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Abstract
High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control 
microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the profitability of microal-
gae-based products. To meet this need, a non-invasive monitoring method based on a hyperspectral imager was developed 
for laboratory scale and afterwards tested on industrial scale cultivations. In the laboratory experiments, reference data for 
microalgal biomass concentration was gathered to construct 1) a vegetation index-based linear regression model and 2) a 
one-dimensional convolutional neural network model to resolve microalgae biomass concentration from the spectral images. 
The two modelling approaches were compared. The mean absolute percentage error (MAPE) for the index-based model was 
15–24%, with the standard deviation (SD) of 13-18 for the different species. MAPE for the convolutional neural network 
was 11–26% (SD = 10–22). Both models predicted the biomass well. The convolutional neural network could also classify 
the monocultures of green algae by species (accuracy of 97–99%). The index-based model was fast to construct and easy 
to interpret. The index-based monitoring was also tested in an industrial setup demonstrating a promising ability to retrieve 
microalgae-biomass-based signals in different cultivation systems.

Keywords Green microalgae · Hyperspectral imaging · Non-invasive monitoring · Vegetation indices · Convolutional 
neural network · Model comparison

Introduction

Microalgae are important in biotechnology for their ability to 
accumulate useful biomolecules, such as healthy fatty acids 
and pigments (Hachicha et al. 2022). Furthermore, microal-
gae assimilate carbon dioxide and sequester nutrients from 
wastewater – features that support a circular economy (Lam 
& Lee 2012). However, improvements in microalgae pro-
duction are still required to increase its economic viability. 
The development of comprehensive cultivation monitoring 

methods has been recognized to be essential in resolving this 
challenge (Teng et al. 2020; Havlik et al. 2022).

Monitoring of microalgal cultivations is traditionally 
based on a combination of multiple-point sensors, sam-
pling, and laboratory analyses (Havlik et al. 2022). Manual 
sampling-based assessments can bring several disadvantages 
such as unintentionally expose a cultivation to contaminants 
and introduce human error in the measurements, as well as 
requiring laboratory work, which reduces the temporal and 
spatial coverage of the assessments. Recent studies have sug-
gested that spectral imagers could be a solution for efficient 
monitoring of microalgae cultivations (Murphy et al. 2014; 
Havlik et al. 2022; Solovchenko 2023). In addition to a typi-
cal RGB image, a hyperspectral imager produces a stack of 
images, also called a data cube, on hundreds of different 
wavebands (e.g., Raita-Hakola 2022). Previous studies indi-
cated hyperspectral imagers’ potential in monitoring micro-
algal growth (Murphy et al. 2014; Xu et al. 2020; Salmi et al. 
2021, 2022) and in the assessment of lipid (Li et al. 2020) or 
pigment (Pyo et al. 2019) concentrations in the microalgal 
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biomass in samples and small volumes. However, further 
testing and comparison of different modelling approaches 
are needed to benchmark the most robust, non-invasive, 
monitoring pipeline.

To date, the high price of hyperspectral imagers and the 
complexity of data processing have been considered as main 
obstacles to a broader utilization of the technology (Diers-
sen et al. 2021; Liu et al. 2021). However, spectral cameras 
are becoming more common, commercially available and 
miniaturized, data processing algorithms more established, 
and the computing power required for data processing is no 
longer a limiting factor (Annala 2020; Dierssen et al. 2021). 
Spectral imaging could support traditional analyses due to 
its spatial coverage, low cost, and – when combined with 
expedient calibration models – the possibility for robust 
assessment of the desired parameters. For these reasons, the 
broader implementation of hyperspectral imagers is feasible 
and potentially very useful in microalgae cultivation.

The performance of a calibration model is affected by the 
complex matrix of a microalgal culture where the connection 
between optical properties and concentration of components 
is typically non-linear (Bricaud et al. 1988; Mehrubeoglu 
et al. 2014). The organization of microalgal pigments affect 
the propagation of light within the cell suspension. The pig-
ment composition and materials, such as the cell wall com-
position of microalgae, affect the spectral absorption, scat-
tering coefficients and refraction indices, and therefore their 
overall optical signature (Nair et al. 2008; Kirk 2011). Also, 
the cell size, arrangement and growth form (i.e., unicellu-
lar, filamentous, colonial) of microalgae affect the optical 
signature. In addition to the microalgal cell structures and 
morphology, microalgae are accompanied by other organ-
isms, such as bacteria and protozoa, as well as organic and 
inorganic, dissolved and particulate material, that affect the 
propagation of light and, for that reason, the information 
captured by an imager.

