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models. The emphasis is on the quite recent artificial neural network model, 
which is compared to the Monte Carlo simulation and the Black-Scholes-Merton 
pricing model. The financial markets' complexity demands increasingly 
sophisticated models, and recent advances in computing power have facilitated 
the development of intricate option pricing models. 

Especially the sub-model derived from artificial neural networks, the 
multilayer perceptron has been used in pricing European call options. Existing 
literature demonstrates the multilayer perceptron's superiority in pricing 
accuracy compared to the Black-Scholes-Merton model. However, successful 
implementation necessitates specific model inputs, defined network 
architecture, and a substantial amount of data. 

The results of this study underscore the better predictive accuracy of the 
artificial neural networks when compared to the stochastic models, as it is more 
accurate in predicting the option prices when using the complete testing dataset. 
Notably, the artificial neural network exhibits exceptional performance when 
pricing out-of-the-money options, with diminishing discrepancies to the 
stochastic models observed with in-the-money options, to the point of the 
network’s results being comparable to the results of the stochastic models. The 
two stochastic models used in this thesis expectedly perform extremely 
similarly. 

The optimal network architecture identified diverges notably from those 
architectures used in prior literature, featuring significantly greater numbers of 
hidden layers and neurons per layer. However, despite the large network size 
this does not cause overfitting problems, and this is somewhat attributable to the 
large reliable dataset. The time period used, along with the chronological data 
partitioning method, caused problems, ultimately leading to the decision to drop 
the interest rate variable from the network model altogether.  
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Tämä tutkimus vertailee kolmea erilaista optioiden hinnoittelumallia kvanti-
tatiivisesti. Painopiste on melko uuden keinotekoisen neuroverkkomallin 
käytössä, jota vertaillaan Monte Carlo simulaatioon sekä Black-Scholes-Merton 
hinnoittelumalliin. Rahoitusmarkkinoiden monimutkaisuus sekä sen 
datamassat vaativat monimutkaisempien mallien käyttöä kuin koskaan ai-
kaisemmin, ja viimeaikaiset edistysaskeleet laskentatehossa ovat mahdollis-
taneet hienovaraisten hinnoittelumallien kehityksen.  

Erityisesti keinotekoisten neuroverkkojen alamallia monikerroksista 
perseptroniverkkoa on käytetty eurooppalaisten osto-optioiden hinnoittelussa. 
Kirjallisuus todistaa monikerroksisten perseptroniverkkojen olevan tarkempia 
Black-Scholes-Merton malliin verrattuna, vaikkakin tietynlaiset syötteet, 
verkkoarkkitehtuuri sekä suuri datasetti ovat välttämättömiä tämän 
tarkkuuden saavuttamiseksi.  

Tämän tutkimuksen tulokset korostavat keinotekoisten neuroverkkojen 
tarkempaa hinnoittelua verrattuna stokastisiin malleihin, sillä ne ovat 
tarkempia optiohinnoittelussa, kun käytetään vertailussa koko datasettiä. 
Keinotekoinen neuroverkko osoittaa poikkeuksellista suorituskykyä 
miinusoptioilla (out-of-the-money), ja erot stokastisiin malleihin pienenevät 
siirryttäessä plusoptioihin (in-the-money), joka johtaa mallien samantasoiseen 
suorituskykyyn plusoptioilla. Tutkimuksessa käytettävät stokastiset mallit 
suoriutuivat odotetusti erittäin samankaltaisesti. 

Tuloksissa tunnistettu optimaalinen neuroverkkorakenne poikkeaa 
huomattavasti aiemmassa kirjallisuudessa käytetyistä rakenteista, sillä siinä on 
merkittävästi enemmän piilokerroksia sekä neuroneita per kerros. Vastoin 
odotuksia suuri koko ei kuitenkaan aiheuta ylisovittamisongelmia, mikä johtuu 
osittain suuresta ja luotettavasta datasetistä. Käytetty aikaperiodi kronologisen 
jaottelun kanssa aiheuttaa ongelmia ja tämä johtaa lopulta korkotaso 
muuttujan poistamiseen neuroverkkomallista kokonaan. 
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1 INTRODUCTION 

Option pricing has long been a subject of extensive research and great interest. 
Because options, as well as other derivatives, are used for risk management as 
well as speculation and portfolio management the pricing of these financial 
instruments needs to be as accurate as possible. Over the last half a century 
different methods have been created in an attempt to make the pricing of 
options as accurate as possible, and these models have been ranging from 
statistical models to stochastic models derived from theory. 

As computing power has become more affordable and more efficient it has 
enabled the use of more complex models, such as the artificial neural network 
(ANN) and a sub-method of that the multilayer perceptron (MLP). It used to be 
hard to run complex neural network models before, as they are heavy on 
computing power and thus, they must have been simple methods not 
containing too many layers, neurons, or iterations in the model. 

This thesis aims to take advantage of the advancements in computing 
power and try to evaluate the performance of an ANN MLP model in option 
pricing and compare it to the Black-Scholes-Merton (BSM) model and the 
Monte Carlo simulation (MCS). The advancement in computing power is one of 
the driving motivators for this thesis. Other motivation lies in the improved risk 
management, that extends beyond financial institutions and mutual funds to 
traditional industries as well as individual economic agents. For instance, well-
priced options can mitigate the price increase of a construction material or can 
fortify an investment portfolio against a big economic crisis. Many industries 
are already using derivatives in risk management, but an argument can be 
made that they would be utilized even more if the pricing was more accurate. 
The premise is that if the pricing was more accurate it would mitigate concerns 
related to overpaying for the hedging the options provide. 

Some other motivation for this subject is also drawn from the ANN MLP 
model being a great practical finance tool for finance professionals, that does 
not only work in theory but also in practice. Continuous financial model 
improvements are crucial to keeping track of the constantly evolving finance 
world.
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Artificial intelligence tools such as ChatGPT were used in making this 
master’s thesis. These programs were used to aid in programming the ANN 
and managing the large dataset using Python. It seems that such programs are 
extremely useful in finding errors in the code and they were used especially for 
this. Artificial intelligence tools were not asked or commanded to write this 
thesis or construct ready to use Python code. 

1.1 Background 

Financial derivatives are financial instruments that derive their value from an-
other asset. They often trade in the future, meaning that one can for example 
agree to buy a specific asset in six months at a specific price. The two main cat-
egories of financial derivatives are options and futures, where the options give 
the holder the option (not the obligation) to buy or sell the underlying asset at a 
specific time at a specific price. For the futures, this turns into an obligation. 
Derivatives like these are most often used for risk management, as well as 
speculating. The pricing of these derivatives is important so that the risks can be 
managed at a fair price.  

Traditionally options have been priced with a Black-Scholes-Merton 
model. This model was made by Black and Scholes in 1973 and was continued 
in the same year by Merton. This model was the groundbreaking option pricing 
model at that time, as there weren’t that reliable pricing models before that. 
However, options have been around for much longer than the BSM pricing 
model. The BSM model is a stochastic model that has a strong theoretical 
background. There have been several extensions to the BSM model, such as 
ones where the volatility used in the model is not considered constant or is 
derived in another way than in the original model. For example, John Cox and 
Stephen Ross have done a lot of work regarding the different BSM model 
extensions. These can already be considered as advancements in option pricing, 
but also a lot of other models have been composed.  

Another stochastic model used in option pricing is the Monte Carlo 
simulation. The idea is to run many different price paths for the underlying 
asset and calculate the option price for each of these paths. An average of these 
option prices are taken which is supposed to then represent the option’s real 
value. It is based on the law of large numbers, which means that if enough 
paths are run (𝑛 →  ∞) the average of the option payoffs should be the actual 
value.  

The latest big advancement seems to be the machine learning models, 
mainly the ANN MLP models. These were first introduced by Malliaris and 
Salchenberger (1993a). The ANN models resemble standard regression models 
but in practice are built from brain-like neurons. Input variables are run 
through the neural network and its neurons minimizing an error function until 
it cannot be minimized anymore. The ANN models have been compared to 
different BSM models, and the results vary depending on the specific models 
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used as well as depending on the dataset used. There seem to be a few 
connecting factors between the models that consistently outperform the BSM 
model, and those will be used in this thesis. 

The research regarding the ANN models has mainly been observing its 
performance in European options. It seems like it should also be examined in 
American option pricing, as well as in exotic option pricing. Some literature on 
American option pricing with the ANN does exist but it is nowhere near as 
extensive as for the European options. There also doesn’t seem to be that much 
literature regarding the different hidden layer architectures, that would prove a 
specific number of hidden neurons or hidden layers to be superior to others. It 
could also be argued that there exists a gap in the literature on comparing the 
ANN models to other option pricing models, and not only to the BSM model 
variations although some literature on this already exists (see for example Liu et 
al. (2019)). 

1.2 Research questions 

This thesis aims to find out how well the artificial neural network models 
compare to the Monte Carlo simulation method, and as a final benchmark 
compare these results to the Black-Scholes-Merton model. The main research 
question is: 

 
- Is the artificial neural network better at pricing the DAX-index 

call options than the Monte Carlo simulation method, and the 
Black-Scholes-Merton option pricing model?  

 
Additional research questions are as follows: 
 

- What is the optimal number of hidden layers, hidden neurons, 
and epochs in the artificial neural network? 

- Are the pricing performances of the artificial neural network, the 
Monte Carlo simulation, and the Black-Scholes-Merton model 
dependent on the moneyness of the option? 

1.3 Structure 

This thesis has been divided into eight different chapters, where the first one is 
the introduction to the topic. This chapter will contain the background, 
motivation, research questions, and research methods as well as the structure of 
the thesis.  
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The second chapter aims to explain financial options, with emphasis on 
the styles of options used in this thesis. This chapter won’t be an in-depth 
analysis of options, but rather just an overview or a recap of them.  

The third chapter discusses the stochastic models used in option pricing, 
especially the BSM model and the MCS. Before these, a mathematical 
foundation will be established which the methods will be built on top of. The 
derivation of the stochastic models requires a mathematical foundation.  

Chapter four contains an introduction to machine learning, and especially 
to the model of ANN. Machine learning and the ANN are defined, and the 
ANN used in this thesis is specified.  

The fifth chapter includes a literature review of the artificial neural 
networks in option pricing. This chapter will focus on the attributes of the 
models used and also on the results that have been found when using an ANN 
model in option pricing. This chapter will also contain a summary table of a 
sample of the literature done before.  

In the sixth chapter an overview of the dataset it presented, and the time 
period used in this study is discussed. This chapter also presents the model 
used for the ANN and explains how the dataset is filtered.  

The seventh chapter is the main focus of this study. It presents the results 
of the thesis and compares the different models to each other. Before this, an 
optimal structure for the artificial neural network is acquired. The models are 
compared to each other using the whole dataset and some subsets of it.  

The eighth chapter concludes the thesis. This chapter discusses the 
findings and summarizes them as well as presents some ideas for upcoming 
research based on the same subject. The limitations of this study are also 
discussed. 
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In the following chapter, the reader is familiarized with different financial 
options. The chapter will not contain an in-depth analysis of option contracts or 
option types but rather a quick overview of them1. The primary reference for 
this chapter is Hull’s (2013) book “Options, futures and other derivatives. It 
seems to be the most used book when it comes to either basic options and 
derivatives or more complex ones, and it is used as the course book for many 
universities’ derivatives courses.  

