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Abstract: Physiologic hand tremors are a critical factor affecting the aim of air pistol shooters.
However, the extent of the effect of hand tremors on shooting performance is unclear. In this study,
we aim to explore the relationship between hand tremors and shooting performance scores as well
as investigate potential links between muscle activation and hand tremors. In this study, 17 male
air pistol shooters from China’s national team and the Air Pistol Sports Center were divided into
two groups: the elite group and the sub-elite group. Each participant completed 40 shots during the
experiment, with shooters’ hand tremors recorded using three-axis digital accelerometers affixed
to their right hands. Muscle activation was recorded using surface electromyography on the right
anterior deltoid, posterior deltoid, biceps brachii (short head), triceps brachii (long head), flexor carpi
radialis, and extensor carpi radialis. Our analysis revealed weak correlations between shooting scores
and hand tremor amplitude in multiple directions (middle-lateral, ML: r2 = −0.22, p < 0.001; vertical,
VT: r2 = −0.25, p < 0.001), as well as between shooting scores and hand tremor complexity (ML:
r2 = −0.26, p < 0.001; VT: r2 = −0.28, p < 0.001), across all participants. Notably, weak correlations
between shooting scores and hand tremor amplitude (ML: r2 = −0.27, p < 0.001; VT: r2 = −0.33,
p < 0.001) and complexity (ML: r2 = −0.31, p < 0.001) were observed in the elite group but not in the
sub-elite group. Moderate correlation were found between the biceps brachii (short head) RMS and
hand tremor amplitude in the VT and ML directions (ML: r2 = 0.49, p = 0.010; VT: r2 = 0.44, p = 0.025)
in all shooters, with a moderate correlation in the ML direction in elite shooters (ML: r2 = 0.49,
p = 0.034). Our results suggest that hand tremors in air pistol shooters are associated with the skill
of the shooters, and muscle activation of the biceps brachii (long head) might be a factor affecting
hand tremors. By balancing the agonist and antagonist muscles of the shoulder joint, shooters might
potentially reduce hand tremors and improve their shooting scores.

Keywords: physiological tremor; tremor amplitude; tremor complexity; multiscale entropy; muscle activation

1. Introduction

Pistol stability is a key determinant of accuracy in air pistol shooting, and maintaining
a stable posture while aiming is of critical importance [1–5]. Physiologic tremors, which are
small involuntary oscillations of the limbs, can significantly impact shooting accuracy [6].
In air pistol shooting, minor deviations can lead to significant differences in shooting
scores [3,7,8]. Therefore, minimizing hand tremors is essential for improving hand stability
and improving scores [5]. However, effectively reducing tremors requires that we under-
stand the characteristics of the tremors that occur during the aiming phase of air pistol
shooting and their influencing factors [3].

Evaluating hand tremors involves analyzing accelerometer (ACC) signals in terms of
both time domain and frequency [3,9]. Time domain analysis includes assessing tremor
amplitude and complexity [9,10], with the root mean square (RMS) commonly used to
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quantify the amplitude. A low tremor amplitude is a prerequisite for elite shooters [5,6,9].
Some studies have demonstrated that elite air pistol shooters rely on body and arm stability
for aiming [4]. However, other studies have suggested that for elite shooters, hand stabil-
ity, rather than body stability, is the primary factor affecting shooting performance [9,11].
Two studies using principal component analysis identified aiming time, stability of hold,
and aiming accuracy as three key technical components for achieving good scores in air
pistol shooting [12,13]. The stability of the hold is largely dependent on the incidence of
hand tremors. Thus, hand tremors may be a key factor affecting shooting scores. However,
current research tends to overlook such scores, instead focusing on links between hand
tremors and shooter ability. For example, prior studies have demonstrated that elite air
pistol shooters have lower hand tremor amplitudes than sub-elite air pistol shooters [1,5].
In addition, the complexity of hand tremors was significantly lower among the elite group
participants compared to the sub-elite group [1]. Tremor complexity is quantified using
sample entropy (SampEn) and multiscale entropy analysis (MSE) [9,14]. Such apparent dis-
crepancies underscore the need for a better understanding of how hand tremor complexity
impacts upper limb control in air pistol shooters.

