicators.

MOEA [26] is a Java-based framework that enables auto-
matic parallelization of methods across multiple processor

cores. It includes most of the state-of-the-art a posteriori
EMO methods.

PyGMO [27] is a Python extension of PaGMO (C++) [28]
which has implementations of a variety of single- and mul-
tiobjective optimization methods and real-life engineering
problems in an object-oriented architecture. Automatic par-
allelization of the implemented methods enables using the
underlying multicore architecture efficiently.

jMetalPy [29] extends the Java-based framework
jMetal [30] (which contains metaheuristic methods like evo-
lutionary methods) for multiobjective optimization to be used
in Python. jMetalPy provides improved data analysis, interac-
tive visualization of Pareto optimal solutions, and increased
computational performance by applying libraries available in
Python. Additionally, jMetalPy facilitates parallel computing
for computationally expensive problems.

Pymoo [31] is a multiobjective optimization framework in
Python and offers evolutionary methods for single- and mul-
tiobjective optimization problems. It involves several visu-
alization techniques for illustrating results and well-known
indicators to compare the performance of the methods.

Finally, PlatEMO [32] is an open source framework
developed in MATLAB including many EMO methods,
widely used performance indicators, and benchmark prob-
lems. It also has a graphical user interface. However, one
should note that even though the implementation is openly
available, a MATLAB license is required to use it. There-
fore, while being commercial software, PlatEMO still allows
adjusting its implementation to meet specific needs.

The frameworks mentioned so far do not contain inter-
active methods. They include either MCDM or EMO types
of methods, but not both, and only one of the frameworks
comes with a user interface. As this summary shows, overall,
DESDEO is unique since it is the only open source frame-
work including interactive methods. Thus, DESDEO fills
a gap in the software available in the multiobjective opti-
mization community. DESDEO has a clear modular structure
making it easy for users and developers to contribute new
contents. Importantly, DESDEO involves both MCDM and
EMO types of methods, enabling hybridizing and switching
between methods depending on needs and application areas.
Moreover, elements for building custom graphical user inter-
faces for efficient interaction between the DM and interactive
methods are a planned future inclusion in DESDEO. These
elements are currently under active development and are to
be included as additional packages in DESDEO eventually.
Therefore, visualization and user interface (UI) items for
DESDEO are in parentheses in Table 1 for the time being.
However, specialized non-modular graphical user interfaces
have been developed for DESDEO in the past as seen in
Section IV-F.

D. SOME INTERACTIVE METHODS IMPLEMENTED
As mentioned earlier, different interactive multiobjective
optimization methods have been implemented in DESDEO.
In this section, we briefly introduce a few that are utilized
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TABLE 1. Summary of open source optimization frameworks. In the table, MO stands for multiobjective optimization.

later in Section IV: the reference point method [33], the
synchronous NIMBUS method [34] and the NAUTILUS
family [35] (particularly E-NAUTILUS [36] ) from MCDM
methods, and RVEA [37] and NSGA-III [38] from EMO
methods.

The reference point method [33] is a popular interactive
multiobjective optimization method in which the DM pro-
vides preferences as desired objective function values consti-
tuting a reference point. Then, at each iteration, k + 1 Pareto
optimal solutions reflecting the reference point are found by
utilizing an achievement scalarizing function. The DM can
iterate (i.e., compare solutions and provide new reference
points) until the most preferred solution is found.

In NIMBUS, starting from a Pareto optimal solution, a DM
expresses his/her preferences by classifying the objective
functions corresponding to the Pareto optimal solution into
up to five preference classes to indicate how the current
objectives should change to be more preferable to the DM.
In each iteration of NIMBUS, based on the DM’s preferences,
1–4 Pareto optimal solutions are generated and shown to the
DM (the DM decides how many new solutions (s)he wants to
see). Besides classification, the DM can ask for the desired
number of solutions generated between any two Pareto opti-
mal ones. Like other interactive methods, the solution process
continues until the DM has found his/her most preferred
solution.

The NAUTILUS family [35] contains interactive trade-
off-free methods. This means that the DM does not deal
with Pareto optimal solutions but gradually approaches the
Pareto front starting from an inferior solution (like a nadir
point). Then, following the DM’s preferences, all objectives
are simultaneously improved until a Pareto optimal solution is
reached. During the solution process, the ranges of objective
function values that still can be reached without trading-off
naturally shrink. Once a Pareto optimal solution is reached,
the solution process stops since it is no longer possible to pro-
ceed without trading-off. NAUTILUS variants vary regarding
the types of preference information used and how solutions
are generated in each iteration (see [35] for a comparison
of the differences). For example, in each iteration of the
original NAUTILUS [39] method, the DM ranks the objective

functions based on the preferred improvement of the current
objective values. In contrast, in NAUTILUS 2 [40], ratios of
improvement are provided by the DM. In E-NAUTILUS [36],
which is particularly developed for handling computationally
expensive problems, the DM can compare multiple solutions
(referred to as intermediate points) at each iteration. Finally,
NAUTILUS Navigator [41] integrates NAUTILUS with nav-
igation ideas [42], where the DM sees ranges of objective
function values that are still reachable from the current itera-
tion point shrinking in real-time and provides preferences as
desired aspiration levels and bounds not to be exceeded.

Besides MCDM type of methods, various interactive EMO
methods have also been developed and implemented in
DESDEO. They include interactive versions [43] of the ref-
erence vector-guided evolutionary algorithm (RVEA) [37]
and NSGA-III [38]. RVEA and NSGA-III are originally a
posteriori methods. The interactive version of NSGA-III has
been implemented, corresponding to how RVEA was made
interactive in [43]. The main type of preference information
used in both is a reference point, but other preference types
are also available for RVEA.