The simplest way to retrieve a proxy of microalgae bio-
mass concentration from hyperspectral data is to calculate 
vegetation indices, such as the ratio of a target’s reflectance 
or absorbance on specific wavebands (Murphy et al. 2014; 
Salmi et al. 2021). Due to the volume of the data, machine 
learning algorithms that predict or generate an outcome, 
once they have been trained with previous data, have evolved 
as a popular way to extract information from hyperspectral 
data (Annala 2020; Havlik et al. 2022). Recently, convolu-
tional neural networks (CNN) have been increasingly used 
in this context as they have potential of solving non-linear 
problems. The power of a CNN is based on the treatment 
of data through convolutional kernels before the data is 
fed to a neural network consisting of computation nodes 
organized in layers (Bengio et al. 2017). CNNs have pre-
viously been applied to automatically classify microalgae 
species from microscopy images (Pant et al. 2020; Yadav 

et al. 2020) but also to classify species and predict their 
biomass concentrations from microalgae cultivation sam-
ples (Salmi et al. 2022). Machine learning models have been 
argued to be unnecessarily powerful algorithms in monitor-
ing microalgae growth (Solovchenko 2023), so comparing 
their performance against simple index models in solving 
this regression problem is interesting and potentially reveals 
new insights into the choice of algorithms.

This study’s aim was to construct a robust approach for 
non-invasive monitoring of microalgae growth and to com-
pare two modelling approaches within the same imaging 
pipeline: vegetation index-based regression models and a 
CNN-based calibration model to resolve microalgae bio-
mass concentration from liquid cultures. The pipeline from 
imaging to modelling was developed and tested in two sepa-
rate experiments on a laboratory scale using three strains 
of green algae cultivated in cell culturing flasks. Finally, 
spectral imaging as a non-invasive monitoring method was 
demonstrated in an industrial microalgae cultivation facility 
of green algae and cyanobacteria.

Materials and methods

Laboratory scale experiments

The growth of Chlorella vulgaris (CCAP 211/11B), 
Desmodesmus maximus (CCAC 3524B) and Tetradesmus 
obliquus (CCAP 276/3A) was monitored in two separate 
sets of experiments (I and II), in addition to the reference 
methods, by imaging the cultures through the cell culturing 
flask using a spectral imager. Hereafter, the algal strains are 
referred to by their genus names for readability. The aim was 
to test the ability of vegetation index- and machine learning-
based calibration models to resolve biomass concentration 
from spectral images. Both Experiments I and II were batch 
cultivations in cell culturing flasks. The experiments lasted 
for 4-46 days resulting in a total of 84 and 24 spectral images 
and reference biomass concentration assessments in Experi-
ments I and II respectively (Fig. 1). A CNN was trained 
using replicates a of Experiment I and a and c of Experi-
ment II (Fig. 1). The models were tested using replicates b 
of Experiments I and II.

Laboratory cultivations

In Experiment I each algal strain was cultivated in 250 mL 
cell culturing flasks with filter caps (VWR international) 
in 250 mL modified WC medium (Guillard and Lorenzen 
1972) in duplicates (named a and b). The cultures were 
maintained at 22 ± 1 °C under continuous illumination using 
fluorescent lamps of 22-49 µmol photons  m-2  s-1 measured 
with a quantum sensor (HiPoint, Taiwan). In Experiment 
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II, triplicates (named a, b, and c) of each algal strain were 
cultivated in the same scale and setup as in Experiment I.

In Experiment I, Chlorella and Tetradesmus cultivations 
lasted 46 days, while Desmodesmus cultivations lasted 23 
days (see Supplementary Figure 1 for the growth of each 
species quantified with CASY). Chlorella cultures were 
refreshed once during the cultivation time by aseptically 
replacing 135 mL of the culture with WC medium to avoid 
nutrient limitation. Tetradesmus cultures were refreshed 
twice with 100 mL of WC medium. Desmodesmus cul-
tures were not refreshed. All cultures were imaged 1–3 
times per week immediately followed by aseptic sampling 
(1-2 mL) for biomass concentration assessment. The flasks 
were shaken before imaging and sampling. This experiment 
resulted in 34 spectral images and biomass concentration 
samples from Chlorella, 18 from Desmodesmus and 32 from 
Tetradesmus (Fig. 1).

In Experiment II, Chlorella and Desmodesmus cultiva-
tions lasted 6 days and Tetradesmus cultivations 4 days. 
During this time, the cultures were imaged and aseptically 
sampled in 2-3 days intervals leading to nine spectral images 
and biomass concentration samples taken from Chlorella 
and Desmodesmus, and six of Tetradesmus (Fig. 1). 

Laboratory spectral imaging

Both laboratory experiments deployed the same imaging 
setup (Fig. 2). Imaging was done in a darkroom to avoid 
any specular reflections or stray light using Specim FX10 
hyperspectral imager (Specim, Finland). The imager has 
wavelength bands of 400-1000 nm with a spectral resolution 
of 5.5 nm FWHM (full width at half maximum). The imag-
ing setup consisted of a broad-band halogen light source 
(3 bulbs of DECOSTAR 51 ALU 20W 12V 36deg GU5.3 
halogen) and a white reference (PTFE diffuse reflector sheet 
PMR10P1, Thorlabs). Both white and black references were 
imaged for each image separately. The black reference was 

taken automatically, with the mechanical shutter of the 
imager closing before each image. Reflectance (R) images 
were calculated using equation 1:

where I is the irradiance from the cultivation, Id the black 
reference and Iw irradiance of the white reference both taken 
in conjunction with each image (Fig. 2).