Black and Scholes (1973), and Hull (2013, p. 1) explain that financial 
options are financial instruments and derivatives that derive their value from 
another asset. They explain that they yield the holder the right (but not an 
obligation) to buy or sell the underlying asset at an earlier specified price, 
which is known as the strike price. They add that the underlying assets might 
be for example commodities, stocks, or indices. Options can be categorized in 
popular ways based on two key divisions: put vs. call options and European vs. 
American options, and on top of European and American options there also 
exists so-called exotic options(Black & Scholes, 1973; Hull, 2013, p. 574). Because 
of the existence of exotic options, the European and American options are 
occasionally referred to as vanilla options, Black and Scholes (1973), and Hull 
(2013, p. 574) add. Options can, according to them, be traded in exchanges or in 
over-the-counter markets (OTC) which refers to private parties agreeing on an 
option deal.  

The main characteristics of an option are its type, the underlying asset, 
expiration date, and its strike price. The type is either a put option or a call 
option. A call (put) gives the holder the option to buy (sell) an asset by the 
expiration date for the strike price. Depending on if the option is European or 
American the option can be exercised only at the expiration date or on any day, 
and thus the European which can be exercised only on the expiration date is 
easier to analyze. (Hull, 2013, p. 7-8) Because the American option can also be 

 
1 If the reader wants to familiarize themself more with options Hull’s (2013) book 

“Options futures and other derivatives”, which is also cited in this chapter a lot, is a great 
place to start. 

2 FINANCIAL OPTIONS  
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exercised on any other day, it gives the holder more possibilities, and thus the 
price of the option should be higher than its European counterpart. According 
to Hull (2013, p. 7) most of the options traded in exchanges are American2. 

Options are most often used for speculation purposes or to manage risks 
(hedge). Hull (2013, p. 11) explains hedging as trying to reduce a particular risk 
they have, which can be almost anything that causes fluctuations in the 
investment. It is important to note, that there should always be a price to pay 
for hedging.  

Different risks of financial options can measured by so-called “Greeks” 
(Hull, 2013, p. 377). These refer to different Greek letters such as delta, theta, 
gamma vega, and rho. The only Greek relevant in this thesis is the delta in the 
context of delta hedging. Hull (2013, p. 264) explains the delta of an option to 
measure how sensitive the price of the option is to a change in the price of the 
underlying asset. If the delta of an option is 0.2 the option’s price changes 
around 20 percent of the amount of the change in the underlying’s price. 

2.1 European option positions and payoff functions and profiles 

Option contracts have two sides, where one side is the buyer(long), and one 
side is the seller(short). The seller (or writer) of the option has the obligation to 
sell (or buy) the underlying at the specified strike price if the holder of the 
option so wishes. There are four types of option positions, a long call, a long put, 
a short call, and a short put. This subchapter will review the attributes and 
payoff profiles of long and short calls and puts, and to make this overview 
simple only European options and their payoff profiles and payoff functions 
will be examined.  

Let 𝐾  be the strike price of the option, and 𝑆𝑇  be the price of the 
underlying asset at time 𝑡 ∈ {0, 𝑇}. Now the payoff function for a European long 
call option is  

 
max(𝑆𝑇 − 𝐾, 0) (1) 

 
The option has value if 𝑆𝑇 > 𝐾 and no value if 𝑆𝑇 ≤ 𝐾. If it has no value, it 
should not be exercised as the market offers the asset at a lower or equal price 
when compared to the strike price 𝐾. Figure 1 demonstrates the payoff profile 
of a European long call option, which has a strike price of 100 and an initial 
option price of 7. 

 
2 American or European options as types do not refer to geographical locations, but 

rather just the type of the option. European options can be traded in American exchanges 
and vice versa.  
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FIGURE 1 Payoff profile of a European long call option 

The payoff function for a European long put option is  
 

max(𝐾 −  𝑆𝑇 , 0) (2) 
 
And this time the option has value if 𝑆𝑇 < 𝐾 and no value if 𝑆𝑇 ≥ 𝐾. The higher 
the strike is in this situation the higher the price the option allows the holder to 
sell the underlying.  Figure 2 demonstrates the payoff profile of a European 
long put option with a strike price of 90 and an initial option price of 5. 
 

 

FIGURE 2 Payoff profile of a European long put option 

Payoff for a European short call position is  
 

min(𝐾 − 𝑆𝑇 , 0) (3) 
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Which is demonstrated in Figure 3, with an initial option price of 5 and a strike 
price of 100. 
 

 

FIGURE 3 Payoff profile of a European short call option 

And the payoff for a European short put is 
 

min(𝑆𝑇 − 𝐾, 0) (4) 
 
Which is demonstrated in Figure 4, with an initial option price of 5 and a strike 
price of 90. 

 
 

 

FIGURE 4 Payoff profile of a European short put option 
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2.2 Other options 

On top of the vanilla options, there exists the so-called exotic options. They 
often do not contain easily definable properties and are not traded actively. 
Because of this, the exotics are usually OTC traded options. The market for 
these kinds of options is small, and they are often tailored to fit a very niche use 
case. That is why it is not often of interest to trade them publicly in the 
exchanges. Because the exotics are often even more complex than the vanilla 
options, their pricing is even more difficult. Below are a few examples of the 
exotics. These will be covered in short as they are not a part of this thesis. 
However, they are very interesting in the option pricing framework, as they are 
difficult to price with traditional methods. One of the more exciting future 
research areas could be exotic pricing with an ANN. The examples below are 
based on Hull (2013). 

Packages are portfolios consisting of different assets. These are usually 
made to be similar to a hedging strategy, which is easily purchasable as a 
complete package. These strategies are for example butterfly spreads or bull 
and bear spreads.  

Asian options’ payoffs are dependent on the arithmetic average of the 
price of the underlying asset during the life of the option. Asian options might 
be more appropriate to some of the hedging needs than for example European 
options because they do indeed count for the average price of the whole period 
and are not only hedging against the price at the TTM.  

The holder of a shout option can once during the options life shout at the 
writer. At maturity, the holder receives the payoff of the option as it was a 
usual European option, or the intrinsic value at the time of the shout, whichever 
of these is greater.  

Compound options are options on options. A call on a call, a call on a put, 
a put on a call, or a put on a put are compound options. The two different 
options have their own exercise dates and two strike prices.  

As the name exotic options might tell you, the contracts are often quite 
exotic and thus difficult to price or evaluate. Usually, these options do net the 
dealer a lot of money (Hull, 2013, p. 574). This is mainly because the dealer and 
the buyer both have a hard time pricing them and thus are not aware of the fair 
value of the option. The dealer must play it safe and ask for more risk premium 
because of the uncertainty. 

2.3 Moneyness 

An option can be classified with respect to the underlying’s current price and 
the contract’s strike price, and this classification is called moneyness. This 
classification helps in determining whether the option contract currently has 
intrinsic value or not. Hull (2013, p. 201) explains that option contracts are 



17 
 

referred to as in-the-money (ITM), at-the-money (ATM) or out-of-the-money 
(OTM) depending on where the underlying’s price is with respect to the strike 
price. ITM means that the option has at least some intrinsic value. He continues 
that with S being the underlying’s price and with K being the strike price 
options are referred to as presented in Table 1. Figure 5 also demonstrates the 
different moneyness points in a payoff profile graph of a European call option. 

TABLE 1 Moneyness of option contracts 

Moneyness S<K S=K S>K 

Call option OTM ATM ITM 
Put option ITM ATM OTM 
 
Without transaction costs only an option that is ITM is exercised, and because 
of this moneyness and especially ITM is a signal that the option has value at 
that specific time. However, OTM and ATM options do have a price, because 
the underlying’s price can always change before the expiration date. If there is 
at least a small chance that the underlying asset’s price reaches the strike price 
before the expiration date the option should have some value and thus have a 
price. Options that are deep ITM or OTM are hard to price because the 
underlying’s price changes would have to be so dramatic that a possibility like 
that is hard to calculate. Malliaris and Salchenberger (1993a) note that the BSM 
model’s pricing bias is the largest for deep OTM options, and later in this thesis 
it is observed that the ANN also has trouble pricing deep ITM options. 
Moneyness is thus a crucial factor in option pricing. Deep ITM or deep OTM 
options are also not traded much (Anders et al., 1998)3. 

 

FIGURE 5 Moneyness of a European call option 

 
3 Deep ITM or deep OTM simply means that the underlying asset’s current price is far from 
the strike price, so far from ATM. 
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This chapter aims to provide a base-level understanding of stochastic models 
and their foundation, to then later on be able to connect this knowledge to the 
models in option pricing. First crucial parts of stochastic models will be 
discussed which are the Brownian motion which has been used in the modeling 
of security prices (Wang, 2012, p. 31), the Itô’s lemma, and the law of large 
numbers. Later two stochastic option pricing models are examined: the 
traditional model by Black and Scholes (1973) and Merton (1973) and the Monte 
Carlo simulation which was first developed for physics by Stanislaw Ulam in 
the 1940s. The main idea of stochastic models such as the BSM and the MCS is 
to include the uncertainty factor into their structure so that it can be accounted 
for. Random variables are the uncertainty variables, that are incorporated into 
the models.  

The assumption for this chapter is that the reader has at least a 
foundational understanding of probability concepts like random variables at an 
introductory level or higher. However, it is intended that the latter parts of this 
thesis can be read and understood without these, but this chapter might be hard 
to understand without.  

3.1 The mathematical foundation 

3.1.1 Brownian motion 

The Brownian motion was first discovered by botanist Robert Brown in 1827 
while studying pollen grains and their movements(Kac, 1947; Wang, 2012, p. 
31). Later Norbert Wiener mathematically constructed the stochastic process of 
the Brownian motion 4  and Figure 6 presents two similar examples of the 
Brownian motion but with different time increments. Brownian motion has 
according to Hull (2013, p. 282) been used and developed for the use cases of 

 
4 Brownian motion and Wiener process as definitions are used interchangeably. 

3 STOCHASTIC MODELS IN OPTION PRICING  
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physics to model the motion of particles, and it functions in the same type of 
way as Markov chains do. Wang (2012, p. 31) explains that this mathematical 
process has also been used extensively in finance to model security price 
movements, and Bachelier (1900) was the pioneer in applying the Brownian 
motion to finance in his doctoral thesis. Security prices do seem to have 
uncertainty in them, so a probability model to demonstrate this random walk 
type of movement is essential. 

Let’s consider a sample space Ω, which is the collection of all possible 
outcomes. First, a stochastic process W = {𝑊𝑡 ∶ 𝑡 ≥ 0}  will be defined as a 
collection of independent normally distributed random variables with mean 0 
and variance 1, where index t is for time which linearly moves forward. For 
each 𝜔 ∈ Ω, the mapping 𝑡 →  𝑊𝑡(𝜔) is called a sample path. W is a Brownian 
motion if the following conditions hold 

 
(i) 𝑊 is continuous, 
(ii) 𝑊0 = 0, 
(iii) The random variables 𝑊𝑡1

− 𝑊𝑡0
, 𝑊𝑡2

− 𝑊𝑡1
, … , 𝑊𝑡𝑛

− 𝑊𝑡𝑛−1
 are 

independent for any sequence 0 = 𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑛, 
(iv) For any 𝑠 ≥ 0 𝑎𝑛𝑑 𝑡 > 0 , the increment 𝑊𝑠+𝑡 − 𝑊𝑆  is normally 

distributed with a mean of 0 and variance t. 
 
With mean 0 the expected value at any future time is the same as it is currently, 
and because the random variables are independent the motion “starts afresh” at 
any time t. 
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FIGURE 6 Examples of Brownian motion, with bigger time increments (upper graph) com-
pared to smaller time increments (lower graph) ∆t_u>∆t_l 

To make this Brownian motion correspond better to reality it can be defined to 
have so-called drift. Hull (2013, p. 284) defines drift to be the mean change per 
unit time for a stochastic process. This would mean that the motion would have 
its random effects but in the long run, it would appear to have a general 
direction. When considering pricing models and their attributes, a risk-free rate 
is often one of the variables used in the models. Wang (2012, p. 36) notes this 
drift in the Brownian motion can be equated as the risk-free rate.  