Muscle activation is one of the key factors influencing upper limb tremors. For
example, Carignan et al. demonstrated that muscle activation can induce physiologic
tremors [15], and Daneault et al. discovered that muscle co-contraction can induce physio-
logic tremors in the fingers [16]. Moreover, Novak et al. discovered that increased activation
of some muscles has been linked to increased tremor amplitude [17]. In addition, upper
limb muscle activation is associated with shooting performance in air pistol shooters. For
example, Mon et al. discovered a linear correlation between shoulder abduction isometric
force and shooting scores among elite male air pistol shooters [18]. Prior studies have
investigated the relationship between muscle activation and shooting scores. Furthermore,
it has been established that muscle activation can result in changed postural hand tremors.
However, even though upper limb muscle activation is associated with physiologic tremors
in healthy individuals, no studies currently exist that explore how upper limb muscle
activation affects hand tremors in air pistol shooters during aiming.

The current study was designed to assess the relationship between hand tremors and
the upper limb muscle activation of air pistol shooters during the aiming phase, which
provides insights for training programs in order to reduce hand tremors. Therefore, to
explore the underlying mechanisms affect hand tremors, the objectives of this study were
(1) to examine the relationship between shooting scores and hand tremors when aiming,
and (2) to explore the relationship between muscle activation and hand tremors when
aiming. We hypothesized that (1) shooters with lower tremor amplitude and lower tremor
complexity would have better shooting scores, and (2) shooters with increased muscle
activation would experience more hand tremors during aiming.

2. Materials and Methods
2.1. Subjects

A total of 17 male 10 m air pistol shooters from China’s national team and the Air
Pistol Sports Center participated in this study. The shooters were divided into two groups
based on their training time and skill level, comprising an elite group (n = 10; age:
21.80 ± 6.63 years; years of experience: 7.33 ± 2.12 years) and a sub-elite group (n = 7;
age: 18.00 ± 2.11 years; years of experience: 2.60 ± 0.98 years). Shooters in the elite group
had over five years of air pistol training and had competed at the international or national
level. Shooters in the sub-elite group had 1–3 years of air pistol training and were members
of air pistol sports centers. The selection criteria were carried out according to Swann et al.’s
study [19]. All participants were non-smokers, had no history of neurological disorders,
and had refrained from consuming caffeinated products on the day of testing [20]. Written
informed consent was obtained from all participants in accordance with the institutional
review board.
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2.2. Experiment Protocol

During the experiment, the shooters used their own equipment, as required by the
International Shooting Sport Federation (ISSF) regulation, and this is a cross-sectional
study. To assess hand tremors, a three-axis accelerometer (Xsens MTw Awinda, Enschede,
The Netherlands; mass = 16 g; size = 4.7 × 3 × 1.3 cm; measurement accuracy = ±0.08 g
(g = 9.8 m/s2); bandwidth = 180 Hz; sampling frequency = 150 Hz) was placed on the
hand at the middle shaft of the third metacarpal bone [5]. The accelerometer measured
acceleration data in the anteroposterior (AP), middle-lateral (ML), and vertical (VT) direc-
tions relative to limb segments (local axis). Surface electromyography (sEMG) of the right
anterior deltoid, posterior deltoid, biceps brachii (short head), triceps brachii (long head),
flexor carpi radialis, and extensor carpi radialis was recorded using the Delsys Trigno
Avanti Sensor (Delsys Incorporated, Natick, MA, USA; sampling frequency = 2000 Hz) [21].
ACC data and sEMG data were synchronized for data collection. Following the placement
of accelerometers and sEMG sensors, each shooter underwent a 5 to 10 min warm-up
exercise (e.g., practice aiming and familiarizing himself with the target), as shooters usually
do before competitions.