The imager and the light source were placed on a motor-
ized scanner (LabScanner 40 × 20, Specim, Finland). The 

(1)R =
I − Id

Iw − Id

Fig. 1  Left-to-right and up-to-down workflow of laboratory scale experiment. On the left are the experimental designs of the Experiments I and 
II, and on the right is the workflow for the Experiments. Replicate cultivations are illustrated by letters a, b, and c 

Fig. 2  Imaging setup in laboratory, top view. A – target, B – light 
source, C – white reference, D – laser shields, E – spectral imager, F 
– computer-guided scanner mounting the imager and the light source. 
The black arrow outside the panel marks the direction of movement 
of the scanner
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distance between the camera lens and the target was 25 
cm. Laser shields with square engravings were placed to 
prevent reflections, adjust focus and scanning speed, and 
serve as spatial references for choosing the region of inter-
est (ROI) in each image (Fig. 2). The selected scanning 
speed was 2.0 mm  s-1, frame rate 20 fps and exposure time 
15 s. The scanner and imager were operated through Lumo 
Scanner software (Specim, Finland).

Assessment of biomass concentration in the laboratory 
experiments

Wet biomass concentration for both laboratory experi-
ments was assessed with an electronic cell counter (CASY, 
Omni Life Sciences, Germany) immediately after the spec-
tral imaging. In the CASY cell counter, a liquid sample 
flows through a capillary and a detector counts particle 
abundances and biovolumes based on pulse amplitude 
modulation caused by a bypassing particle. The capillary 
size of CASY was chosen according to algal cell size: 
60 µm capillary for Chlorella and 150 µm capillary for 
Desmodesmus and Tetradesmus. A different sample vol-
ume was added to 10 mL of CasyTon buffer based on a 
preliminary estimate of algae abundance: in Experiment 
I 40-200 µL of Chlorella culture, 300 µL for Desmodes-
mus and 40-700 µL for Tetradesmus and in Experiment II 
10 µL for Chlorella, 300 µL for Desmodesmus and 100-
500 µL for Tetradesmus. The results were processed with 
the CASY workX 1.26 macro (Omni Life Sciences) for 
Microsoft Excel. With Desmodesmus, a lower limit (left 
evaluation cursor) was set to 10 µm to delimit particles 
counted as algae cells (>10 µm). The electronic cell coun-
ter converts the pulse amplitude modulation to biovolume 
(fL  mL-1), and biovolumes were converted to wet biomass 
concentrations (mg  mL-1) by assuming the cells were isop-
ycnic to water. Microscopic scrutinization at the beginning 
and at the end of all cultivations ensured the absence of 
contaminants.

The coefficient of variation (CV) of the CASY meas-
urements was determined by measuring separate cultiva-
tions of each species grown in 600 mL cell culturing flasks 
in the same growth conditions as the experiments. The 
CV was assessed from five replicates, the error estimate 
including variation caused by sampling, sample prepara-
tion and measurement. For all species, the CV was low 
for cell abundances and for Chlorella and Desmodesmus 
only slightly higher for biomass concentrations (Table 1). 
However, for Tetradesmus, the variation in biomass assess-
ments was high due to the tendency of the cells to form 
aggregates (see Supplementary Figure 2 for example cell 
size distributions obtained with CASY).

Index‑based regression model

A 50×50-pixel ROI was extracted from each spectral image. 
This corresponds to a 5.2×4.9 mm area on the targets. For 
each captured image, the ROI was cropped from the same 
area of the cell culturing flasks related to the laser shields 
in Experiments I and II. For index calculation, mean reflec-
tance spectra were calculated from the ROI. Images were 
cropped, and mean spectra and indices were calculated with 
Python 3.9.12 in Jupyter notebooks. Linear regression mod-
els fitting biomass concentration assessments over the best 
indices were derived in Microsoft Excel version 2209.

All possible indices formulated as A/B, where A and B 
are wavebands of the spectral camera, were calculated, and 
correlation coefficients determined using the biomass con-
centrations in replicate cultivations a of Experiment I and 
a and c of Experiments II (n = 58). The ratio of wavebands 
with the highest significant (p < 0.001) Pearson correlation 
form the index-based linear regression model to resolve bio-
mass concentration. Separate models were constructed for 
each individual species and another describing all species 
together. The models were tested on data from replicate b 
of Experiments I and II (n = 50). Mean absolute percentage 
error (MAPE) was calculated to evaluate the adequacy of 
the models. MAPE was calculated according to the Eq. 2:

where Bex is the biomass concentration assessed with CASY 
electronic cell counter, and Bpred the biomass concentration 
predicted by the model.

One‑dimensional convolutional neural network (1D CNN)

The one-dimensional convolutional neural network (1D 
CNN) was implemented with Python Version 3.9.12 in 
Jupyter notebooks, Keras library, and Tensorflow backend 
and computed on a Nvidia Tesla V100-SXM2 16 GB GPU 
unit. The CNN was constructed for two purposes: biomass 
concentration prediction and species classification.