3.1.2 Itô’s lemma 

Itô’s lemma is a much-needed result of mathematics, which will be needed 
when deriving the BSM model and the Monte Carlo simulation used in option 
pricing. The lemma was discovered by the mathematician Itô (1951), and it is 
based on the Brownian motion.  
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The next demonstration is given by Hull (2013, p. 291) concerning the 
lemma discovered by Itô (1951): 

Suppose that the value of variable x follows the Itô process: 
 

𝑑𝑥 = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝑑𝑧 (5) 
 
Where the 𝑑𝑧  is the Brownian motion and 𝑎  and 𝑏  are functions of 𝑥  and 𝑡 . 
When 𝑎 is the drift rate of variable 𝑥 and 𝑏2 is the variance rate of x, Itô’s lemma 
shows that a function 𝐺 of 𝑥 and 𝑡 follows the process: 
 

𝑑𝐺 = (
𝜕𝐺

𝜕𝑥
𝑎 +

𝜕𝐺

𝜕𝑡
+

1

2

𝜕2𝐺

𝜕𝑥2
𝑏2) 𝑑𝑡 +

𝜕𝐺

𝜕𝑥
𝑏 𝑑𝑧 (6) 

 
Where 𝑑𝑧 is the Brownian motion. The proof can be found in Itô (1951), or as an 
appendix in Hull (2013, p. 297). 

3.1.3 The law of large numbers 

The law of large numbers is used as the base for the Monte Carlo simulation. 
Schinazi (2012, p. 103) and Wang (2012, p. 69) explain the strong law of large 
numbers to be as follows: with 𝑋1, 𝑋2, … , 𝑋𝑛 being a sequence of independent 
identically distributed random variables with mean µ and variance 𝜎2 there is 

 

𝑃 ( lim
𝑛→∞

𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛

𝑛
= 𝜇) = 1 (7) 

 
What this means is that as the sample size n approaches infinity the probability 
that 𝑋̅ =  𝜇 is 1. The proof of the law of large numbers can be found in Schinazi 
(2012). 

3.2 Black-Scholes-Merton 

The Black-Scholes-Merton model was first imposed by Black and Scholes (1973) 
for option pricing5. Black and Scholes started developing the model and later 
Merton (1973) continued and refined their work. It is considered one of the 
fundamental models for option pricing and is most likely the most used one. 
The Black-Scholes-Merton model will be referred to as BSM later in this thesis.  

Let’s define some variables used in the derivation of the BSM model: 
 
𝜇 = Expected return on stock per year 
𝜎 = Volatility of the stock price per year 
𝑟 = Risk-free rate of interest 

 
5 Sometimes the model is referred to as just the Black-Scholes model. 
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𝑡 = Time, 𝑡 ∈ [0, 𝑇] 
𝑆 = Stock price 
𝐾 = Delivery price 
ƒ = Price of the option 
𝜋 = Value of the portfolio 
𝑁(𝑥)  = The cumulative probability distribution function for a 

standardized normal distribution 
 
To derive the BSM differential equation (BSMDE) the demonstration by 

Black and Scholes (1973) given by Hull (2013, p. 309-313) is followed. 
 
Assumptions to derive the BSMDE: 
 
1. The stock price follows the process of standard Brownian motion 

described in the earlier part with constant 𝜇 and 𝜎. 
2. Short selling is permitted. 
3. No transaction costs or taxes. All securities are perfectly divisible. 
4. No dividends. 
5. No arbitrage opportunities. 
6. Security trading is continuous. 
7. 𝑟 is constant. 

 
Hull (2013, p. 309) notes that some of these assumptions can be relaxed. This 
yields some more complex models which enable more real definitions to be 
used. He adds that these complications can include, for example, the 𝜎 or 𝑟 to 
be defined as stochastic processes themselves. This enables a more 
comprehensive consideration of real-life factors within the model, as the risk-
free rate or the volatility is never constant over longer periods of time. However, 
as the maturities for option contracts are often quite short the risk-free rate or 
the volatility should not deviate too far from the reality when kept as constants, 
when compared to how complicated the model would become.  

Next, the BSMDE will be derived on top of the assumptions and 
definitions given earlier. Let’s assume a stock price process: 

 
𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧 (8) 

 
Where 𝑑𝑧 is a Brownian motion. With Itô’s lemma, and with knowing that ƒ is 
contingent on 𝑆 the variable ƒ must be some function of 𝑆 and 𝑡. Hence: 
 

𝑑ƒ = (
𝜕ƒ

𝜕𝑆
𝜇𝑆 +

𝜕ƒ

𝜕𝑡
+

1

2

𝜕2ƒ

𝜕𝑆2
𝜎2𝑆2) 𝑑𝑡 +

𝜕ƒ

𝜕𝑆
𝜎𝑆 𝑑𝑧 (9) 

 
The discrete versions of these two equations are  
 

∆𝑆 = 𝜇𝑆∆𝑡 + 𝜎𝑆∆𝑧 (10) 
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And 
 

∆ƒ = (
𝜕ƒ

𝜕𝑆
𝜇𝑆 +

𝜕ƒ

𝜕𝑡
+

1

2

𝜕2ƒ

𝜕𝑆2
𝜎2𝑆2) ∆𝑡 +

𝜕ƒ

𝜕𝑆
𝜎𝑆 ∆𝑧 (11) 

 
Where the ∆  marks the changes in the corresponding variables. Now let’s 
construct a portfolio (𝜋) which consists of a derivative and the corresponding 
stock, to create a so-called delta-hedge portfolio 6 . By delta hedging the 
Brownian motion will be eliminated completely7. The portfolio is short one 

option (−ƒ) and long the share an amount of 
𝜕ƒ

𝜕𝑆
. The value of the portfolio can 

now be expressed as  
 

𝜋 = −ƒ +
𝜕ƒ

𝜕𝑆
𝑆 (12) 

 
And the change in the value of the portfolio is  
 

∆𝜋 = −∆ƒ +
𝜕ƒ

𝜕𝑆
∆𝑆 (13) 

 
We know ∆ƒ and ∆𝑆 from earlier, and if those are substituted to Equation 13, 
there is 
 

∆𝜋 = (−
𝜕ƒ

𝜕𝑡
−

1

2

𝜕2ƒ

𝜕𝑆2
𝜎2𝑆2) ∆𝑡 (14) 

 
Because the ∆𝑧 (and the 𝜇) were removed from the portfolio, it is riskless during 
∆𝑡. Because of the delta-hedge, there is no uncertainty in the portfolio and thus 
all the continuous risk is hedged. By combining the assumptions mentioned 
above, it is implied that the portfolio now always makes the same rate of return 
as other short-term risk-free securities. It can be written that 
 

∆𝜋 = 𝑟𝜋 ∆𝑡 (15) 
 
Now by again substituting the Equations 14 and 12 into this, there is 
 

(
𝜕ƒ

𝜕𝑡
+

1

2

𝜕2ƒ

𝜕𝑆2
𝜎2𝑆2) ∆𝑡 = 𝑟 (ƒ −

𝜕ƒ

𝜕𝑆
𝑆) ∆𝑡 (16) 

 
By reducing this equation there is 

 
6 Delta hedge is an options strategy which seeks to result in a neutral delta of the option.  
7 This portfolio would only stay delta-hedged if S and t would not change, because if they 
do then the share amount would also change. Obviously, S and t change constantly so con-
stant weighing adjustments are required to keep the portfolio delta hedged.  
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𝜕ƒ

𝜕𝑡
+ 𝑟𝑆

𝜕ƒ

𝜕𝑆
+

1

2

∂ƒ

𝜕𝑆
𝜎2𝑆2 = 𝑟ƒ (17) 

 
And this finally is the BSMDE. This equation has many solutions, and the most 
famous ones are for a call  
 

𝑐 =  𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) (18) 
 
and for a put 
 

𝑝 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1) (19) 
  

where  
 

𝑑1 =  
ln (

𝑆0

𝐾 ) + (𝑟 +
𝜎2

2
) 𝑇

𝜎√𝑇
 (20) 

 

𝑑2 =  
ln (

𝑆0

𝐾 ) + (𝑟 −
𝜎2

2
) 𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇 (21) 

3.2.1 Alternative Black-Scholes-Merton models 

There are many alternative BSM models, which usually have to relax some of 
the assumptions of the BSM. Malliaris & Salchenberger (1993a) list the major 
ones at that time to be the Cox and Ross pure jump model, Merton’s mixed 
diffusion-jump model, Cox and Ross’ constant elasticity of variance diffusion 
model, and Rubinstein’s displaced diffusion process. There also exist several 
other alternative models that use different volatilities, such as a Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) volatility model, or 
different implied or stochastic volatility models (SVM). The Stochastic Alpha, 
Beta, Rho (SABR) Model by Hagan et al. (2002) is also one that is used a lot. The 
papers presented in the literature review part of this thesis often use different 
alternative BSM models as benchmarks. 

Some exotic options can also be priced with alternative BSM models. 
There have for example been modifications done to the BSM to be able to value 
gap options. 

3.3 Monte Carlo simulation 

The Monte Carlo simulation (MCS) was first discovered by Stanislaw Ulam in 
1940 for the use of nuclear physics. The project he was working on needed a 
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code name. Because of the randomness included in the model Ulam named it 
after the Monte Carlo casino, where his uncle would go gambling. According to 
Hörfelt (2005), Boyle (1977) was the first one to use the MCS method in option 
pricing. Ross (2012, p. 41) and Wang (2012, p. 67) explain the core of the MCS to 
be in simulating a large number of random variables and calculating their 
function’s average.  They continue that this idea is based on the strong law of 
large numbers and is in its core an approach to approximating integrals. 

The MCS in itself is explained by Ross (2012, p. 40-41) as follows. Let 𝑔(𝑥) 
be a function and let 𝜃 be the desired value for computation where 

 

𝜃 = ∫ 𝑔(𝑥)𝑑𝑥
1

0

 (22) 

 
With X being uniformly distributed over (0,1), then 𝜃 can be expressed as  

 
𝜃 = 𝐸[𝑔(𝑋)] (23) 

 
With 𝑋1, 𝑋2, … , 𝑋𝑛 independent uniform (0,1) random variables it follows 

that the random variables 𝑔(𝑋1), … , 𝑔(𝑋𝑛)  are also independent and also 
identically distributed with mean 𝜇. Now using the strong law of large numbers 
mentioned above it follows that with probability 1, 

 

∑
𝑔(𝑋𝑖)

𝑛

𝑛

𝑖=1

 →  𝐸[𝑔(𝑋)] =  𝜃 𝑎𝑠 𝑛 →  ∞ (24) 

 
Ross (2012, p. 41) continues that this implies that by generating a large number 
of random numbers and taking the average of the function of the random 
numbers an integral can be estimated. This estimation is called the Monte Carlo 
simulation. Wang (2012, p. 67) explains this MCS scheme in short to be simply 
divided into two steps. With Equation 23 those steps would be 
 

1. Generate independent identically distributed random variables 
𝑋1, 𝑋2, … , 𝑋𝑛, that have the same distribution as X. 

2. The estimate of the expected value 𝜃 is defined to be the sample average 

 𝜃 =  
1

𝑛
[ℎ(𝑋1) + ℎ(𝑋2) + ⋯ + ℎ(𝑋𝑛)] 

 
It should be noted that because 𝑛 → ∞ in practice means that a lot of 

random numbers have to be generated, this simulation is computationally 
intensive, and might require a lot of computing power and computing time. As 
can be seen with the MCS in option pricing when generating paths for the 
underlying the simulation will become even more time-consuming 
computationally. 