III. STRUCTURE OF THE DESDEO FRAMEWORK
In this section, we describe the structure of the DESDEO
framework, including packages of the framework and the
modules in each package. In addition, we discuss the purpose
of each package and its dependencies. We also consider the
implementation of the DESDEO framework and its external
dependencies. Lastly, we discuss the architectural choices
made in DESDEO that any aspiring developer and user of
the frameworks should be aware of. This section is intended
mostly for those interested in contributing to the framework’s
development. Those interested only in utilizing the frame-
work for solving multiobjective optimization problems may
proceed to Section IV.

A. PACKAGES AND MODULES
In the modular structure of DESDEO, each package is a
collection of modules, which contain class and function
definitions to tackle specific tasks in modeling and solving
multiobjective optimization problems interactively. The main
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packages, called core packages, and their individual modules
are presented in Figure 1. Each package has a well-defined
purpose and is built to address a certain set of tasks in interac-
tive multiobjective optimization methods. The modules may
depend on other packages lower in the structure, as shown in
Figure 2.

FIGURE 1. The main structure of the DESDEO framework with packages
and modules included in each package. Further packages and modules
can be added as needed.

FIGURE 2. The packages of DESDEO and their dependencies on each
other.

In Figure 2, the arrows represent the internal dependen-
cies of packages in DESDEO, e.g., the package desdeo-emo
depends on both the packages desdeo-tools and desdeo-
problem. A modular structure allows users to choose which
parts of the framework to use. For example, to model a
multiobjective optimization problem, one can use the desdeo-
problem package and avoid the needless inclusion of the other

packages. Additionally, having the framework structured in
a modular fashion eases the development of the framework
by encapsulating features and functionalities related to inter-
active multiobjective optimization in their own respective
packages.

In what follows, we describe packages included in
DESDEO and their dependencies on other packages. The
packages also depend on existing popular Python packages,
which are discussed further at the end of this section.

The desdeo-problem package contains features related to
the formulation and modeling of multiobjective optimiza-
tion problems. Problems can be analytical expressions of
functions depending on decision variables, or modeled based
on collected data related to the multiobjective optimization
problem (either utilizing data available or data obtained
by running a problem-specific simulator). The problem can
naturally also have constraint functions defining a feasible
region. Tools for problem formulation can be found in the
module problem. As already mentioned, surrogate models
may be trained and used to model functions of a multiob-
jective optimization problem based on data. For example,
Gaussian regression is available as a surrogate model but
any other machine learning-focused package can be used to
train surrogate models. The tools for building surrogates can
be found in the surrogatemodels module. Moreover, com-
monly utilized test problems in multiobjective optimization
can be found in the testproblems module. Such problems
include, for example, the DTLZ problems [44]. The desdeo-
problem package does not depend on any other package in the
DESDEO framework.

The desdeo-tools package contains utility tools that are
expected to be used during any phase of the optimization
process, irrespective of the method type (MCDM or EMO)
used for optimization. Such tools include abstractions for var-
ious preference elicitation techniques, scalarizing functions,
and nondominated sorting. The interaction module contains
methods to ease interaction between a DM and an interac-
tive multiobjective optimization method. The scalarization
module contains scalarization tools for transforming multi-
objective optimization problems into single-objective prob-
lems (incorporating preference information). As mentioned
in the introduction, we can get Pareto optimal solutions by
using appropriate scalarization functions, such as achieve-
ment scalarizing functions [45] and the scalarization function
of the ε-constraint method [2]. The maps module contains
tools for transforming objectives from one space to another,
such as e.g., the so-called preference incorporated space [46].
Finally, the solver module contains tools for solving scalar-
ized problems. These solversmust be appropriate for the char-
acteristics of the problem in question (considering, e.g., the
type of variables and the nature of functions involved). The
desdeo-tools package does not depend on any other package
in the DESDEO framework.

The desdeo-emo package is the repository of evolutionary
algorithms (EAs) and tools which are specifically used with
EMO methods. Besides interactive EMO methods, it has
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implementations of basic (a posteriori) EMO methods and
some a priori methods as they can be used as elements
of interactive ones. The package contains the following
modules: population, recombination, selection, EAs, surro-
gatemodelling, and utilities. The first three modules con-
tain abstractions representing the population, crossover and
mutation operators as well as selection operators. We use
these abstractions as building blocks to implement various
evolutionary algorithms in the EAs module. New EAs can be
implemented by either modifying the implementations in the
EAs module or by using the building blocks in other mod-
ules in entirely new ways. The surrogatemodelling module
implements certain EA based methods which are specifically
designed to train surrogate models. Finally, utilities contains
miscellaneous tools that are used by one or more EMOmeth-
ods, but do not fit in the other modules. The desdeo-emo
package depends on the desdeo-problem and desdeo-tools
packages.

As the name suggests, the desdeo-mcdm package con-
tains implementations of interactive multiobjective optimiza-
tion methods of the MCDM type (involving scalarization
functions to generate Pareto optimal solutions). The meth-
ods themselves are in the interactive module. For example,
the synchronous NIMBUS and methods belonging to the
NAUTILUS family are implemented in this module. The
utilities module contains various utilities often needed in
MCDM methods. For instance, the utilities include a payoff
table method for computing an ideal and an approximation
of the nadir point. The desdeo-mcdm package depends on the
desdeo-problem and desdeo-tools packages.

Besides the core packages of DESDEO discussed so far,
other packages can be, and have also been, developed based
on the packages discussed. Examples of these packages
consist of specialized graphical UIs and new experimental
interactive multiobjective optimization methods not mature
enough to be included in DESDEO yet. Due to their experi-
mental nature, we will not discuss these additional packages
further here.