The 50×50-pixel ROIs from replicate cultivations a 
and c of Experiments I and II were divided into 10×10-
pixel data cubes shifting the window every 5 pixels. This 

(2)MAPE(%) =

|
|
|
Bex − Bpred

|
|
|

Bex

× 100

Table 1  Coefficients of variation (CV) for the reference assessments 
with an electronic cell counter CASY (n = 5)

CASY CVBiomass concentration (%) CVAbundance (%)

Chlorella 11 7.1
Desmodesmus 9.9 3.1
Tetradesmus 41 3.7
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allowed data augmentation to train a 1D CNN. The aug-
mented data (n = 1458) were split into training and valida-
tion data by randomly dividing 80% as training and 20% 
as validation data. Training and validation input to the 
1D CNN were the min-max-normalized mean spectra of 
the 10×10-pixel data cubes, with corresponding biomass 
concentration values of each species as data labels. Mean 
spectra of 50×50-pixel ROIs from Experiments I and II b 
replicate (n = 50) were normalized by the minimum and 
maximum values of the training and validation data. These 
spectra served as test data.

The basic architecture of the 1D CNN was selected 
by first iterating the number of convolutional and dense 
layers by adding layers one at a time, with filter and node 
counts of 256, 128, 64, 32 and 16 in descending order, 
until validation losses and validation root mean squared 
error (RMSE) in the validation dataset were minimized 
(Table 1). Maxpooling layers with pool size 2 were added 
after each convolutional layer and a dropout layer with 0.2 
drop was added before the output layer. A rectified linear 
unit (ReLu) was selected as an activation function for 
the convolutional and dense layers, excluding the output 
layer where linear activation was used. The model was 
optimized through a gradient-based stochastic optimizer 
(Adam) with a learning rate of 0.001, β1 = 0.9, β2 = 
0.999 and ϵ =  1e−7. Models were trained for 50 epochs in 
a sample batch size of 32.

The architecture’s 5 and 9 (Table 2) hyperparameters 
were both tuned using Keras Tuner Random Search as 
their validation losses and validation RMSEs were the 
lowest compared to other architectures. The tuned hyper-
parameters were convolutional kernel sizes, number of 
nodes in dense layers, and learning rate. The tested node 
counts were between 32-256 with step size 32, filter sizes 
3 and 5 and learning rates 0.01 and 0.001. Keras Tuner 
evaluated 100 different combinations of these hyperpa-
rameters while keeping patch size 32 for epochs constant, 

with minimum validation loss as objective. The architec-
ture 9 (Table 2) had lower validation loss after hyper-
parameter tuning than the architecture 5, and therefore 
it was selected as the most adequate model architecture 
(architecture 12 in Table 2). The architecture 12 had a 
learning rate of 0.001 and is shown in Fig. 3 (See Supple-
mentary Figure 3 for training and validation loss, RMSE 
training and validation curves).

The test classification accuracy of the model was calcu-
lated with Eq. 3:

where algal labels were considered correctly assigned if the 
biomass concentration values exceeded the lowest biomass 
concentration (0.0069 mg  mL-1) of the training and valida-
tion data. This final model architecture was trained three 
separate times, and the means of the triplicate trainings gave 
the results (see Supplementary Table 1 for error metrics of 
the three trainings).

Spectral imaging of industrial microalgae 
cultivations

Hyperspectral imaging was tested on-site in industrial scale 
photobioreactors (PBRs) and raceway ponds (Allmicroal-
gae, S.A., Portugal) by applying the index-based regression 
model approach tested previously in the laboratory culti-
vations. Nine flat panel PBRs with Nannochloropsis sp. 
(hereafter, referred to by its genus name) and four raceway 
ponds with Arthrospira platensis (hereafter, referred to by its 
common name Spirulina) were imaged (Fig. 4). The cultiva-
tion volumes of the flat panel PBRs were 0.1-1  m3, and the 
raceway ponds were 200-685  m3.

Specim IQ hyperspectral imager (Specim, Finland) was 
used in the test. The imager works in a range of 400-1000 

(3)

Classification accuracy (%) =
Correctly assigned algal labels

Total number of labels
× 100

Table 2  Testing of the basic 
architectures of the 1D 
CNN in laboratory scale 
experiment. Model 12 is 
Model 9 architecture after 
hyperparameter tuning. 
Convolution filter counts in 
convolution blocks and node 
counts in dense blocks are 
separated with “/”