In the option pricing framework Hull (2013, p. 446-448) as well as Boyle et 
al. (1997) give a good general demonstration of the MCS, which builds on top of 
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the general MCS explained earlier. He explains the steps to the valuation of a 
derivative dependent on a market variable 𝑆  (the underlying asset) that 
provides a payoff at time 𝑇 when the interest rates are constant as: 

 
1. Generate a random path for the price of the underlying S. 
2. Calculate the payoff of the option. 
3. Repeat the generation and calculation steps many times, to get many 

sample values from the option. 
4. Calculate the mean of the sample payoffs to get the estimate of the 

expected payoff. 
5. Discount the expected payoff at the risk-free rate to get the current 

value of the option.  
 
This all has to happen in a risk-neutral world. Hull (2013, p. 447) continues his 
demonstration of the MCS in option pricing with familiar equations. Let’s 
suppose that the process followed by the underlying assets price process to  
 

𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧 (25) 
 
Where 𝑑𝑧 is once again the Brownian motion, 𝜇 is the expected return in a risk-
neutral world, and 𝜎 is the volatility. Now the goal is to simulate the paths 
followed by the underlying asset S. The life of the option can be divided into 𝑁 
short intervals of length ∆𝑡 and approximate the Equation 25 as 
 

𝑆(𝑡 + ∆𝑡) − 𝑆(𝑡) = 𝜇𝑆(𝑡)∆𝑡 + 𝜎𝑆(𝑡)𝜖√∆𝑡 (26) 

 
Where 𝑆(𝑡) is the value of 𝑆 at time 𝑡, 𝜖  is a random sample from a normal 
distribution with mean zero and standard deviation of 1. Here it is possible for 
the value of S at time ∆𝑡 to be calculated with the initial value of 𝑆, and the 
value of S at time 2∆𝑡 with the value at ∆𝑡, and so on. Hull (2013, p. 448) adds 
that working with ln S is in practice more accurate than with just 𝑆, and with 
Itô’s lemma from earlier the process followed by ln 𝑆 is 
 

𝑑 ln 𝑆 = (𝜇 −
𝜎2

2
) 𝑑𝑡 + 𝜎𝑑𝑧 (27) 

 
So with a few steps, it comes to 
 

𝑆(𝑡 + ∆𝑡) = 𝑆(𝑡)𝑒𝑥𝑝 [(𝜇 −
𝜎2

2
) ∆𝑡 + 𝜎𝜖√∆𝑡] (28) 

 
This equation is used to construct a path for the underlying asset S. This 
equation can be simplified if 𝜇 and 𝜎 are constants.  

Hull (2013, p. 448) explains that the limitations of the MCS are the earlier 
mentioned computational intensity and also the simulation’s limitations in 
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handling exercise opportunities. American options, which can be exercised not 
only at the end of the maturity but also before, are thus hard for the MCS to 
handle. However, Boyle et al. (1997) point out that there have been several 
papers about using the MCS also in American option pricing, such as Tilley 
(1993), Broadie and Glasserman (1997), and Barraquand and Martineau (1995). 
After that papers have come out on the same subject and for example Longstaff 
and Schwartz (2001) should be considered if the subject is of interest. These 
show that the MCS can be flexed also to American option pricing. 
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The world of data-driven technology and models has in the last decades seen a 
remarkable evolution. There has been some transition from traditional 
statistical handcrafted models to more automated machine learning models, 
which can automatically learn and adapt to the data it is given. The 
opportunities that machine learning provides are still not completely clarified, 
and the optimal models or optimal model specifications have not yet been 
researched enough.  In the future it seems like machine learning should be a 
part of every economist’s or data analyst’s toolbox and should at least be used 
as supporting models in addition to the traditional models.  

This chapter’s goal is to provide a good understanding of machine 
learning, its attributes, discuss the artificial neural network used later in this 
thesis more in depth, and explain how the ANN is used in option pricing. First 
machine learning will be defined, as it is often a difficult concept to understand. 
Machine learning has been around for longer than what people seem to give it 
credit for, but it has experienced a lot more attention lately mainly because of 
more computing power. It used to be difficult to run many layered data-
intensive models as they would take older CPUs and GPUs a lot of time to run. 

4.1 Defining machine learning 

In economics and finance, machine learning reforms the way global trends and 
the markets are analyzed or how the economy is predicted. However, machine 
learning as a concept might be hard to grasp. Alpaydin (2020) explains that 
machine learning is mainly just pattern recognition (Nyholm, 2022). There are 
several pattern recognition processes that people do unconsciously, such as 
recognizing people’s faces or driving cars, and it is difficult to define the 
algorithm that is used while doing these things. However, Alpaydin (2020, p. 3) 
explains that a machine can learn to do these things by analyzing sample data 
about earlier similar situations and then applying what it has learned to reality 

4 MACHINE LEARNING 
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(Nyholm, 2022). For example, it is possible to collect driving data for the 
machine and then let it learn from all of the earlier situations. The data has to be 
labeled to indicate for the machine to know which situations were handled 
right and which situations were handled wrong. Through this kind of teaching 
the machine might find instances where the driver consistently failed to stop at 
a stop sign were consistently classified as incorrect. 

For anyone at least slightly concerned with statistics, this description 
should immediately bring to mind some of the more traditional statistical 
approaches. Bi et al. (2019) notes this and describe that there seems to be no 
clear boundary between the statistical approaches and pattern recognition 
machine learning. The difference between them is especially hard to determine 
in regression instances. Because statistics is used in combination with almost 
every other science, machine learning can also be applied to almost anywhere. 
It will find the patterns in the data in biology or finance. 

Machine learning might bring to mind artificial intelligence and even 
ChatGPT, which has garnered significant attention lately. Artificial intelligence 
is considered a hypernym for machine learning, and Varian (2014) explains that 
hyponyms for machine learning include some of the methods such as neural 
networks or even deep learning (Nyholm, 2022). Deep learning is the method 
that is being used as the base of ChatGPT. 

4.2 Artificial neural networks 

This subchapter is based on Nyholm’s (2022) chapter on neural networks. Rojas 
(1996) explains the research about artificial neural networks to have started in 
1943 when Warren McCulloch and Walter Pitts presented the first model of 
artificial neurons. He continues that neural networks were originally meant to 
picture how human brains processed information. Neural networks used as a 
machine learning method often go by the name of artificial neural networks, as 
they are artificially constructed to replicate a cluster of brain neurons. Stergiou 
and Siganos (2006) explain that like people, neural networks learn best from 
examples, as the biological systems’ learning also includes fitting to the 
synaptic connections between the neurons in the network. Since the research of 
artificial neurons started, neural networks have been applied to several 
problems in pattern recognition and are being used as a method of machine 
learning today. Training neural networks requires a lot of experience and 
experimenting and thus some people prefer something simpler, such as the 
decision tree, explains Nilsson (1998). Neural networks are also widely in use in 
nonlinear approximation and when neural networks are applied to practice, 
they can be somewhat of a black-box model, as it is given a set of inputs and 
learns from them and gives us an output (Bi et al., 2019; Butts et al., 2003). It 
seems like neural networks are a complex thing to understand as their “hidden” 
mid-layers between the inputs and outputs aren’t visible to the naked eye, and 
thus what the network actually does cannot be observed. 
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A neural network consists of a big population of neurons interconnected 
through complex signaling pathways and this structure is used to analyze 
complex interactions between measurable covariates to eventually predict an 
outcome (Bi et al., 2019; Vähäkainu & Neittaanmäki, 2018). Nevasalmi (2020), as 
well as Vähäkainu and Neittaanmäki (2018), explain that neural networks 
possess different layers of these neurons, which are the input layer, the hidden 
layer or layers, and eventually the output layer. They continue that there can be 
more hidden layers than just one, making the network a more complex one. 
Every one of these hidden units is a linear combination of the input variables 
which have a link connecting them (Nevasalmi, 2020). Bi et al. (2019), Butts et al. 
(2003), Lai (2014), Patil and Subbaraman (2021), and Vähäkainu and 
Neittaanmäki (2018) state that there is a weighting system inside the network, 
to weigh different inputs or neurons differently. A weighting is used to define 
to the neural network how important a specific module of it is, whether a link 
or an input. The weights are determined based on how the errors can be 
reduced the most (Patil & Subbaraman, 2021). 

Figure 7 is a demonstration of a simple neural network with an input layer, 
two hidden layers, and an output layer. The neurons are portrayed by the black 
circles, which are connected by links. It can be seen here how the hidden 
neurons are linear combinations of all the input values, as the links lead from 
each input to every hidden neuron in the first layer. 

 

FIGURE 7 A neural network with four layers, where the two hidden layers contain 4 hid-
den neurons each 

Neural networks or artificial neural networks -method is probably the one used 
most in research. Bi et al. (2019) define neural networks’ strengths to be 
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especially in how they accommodate to variable interactions and nonlinear 
associations without user specification. Citing Nyholm (2022) ends here. 

As information flows through the network, an activation function is 
applied to the output after each neuron in the hidden and output layers 
(Tuominen & Neittaanmäki, 2019, p. 35). Tuominen and Neittaanmäki (2019, p. 
35) continue that the activation function changes the output of the neuron from 
linear to nonlinear. Below is the ReLU presented as an equation in Equation 29 
and as a Figure in Figure 8. The main idea in ReLU is that if the output of the 
neuron is negative ReLU outputs a negative number and if the value is positive, 
it outputs the value itself.  

As the ReLU outputs zero when the value given by the neuron is negative 
it might cause some neurons’ weights to be adjusted to zero. This problem is 
referred to as the specific neurons “dying”, as a 0 weight does not allow the 
neuron to contribute anything to the network anymore. This problem can for 
example be addressed by using a ReLU variant a leaky ReLU. For more 
information about this activation function see for example Tuominen and 
Neittaanmäki (2019, p. 38-39). 

 
𝑓(𝑥) = max(0, 𝑥) (29) 

 

 

FIGURE 8 A rectified linear unit 

The number of times data is passed through the network is called epochs 
(Lindholm et al., 2022, p. 125). Each time the data passes the weights of the 
neurons are adjusted to better fit the data according to the error function. The 
amount that data is passed through the network can be adjusted in the code, 
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but increasing it is always time-consuming and computing power-consuming. 
This thesis also includes epoch comparisons, but the assumption already is that 
the higher the epochs more accurate the prediction.  

ANN regression models can mainly be divided into two categories, the 
multilayer perceptrons (MLP)8 and to radial basis functions (RBF) (Anders et al., 
1998). Anders et al. (1998) explain that both of these are suitable for option 
pricing. However, for many (Amilon, 2003; Anders et al., 1998; Bennell & 
Sutcliffe, 2004; Garcia & Gençay, 2000; Jang & Lee, 2019; Liu et al., 2019; 
Ormoneit, 1999; Zapart, 2002) the MLP emerges as the preferred approach. The 
paper by Hornik et al. (1989) is considered an accurate demonstration of the 
MLP. Hornik et al. (1989) also go deep into the definitions and theorems of the 
MLP, but Amilon (2003) simply shows the basic functionality of the MLP. 
Figure 9 demonstrates an MLP network, and it has all of the notations of this 
text included in it. Amilon (2003) explains that each neuron sums the signals 

leading to it, adds a bias term, and makes a non-linear transformation (𝑔(∙)). 

The transfer function (or the activation function) is traditionally a smooth 
monotonically increasing function (Amilon, 2003). Amilon (2003) continues that 
the transformed signal of the neuron is then passed on to subsequent layers’ 
neurons, and the process is again repeated, and that the connections between 

neurons are represented by the weights (𝜔𝑖𝑗, 𝑊𝑗𝑘). He shows that when the 

MLP is presented to the input vectors the inputs (𝑥𝑘)  are fed through the 
hidden layer(s) (ℎ𝑗) all the way to the output layer via the neurons. Eventually, 

the network outputs 
 

𝑜𝑖 = 𝑔 (∑ 𝜔𝑖𝑗𝑔 (∑ 𝑊𝑗𝑘𝑥𝑘

𝑘

)

𝑗

) (30) 

 
are compared to known targets (𝑡𝑖) according to an error or loss function, which 
is usually the sum of squared errors 
 

𝐸 =
1

2
∑(𝑡𝑖 − 𝑜𝑖)

2

𝑖

 (31) 

 
is computed. Amilon (2003) explains the error is then propagated through the 
network backward and then the weights are adjusted to minimize the error 
function. The weights are adjusted, and the errors fed through the network as 
many times as the error function can still be minimized again. 
 