The experiments were conducted in a national-class competition shooting range specif-
ically designed for air pistol shooters. Shooters fired their air pistols at a distance of 10 m
from the target, aiming along the pistol barrel to simulate competitive conditions. Each
shooter completed 40 shots, with accelerometer and sEMG data collected every 10 shots,
totaling four rounds of data collection. Accelerometer and sEMG data were recorded
continuously throughout the shooting process. After each shot, shooters could review
their scores, which were displayed on an official ISSF-approved electronic target system,
SUOOTER—ST10L (China). Scores were measured to one decimal place.

2.3. Data Processing
2.3.1. Physiological Hand Tremor Data Processing

The initiation of each shot was identified by observing the accelerometer data time
series from the hand in the vertical direction since the motion after each shot was most
evident in this direction. Aiming time for air pistol shooters typically ranges from 5 to
10 s [12,13]. Accordingly, hand tremors for all three directions occurring within 5 s prior
to a gunshot were analyzed. Linear trends within the accelerometer data were removed
before assessing tremor strength.

The 40 shots taken by each participant in this study were analyzed. A second-order,
zero-lag, low-pass Butterworth filter with a 50 Hz cut-off frequency was applied to the data
for noise reduction [1,9]. The amplitude of hand tremors was analyzed using the RMS,
which can determine tremor strength according to the following formula:

RMS =

√(
x2

1 + x2
2 + x2

3 . . . x2
n
)

n
(1)

Tremor complexity was analyzed using both SampEn and MSE. MSE can address
limitations of approximate entropy (ApEn) and SampEn, which have been widely used
to investigate the complexity of human hand tremors [20,22]. SampEn was calculated for
each coarse-grained time series as follows [9]:

SampEn(m, r, N) = −ln

[
Cm+1(r)

Cm

]
(2)

where m is the length of the repetition vector, r is the similarity criterion, N is the length of
ACC data, and Cm(r) is the correlation sum. In this study, m and r were set to 2 and 0.2,
respectively [5]. Figure 1 shows the MSE curves generated by plotting sample entropy as a
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function of the timescale based on hand tremor data. A peak can be observed when the
score equals 3. MSE was calculated as the area under the MSE curve as follows [1,14]:

MSE = ∑3
i=1 sampEn(i) (3)
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The power of the tremor was assessed using power spectral density (PSD), which
was measured in the AP, ML, and VT axes using Welch’s power spectral density estimate
within the range of 1–40 Hz. Spectral analysis was performed using a 256 data-point-length
fast Fourier transform (FFT, 128 data-point window size, 64 data-point overlap) [5,9]. For
acceleration data, power from the dominant frequency peak (peak power) and the frequency
at which the peak power occurred (Hz) were calculated from 6.3 to 12.5 Hz [10,23]. Peak
power in PSD (PwrP) was used to indicate the peak power of the hand tremor [10]:

Pwrp =
∫ fp+0.5

fp−0.5

1
N2

(
S∗

d f t( f )× Sd f t( f )
)

d f (4)

where fp denotes the bandwidth of the peak power of the hand tremor in the 8–12 Hz
range [5]. Chenbin Ma et al. argue that the peak power metric is preferable to the one-side
power spectrum of the sensor signal over a range of the dominant frequency ± 0.5 Hz
around the length of the power estimate [10]. S∗

d f t( f ) is the complex conjugate of Sd f t( f ),
and Sd f t( f ) denotes the discrete Fourier transform of the expressed power signal.

2.3.2. EMG Data Processing

With regard to EMG data processing, data for all six muscles were analyzed for
five seconds before the gunshot. A fourth-order band-pass Butterworth filter with a
5–450 Hz cut-off frequency was applied to filter the EMG data, which was followed by a
full-wave rectification. Subsequently, a fourth-order low-pass filter with a 20 Hz cut-off
frequency was used to obtain the envelope. The maximum value of the envelope of each
muscle during the 40 shots was determined to be a given shooter’s normalized EMG
baseline. Muscle activation was then calculated via RMS.