ID Convolution block Dense block Validation loss Validation RMSE

1 256 256 0.0071 0.084
2 256/128 256 0.0050 0.071
3 256/128 125/128 0.0030 0.054
4 256/128/64 125/128 0.0024 0.049
5 256/128/64 256/128/64 0.0013 0.036
6 256/128/64/32 256/128/64 0.0022 0.047
7 256/128/64/32 256/128/64/32 0.0057 0.076
8 256/128/64/64/32 256/128/64/32 0.0023 0.048
9 256/128/128/64/64/32 256/128/64/32 0.0015 0.039
10 256/256/128/128/64/64/32 256/128/64/32 0.0031 0.18
11 256/256/128/128/64/64/32 256/128/64/64/32 0.0064 0.080
12 256/128/128/64/64/32 224/64/256/96 0.0009 0.03
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nm with a spectral resolution of 7 nm FWHM. Both spectral 
imagers (Specim FX10 in the laboratory experiments and 
IQ in the industrial tests) used in this study have identical 
operating principles as line scanners. The primary distinc-
tion between the two imagers lies in their adaptability to 
various contexts. The FX imagers are engineered for inte-
gration with conveyor belts or linear scanning systems, 
whereas the IQ model simulates the functionality of a snap-
shot imager by housing a line scanner within its framework. 
Consequently, while both imagers operate on the same fun-
damental principle, the IQ model offers enhanced portabil-
ity for field measurements.

The industrial scale imaging happened inside green-
houses, in daylight. Because of the slightly opaque 

coverings of the greenhouses, the lighting inside was dif-
fuse, allowing images to be taken without notable reflec-
tions. The spectral imager was placed on a tripod, mak-
ing imaging setups replicable for every imaged reactor. 
Variable illumination was considered by imaging a white 
reference Teflon tile (Specim, Finland), which was set at 
the reactor surface level, before each image to normalize 
the spectra between the white reference and a black refer-
ence. The black reference was taken automatically, with 
the mechanical shutter of the imager closing before each 
image. Depending on the lighting conditions, an auto-
matically varying exposure time of the imager was used, 
which ranged between 17-93 ms with flat panels and 7-18 
ms with raceway ponds. The imaging geometry was kept 

Fig. 3  The architecture of the 1D CNN after hyperparameter tuning. This model was used to predict the algae species and biomass concentra-
tions in Experiments I and II in laboratory scale experiment

Fig. 4  Industrial scale imaging 
setups for Nannochloropsis sp. 
in flat panel photobioreactors 
and of Spirulina (Arthrospira 
platensis) in raceway ponds
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similar for each cultivation system (44 cm height and 
66-67 cm distance in direct angle for flat panels, 125-127 
cm height, in 50° angle set on the edges of the raceway 
ponds).

The full spectral images (512×512 pixel ROI) were 
used to calculate mean spectra. The mean spectra were 
truncated between 426-691 nm (channels 10-100) to 
scrutinize the area with photosynthetic pigments and to 
exclude variation in the infrared area possibly caused by 
the greenhouse materials and varying cloudiness. The 
whole spatial area was used also with flat panels, even 
though they were surrounded by a metal frame, as the 
metal had little effect on the spectral mean. To calculate 
the best index to correlate with the flat panels’ biomass, 
all the possible indices formulated as A/B, where A and B 
are wavebands of the spectral camera, were calculated and 
the best index was determined based on highest significant 
(p < 0.001) Pearson correlation coefficient. In Allmicroal-
gae, the growth of Nannochloropsis cultures was assessed 
through optical density (OD) measurement on 540 nm 
waveband (Genesys 10s UV-Vis, Thermo Scientific) and 
a yearly updated linear regression model between OD and 
biomass dry weight (DW, in g  L-1). Assessments of DW 
were done in triplicates by collecting 30 mL of culture on 
pre-weighed 0.7 μm glass microfiber filters (698, VWR). 
The samples were washed with 10 mL of ammonium for-
mate (35 g  L-1) and oven-dried at 60 ºC until constant 
weight. For Spirulina, 600 nm waveband was used for OD 
measurement. The protocol for assessing dry weight was 
the same as for Nannochloropsis, but the samples were not 
washed with ammonium formate.

Results

Laboratory experiments

The differences in the spectral signatures between the stud-
ied microalgal strains were subtle, with all studied microal-
gae exhibiting distinct absorbance maxima on blue and red 
waveband areas (Fig. 5). Algal growth over time could be 
observed as an increase of reflectance on green wavebands 
and the near-infrared (NIR) area (Fig. 5) (see Supplemen-
tary Figure 1 for the growth of each species quantified with 
CASY). This study did not scrutinize the spatial distribution 
of microalgae in the cultures because the cell culturing flasks 
were thoroughly mixed before imaging and sampling. There-
fore, notable aggregation of algae was not assumed, and only 
the spectral information was considered in the modelling 
approaches.

Index‑based regression model

Spectra of all studied algal strains showed strong Pear-
son correlation between biomass concentration measure-
ments and A/B indices, where A and B are wavebands 
on green and blue waveband areas (Fig. 6). Chlorella 
biomass concentration correlated strongly also when A 
and B were on red-to-NIR and blue or green waveband 
areas (Fig. 6). The highest positive correlation between 
Chlorella biomass concentration and A/B index was with 
wavebands A = 419 nm and B = 461 nm (r = 0.95, p 
< 0.001, n = 23), hereafter called the best index. For 
Desmodesmus the best index was with A = 600 nm and 

Fig. 5  Example of mean spectra of replicate b of each species in Experiment I in laboratory scale experiment. Vertical lines mark the location of 
the best indices. Numbers represent the day of the experiment. The spectral data was min-max normalized for the visualization
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B = 450 nm (r = 0.97, p < 0.001, n = 15) and for Tet-
radesmus with A = 556 nm and B = 540 nm (r = 0.93, p 
< 0.001, n = 20) (Fig. 5).