 
8 Some papers also refer to the MLP as a feedforward neural network. 
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FIGURE 9 A single hidden layer ANN MLP architecture with several outputs, where the 
notations of the text are included in the picture 

 

4.2.1 Overfitting 

Overfitting is a problem that often also occurs while using basic statistical 
methods. As a model keeps fitting to data, it is important to test its performance 
on data outside of the training data set. If a model is fitted to training data too 
closely, it might not be able to generalize what it has learned to data outside of 
the training set. This problem is called overfitting (Lindholm et al., 2022, p. 18-
19; Tuominen & Neittaanmäki, 2019, p. 52). Tuominen and Neittaanmäki (2019, 
p. 52) continue that the model learns the data “too well” as it adjusts the 
parameters according to specifications and also according to distortions of the 
training data. They note that overfitting is a common problem in networks that 
contain a lot of parameters, but the training data set is not big enough in 
relation to the size of the network. Malliaris and Salchenberger (1993a) also note 
that too many nodes in the middle layer (when using one hidden layer) lead to 
the model overfitting to the data. One might conclude that as the dataset size 
increases, the maximum size of the network that can be constructed also 
increases. According to Tuominen and Neittaanmäki (2019, p. 52-54) overfitting 
when using an ANN can be prevented using the following methods:  

 
1. Increasing the size of the training dataset 
2. Decreasing the size of the network 
3. Stopping the learning process early 
4. Partly dropping neurons from the network 
5. Decreasing specific network weights 
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In practice, it might be easiest to decrease the number of layers or neurons in 
the network or decrease the number of epochs that the network runs. There also 
exist several ways for early stopping in ANN programming. 
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This chapter aims to review the earlier literature done about option pricing with 
the neural networks and the Monte Carlo simulation and how these compare to 
other methods. For machine learning, most of the literature seems to revolve 
around artificial neural networks, but some also use gradient booster methods 
which will not be covered in this thesis. These machine learning models are 
usually compared to the BSM model and also to some volatility-enhanced BSM 
models such as one used with GARCH volatility or with a volatility index such 
as VIX. Some of the papers even focused on using different volatility estimates 
in the models, to see which volatility estimate performed the best. No papers 
came to the writers attention where the Monte Carlo simulation was used as a 
comparison method for the machine learning methods. However, the Monte 
Carlo simulation method has been used in the ANN and option pricing context, 
but for training the ANN (see for example Freitas et al. (2000)). 

This branch of literature in option pricing seems to have been started by 
Malliaris and Salchenberger in 1993 with their two publishes, and a year after 
them with Hutchinson et al. (1994). A great review of the earlier literature has 
been constructed by Ruf and Wang (2020) which includes around 150 papers 
about option pricing using ANN before 2020. Their review includes a table that 
has the main papers in option pricing with ANN listed with different attributes 
of the research, and the table is of very good use when summarizing the 
literature done on the subject. A sample of this table can be found in part 5.1.5. 

5.1 Artificial neural networks in option pricing 

5.1.1 Inputs and features 

There are a lot of possible parameters that can be used to try and price options, 
but the most common ones used seem to be the strike price, the underlying’s 

5 LITERATURE REVIEW OF NEURAL NETWORKS 
IN OPTION PRICING 
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price, volatility in one form or another, time to maturity, and the risk-free 
interest rate. These are also the inputs used in the baseline BSM model. On top 
of these, some papers use for example lagged parameters (Amilon, 2003; 
Malliaris & Salchenberger, 1993a; Zapart, 2002) or logarithmic variables 
(Buehler et al., 2019). There is also a lot of variation in which volatility estimate 
should be used, and these will be covered in the next subchapter. 

The strike price and the underlying’s price are the factors that show up 
almost always when trying to find a price for an option, and to no surprise. 
They are the variables that define the nature of the option, and if it has any 
value. When used in regressions, these are the factors that define most of the 
price variation in the option’s price. When using an ANN for the pricing of the 
option, the strike price and the underlying’s price show up in different 
formations, usually with the underlying’s price divided by the strike price. 
Bennell and Sutcliffe (2004) note that the goal of using the 𝑆/𝐾variable is for the 
moneyness in the variable itself to be accounted for, and thus the network 
wishes to learn to handle options whether ITM or OTM. However, later it can 
be seen that even when using the 𝑆/𝐾 and thus accounting for moneyness the 
network still struggles pricing deep ITM or OTM options. Anders et al. (1998), 
Bennell and Sutcliffe (2004), as well as Garcia and Gençay (2000), agree that the 
addition of individual variables of the strike price or the underlying’s price on 
top of the 𝑆/𝐾 does not add enough value for them to be used. It seems that the 
underlying’s price divided with the strike price is the most efficient and the 
most accurate way of including the two variables. 

On top of the underlying’s price and the strike price, the risk-free rate and 
the time to maturity seem to be included in a lot of networks. These two 
variables are quite self-explanatory, and there is not much to go over with them. 
The time to maturity should obviously be included, as the closer the maturity of 
the option is, the more the option’s price should converge to its intrinsic value. 
The risk-free rate is important, and with it comes a decision of which rate to use. 
Amilon (2003) notes that if the risk-free rate is only considered as a discount 
factor, as it is the BSM model, the relevant input should be the risk-free rate 
times the time to maturity, as the time-to-maturity of a treasury bill is measured 
in calendar days. For the risk-free rate variable’s data Amilon (2003) uses a 
continuously compounded 3-month treasury bill rate, Bennell and Sutcliffe 
(2004) follow this and also use the 3-month treasury bill rate whereas Liu et al. 
(2019) simply use the Euro LIBOR rate and Lai et al. (2014) use the 1-month 
Euribor rate. 

5.1.1.1 Volatility estimates 

Volatility reflects a lot of the uncertainty in the underlying assets’ future price 
movements, and when trying to price options it is a crucial component. Many 
of the papers included in Ruf and Wang (2020) include a volatility estimate in 
the model, and almost all option pricing models usually include volatility in 
one form or another. However, volatility is not unambiguous, and the volatility 
of an asset can be expressed as several different volatility estimates. The models 
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included in Table 3 include implied volatility, historical volatility, a volatility 
index such as VIX or volatility from calibration. 

When comparing different ANN models to the BSM models, some papers 
also included some volatility comparisons. Amilon (2003) tested his ANN and 
BSM models with both historical price volatility and implied volatility. The 
historical volatilities tested were 30-day and 10-day standard deviations of the 
most recent continuously compounded daily returns of the underlying asset, in 
this case, the OMX index. Amilon (2003) found out that in pricing the options 
with the ANN including implied volatility it performed the best, but when 
trying to trade and hedge the mispriced options with the networks the model 
with historical volatility outperformed the model with implied volatility. 
Anders et al. (1998) also compared different volatility estimates, but this time 
the tested ones were historical price volatility for the last 30 days compared to a 
volatility index, in this case of pricing DAX options, the VDAX. According to 
Anders et al. (1998), the VDAX is simply a weighted average of volatilities 
implied by the different options traded at the Deutsche Börse AG. They found 
out that in in-sample pricing the historical volatility model performed about as 
well as the VDAX model, but it is important to note that these models 
compared were different also in other ways than just the volatility estimates. 
For out-of-sample pricing, the VDAX model clearly outperformed the one with 
historical volatility.  

5.1.2 Outputs 

The model outputs also vary between the different models, but obviously, the 
most common one used is just the options price (Liang et al., 2009; Malliaris & 
Salchenberger, 1993a; Teddy et al., 2008). Bennell and Sutcliffe (2004) state that 
by comparing the different models with individual option prices to the variable 
where the option price is divided by the strike price (C/K) it is evident that the 
C/K is one of the key components that help the ANN outperform the BSM 
models. The C/K has been used in a lot of the literature as well (Anders et al., 
1998; Bennell & Sutcliffe, 2004; Garcia & Gençay, 2000; Hutchinson et al., 1994; 
Ormoneit, 1999).  

5.1.3 Performance measures 

The most common statistical performance measures in the literature are mean 
absolute error (MAE), mean absolute percentage error (MAPE) and mean 
squared error (MSE), which is in its core similar to the root mean squared error 
(RMSE) (Ruf & Wang, 2020). There are also other performance measures used in 
the papers. The most used performance measures are defined as follows: 

𝑀𝐴𝐸 =  
1

𝑇
∑|𝐶𝑡 −  𝐶𝑡̂|

𝑇

𝑡=1

 (32) 
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𝑀𝐴𝑃𝐸 =  

1
𝑇

∑ |𝐶𝑡 −  𝐶𝑡̂|𝑇
𝑡=1

|𝐶𝑡|
 (33) 

 

𝑀𝑆𝐸 =  
1

𝑇
∑(𝐶𝑡 −  𝐶𝑡̂)

2
𝑇

𝑡=1

 (34) 

 

𝑅2 =  1 −
∑ (𝐶𝑡 −  𝐶𝑡̂)

2𝑇
𝑡=1

∑ (𝐶𝑡 −  𝐶𝑡̅)2𝑇
𝑡=1

 (35) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑇
∑(𝐶𝑡 −  𝐶𝑡̂)

2
𝑇

𝑡=1

 (36) 

 

Where 𝐶𝑡 is the actual option price, 𝐶𝑡̂ is the price predicted by the model, 𝐶𝑡̅ is 
the mean of the actual option prices and T is the quantity of the observations. 

5.1.4 Network architecture 

For the number of hidden layers and hidden neurons, Liu et al. (2019) and 
Bengio (2009) note that a single hidden layer is enough for mapping the inputs 
with the target function, and the existing literature, according to them, has 
reached a consensus that a single hidden layer is sufficient to make MLP a 
universal approximator for most problems. All of the other papers observed 
here have also ended up using only one hidden layer. However, for the number 
of hidden neurons, there seems to be some variation. Table 2 presents the 
different architectures regarding the hidden layers and neurons. 

TABLE 2 A summary of the architecture of the networks from different studies 

Authors & Year Hidden 
layers 

Hidden 
neurons 

Malliaris & 
Salchenberger (1993a,b) 

1 4 

Hutchinson et al. (1994) 1 4 

Anders et al. (1996) 1 3 

Amilon (2003) 1 10-14 

Bennell & Sutcliffe 
(2004) 

1 3-5 

Teddy et al. (2008) 1 8 

Liu et al. (2019) 1 5-10 
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No papers other than Bennell & Sutcliffe (2004) stated the number of epochs 
they used in their network. Bennell & Sutcliffe (2004) used 1000 epochs, which 
seems to be a good starting number for the data iterations.  

5.1.5 Summary 

As mentioned at the beginning of this chapter Ruf and Wang (2020) have 
constructed a useful table with the different papers about option pricing with 
machine learning. This table includes the authors and year, features of the 
model with the input parameters, the outputs, benchmark models, performance 
measures, the partition method as well as the underlying asset. The table has 
been used in research about ANN in option pricing before (see for example 
Pohjonen (2022)). Table 3 is constructed from a sample of the comprehensive list 
by Ruf and Wang (2020) where the most impactful papers were included 
according to their citations or the publishing journal, as well as the ones with 
the most similarities or applications to this paper. In addition to the original 
most important columns, a column that presents the results can also be found in 
Table 3. For the abbreviations used in Table 3 please consult Appendix 1 for 
clarification. 