2.4. Statistics

Statistical analyses were conducted using IBM SPSS Statistics 28.0.1.14 (Chicago, IL,
USA). All data are presented as means and standard deviations across shooters and trials.
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The Shapiro–Wilk test was used to assess the normal distribution. Pearson correlation
analysis was used to examine the relationship between the RMS, Pwrp, and MSE of the
hand tremors in three directions and the scores of all shooters, as well as to examine the
relationship between the RMS of the upper limb muscles and the RMS of the hand tremors
of all shooters in three directions. r2 could be rated as weak (0 < r2 < 0.3), moderate
(0.3 ≤ r2 < 0.5), high (0.5 ≤ r2 < 0.8), or strong (r2 ≥ 0.8). The dependent variables (RMS,
Pwrp, MSE) for the elite and sub-elite groups were compared using independent t-tests,
with effect size calculated according to Cohen’s method. Results were considered significant
when the chance of making a Type 1 error was less than 5% (p < 0.05).

3. Results

The mean shot score for the elite group was 10.01 ± 0.54, which was significantly
higher than the sub-elite group (9.63 ± 0.73, p < 0.001; Figure 2a). Meanwhile, the sub-elite
group exhibited significantly higher tremor amplitudes compared to the elite group in the
ML and VT directions (p < 0.001; Figure 2b). In addition, the sub-elite group showed lower
Pwrp but higher MSE in all directions compared to the elite group (p < 0.001).
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Figure 2. Scores of elite group and sub-elite group (a). The amplitude of hand tremors between the
elite group and the sub-elite group (b). The peak powers of hand tremors between the elite group
and the sub-elite group (c). The complexity of hand tremors between the elite group and the sub-elite
group (d). * Significant tremor amplitude difference between elite group and sub-elite group: p < 0.05.

For all shooters, significant but weak negative correlations were found between hand
tremor amplitude when aiming and shooting scores in the ML and VT directions (Table 1).
Tremor complexity also exhibited a significant but weak negative correlation with the
shooting scores in the ML and VT directions (Table 1).
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Table 1. The relationships between tremor parameters and shooting scores for all shooters.

Parameter r2 p-Value

RMS
ML −0.22 * <0.001
VT −0.25 * <0.001
AP −0.01 0.769

Pwrp
ML −0.26 * <0.001
VT −0.30 * <0.001
AP −0.18 0.216

MSE
ML −0.26 * <0.001
VT −0.28 * <0.001
AP −0.05 0.205

* represents that the correlation was statistically significant.

In the elite group, significant and moderate negative correlations were identified be-
tween hand tremor amplitude and shooting scores in the VT direction, as well as significant
and weak negative correlations between hand tremor amplitude and shooting scores in the
ML direction (Table 2). Among elite shooters, tremor complexity was found to be negatively
correlated with shooting scores in the ML direction. However, in the sub-elite group, no
significant correlations were found between tremor amplitude or tremor complexity and
shooting scores (Table 2).

Table 2. The relationship between tremor parameters and shooting scores for the elite and sub-
elite groups.

Parameter
Elite Group (n = 10) Sub-Elite Group (n = 7)

r2 p-Value r2 p-Value

RMS
ML −0.27 * <0.001 −0.05 0.311
VT −0.33 * <0.001 0.10 0.172
AP −0.04 0.472 −0.06 0.590

Pwrp
ML −0.10 0.252 −0.08 0.426
VT −0.01 0.209 −0.16 0.844
AP −0.11 0.285 −0.12 0.165

MSE
ML −0.31 * <0.001 0.02 0.782
VT −0.08 0.922 0.05 0.254
AP −0.08 0.591 0.06 0.517

* represents that the correlation was statistically significant.

Furthermore, the sub-elite group participants demonstrated higher muscle activation
in the anterior deltoid, posterior deltoid, triceps brachii (long head), and flexor carpi radialis
compared with the elite group (p < 0.05, Figure 3).
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For all shooters, significant and moderate positive correlations were found between
the activation of the biceps brachii (short head) and hand tremors when aiming in the
ML and VT directions (ML: r2 = 0.49, p = 0.010; VT: r2 = 0.44, p = 0.025, Table 3). For
elite shooters, significant and moderate positive correlations were identified between the
activation of the biceps brachii (short head) and hand tremors when aiming in the ML
direction (ML: r2 = 0.49, p = 0.034, Table 4). However, in the sub-elite group, no significant
relationship between upper limb activation and hand tremors was observed.