A linear regression model fitted between the best index for 
Chlorella and biomass concentration reference data of replicates 
a and c (training data) predicted well the biomass concentration 

of replicates b (test data, n = 20, Fig. 7). The MAPE was 15%, 
with the standard deviation (SD) being 13. Similarly, the pre-
dictability of the Desmodesmus model was good (MAPE 16%, 
SD = 16, n = 12); as well as the Tetradesmus model (MAPE 
24%, SD = 18, n = 18) and the model predicting all three spe-
cies together (MAPE = 21%, SD = 17, n = 50).

Fig. 6  Pearson correlation matrices for biomass concentrations and indices A/B where A and B are wavebands in Experiments I and II in labora-
tory scale experiment

Fig. 7  Linear regression model 
between the biomass concen-
tration estimates and the best 
indices in Experiments I and II 
in laboratory scale experiment
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One‑dimensional convolutional neural network (1D CNN)

Like the index-based models, the 1D CNN performed well 
(Table 3, Fig. 8), considering the model performance cannot 
be expected to be better than the variation in the reference 
biomass concentration assessment (Table 1). MAPEs were 
between 11-26 % for the different species (Table 3) being 
highest for Tetradesmus which exhibited the highest vari-
ation also in the reference biomass assessments (Table 1).

The advantage of the 1D CNN over the index-based 
model is that it simultaneously predicted biomass concen-
tration and accurately classified the algal monocultures of 
different species (Fig. 8). The species classification accura-
cies varied between 97-99 % (See Supplementary Table 1 

for precision, recall, specificity and F1 score metrics). The 
species accuracies for Chlorella, Desmodesmus and Tet-
radesmus were 99 % (SD = 1, n = 20), 97 % (SD = 3, n = 
12) and 97 % (SD = 1, n = 18), respectively. Occasionally 
Desmodesmus biomass concentrations were confused with 
others so a low biomass concentration of Desmodesmus 
was predicted in cultivations of Chlorella and Tetradesmus 
(Fig. 8, See supplementary Fig. 4 for a confusion matrix).

Spectral imaging of industrial scale cultivations

The spectral imager was able to obtain distinctive algal spec-
tra from both cultivation systems regardless of the plastic 
surface and metal frame of the flat panels (Fig. 9A). There 
were differences between the spectra of the two species, 
probably due to their different pigment compositions. For 
example, Spirulina shows a phycocyanin absorption peak 
around 620 nm, unlike Nannochloropsis, which does not 
possess phycobiliproteins. One of the distinctive spectra 
from raceway spectra plot (green spectra, Fig. 9A) was from 
a raceway that had not been properly mixed.

The best index determined for Nannochloropsis was 
619/643 nm and for Spirulina 616/587 nm (Fig. 9B) (See 
Supplementary Figure 5 for correlation matrices). Both 
indices correlated strongly with the expected biomass. The 
best index visualization is an example of how the predicted 
biomass of Spirulina in one raceway (Fig. 10A) is distributed 
in a spectral image (Fig. 10B).

Discussion

This study aimed to construct an effective, non-invasive, 
and robust method for monitoring microalgae growth. Both 
an index-based linear regression model and a CNN model 
were constructed to resolve the biomass concentration of 
three considered microalgae strains on a laboratory scale. 
The simpler, index-based approach was initially tested also 
for industrial scale. The imaging was fast, with a duration 
of less than a minute per sample. The non-invasive nature 
of the imaging arrangements posed no risk of contamination 
to the culture. Capturing the dark and white reference with 
each target image controlled the variation caused by possible 
warming of the sensor or the light source during the imag-
ing sessions, and the variation by daylight conditions in the 
industrial setup. The results show that the reflectance imag-
ing system combined with both the index-based approach 
and CNN work equally well and that the imaging setup can 
be implemented in different volumetric scales.

Murphy et al. (2013) achieved a prediction error of 15 
% when predicting the biomass concentration of Anabaena 
variabilis from liquid samples with a multispectral imager. 
They imaged 400 mL samples of different concentrations 

Table 3  Comparison of average and standard deviation (SD) (in 
brackets) of mean absolute percentage error (MAPE) of biomass pre-
dictions using index-model and the 1D CNN in Experiment I and II 
in laboratory scale experiment. The values are given for the test data 
(replicates b of Experiment I and II). Values for the 1D CNN are 
means and standard deviations of three replicate trainings of the cho-
sen model architecture

Strain Index-based model 1D CNN
MAPE (%) MAPE (%)

Chlorella (n = 20) 15 (13) 12 (10)
Desmodesmus (n = 12) 16 (16) 11 (10)
Tetradesmus (n = 18) 24 (18) 26 (22)
All (n = 50) 21 (17) 17 (17)

Fig. 8  Species classification and the ratio of the expected and 1D 
CNN predicted biomass concentrations in the test data (replicates b 
of Experiment I and II in laboratory scale experiment). Means values 
and standard deviations of the three replicate trainings of the chosen 
model architecture are shown
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and calculated the correlation between green waveband 
and areal biomass concentration. In this study, the predict-
abilities achieved both with the vegetation index-based lin-
ear regression model and 1D CNN were comparable to the 
results by Murphy et al. (2013). The poorer predictability 
for Tetradesmus biomass concentration in this study can be 
explained by the tendency of the cells to form aggregates, 

which affects the reference biomass concentration assess-
ment by CASY.