TABLE 3 A summary of a sample of the literature on option pricing using artificial neural 
networks based on Ruf and Wang (2020). 

Authors & 
Year 

Input parameters Outputs Underlying Results 

Malliaris & 
Salchenberger 

(1993a,b) 

𝑆, 𝐾, 𝜏, 𝜎𝐼𝑀 , 𝑟, 
lagged 𝐶 and 𝑆 

𝐶 S&P100. 6M ANN is more 
accurate 

OTM, 
whereas BSM 

is more 
accurate ITM 

Hutchinson 
et al. (1994) 

𝑆/𝐾, 𝜏 𝐶/𝐾 Simulation 
(BS); S&P500. 

5Y 

ANN is more 
accurate than 

BSM 

Anders et al. 
(1998) 

𝑆/𝐾, 𝑆, 𝜏,  𝜎𝐻 , 𝜎𝑉 , 𝑟 𝐶/𝐾,  
(𝐶 − 𝐶𝐵𝑆−𝑉) 

/𝐾 

DAX. 3Y ANN 
outperforms 

BSM in-
sample and 

out-of-sample 

Ormoneit 
(1999) 

𝑆/𝐾 𝐶/𝐾 DAX. 9M ANN 
performs 

similarly to 
BSM 

Garcia & 
Gençay 
(2000) 

𝑆/𝐾, 𝜏 𝐶/𝐾 Simulation 
(BS); S&P500. 

8Y 

ANN has 
smaller delta 

hedging 
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errors than 
BSM 

Zapart 
(2002) 

Lagged wavelet 
coefficients 

Wavelet 
coefficients 

Individual 
stocks. 
6M/1Y 

ANN is as 
good and 

often better 
than BSM 

Amilon 
(2003) 

𝑆/𝐾, 𝜏, 
 𝜎𝐻 , 𝑟, lagged 𝑆 

𝐶𝐴𝑠𝑘/𝐾, 
 𝐶𝐵𝑖𝑑/𝐾 

OMX. 2Y ANN is more 
accurate than 

BSM with 
historical 
volatility, 
ANN is as 
accurate as 
BSM with 
implied 

volatility 

Bennell & 
Sutcliffe 
(2004) 

𝑆, 𝐾, 𝑆/𝐾, 𝜏, 𝜎𝐼𝑀 , 
open interest, 

volume 

𝐶, 𝐶/𝐾 FTSE100. 1Y ANN is more 
accurate than 

BSM OTM, 
BSM is more 
accurate than 

ANN ITM 

Teddy et al. 
(2008) 

𝑆 −  𝐾, 𝜏, 𝜎𝐻 𝐶 GBP-USD. 
9M 

ANN is more 
accurate than 
BSM, and also 
more accurate 

than any 
model in 

generalization 
pricing  

Liang et al. 
(2009) 

𝐶̂ 𝐶 Individual 
stocks. 2Y 

ANN MLP is 
more accurate 

than 
conventional 

methods 

Lai (2014) 𝑆/𝐾, 𝜏, 𝑟 𝜎 Simulation 
(BS, SV, SVJ) 

N/A 

Buehler et al. 
(2019) 

log(S) HR Simulation 
(BS, SV); 

S&P500. 5Y 

N/A 

Jang & Lee 
(2019) 

? 𝐶 S&P100. 9Y Bayesian 
neural 

networks 
perform 

better than 
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classical 
option 

models in 
American 

option pricing 

Liu et al. 
(2019) 

𝑆/𝐾, 𝜏, 𝜎𝐶𝑎𝑙 , 𝑟 (𝐶 − 𝐶𝐵𝑆−𝐻) 
/𝐾 

DAX. 4Y ANN was the 
most accurate 

of many 
models 
overall 

 
This study’s main goal is to find out whether the ANN models price DAX 
options better than the BSM models or the MCS models. As there is no 
literature for the comparison of ANN models to the MCS, only the BSM models 
were used as a comparison. The MCS and the BSM function similarly and they 
are expected to yield similar results. In the literature about ANN in option 
pricing, it seems evident that artificial neural networks do seem useful in option 
pricing when compared to BSM models. Researchers tested the models in 
different situations, such as pricing ITM options vs OTM options or pricing in-
sample vs out-of-sample and this part concludes the findings. The consensus 
seems to be that ANN models outperform the BSM models in at least one part 
of the testing, if not more when used right.  

Liu et al. (2019) compared several different models, and one of them was 
the ANN, in out-of-sample price forecasting situations and in hedging. The 
models they tested were a wavelet-based option pricing model by Ma (2011), a 
stochastic volatility model with jumps by Bakshi et al. (1997), the practitioners 
BSM model by Anderou et al. (2014) and Dumas et al. (2002) and finally a 
hybrid ANN model by Anderou et al. (2008). They observed that from all of 
these models, the ANN model performed the best in most of the situations they 
tested, meaning that the ANN achieved the smallest forecasting errors. 
However, they did limit their sample to only OTM options and also noted that 
the ANN has limitations regarding data, as it is a very data-intensive model. 
Anders et al. (1998) compared the ANN to the BSM model both in-sample and 
out-of-sample. In their paper, they show similar results to those by Liu et al. 
(2019) in that the ANN they constructed was more accurate according to all of 
their performance measures out-of-sample and in Anders et al. (1998) case also 
for the in-sample testing. Amilon (2003) tested two different ANN models and 
compared them to two different BSM models. Similarly, to Liu et al. (2019) and 
Anders et al. (1998), Amilon (2003) shows that the constructed ANN is superior 
to the BSM models in all of the cases, although not always at a 5 percent 
statistical significance level. He did comparisons both for pricing and also for 
trading and hedging mispriced options, and the only difference was that the 
ANN using implied volatility was better for pricing and the ANN with 
historical volatility was better for trading and hedging the mispriced options. 



42 
 

A few papers argued that the ANN did not perform that much better than 
the compared BSM models. Hutchinson et al. (1994) argue that the ANN model 
should mainly be used when traditional parametric methods fail. Ormoneit 
(1999) shows that his ANN yields results comparable to those of the BSM model. 
The one factor combining these studies that do not show the ANN 
outperforming the BSM is that their models are very simplified. As Table 3 
shows, these models lack in the number of factors the other papers have used in 
their models, and the results can to some extent be accredited to this. It can be 
seen that neither of these papers uses for example any volatility estimate in 
their model that is a crucial part of option pricing. Ormoneit (1999) also notes 
the lack of variables and states that a considerable performance improvement 
can be obtained by using a better architecture. 

The additional research questions were about the pricing performance 
depending on moneyness and the ANN MLP model architecture regarding the 
number of hidden layers and the number of hidden neurons. Malliaris and 
Salchenberger (1993a) tested the models in OTM and ITM pricing for different 
weeks of the testing period. The ANN put together by them outperformed the 
BSM model used in 4/5 of the weeks tested for the OTM options, whereas the 
BSM worked better for ITM options as they priced them better in 3/5 weeks. 
Bennell and Sutcliffe (2004) found similar results, as they note that the ANN is 
clearly superior to the BSM model in OTM, and when switching to ITM options 
the performance weakened resulting in the BSM model outperforming the 
ANN. Malliaris and Salchenberger (1993a) note that for the OTM options, the 
BSM model overprices and the ANN underprices the options and thus it could 
be a good idea to take an average out of these two. They continue that for ITM 
both of the models seem to underprice them. Bennell and Sutcliffe (2004) 
noticed that for deep ITM options, the ANN has a lot of difficulty pricing them, 
as well as those with a long expiry date. At least for the deep ITM options the 
fault could be noted on to the lack of observations, as most of the options 
obviously are not deep ITM. Anders et al. (1998) also note that the trading 
volume for deep ITM and deep OTM options is very low and combined with 
the fact that Liu et al. (2019) point out that ANN is a data-intensive model it 
might just be that more observations would be needed to price these options 
accurately. 

Not many papers included volatility comparisons. The main ones were 
Amilon (2003) and Anders et al. (1998). The conclusion regarding volatility is 
that in pricing the options a form of implied volatility works the best. This can 
be either the regular implied volatility or the VDAX index, which is derived 
from implied volatilities. The implied volatility performing the best is of no 
surprise, as the implied volatility already includes data from the option, as it is 
calculated by already knowing the option’s current price.  

For the ANN MLP architecture regarding the hidden layers, the results 
were mainly unequivocal, at least when considering the number of hidden 
layers. All of the papers included in this literature review ended up using one 
hidden layer, either as a result of earlier literature or as a result of testing. The 
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differences in the architectures lie in the number of hidden neurons. These 
cannot be compared directly as the models include different numbers of inputs 
as well. As summarized in Table 2, the number of these neurons varies from 3 
to 14. Malliaris and Salchenberger (1993a) compared models with 3, 4, and 5 
neurons to each other, and the one with 4 neurons priced options most 
accurately. It seems like the amount of these neurons has to always be found 
out by testing, as literature does not give an easy answer to the number of 
hidden neurons. 

The artificial neural networks seem to perform better than the Black-
Scholes-Merton models, and also some alternative option pricing models when 
used correctly. The superior ANN models share some combining factors, which 
are mainly the 5 factors also used in the BSM model. These results can be 
further improved by using a so-called homogeneity hint to also measure the 
moneyness, which is the underlying asset’s price divided by the strike price 
(𝑆/𝐾). The ANN shares some common factors with most other option pricing 
models, for example, that the closer the underlying’s price is to the strike price 
the more accurate the model is, and also that the ANN has trouble pricing 
options that are very close to or very far from the maturity date. Liu et al. (2019) 
show that at least some of these limitations can be addressed by for example 
categorizing options based on their moneyness and time to maturity. There has 
also been regards that the ANN is very data-intensive when compared to other 
models, and thus might yield bad results if used with small amounts of data. 
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The data used in the quantitative analysis section of this thesis is daily data and 
is a set of the 1-month Euribor interest rates, the DAX stock market index 
closing prices, the corresponding DAX stock market index option attributes, 
and the VDAX volatility index. The options used in this thesis are European-
style call options, traded primarily in the Eurex. The attributes of the option 
contracts are the strike price, the expiration date, and the close price. The VDAX 
is the implied volatility of the DAX stock index, which is implied by the 
derivatives on the index. The DAX stock market index in itself is assembled 
according to the free float market capitalization and includes 40 (primarily 30) 
stocks traded at the Frankfurt exchange (Deutsche Börse, 2024). The data was 
collected from the London Stock Exchange Group (LSEG) Eikon API, and the 
queries were made using Python.  

The dataset consists of the latest 4 full years at the time of writing this 
thesis, meaning that the options that had their expiration dates during the 
period of January 2020 to December 2023 are included in this thesis. This full 
unfiltered dataset includes 4839 different option contracts with 628 992 
observations for the closing prices of these option contracts. The filtering of this 
dataset is done in the next subchapter. However, at this point already the data 
was searched according to one of Anders et al. (1998) filtering, where the data 
that is extremely deep-in- or deep-out-of-the-money is excluded from the 
dataset. The measure for extremely deep-ITM or deep-OTM is according to 
Anders et al. (1998) when: 

 
𝑆

𝐾
 < 0.85 𝑜𝑟 

𝑆

𝐾
 > 1.15 (37) 

 
This means that only contracts with strike prices according to the maximum 
and minimum value of the DAX index during the used time period are 
searched. The range of strike prices used for the data queries is thus 8283 to 
19 376. 