As mentioned, the DESDEO framework has been imple-
mented in Python and is available online as open source
software on GitHub.1 The framework makes use of exist-
ing Python libraries in the SciPy ecosystem, most notably
NumPy [47], SciPy (the library) [48] and Pandas [49].
NumPy offers numerically efficient data structures, which
enables an efficient handling of array-like structures present
everywhere in the DESDEO framework. SciPy offers exist-
ing computational routines. For example, it offers excellent
optimization routines for optimizing constrained problems
with a single objective. As mentioned, this kind of problem
emerges, for instance, when scalarizing a multiobjective opti-
mization problem. In turn, Pandas has excellent and efficient
data manipulation routines. They are needed especially when
representing data-driven multiobjective optimization prob-
lems, which may sometimes consist of large amounts of data

1https://github.com/industrial-optimization-group/DESDEO

requiring extensive feature engineering before modeling a
multiobjective optimization problem.

For a more detailed description of each package and
module found in DESDEO, the reader is encouraged to
check DESDEO’s main documentation. The documenta-
tion is found online (https://desdeo.readthedocs.io/en/latest/)
where the individual documentation of each core package can
be found with additional details about implemented classes
and functions.

B. ARCHITECTURAL DECISIONS IN DESDEO
A couple of choices have been made during the development
of DESDEO. The user of the framework should keep them in
mind while developing or using the framework.

As mentioned in Section II, objective functions in mul-
tiobjective optimization problems can either be minimized
or maximized, but within the optimization methods in
DESDEO, functions are always assumed to be minimized.
This means that we convert functions to be maximized to
functions to be minimized and internally only deal with mini-
mization problems. This choice has been made to remove any
possible software bugs, confusion, and guesswork related to
keeping trackwhether an objective is to beminimized ormax-
imized, transforming problems from one type to another, and
parsing preference information. Naturally, when displaying
information related to a multiobjective optimization problem
and its solutions to a DM, the objectives are presented in their
original form. The task of making the conversion whenever
needed (also in the preference information) is the responsi-
bility of the UI.

As interactive multiobjective optimization methods vary in
the type of interaction and preference information required
from the DM, abstraction of interaction has been kept simple
and non-restrictive in DESDEO. Each interactive method
has at least two (object) methods: start and iterate.
As the name suggests, the former is always used to start a
method after it has been instantiated. Likewise, theiterate
method is then used for any subsequent interactions after
starting the method. Both the start and iterate meth-
ods return at least one request (Python) object. These
objects contain all the necessary information to carry out
a required interaction with the interactive method in their
content attribute, which is a Python dictionary. The con-
tents of a request may vary depending on the interactive
method, but each content dictionary in DESDEO comes
at least with a message entry meant to give a hint to
the user of what is expected of them interaction-wise. Each
request object has a response attribute, which is also
a dictionary. The response dictionary has its own entries,
which the user must define to continue iterating the interac-
tive method. After the entries of the response have been
defined, theiteratemethod can be invoked by giving it the
request containing the responsewith defined entries as
an argument. The iterate method will then return a new
request. Examples of this request-response struc-
ture can be found in the use cases in Section IV. However,
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it is not expected that a DM oneself would directly handle
these Python dictionaries. Instead, it is expected that some
external interface is used to facilitate interaction between a
DM and DESDEO. The request and response should
be mainly used to store and communicate information to and
from interactive methods available in DESDEO.

IV. USE CASES
In this section, we demonstrate how one can use the DESDEO
framework to define different types of problems and solve
them by applying interactive multiobjective optimization
methods. For simplicity, we use a river pollution problem
with five objective functions and two decision variables
presented in Section IV-A. In Section IV-B, we describe
how to define a problem with an analytical formulation and
solve it using the synchronous NIMBUS method [34]. This
method is in the desdeo-mcdm package and incorporates
classification types of preferences. Section IV-C is devoted
to defining and solving a data-driven problem. The inter-
active RVEA [43] method in the desdeo-emo package is
applied, where preference information is given as a reference
point. In Section IV-D, we consider some challenges of com-
putationally expensive problems and follow the three-stage
approach [50], where first, NSGA-III is utilized in a pre-
decision-making stage to generate nondominated solutions.
Then, a computationally inexpensive surrogate problem is
formed. In the decision-making stage, the DM applies the
interactive E-NAUTILUS [36] method to solve the surrogate
problem. There can also be a post-decision-making stage to
assure the Pareto optimality of the final solution. Here we
consider the first two stages as a hybrid way of using methods
within the DESDEO framework. Lastly, in Section IV-E we
demonstrate how the DM can switch interactive methods in
DESDEO to express his/her preferences in different ways.
This example also illustrates some of the advantages the
DESDEO environment provides. Finally, we discuss some
graphical user interfaces in Section IV-F.

Asmentioned, themain documentation ofDESDEO can be
found online (https://desdeo.readthedocs.io/en/latest/). The
documentation of each core package discussed in Section III,
can be readily accessed through the main documentation.
We advice the reader to check the documentation for any
additional details related to the use cases considered in
Sections IV-B, IV-C, IV-D, and IV-E. The examples shown
in these sections can also be found online in a Jupyter
Notebook.2

A. THE RIVER POLLUTION PROBLEM
The river pollution problem [51] considers a river close to a
city. There are two sources of pollution: industrial pollution
from a fishery and municipal waste from the city and two
treatment plants (in the fishery and the city). The pollution
is reported in pounds of biochemical oxygen demanding

2https://desdeo.readthedocs.io/en/latest/notebooks/four_simple_use_
cases.html

material (BOD), and water quality is measured in dissolved
oxygen concentration (DO).