Vegetation indices, such as the Normalized Difference 
Vegetation Index (NDVI) based on NIR and red wavebands 
are common methods for monitoring vegetation, includ-
ing microalgal biomass, in spectral applications (Huang 
et al. 2021). Salmi et al. (2021) found a good correlation 

Fig. 9  A Mean spectra of Nan-
nochloropsis sp. in flat panel 
photobioreactors and Spirulina 
(Arthrospira platensis) in 
raceway ponds in industrial 
scale test. Vertical lines mark 
the location of the best indices. 
Each spectrum was min-max 
normalized for the visualization. 
B Pearson correlation between 
the biomass concentration 
estimates (dry weight) and the 
best indices

Fig. 10.  A Spectral imaging 
of a raceway with Spirulina 
(Arthrospira platensis) in 
industrial scale test. B An index 
visualization calculated a from 
spectral image of a raceway 
pond using the best determined 
index (616/587 nm). This figure 
is an example of how the pre-
dicted biomass is distributed in 
a spectral image



Journal of Applied Phycology 

between NIR/Red index calculated from transmittance spec-
tral images of 2 mL samples on a well-plate and the total 
biomass concentration of microalgae when five different 
microalgae species were studied (r = 0.86, p < 0.001). In 
their study, changing the index architecture had no signifi-
cant effect on the correlation between vegetation index and 
biomass, and therefore for this study, only the simplest index 
architecture (waveband A/ waveband B) was examined. In 
this study, only the best index is presented in the results 
which for all three species was on the green wavebands 
558/541 nm  (R2 = 0.87, p < 0.001, Figs. 5 and 6). This is in 
line with the observation that the laboratory cultures became 
visibly greener during growth (Fig. 5). The best index was 
also in the green wavebands for Tetradesmus. In the case of 
Chlorella and Desmodesmus, important wavelengths were 
also found between 420 and 450 nm, where the absorption 
peaks of Chlorophyll a and b are located (Chazaux et al. 
2022). However, in this study, several wavebands including 
the NIR/Red areas correlated well (Fig. 6).

Salmi et al. (2021) studied the same Desmodesmus strain 
as in the results presented here. In their study, the best index 
to describe the biomass concentration of Desmodesmus was 
found to be 631/643 nm (r = 0.66, p < 0.001). In this study, 
the best index for Desmodesmus was 600/450 nm. Com-
paring with the best index found by Salmi et al. (2021), it 
becomes apparent, that the waveband reaching around 600 
nm contains important information about the algal biomass 
concentration, even though the indices between the two stud-
ies varied. This was also observed in the industrial scale tests 
where the best indices occurred on the red wavelengths for 
the green microalgal cultivations. For the Spirulina cultiva-
tions, the most descriptive indices occurred in the area of 
phycocyanin absorbance (Fig. 8B).

The use of indices in biomass monitoring has several 
challenges. Due to the properties of light, the wavelengths 
in a green part of the spectrum will saturate with increasing 
biomass. This is particularly evident in the cultivation of 
dense biomass (Gitelson et al. 1996). The possible saturation 
of the index should therefore be considered if the wet bio-
masses are higher than in the laboratory experiments of this 
study (> 1.2 mg  mL-1). Since the visible light range contains 
a signal in the pigments of the microalgae, changes in the 
pigment properties of the microalgal culture can therefore 
also affect the index used. For example, pigments can be 
affected by the adaptation of the algae to changing environ-
mental conditions, such as changes in nutrient levels (Goiris 
et al. 2015). In addition, the measured signal is affected by 
lighting, imaging setup and the photobioreactor (especially 
in non-invasive monitoring). This work highlights that 
spectral imaging allows the use of multiple wavebands for 
monitoring. Thus, using this approach, with a specifically 
defined index, can give better results than a pre-determined 
literature-based index.