6 DATA AND METHODOLOGY 
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6.1 Filtering and partitioning the data 

The raw option data includes a lot of uninformative observations, such as ones 
with too long time until expiration, or an option that is too far OTM. This can be 
addressed by filtering the data according to different filters, which remove 
these non-representative observations from the dataset. This should make the 
model more accurate at pricing options, as the observations not passing these 
filters are often not interesting as use cases for a pricing model such as this. 
Most of the filtering is done right after the data is queried from the API and it 
follows the same filtering of Anders et al. (1998) where the goal is to remove 
these uninformative and non-representative option observations. The cases in 
which the option is removed at that time point are as follows: 

 
1. The call option is traded at less than 10 points 

 
𝐶𝑡 < 10 (38) 

 
2. The option has less than 15 days or more than 2 years to maturity 

 

𝑇 − 𝑡 ≤
15

252
𝑜𝑟 𝑇 − 𝑡 ≥ 2 (39) 

 
3. The lower boundary condition for the value of European call option is 

violated 
 

𝐶 < 𝑆 − 𝑋𝑒−𝑟𝑟 (40) 
 
4. The option is extremely deep-in- or deep-out-of-the-money, as 

presented in Equation 37 
 
After filtering the data according to these 4 filters, the dataset includes 3637 
option contracts with 256 260 observations. This is the dataset used for all of the 
quantitative analysis.  

The complete dataset is partitioned chronologically into a training dataset 
and a testing dataset. Ruf and Wang (2020) point out that most of the earlier 
research partitions data chronologically, as this does not violate the time series 
structure of the data. If the whole dataset was to be divided randomly it would 
break the structure and cause information leakage they add. This quantitative 
analysis focuses on how well the ANN model prices options using out-of-
sample data, and thus it is always important to use the testing dataset. The 
training set includes 80 percent of the observations whereas the testing dataset 
includes 20 percent of the observations as this is the division used by for 
example Bennell and Sutcliffe (2004). This means that the training set includes 
all observations from the 1st of January 2020 to the 22nd of December 2022. The 
testing set includes all of the observations from the 23rd of December 2022 to 
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the 31st of December 2023. The ANN training also uses so-called validation 
split, which divides the training data into the training set and the evaluation set. 
Between each epoch, the ANN will evaluate its performance on the validation 
set, and then adjust its weights based on the loss function. The ANN used in 
this thesis has a validation split of 25 percent meaning that the model will use 
25 percent of its training data in the evaluation between each epoch.  

6.2 The complete dataset and the time period 

Table 4 gives an overview of the dataset, with the number of observations 
divided into different moneyness and TTM categories. In regards to TTM most, 
of the observations seem to have more than half a year to their maturity, 
whereas the smallest category in this regard is the observations that are really 
close to their maturity. Previously mentioned ATM options refer to options 
exactly at-the-money, so where the underlying’s price equals the strike price, 
and this category would be extremely small because of its exactness. The ATM 
category is expanded to near-the-money (NTM), as shown in the table below to 
also include options that are near to ATM.  The dataset is quite well balanced, 
as the sums of ITM, OTM, NTM options are quite close together. 

TABLE 4 The complete dataset divided into different categories 

No. observations TTM<0.2  0.2<TTM<0.5 0.5<TTM Sum 

ITM (>1.05) 19 019 23 037 31 916 73 972 
NTM (0.95-1.05) 28 371 36 087 41 742 106 200 
OTM (<0.95) 10 364 26 052 39 672 76 088 
Sum 57 754 85 176 113 330 256 260 
 
Figures 10 and 11 highlight the whole dataset, and how moneyness and TTM 
affect the prices of the options. The main idea from the Figures is that the 
deeper the option is OTM the less value it has, and the closer the option is to its 
maturity the closer it is to its intrinsic value.  

While observing Figures 10 and 11 it could be said that even though the 
data is filtered as mentioned before it still has some outliers, such as some deep 
OTM options having large option prices, that notably deviate from the ordinary 
curve of data points. The data was observed to address these outliers, but they 
seem to have been caused by the large increase in volatility, as can be seen in 
Figure 13 at the beginning of 2020. Increasing volatility levels signify increased 
fluctuations in asset prices, introducing a higher level of unpredictability into 
future market movements. These data points are crucial to the model as they 
include a lot of information about how the model should address the situation 
of heightened volatility.  
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FIGURE 10 3-dimensional plot of the data points 

There seems to form a gap without observations when the TTM is high, and the 
price of the option is zero or very close to zero. Because the TTM is so high, the 
uncertainty is high as well, as there exists more time for risks to realize. It is also 
observable that no data points exist where the option would be ITM, but the 
price would be lower than the intrinsic value of the option. 

 

FIGURE 11 2-dimensional plots to demonstrate Figure 10 from different angles 
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The time frame of 4 complete years includes a few periods where the pricing is 
hard due to increased volatility. These increased volatility periods are caused 
by shocks in the economy, such as the COVID-19 pandemic and the Russo-
Ukrainian war. In Figure 12 the COVID-19 pandemic’s effects can be seen in 
early 2020, where the DAX index decreased to nearly 8000 index points level 
and here the index reached its lowest point in the whole time period in question. 
The VDAX volatility index shown in Figure 13 also highlights the COVID-19 
pandemic, as the volatility reached its highest point in early 2020 as well. The 
increase in volatility from below 20 index points to almost 120 represents a 
substantial increase. The Russo-Ukrainian war’s effects on the economy can be 
observed at the beginning of 2022, as an increase in volatility in the VDAX 
index in Figure 13 as well as a decrease in the DAX index in Figure 12. 

 

FIGURE 12 DAX index from 2020 to the end of 2023 

In finance when using volatility indices such as the VDAX index shown in 
Figure 13 it is important to mention that they already include information about 
the market at that time. As the market is the one pricing these indices, they are 
in a way forward-looking, as the market has already priced all the future 
information in them. 
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FIGURE 13 1-month VDAX volatility index from 2020 to the end of 2023 

The time frame used in the analysis also includes large fluctuations in interest 
rates, where after a long period of zero or negative interest rates the market 
rates began increasing in the summer of 2022 as can be seen in Figure 14. The 
increases in the interest rates followed heightened inflation and the increases in 
central bank steering rates. 

As most of the used time period includes negative interest rates, and only 
small fluctuations happened during zero interest rates, it is interesting to see 
whether the network has trouble pricing options depending on its interest rates 
or not. It might overweigh the interest rates’ effects on the price of the option as 
the fluctuations in the rates are small. However, the later stage of the time 
period used in this study does include more interest rate changes so it might 
balance things out even though the majority of that period is included only in 
the testing dataset.  
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FIGURE 14 1-month Euribor from 2020 to the end of 2023 

6.3 Research environment 

The main tool used in this quantitative analysis is Python 3.11.6. Python is an 
open-source computer language, that seems to have the most possibilities for 
machine learning purposes due to its open-source nature. Python can be used 
for much more than data analysis as it can be tailored to fit many needs, 
whereas most programming languages only have some things where they excel. 
Python allows the use of many libraries, which include preprogrammed 
functions to be able to use it for the specific case. The libraries are helpful and 
easy to use, as they often have extensive documentation. The libraries used for 
the ANN are Keras integrated within Tensorflow 2.15.0. The models are run on 
an RTX 3060ti 8GB GPU, an Intel i5-10400F (2.9GHz) CPU, and 16 Gt of RAM. 

6.4 Performance measures 

The performance measures used in this analysis are the mean squared error 
(MSE) mean absolute error (MAE), mean absolute percentage error (MAPE) and 
𝑅2. These measures are defined as they are defined in subchapter 5.1.3. As the 
output of the model is the price of the option divided by its strike price, the C 
notation in the errors is also the price of the option divided by its strike price. 

Anders et al. (1998) explain that the 𝑅2 provides a measure of correlation 
between observed and fitted options prices, whereas the MAE measures 
absolute price discrepancies. They continue that MAPE judges the price 
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differences relative to the price levels. The MSE measurement puts more weight 
on the large errors. To achieve a measure of the performance from different 
angles it is important that these three measurements measure different things in 
the pricing, as the measurements chosen here do.  

6.5 Model and parameters for the neural network 

The model that was used by the ANN was decided based on earlier literature. 
Several different models with different numbers of inputs were presented in 
Chapter 5, and conclusions were made about what the best inputs were. This 
chapter also concluded to use inputs as standardised features such as S/K and 
C/K. The question of whether this specific input structure is optimal according 
to different pricing error measurements is not in the scope of this study. The 
earlier literature does seem to conclude that the smallest errors can be achieved 
with the following model:  
 

𝐶/𝐾 = 𝑓(𝑆/𝐾, 𝜏, 𝜎, 𝑟) (41) 
 
Where the variables are denoted according to Table 4. The volatility estimate is 
the 1-month VDAX index, as either implied volatility or the VDAX often 
yielded the smallest errors in volatility comparisons in the earlier literature. The 
estimate of the risk-free interest rate is the 1-month Euribor, as that is the most 
riskless interest rate there is for the Euro area. 

A problem might arise from the interest rate fluctuations during the time 
period, as the training set only includes sub-2 percent interest rates, and as the 
testing set includes only noticeably higher interest rates than 2 percent. If the 
model given in Equation 41 fails to price options accurately also the following 
model will be estimated: 
 

𝐶/𝐾 = 𝑓(𝑆/𝐾, 𝜏, 𝜎) (42) 
 
This model does not include the interest rate at all.  

Other parameter choices for the neural network include the loss function, 
batch size, the activation function, and the optimizer. The loss function used in 
this thesis is the mean squared errors (MSE). A batch size of 64 is chosen and 
the activation function used is the rectified linear unit (ReLU) which according 
to Lindholm et al. (2022, p. 134) is a common choice. The optimizer is the Adam 
optimizer presented by Kingma and Ba (2014). 
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This chapter presents the results of the quantitative comparison in option 
pricing between the three different option pricing methods, the ANN, the MCS, 
and the BSM. First, an optimal structure for the ANN is presented based on the 
performance measures presented in Chapter 5.1.3. It is then compared to the 
other models using the whole dataset for the analysis. The models were also 
compared to each other using smaller sections of the data, to answer the 
research question based on the pricing performance depending on moneyness. 
These data categories were divided into 3 different sections for the moneyness. 
These comparisons also use the same performance measures as the comparison 
of different ANNs.  

7.1 Optimal artificial neural network model 

As the data partitioning is done chronologically it might cause problems based 
on the network’s model. As can be seen in Figure 14, the 1-month Euribor 
increased consistently after the summer of 2022. As the data set’s division point 
to the training and testing sets is in December 2022 the ANN might 
overestimate the effects the interest rate has on the prices of the options as the 
fluctuations in the interest rate were much smaller in the training set than in the 
testing set. The aim of this subchapter is to find out if the model with interest 
rate can price the options accurately. Additionally, if the model falls short in its 
accuracy, the aim is to find out whether this discrepancy can be attributed to 
fluctuations in the interest rate. If the model with interest rate is not sufficient, 
the two models will be compared according to their pricing accuracy. The 
architecture comparisons will be saved for later in this chapter. 

The models have an architecture of 1 hidden layer and 6 neurons as well 
as 1000 epochs, as suggested by prior literature. Figure 15 compares the pricing 
errors to the level of the interest rate. According to Figure 15, it seems evident 
that the higher the interest rate, the higher the pricing error. The model 

7 RESULTS 
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estimated according to Equation 41 seems to have a problem with the interest 
rate as it overestimates the effects of the interest rate on the price of the options. 

 

FIGURE 15 An error plot of the pricing errors to the level of Euribor 

Excluding the interest rate from the model presents the simplest solution to 
addressing the difficulties posed by the rates fluctuations during the time 
period, as Equation 42 does. Table 5 compares the results of the two models, 
with and without the interest rate included. The model without interest rate 
outperforms significantly in terms of every performance measure used. The 
absolute errors are very small for the model without interest rate, as well as the 
percentage errors. The model with the interest rate that was constructed 
according to Equation 41 had a lot of trouble fitting to the data, as the 𝑅2 does 
not give any reasonable results. However, without interest rates, the model fits 
the data fine and is able to explain 97 percent of the variance. 