Table 3. Relationship between root mean square (RMS) of hand tremor amplitude and RMS of EMG
(n = 17).

Muscle Name
ML VT AP

r2 p-Value r2 p-Value r2 p-Value

Anterior deltoid −0.05 0.800 0.07 0.726 −0.03 0.897
Posterior deltoid 0.16 0.446 −0.01 0.946 0.13 0.530

Biceps brachii (short head) 0.49 * 0.010 0.44 * 0.025 0.27 0.183
Triceps brachii (long head) −0.13 0.524 −0.05 0.813 −0.32 0.110

Flexor carpi radialis 0.02 0.942 0.09 0.651 0.15 0.463
Extensor carpi radialis 0.24 0.231 0.25 0.227 0.21 0.314

* represents that the correlation was statistically significant.

Table 4. The relationship between RMS of hand tremor amplitude and RMS of EMG in elite group
(n = 10).

Muscle Name
ML VT AP

r2 p-Value r2 p-Value r2 p-Value

Anterior deltoid 0.09 0.719 0.17 0.494 0.12 0.636
Posterior deltoid 0.32 0.181 0.09 0.766 0.28 0.245

Biceps brachii (short head) 0.49 * 0.034 −0.39 0.357 0.17 0.476
Triceps brachii (long head) 0.05 0.826 0.22 0.103 −0.18 0.455

Flexor carpi radialis −0.02 0.954 0.09 0.686 −0.12 0.629
Extensor carpi radialis −0.11 0.677 −0.25 0.312 −0.07 0.766

* represents that the correlation was statistically significant.

4. Discussion

Our findings revealed negative correlations between tremor amplitude, tremor com-
plexity, and shooting scores among all shooters. In addition, positive correlations between
tremor amplitude and muscle activation were identified within the elite group, but not in
the sub-elite group.

A weak negative correlation between hand tremor amplitude (VL and AP direc-
tions) and shooting scores occurred in the elite group, which is consistent with our first
hypothesis. This suggests that lower tremor amplitudes may contribute to higher shoot-
ing scores. Physiologic tremors consist of both centrally driven and mechanical-reflex
components [10,24–26], and the central nervous system plays a crucial role in the mod-
ulation of muscle activation, especially in voluntary activation [15,16,25]. Some studies
have proposed that muscle activation changes may impact upper limb stiffness, thereby
affecting hand tremors [27,28]. From this, it can be assumed that sub-elite shooters with
higher hand tremor amplitude exhibit greater central nervous system activity, leading to
increased upper limb stiffness and reduced shooting scores. This finding aligns with Novak
et al.’s study [17], which indicated that physiological tremor amplitude increases with
higher neural drive to the muscles.

Another possible explanation for the link between decreased hand tremors and higher
shooting scores may be related to the fact that elite shooters exert less attentive control
over their hands when shooting [5]. When motor tasks require greater accuracy or are
more complex (i.e., goal-direction position in air pistol shooting), hand tremor amplitude
tends to increase [5]. Sub-elite shooters may focus more on visuomotor information during
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aiming, whereas elite shooters may possess a more natural aiming position which allows
them to focus on the target rather than the need to maintain their aiming position, leading
to higher shooting scores [5]. This familiarity with and increased focus on the target may
help to increase upper limb stability, improving air pistol shooting accuracy.