In the laboratory experiments, the classification accura-
cies for microalgae monocultures of this study achieved with 
1D CNN varied between 97-99%. The results were in line 
with both Yadav et al. (2020) and Pant et al. (2020) who 
reached classification accuracy of 99.97 % and 98.45 %, 
respectively. They classified algae with CNN, although from 
microscopic images, unlike in this study where the spec-
tra were used. The prediction accuracies of this study were 
also in line with the study of Xu et al. (2020), who classi-
fied three species of algae (Phaeocystis, Chlamydomonas, 
and Chaetoceros) imaged with a transmission hyperspectral 
microscopy imager, comparing two different methods. The 
first method applied principal component analysis to nor-
malized (min-max) transmission spectra followed by linear 
SVM (support vector machine) for classification. The second 
method calculated ratios 680/550 nm and 440/550 nm from 
the transmission data, again followed by linear SVM for 
classification. Both methods yielded an accuracy of 94.4%. 
In the same study, a random forest model predicted the 
growth stage of Phaeocystis from spectral images, achiev-
ing a prediction accuracy of 98.1 %  (R2 = 0.998). It can be 
noted that in this study with 1D CNN, in addition to clas-
sification, biomass concentration could be predicted, while 
the accuracy remains at the same level compared to previous 
studies that focused on classification (Pant et al. 2020; Xu 
et al. 2020; Yadav et al. 2020).

The industrial scale test was promising as it showed that 
the method investigated in this study can also be applied 
to various industrial scale cultivation systems and therefore 
can be useful for the algae sector. The different photobio-
reactors gave a clear spectral signal with species-specific 
differences. As a contrast to sampling-based measurements, 
the spatial variation of biomass can be observed from a spec-
tral image (Fig. 10). The same benefit can also be observed 
when comparing spectral instruments with optical fibers, 
which have been shown to yield good results in monitoring 
microalgae biomass (Morgado et al. 2024): optical fibers 
are fast to acquire data but have a relatively small observed 
area. Spectral cameras may be comparatively more expen-
sive to deploy but provide information from a wider area 
of the cultivation. Therefore, the use of an imager could be 
beneficial, particularly when the algae are not well mixed in 
the PBR. Overall, the imaging setups used in this large-scale 
test were replicable and easy to use, which makes future 
research worthwhile.

In Allmicroalgae, biomass determination is based on OD 
measurements, which in general are proven to be an accurate 
basis for biomass monitoring models. (Griffiths et al. 2011). 
The wavelengths of the best indices determined in this study 
do not match the wavelengths used in Allmicroalgae’s cali-
bration model. In the case of Spirulina, the wavelength of 
the calibration model falls between the best indices (cf. 600 
nm and 616/587 nm), while in the case of Nannochloropsis, 
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the wavelengths used in the index are higher (cf. 540 nm 
and 619/643 nm). However, several indices in the correla-
tion matrices correlate well with biomass (Supplementary 
Figure 5) so a good correlation result could also have been 
achieved at other wavelengths. The correlation between the 
indices obtained in this study and the biomass results from 
the calibration model of the Allmicroalgae is promising and 
encourages further implementations.

Machine learning methods are knowingly data-intensive, 
i.e. CNN needs more data for training than the regression 
model. Training the CNN also requires more computing 
power and time to train the model. Therefore, for relatively 
simple problems, such as biomass prediction, a simpler regres-
sion model may be an adequate algorithm. For these reasons, 
the CNN was not applied for the initial tests on the industrial 
scale in this study. However, a more extensive study with a 
longer duration could reveal the benefits of CNN on a larger 
scale, too. Once the monitoring pipelines have been estab-
lished, the practical applications of both CNN and regression 
models are similar, both allowing real-time monitoring.

The non-invasive imaging setup seemed to work well in 
laboratory conditions, as both the index-based regression 
models and the 1D-CNN model predicted well the biomass 
of each species. In addition to laboratory conditions, Specim 
imagers are adaptable to industrial use. Future research 
could concentrate on on-site and further online monitoring. 
One possible area of research could be the detection of con-
taminations in algal cultures. In this study, in addition to 
predicting biomass, 1D-CNN was able to distinguish three 
species of algae monocultures from each other at a labora-
tory scale, even though they were all green algae. This could 
indicate that contaminations by other algae species could be 
distinguished from spectral data using a machine learning-
based approach. In this study, biomass concentration was the 
target parameter but simultaneous assessment of pigment or 
lipid composition and concentration in laboratory and indus-
trial scale cultivations could also be an interesting target for 
further development.

Conclusions

This study described non-invasive imaging arrangements for 
microalgae cultivations in cell culturing flasks and industrial 
scale cultivation systems. In this study, both index-based 
linear regression models and machine learning-based cali-
bration models resolved the biomass concentration from 
spectral images with adequate prediction errors in laboratory 
scale cultivations. Index-based biomass concentration pre-
diction was a simple and replicable way to monitor algal bio-
mass concentration. The availability of multiple wavebands 
in a spectral imager enabled the fitting of different mod-
els for different microalgae species and volumetric scales. 

Whilst the machine learning models might be unnecessar-
ily complex for simply predicting biomass concentration, 
the advantage of the 1D CNN over the index-based model 
was that it simultaneously predicted biomass concentration 
and accurately classified the green algae monocultures by 
species. An industrial-scale test in this work showed that 
non-invasive spectral imaging could have the potential to 
be implemented in large-scale cultivation systems meeting 
the needs for more efficient and comprehensive monitoring.
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