Cleaning water in the city increases tax rate, and cleaning
in the fishery reduces the return on investment. The problem
is to improve the DO level in the city and at the municipality
border (f1 and f2, respectively) while, at the same time, max-
imizing the percent return on investment at the fishery (f3)
and minimizing addition to the city tax (f4). We consider a
variant of the problem [52] with one more objective to ensure
the treatment plants’ efficiency by keeping the proportional
amount of BOD removed from the water close to the ideal
value of 0.65 (f5). The corresponding multiobjective opti-
mization problem where all objectives have been converted
to be minimized is as follows:

min f1(x) = −4.07− 2.27x1
min f2(x) = −2.60− 0.03x1 − 0.02x2

−
0.01

1.39− x21
−

0.30

1.39− x22

min f3(x) = −8.21+
0.71

1.09− x21

min f4(x) = −0.96+
0.96

1.09− x22
min f5(x) = max{|x1 − 0.65|, |x2 − 0.65|}

s.t. 0.3 ≤ x1, x2 ≤ 1.0, (2)

where the proportional amounts of BOD removed from water
in the two treatment plants are, respectively, the decision
variables x1 and x2.

B. USE CASE 1: PROBLEM WITH AN ANALYTICAL
FORMULATION
DESDEO has good support for defining and optimizing
problems with analytical formulations. DESDEO provides
individual classes to define components of problem (1),
i.e., objective functions, variables, and constraint functions
separately. Box-constraints for variables are also supported.

Here we analytically define (2) and use modules of the
desdeo-problem package and NumPy. The imports needed
are shown in Source code 1. Notice that this problem has only
box-constraints.

SOURCE CODE 1. Needed imports for a problem defined analytically. The
class MOProblem is used to define a problem, the class Variable its
decision variables, and the class ScalarObjective the objective
functions.

We define the five objective functions as shown in Source
code 2 as individual functions. These functions are expected
to return a 1-dimensional NumPy array with each element
representing the respective objective value when evaluated
with one or more decision variable vectors. These decision
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variable vectors are stored in 2-dimensional NumPy arrays,
with each row representing a single vector. The defined
functions are then used in the ScalarObjective class to
instantiate new objects. Finally, each of the objects is stored
in a list.

SOURCE CODE 2. Defining the objective functions of problem (2).

The variables of the problem are defined similarly in
Source code 3. EachVariable object is instantiated by pro-
viding the variable’s name, initial value, and lower and upper
bound (i.e., box-constraints). The objects are then stored in a
list.

SOURCE CODE 3. Defining the variables and their bounds for problem (2).

Finally, we define the multiobjective optimization problem
by instantiating an MOProblem object in Source code 4
using the lists of ScalarObjectives and Variables
defined earlier. If the problem had additional constraints, they
would be defined in a similar way to objective functions
and provided as a third argument (constraints) to the
initialization method of the MOProblem class. However,
here we only have box-constraints, which were accounted for
when defining the variables in Source code 3.

As mentioned, we solve problem (2) in this case with the
synchronous NIMBUS method [34]. Since it needs the ideal

SOURCE CODE 4. Defining the multiobjective optimization problem
object of problem (2).

and nadir points, we approximate them with the payoff table
method found in the desdeo-mcdm package’s utilitiesmodule
in Source code 5.We store them inside the object defining our
problem to have easy access to them later.

SOURCE CODE 5. Applying the payoff table method to get
approximations of the ideal and nadir points.

SOURCE CODE 6. Instantiating a NIMBUS object and invoking its start
method. The start method returns two requests of which the second
one is irrelevant to this example and is therefore matched to an
underscore on line 5.

We can now start solving problem (2) using NIMBUS
as shown in Source code 6. After importing the NIMBUS
class, we instantiate an object of it by providing it
mo_problem, which was defined earlier. The start
method returns a classification_request, which is
used to interact with the method as described in Section III-B.
The message-entry found in the content attribute of
classification_request is printed in Console 1.
We remind the reader that in practice, a UI should han-
dle requests. An example of such can be found in
Section IV-F.

CONSOLE 1. The message printed in the request returned by NIMBUS.

As seen in Console 1, we have been provided with instruc-
tions on how to proceed. The content of the response,
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CONSOLE 2. The objective values of the initial solution computed by
NIMBUS, and the ideal and nadir points of the problem.

in the case of NIMBUS, also contains objective vectors,
which we can inspect by printing them as done in Console 2.

SOURCECODE 7. Defining a response with preference information
required by NIMBUS, and then iterating. Newly computed objective
vectors are then printed.

We then define a response in Source code 7 con-
taining preference information, in this case, classifications,
and continue iterating by invoking the iterate method of
NIMBUS. The new objective vectors computed in the first
iteration of NIMBUS are shown in Console 3.

CONSOLE 3. The objective vectors computed by NIMBUS based on the
classification given by the DM.

Iterations of the NIMBUS method may continue by defin-
ing new responses to the requests returned by subse-
quent invocations of the iteratemethod. According to the
definition of NIMBUS [34] the subsequent requests can
also prompt the DM to choose previously computed solutions
between which to compute additional solutions, or to select
previously computed solutions to be saved into an archive
for later viewing, for example. How each of the requests
is handled in practice and how information is displayed to
the DM depends on the choice of a UI, as stated before.
Here, we have only shown the information in textual format
to showcase the concepts of requests and responses,
which can be found in other interactive methods defined in
DESDEO as well.

C. USE CASE 2: DATA-DRIVEN PROBLEM
As mentioned, the DESDEO framework can be used to solve
data-driven problems by fitting surrogate models to the data.