In the elite group, weak negative correlations between tremor complexity (VT and AP
directions) and shooting scores were identified, which is consistent with our first hypothesis.
This also aligns with findings from Ko et al., who showed that higher shooting scores were
related to a decrease in the complexity of hand tremors among experienced shooters during
the aiming phase compared with less experienced shooters [20]. Lower hand tremor
complexity may result from long-term shooting practice, which can improve upper limb
control and coordination [1,20]. Air pistol shooters with greater hand tremor complexity
might be said to possess greater exploratory behavior, meaning those movements made by
human beings or other animals when orienting to new environments. In the context of air
pistol shooting, exploratory behavior refers to exploring postures to maintain upper limb
control during aiming [1]. From this, it can be concluded that sub-elite shooters’ deficiency
in aiming may occur because they are still seeking a posture to achieve accuracy. Similarly,
Zhou et al.’s study found that low tremor complexity leads to higher stress tolerance
and improved shooting scores [29]. Differences in hand tremor complexity could also be
attributed to sub-elite shooters’ need for a greater degree of freedom (DOF) to control upper
limb movement when aiming, while elite shooters are able to maintain stability through a
more direct connection between their shoulder and wrist joints [20]. Having a greater DOF
in the upper limbs presents a challenge for sub-elite shooters when attempting to maintain
stability, which may lead to more complex tremors and lower shooting scores. Therefore,
the ability to unconsciously achieve an effective posture while aiming may improve upper
limb stability as well as shooting scores for air pistol shooters.

In the sub-elite group, no correlation was observed between hand tremors and shooting
scores. The reason for this may stem from a multitude of factors contributing to errors
among sub-elite shooters, which extend beyond hand tremors to include aspects such as
aiming time and aiming accuracy [12,13]. While both elite and sub-elite shooters are able to
attain a score of 10, elite shooters demonstrate consistent performance at this level, whereas
sub-elite shooters frequently score in the 8–9 range. This is the reason why correlations
appeared between shooting scores and hand tremors in the elite shooters but not the sub-
elite shooters; for sub-elite shooters, shooting performance consistency is prioritized over
the occasional high score.

The sub-elite shooters also exhibited greater muscle activation compared to the elite
shooters, which can likely be attributed to a shorter training duration. Consequently,
sub-elite shooters may constantly contract their muscles during aiming to adjust their
position, resulting in higher muscle activation [5,23]. Additionally, the study of Carignan
et al. indicated that hand tremors are mainly generated by the angular movement of the
shoulder joint [25]. Anterior deltoid, posterior deltoid, and triceps brachii (long head)
contractions can change the angular movement of the shoulder joint. Therefore, differences
in the upper limb muscle activation of elite and sub-elite air pistol shooters may lead to
differences in shooting postures, resulting in different types of hand tremors.

In the elite group, weak positive correlations were found between biceps brachii (short
head) activation and hand tremors in the ML and VT directions, which is consistent with
our second hypothesis. Biceps brachii (short head) can act as an adductor, facilitating
movement of the humerus towards the body’s midline [30]. As the activation of this muscle
increases, hand tremors increase as well. However, this does not affect the activation of
the triceps brachii (long head). Lakie et al.’s study showed that instability between the
agonist and antagonist muscle groups can exacerbate hand tremors [27]. Thus, the higher
number of hand tremors in the ML direction for elite shooters might be due to an imbalance
in the activation of shoulder adduction and abduction muscles. This suggests that elite
air pistol shooters could attempt to balance the activation of adduction and abduction
muscles by increasing the strength of their abduction muscles, such as the triceps brachii
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(long head), to reduce hand tremors and improve shooting scores. The results of this
study demonstrated no significant associations between activation of the anterior deltoid,
posterior deltoid, flexor carpi radialis, and extensor carpi radialis and hand tremors in air
pistol shooters. This suggests that among air pistol shooters, hand tremors may not only
be determined by muscle activation in and around the hand but also by muscle activation
around the shoulder.

5. Conclusions

This study identified negative correlations between shooting scores and hand tremors
among all shooters who participated, indicating that a decrease in hand tremors is asso-
ciated with better shooting scores, particularly among elite shooters. Furthermore, our
findings showed that higher muscle activation of the triceps brachii (long head) is corre-
lated with higher hand tremor amplitude in elite shooters. This suggests that reducing the
activation of the biceps brachii (long head) or increasing the activation of the triceps brachii,
that is, stabilizing both the agonist and antagonist muscles, might be an effective method
for reducing hand tremors. By balancing the agonist and antagonist muscles of the shoulder
joint, shooters can potentially reduce hand tremors and improve their shooting sores.
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