This means that the data is assumed to contain samples of
decision variable values, and corresponding objective vectors
and surrogate models are fitted to represent each objective
function individually. To demonstrate this, in this use case,
we assume that we only have access to a small number of
data points generated before the initiation of the solution
process. We have generated data points for problem (2) by
sampling the feasible region in the decision space using
Latin hypercube sampling [53], and evaluated them using
the analytical functions to obtain the corresponding objective
vectors. A total of 100 points were sampled and the resulting
data set saved on disk. The structure of the dataset is shown in
Table 2, where the first row contains the names of the columns
(decision variables or objectives).

TABLE 2. Format of the raw data used for surrogate-assisted
optimization.

SOURCECODE 8. Formulating the problem using data.

We formulate the problem as shown in Source code 8. The
Pandas package is used for importing and handling the data as
shown in line 5 with the variable training_data. We can
now define the problem by instantiating a DataProblem
object. This is done by passing training data, names of the
decision variables and the objective functions, and the lower
and upper bounds of the decision variables. If these bounds
are not provided, the infimum and supremum of the dataset
are assumed to be the bounds.

In Source code 9, we show how the newly created
DataProblem object can be used to train surro-
gate models for the objectives. We begin by import-
ing the surrogate modeling technique of choice. Here,
we use the GaussianProcessRegressor class from
desdeo_problem, which is a wrapper around the scikit-
learn class of the same name. Similar wrappers can be defined
for other options of existing surrogate models. The modeling
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SOURCECODE 9. Training Gaussian process regression surrogate models
for the objectives.

algorithm and model parameters can be passed to the train
method of the DataProblem object, which automatically
trains the surrogate models for all objectives. Details about
advanced use cases of the train method, such as training
different kinds of surrogate models for different objectives,
can be found in the documentation of desdeo-emo. More
information about the model parameters is available in the
documentation of the package of the model used, in this case,
scikit-learn.

Once the surrogate models have been trained, we apply
here the interactive RVEA method from the desdeo-emo
package to solve the resulting problem using reference points
as preference information. In Source code 10, we pass
the problem variable as the first argument to the RVEA
instance. This is followed by two Boolean arguments:
interact=True and use_surrogates=True. The
first argument enables the use of an interactive version of
RVEA as presented in [43]. The second argument enables
RVEA to use the surrogate models as objectives in place
of analytical functions. Details about other arguments which
control various aspects of the evolutionary method can be
found in the documentation of desdeo-emo.

SOURCECODE 10. Using interactive RVEA to solve the surrogate problem.

We begin the interactive solution process by providing
the first reference point to evolver. This is done by
first calling the request method of evolver, which
returns refp_request and additional requests, irrele-
vant in this example, matched to underscores. This is sim-
ilar to the requests returned by the start method of
nimbus in the previous subsection. The refp_request
variable accepts preferences as a reference point. Similar to
classification_request in the previous subsection,
this object also has a content method and a response
attribute. The comment on line 11 in Source code 10

signifies the DM providing preferences to refp_request.
As mentioned in the previous subsection, this can be
achieved by a command-line interface, a graphical UI,
or by using a console environment, like IPython or Jupyter
Notebook.

In Console 4, we show how preferences can be defined.
The content attribute of refp_request can be shown
to the DM to describe the acceptable ranges of the pref-
erences (here, ranges for aspiration levels as components
of the reference point) and how the preference information
will be utilized in the method used. The DM then provides
preferences to the response attribute of refp_request
using a Pandas data frame. The names of the columns of
this data frame have to be the same as the objective function
names, and the values contained in the data frame reflect
the preferences of the DM in the form of a reference point.
The preference information can then be submitted to the
iterate method of the evolver object to run one iteration
of interactive RVEA. This involves running the evolutionary
method for a number of generations. This number can be
changed by the user using arguments of the RVEA class, and
the details can be found in the documentation.

CONSOLE 4. Checking the contents of the preference request object and
saving the DM’s preferences using a console environment.

After each iteration, the solutions generated can be
accessed through the individuals and objectives
attributes of evolver.population. The former con-
tains the decision variable vectors of the set of solutions,
whereas the latter contains the corresponding set of objective
vectors. The solutions received after one iteration of RVEA
are shown in Figure 3 in the parallel coordinates plot. As can
be seen, many solutions were found that follow the reference
point of the DM (denoted in green color) closely. If, however,
the DM is not satisfied with the results or wants to see
solutions in a different region of the objective space, the steps
shown in Console 4 can be repeated as many times as desired
with different preference information.
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FIGURE 3. Solutions obtained for the data-driven river pollution problem
after using RVEA for one iteration.

D. USE CASE 3: COMPUTATIONALLY EXPENSIVE
PROBLEM
Multiobjective optimization problems can involve expensive
function evaluations. In such cases, computing new solutions
in each iteration of an interactive method is not feasible
because of the long periods of time a DM would have to
wait to see new solutions. Instead, we can use an inter-
active multiobjective optimization method that works on a
computationally less expensive surrogate problem based on
a pre-computed representation of Pareto optimal solutions.
To get a representation, we can use, e.g., some a posteriori
methods like EMO methods. Here we use this simple, yet
quite effective, way as an example of combining methods
from the desdeo-mcdm and desdeo-emo packages.

SOURCECODE 11. Generating a representation of Pareto optimal
solutions for problem (2) using the desdeo-emo package.

We first generate a representative set approximating Pareto
optimal solutions for the river pollution problem (2) as shown
in Source code 11. For this, we apply NSGA-III (activated by
using the interact=False argument) as an a posteriori
method to get solutions for the problem as implemented in
Source code 4. The method is run until a pre-determined
termination criterion is met (the default being 1000 genera-
tions). After this, we can use the end method of the evolver
object to extract a representation of the Pareto front (i.e., non-
dominated solutions) from the population as individuals
(decision vectors) and pareto_set (objective vectors).

We then apply the E-NAUTILUS method [36] with the
generated set of nondominated solutions as its input. It
also needs estimates of the ideal and nadir points, typically
estimated from the available solutions. However, because
we have previously computed (in Section IV-B) the ideal

and (estimated) nadir points, we apply them. As mentioned
in Section II-D, the solution process starts with an inferior
solution and gradually approaches the Pareto front.

In Source code 12, we set up the E-NAUTILUS method
using the ENautilus class from the desdeo-mcdm package.
We invoke the start method as we did in the case of
NIMBUS in Section IV-B to start the solution process.We can
get a hint on how to progress by printing the message stored
in the request as done in Console 5.

SOURCECODE 12. Initializing the E-NAUTILUS method using the set of
solutions computed using NSGA-III and the previously computed ideal
and nadir points of problem (2).

CONSOLE 5. The help message returned by starting the E-NAUTILUS
method.

SOURCECODE 13. Specifying the number of iterations to be carried out
and the number of points to be shown in each iteration of the
E-NAUTILUS method.

A response to the request returned by the startmethod is
then defined in Source code 13. We choose five iterations and
want to see three intermediate points after each iteration. We
then continue iterating and get a new request from invoking
the iteratemethod, which contains the message displayed
in Console 6.

CONSOLE 6. The help message in a request returned from iterating the
E-NAUTILUS method after it has been started.

To address the message shown in Console 6, we first
inspect the intermediate points and bounds of the reachable
solutions computed in the first iteration of E-NAUTILUS in
Console 7.

In Source code 14, we define a response to the current
request and continue iterating by invoking the iterate
method. Subsequent iterations are carried out as shown in

148288 VOLUME 9, 2021



G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

CONSOLE 7. Printing the intermediate points, upper bounds, and lower
bounds computed in the first iterations of E-NAUTILUS.

SOURCECODE 14. Expressing preference to be the second point shown in
Console 7 and iterating.

Source code 14.We show an example of this using a graphical
UI in the next subsection.

This way of exploring an existing representation of a Pareto
front is well suited for computationally expensive problems
since no expensive function evaluations are needed when
the DM is involved. Even though the problem in this exam-
ple is not really computationally expensive, the process of
first using an EMO method to compute a representation of
the Pareto optimal front, and then exploring it using the
E-NAUTILUS method is identical in a computationally
expensive case.

E. USE CASE 4: SWITCHING METHODS
As interactive multiobjective optimization methods vary
in the type of preference information they require from
a DM and the type of information they provide to the
DM, it is sometimes desirable to switch between itera-
tions to a method that is better suited to the changing
needs of the DM. The DESDEO environment enables this
kind of a switch even between different types of meth-
ods. To illustrate this, we consider an example, where we
have finished iterating with the E-NAUTILUS method as
described in Subsection IV-D and arrived at the solut-
ion[-6.27116931, -2.80042652,-3.46795271,
-6.57327201, 0.31967811]. Since this method uses
a set of solutions approximating the Pareto front, we can
improve the solution by utilizing the synchronous NIMBUS
method and considering the original problem (2) in its
analytical form. We can also think that we have applied
E-NAUTILUS as a trade-off-free method to find a good start-
ing point for NIMBUS and avoided anchoring at a randomly
selected starting point. From NIMBUS, we then switch to

applying the reference point method [33], that is, change the
preference information type from classifying the objectives
to providing a reference point.

To begin, we instantiate a NIMBUS object with the solution
we arrived at with E-NAUTILUS. We use this solution to
derive a Pareto optimal solution that NIMBUS starts with
in Source code 15. This solution is shown in Console 8.
Small improvements were made in the values of the third and
fourth objectives while the other objective values remained
unchanged. This is also an example of a possible realiza-
tion of the post-decision-making stage (mentioned at the
beginning of Section IV) to assure the Pareto optimality of
the solution found using E-NAUTILUS since EMO methods
(used here to generate the input set for E-NAUTILUS) cannot
guarantee Pareto optimality.

SOURCECODE 15. Instantiating a NIMBUS object with a specified starting
point and starting the method.

CONSOLE 8. Printing the solution to be classified in the first iteration of
synchronous NIMBUS in Source code 15.

SOURCECODE 16. Providing classification to synchronous NIMBUS and
iterating the method further.

Next, we take an iteration with the synchronous NIMBUS
using the classification shown in Source code 16. Based on
this preference information, the method provides four new
Pareto optimal solutions shown in Console 9. While inspect-
ing the solutions, we find the first to our liking, but we would
next like to provide a reference point instead of a classifica-
tion. Thus, we switch to using the reference point method in
the desdeo-mcdm module. We initialize the reference point
method by instantiating a ReferencePointMethod
object as done in Source code 17.

We provide the best (i.e., the solution we like the
most) NIMBUS solution ([-6.06739, -2.79173,
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CONSOLE 9. Printing the new solutions computed in Sourcecode 16.

SOURCECODE 17. Instantiating a reference point method object and
starting it.

-5.96145, -6.57333, 0.30863]) as the reference
point in Source code 18 by defining the reference point as
a part of the response. We get the solutions shown in
Console 10 and since the first one is so similar to the reference
point, we stop the solution process and select the first solution
as the final one.

SOURCECODE 18. Iterating with the reference point method by providing
a reference point.

CONSOLE 10. Printing the alternative solutions computed by the
reference point method after providing the reference point as done in
Source code 18.

If we were not satisfied yet, we could continue iterating
by providing a new reference point in a similar way to
what was done in Source code 18. We could also switch
back to the synchronous NIMBUS method by initializing a
NIMBUS object once more, as was done in Source Code 15.
In principle, we could also switch to an EMO method, for
example, by providing one of the solutions as a reference
point to RVEA similar to how it was done in Source code
10, while also switching back to the surrogate version of
problem (2). But in this case it makes no sense to switch
from Pareto optimal to approximated solutions. Naturally,

we are not limited to the interactive methods considered in
the use cases, but any method in DESDEO is applicable.
Without DESDEO, we would be forced to resort to switching
our whole working environment, which may require need-
less repetition, for example, redefining the same problem
multiple times (and possibly in a different syntax). Thanks
to DESDEO, we have all the methods, problems, and other
relevant information (e.g., solutions computed with different
methods) in the same environment, which allows to readily
switch methods and re-use already created information.

F. SOFTWARE APPLICATIONS BUILT UTILIZING DESDEO
So far, we have not really discussed UIs in the DESDEO
framework apart from using a console environment. However,
DESDEO is easy to extend to build more advanced software
applications, such as graphical user interfaces (GUIs), which
facilitate interaction between DMs and interactive methods.
In this section, we explore an example of such a GUI imple-
mented for a method in the desdeo-mcdm package. It is
naturally possible to implement similar GUIs for methods in
the desdeo-emo package as well.

We consider an interface implemented for E-NAUTILUS.
We have furthermore chosen a web interface because they are
accessible to anyone through any modern web browser. The
interface has been developed using the Python libraries plotly
and plotly-dash (https://plotly.com/) due to their ease of use
and versatility for developing web interfaces. However, there
is a significant lack in support for interactive visualizations in
these libraries, which we had to circumvent, leading to a lack
in general usability.

The web interface for E-NAUTILUS can be seen in
Figure 4. At the top of the interface, we have controls for
the DM to engage with E-NAUTILUS: the DM can choose
the most preferred intermediate point (labeled as ‘candidate’
in the figure) by using the radio buttons and click on the
‘ITERATE’-button to continue iterating. Below the controls,
there are three different ways to visualize information about
the intermediate points calculated: at the top left, a spider
plot showing the intermediate points (solid lines) and the best
reachable objective function values from each point (dashed
lines); at the top right, a parallel coordinate plot showing
only the intermediate points with the currently selected point
(using radio buttons) being highlighted in red; and at the
very bottom, the values of each intermediate point and their
best reachable values in a table with the currently selected
intermediate point highlighted in blue.

The spider plot in Figure 4 is worth a closer look. First, each
intermediate point can be explored by clicking the respective
point on the legend to the right of the plot. Second, the plot
also shows in black the intermediate point chosen by the DM
in the previous iteration. Showing the previously chosen point
was desired by a real DM in a practical application where
this interface was used. This is an example of a subjective
need that may arise when interacting with real DMs. Lastly,
it is worth comparing the information in Figure 4 to the
information outputted in Console 7 to see that the information
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FIGURE 4. The GUI of the E-NAUTILUS method implemented in plotly-dash. A toy multiobjective optimization problem with three objectives (INCOME,
QUALITY, VOLUME) to be maximized is shown.

shown for a single iteration in the web interface and the
console are virtually the same. In practice, the presented
interface simply handles the requests and responses

(discussed in Section III-B) as was done in Section IV-D.
In the E-NAUTILUS GUI, we have a different multiobjective
optimization problem with three objectives to be maximized
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instead of problem (2). We have chosen a problem with
fewer objectives for simplicity. Note that the arrows after the
function names remind of the maximization.

The interface described for E-NAUTILUS is available
online (https://desdeo.it.jyu.fi/dash) alongside an interface
implementation for NAUTILUS Navigator as well. The
source code for the interface shown is available on GitHub
online.3 To test the interfaces, we have provided the interested
reader with toy data online.4

V. POTENTIAL OF THE DESDEO FRAMEWORK
Because the DESDEO framework contains various interac-
tive methods, it enables versatile ways of applying them.
As said, the DM can conveniently switch the method during
the solution process. This can be desirable if (s)he wants to
change the type of preference information in the middle of the
solution process or get different types of information about
the problem. This opens up vast possibilities when the DM is
not forced to stick with a single method to be applied but can
select methods that best suit the different phases of the solu-
tion process (e.g., learning and decision phases [54]). This
potential has been considered in [55], where a generic multi-
agent architecture for interactive methods was proposed to
support DMs in selecting the most suited interactive method
based on preferred preference type and their needs in different
phases during the solution process. Without a framework like
DESDEO, switching the method is inconvenient; the problem
to be solved must be connected to individual multiobjective
optimization methods separately, and the solution history
with the previous method is not easily available.

DESDEO has clear potential in allowing researchers to
hybridize EMO and MCDM methods in novel ways. This
potential is not just limited to the example seen in Section IV,
where an EMOmethod was used to compute a representation
of a Pareto front, which was then explored using an MCDM
method. More innovative and advanced ways of combining
not just methods but also their individual components are
possible. This is because of the modular fashion in which
the various multiobjective optimization methods have been
implemented in DESDEO. Combining individual compo-
nents enables the development of new interactive methods,
which can be also included in DESDEO extending the frame-
work further. The IOPIS algorithm, described in [46], is an
example of such a method.

Moreover, DESDEO offers a promising basis for imple-
menting new interactive multiobjective optimization methods
that are not based on combining existing components. Due to
the modular structure, a developer can easily reuse already
implemented components and only add those that are not yet
available (if needed). For example, the desdeo-tools package
has awide variety of different tools ranging from achievement
scalarizing functions to fast nondominated sorting, which

3https://github.com/industrial-optimization-group/desdeo-dash
4https://github.com/industrial-optimization-

group/DESDEO/blob/master/docs/notebooks/data/toy_data.csv

can prove useful in implementing new methods. In addition,
experimenting with new methods and ideas in multiobjective
optimization is also made easy thanks to DESDEO and the
reusability of its components. DESDEO can also encourage
and lower the threshold for researchers to implement their
methods as open source code, contributing to the openness of
the research conducted in multiobjective optimization. This
way, DESDEO has the potential and is on a good track to
becoming a central hub for open implementations of interac-
tive multiobjective optimization methods.

Apart from being interesting from an academic per-
spective, DESDEO can naturally be utilized for modeling
and solving real-life problems from any field as long as
the problem can be modeled as a multiobjective optimization
problem. Depending on the type and requirements of the
problem, DESDEO might still lack certain features neces-
sary for modeling and solving the problem, which is also
one of the current limitations of DESDEO. However, due
to DESDEO’s modular structure and open source nature,
implementing these missing features is possible by anyone.
For example, the underlying optimization methods for single-
objective optimization problems arising in various interactive
methods in DESDEO can be changed to better account for
the type of problem being solved. Similarly, the crossover and
mutation operations in EMOmethods can also be customized
if need be. Lastly, in modeling a data-driven multiobjec-
tive optimization problem, almost any surrogate model can
be implemented and used. Obviously, existing features in
DESDEO can be combined with new features as well allow-
ing practitioners to save time and help them focus on solving
the problem at hand. In this way, DESDEO can be extended to
account for any kind of multiobjective optimization problem
from any field while decreasing the potential workload for
practitioners.

Being a software framework, DESDEO has a learning
curve to it, which means that a certain level of proficiency
in Python and multiobjective optimization is to be expected
from the user. This clearly limits the size of the potential user
base of DESDEO and is, therefore, one of the framework’s
major limitations at the present time. We already offer a
written documentation of DESDEO’s features, but to make
DESDEO even more accessible, we plan on including more
topical guides in the documentation on how to use DESDEO
(such as the ones presented in Section IV) and consider pro-
ducing tutorial videos on how to use DESDEO in the future.
This should help broaden DESDEO’s user base and allow
users to extend DESDEO to meet their individual needs.
All of this will help DESDEO grow further as a software
framework.

Comparison and identifying the best suited method for var-
ious needs are important. DESDEOdoes offer very promising
opportunities for comparing and validating different interac-
tive methods. This is vital and demanding because the DM
plays an important role in the solution process and conducting
experiments with human participants is challenging. To be
able to compare interactive methods, their performance needs
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to be evaluated and validated using appropriate quality indi-
cators. To the best of our knowledge, no quality indicators
for interactive methods have been proposed. For such quality
indicators, the desirable properties that qualify interactive
solution processes should be defined. In [56], a systematic
literature review of the assessments of interactive methods
is provided along with desirable properties for interactive
methods. This can be considered as the initial step towards
developing quality indicators for interactive methods. More-
over, there has been some interest in comparing interac-
tive methods with so-called artificial DMs in the literature
(e.g., [57]–[59]). Within the DESDEO framework, an arti-
ficial DM has recently been proposed to compare refer-
ence point-based interactive EMO methods [60]. DESDEO
provides an excellent platform for comparisons because it
involves various interactive methods within the same frame-
work. To utilize the opportunities available, we need artificial
DMs capable of handling different types of preferences and
methods.

VI. CONCLUSION
In this paper, we fill a gap in the optimization software
available. We introduced DESDEO: an open source multi-
objective optimization framework implemented in Python.
DESDEO makes interactive multiobjective optimization
methods openly available for both users and developers.
We introduced the modular structure of DESDEO and its
different packages and their modules. We also described
the purpose of each package and its dependencies and the
framework’s external dependencies. Besides, with a five-
objective optimization problem, we demonstrated how to use
the DESDEO framework to define different types of prob-
lems (i.e., with analytical expressions, data-driven, and com-
putationally expensive problems) and solve them by applying
and hybridizing interactivemultiobjective optimizationmeth-
ods of MCDM and EMO types.

The modularity of DESDEO eases developing new
methods and offers a convenient possibility of comparing dif-
ferent interactive methods. Furthermore, implementing dif-
ferent types of methods in the same framework, as done in
DESDEO, will start a new era in hybridization and allows
the DM to switch between methods in various iterations of
the solution process.

We also noted that for efficient interaction with the DM,
there is a need for interactive visualization tools and suitable
(graphical) UIs in multiobjective optimization, which is lack-
ing in the literature. We are addressing this practical concern
by actively developing a D3 (https://d3js.org/) based Type-
script library of interactive visualization components, such
as interactive parallel coordinate plots within DESDEO. Our
primary goal with this library is to provide the multiobjective
optimization community with new and needed tools to build
their own interfaces for interactive multiobjective optimiza-
tion; similar to the example seen in Section IV-F. To facilitate
the use of the packages in DESDEO to be extended to other
software, such as web based interfaces, we are also working

on a web API (application programming interface) through
which we can expose interactive methods in DESDEO to
enable their use in a variety of applications. The interested
reader can follow the latest developments of DESDEO via
its homepage (desdeo.it.jyu.fi). The realization of this vision
should make interactive multiobjective optimization methods
much more accessible in the future, not just for researchers
developing them, but also for the needs of applications in
various fields.
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