TABLE 5 Comparison of models with and without interest rate included 

Model 
according to 
equation: 

MSE x 𝟏𝟎−𝟓 MAE x 𝟏𝟎−𝟑 MAPE 𝑹𝟐 

41 2650 160 24.6 -9.92 
42 6.53 5.76 0.647 0.9731 
 
In conclusion, the model that estimates option prices with the interest rate 
according to Equation 41 cannot price them very accurately. There is a problem 
with the estimation and training of the model, as the training period only 
includes sub-2 percent interest rate which is a lot lower than the rate for the 
testing period. The interest rate seems to be the cause of large errors in option 
pricing as highlighted by Figure 15. When the interest rate is excluded from the 
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model, the pricing accuracy improves a lot. Further analysis will be done with 
the model that corresponds to Equation 42. 

7.2 Optimal artificial neural network structure 

On top of deciding on the variables that are fed to the ANN, its different 
parameters are also important in obtaining the smallest errors in pricing 
performance. The aim of this subchapter is to find the optimal number of 
hidden layers, and hidden neurons as well as the optimal number of epochs 
used by the ANN. The number of the variables in question and their respective 
errors are presented in the tables below. These results are acquired with out-of-
sample datasets. The results obviously might change depending on the data 
period. It is also important to note that the optimal structure may not stay 
optimal when using the model to price options only in a singular category, such 
as options near the maturity or options out-of-the-money. 

The testing began with 1 hidden layer, 6 hidden neurons, and 1000 epochs 
and the variables used in the training and estimation are selected according to 
Equation 42. As Table 2 noted, 1 hidden layer is often sufficient according to the 
earlier literature, and the number of neurons is often below 10. Bennell and 
Sutcliffe (2004) used their ANN with 1000 epochs and other literature didn’t 
note the number of epochs used so the testing will start with 1000. 

According to Table 6, the accuracy of the model improves when moving 
up from only 1 hidden layer according to every performance measure. The 
optimal number seems to be 4, as before and after that all of the errors increase 
and the explanatory power of the model decreases. There isn’t really a 
significant difference in the absolute errors between the models, but there does 
seem to be a notable decrease in percentage errors when the number of hidden 
layers is increased from 1. These results seem to be very different when 
compared to the neural network architectures presented in Table 2, as they all 
use only one hidden layer. 

TABLE 6 Hidden layer comparison 

No. hidden 
layers 

MSE x 𝟏𝟎−𝟓 MAE x 𝟏𝟎−𝟑 MAPE 𝑹𝟐 

1 6.53 5.76 0.647 0.9731 
2 5.70 5.36 0.266 0.9765 
4 4.98 4.76 0.182 0.9795 
6 5.83 5.42 0.198 0.9760 
8 5.61 5.37 0.197 0.9769 
 
Table 7 highlights the differences resulting from the different number of hidden 
neurons with 4 hidden layers and 1000 epochs. The number of hidden neurons 
is the number of them in each layer. All of the values seem to yield quite similar 
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results, where 16 neurons is the best model when valued with squared errors, 
absolute errors or 𝑅2 and the model with 56 neurons is the most accurate when 
measured with percentage errors. As the difference is small both models would 
work fine. As the model with 16 neurons per layer is closer to the prior 
literature and is superior to the model with 56 neurons when measured with 
three different performance measures (MSE, MAE, and 𝑅2) it will be the model 
that is used in the later analysis.  

TABLE 7 Hidden neuron comparison 

No. hidden 
neurons 

MSE x 𝟏𝟎−𝟓 MAE x 𝟏𝟎−𝟑 MAPE 𝑹𝟐 

6 4.98 4.76 0.182 0.9795 
16 4.91 4.56 0.183 0.9798 
26 5.52 5.05 0.178 0.9773 
36 5.15 4.85 0.199 0.9788 
46 5.80 5.56 0.232 0.9761 
56 5.86 5.19 0.172 0.9759 
66 7.79 6.57 0.222 0.9679 
 
With 4 hidden layers and 16 neurons per each layer, the size of the network is 
large. However, as the results presented in these tables are out-of-sample there 
should not really exist overfitting problems which should be addressed as the 
size of the network is large. Testing with out-of-sample data proves that the 
model is competent also in generalizing the pricing even with a large network 
size. 

Epoch comparisons will be done with 4 hidden layers with 16 neurons in 
each layer. Once again, a balance between not fitting the model to the data well 
enough and overfitting has to be found. Overfitting might be caused by a large 
number of epochs. According to Table 8, an optimal number according to every 
performance measurement seems to be 1000 epochs, which is the same number 
that Bennell and Sutcliffe (2004) were using who were the only ones to report 
the number of epochs. 

Interestingly enough, fitting the model for more than 2000 epochs seems 
to increase the accuracy slightly when compared to 2000 epochs. It would be 
expected that if the accuracy starts decreasing because of overfitting, fitting the 
data more would cause larger errors because of even more overfitting.  

TABLE 8 Epoch comparison 

No. epochs MSE x 𝟏𝟎−𝟓 MAE x 𝟏𝟎−𝟑 MAPE 𝑹𝟐 

500 5.03 4.98 0.202 0.9793 
1000 4.91 4.56 0.183 0.9798 
2000 5.53 5.18 0.199 0.9772 
3000 5.29 4.99 0.193 0.9782 
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In conclusion, the optimal structure for the dataset seems to be 4 hidden layers, 
16 hidden neurons per layer, and 1000 epochs. This structure will be used for 
the rest of the thesis, in the model comparisons. Testing several other network 
architectures also took place that were not reported, which did not perform as 
well as the models reported in tables 6-8. There might obviously be a very 
specific neural network architecture that performs better than the one found 
here. However, when testing for optimal architectures the model has to always 
be built and trained first, which uses a lot of computing power and thus a lot of 
time as well. There does not seem to be an easier way to come to a conclusion of 
the best model than to build and train them separately or let an algorithm do 
the building and training of several models. Iterating over hundreds of different 
models is not within the scope of interest for this study. 

In comparison to earlier literature, this network architecture is 
substantially larger in size than any network used earlier. As Table 2 presents 
there are only single hidden layered networks with the number of neurons in 
the layer ranging from 3 to 14. It might be that a large dataset of over 200 000 
observations allows for a larger network size without fear of overfitting. As 
mentioned, testing was done using only out-of-sample data and thus results are 
reliable as the network is able to generalize the estimations outside of their 
training dataset. 

7.3 Number of simulations for the Monte Carlo simulation 

The number of simulations that the Monte Carlo method runs should also be 
decided. This subchapter presents a comparison of a few different numbers of 
simulations. Usually, the pricing accuracy should always be better when the 
number of simulations is larger, as then it approaches the correct price of the 
option. However, the number of simulations always increases the computing 
power required and thus it is important to increase it until the pricing accuracy 
only increases in very small amounts. The analysis in this subchapter is done on 
the testing set only as that sample will be used for all of the other analyses as 
well. 

Table 9 highlights how well the MCS prices options depending on the 
number of simulations used. It seems clear that increasing the number of 
simulations from 5 000 onwards does not provide significant increases in 
accuracy. A smaller number of simulations than those used in Table 9 might 
yield measurements that are significantly different, as there is some difference 
between 1000 and 5000 simulations. According to every performance measure, 
the pricing accuracy of the MCS improves when the number of simulations is 
increased. However, increasing the simulations past 5000 does not seem 
justifiable, as the required computing power increases, and the accuracy of the 
model does not seem to increase significantly. As the pricing values already 
exist for the most accurate MCS representation of 50 000 simulations those 
values will be used for the remaining analysis.  
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TABLE 9 Number of simulations and their measurements for the Monte Carlo simulation 

No. 
simulations 

MSE x 𝟏𝟎−𝟓 MAE x 𝟏𝟎−𝟑 MAPE 𝑹𝟐 

1 000 19.5 8.70 1.13 0.9194 
5 000 19.0 8.44 1.13 0.9217 
10 000 18.9 8.40 1.13 0.9222 
50 000 18.8 8.37 1.13 0.9225 
 

7.4 Pricing results 

7.4.1 Pricing results for the whole dataset 

Now that the optimal structure for the ANN is reached, and the number of 
simulations are decided for the MCS it is possible to compare these optimally 
structured models to each other. This subchapter presents the pricing results 
with the same dataset used earlier in this chapter, as that is not part of the 
training dataset used for the ANN. Later on, this subchapter will also present 
the results in model comparisons in different moneyness categories. 

As a recap, the earlier studies found that generally, the ANN seems to 
outperform the BSM model. In some cases, the BSM was more accurate in its 
pricing and these cases were mainly found with ITM options. It is expected that 
the BSM and MCS perform equally, and that as the optimal structure for the 
ANN is reached it would perform the best out of these models. 

Table 10 presents the performance metrics for the three different models 
when using the whole testing dataset. The ANN prices out-of-sample options, 
so no observations are used in testing which were used in its training. The same 
testing dataset that was used for the ANN is also used for the BSM and MCS. 

For the whole dataset, the ANN clearly performs the best out of the three 
models as Table 10 presents. As expected, the BSM and the MCS yield almost 
identical results. In absolute terms, the errors of the ANN are around half of the 
errors of the BSM or the MCS. The ANN is also capable of explaining more of 
the price variability as shown by the larger 𝑅2. In other words, the ANN model 
fits to the data a lot better than the stochastic models do. The percentages of the 
errors are also well in line with these findings, as the MAPE for the ANN is 
very small when compared to the MAPE of the BSM model or the MAPE of the 
MCS model. 

An interesting observation is the large difference in MSE between the 
stochastic models when compared to the ANN while the difference in the MAE 
is not as large. A large difference in the MSE might implicate that the stochastic 
models have some extreme errors or outliers in their pricing. These errors are 
amplified by the MSE as the errors are squared.   
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TABLE 10 Pricing results for the whole testing dataset 

 MSE x 𝟏𝟎−𝟓 MAE x 𝟏𝟎−𝟑 MAPE 𝑹𝟐 

ANN 4.91 4.56 0.183 0.9798 
BSM 18.8 8.36 1.13 0.9225 
MCS 18.8 8.37 1.13 0.9225 
 

7.4.2 Pricing results in different moneyness categories 

Tables 11, 12 and 13 present the pricing results for the different moneyness 
categories. The moneyness categories are defined as follows: 

 

𝐼𝑇𝑀 𝑤ℎ𝑒𝑛 1.15 ≥
𝑆

𝐾
> 1.05 (43) 

 

𝑁𝑇𝑀 𝑤ℎ𝑒𝑛 1.05 ≥
𝑆

𝐾
≥ 0.95 (44) 

 

𝑂𝑇𝑀 𝑤ℎ𝑒𝑛 0.95 >
𝑆

𝐾
≥ 0.85 (45) 

 
First, the pricing of ITM options is evaluated as shown in Table 11. When 

compared to the whole dataset the MAE of the ANN increased while the MAE 
for the stochastic models decreased to around half of what it was for the whole 
dataset. The earlier studies suggested that the ITM options have been more 
difficult for the ANN to price, and easier for the BSM to price. The findings of 
this study are consistent with prior research in this case.  

According to Malliaris and Salchenberger (1993a) and Bennell and 
Sutcliffe (2004), the BSM model has even been able to outperform the ANN in 
this moneyness category. Table 11 showcases some similarities to this as 
according to the MAE and MAPE the stochastic models are smaller than the 
network in pricing ITM options. However, according to the MSE and 𝑅2 the 
ANN outperforms the stochastic models. There does not seem to be a best 
model for pricing ITM options. The stochastic models and the ANN all 
performed similarly.  

When compared to the whole dataset results the MAPE decreased a lot, 
even for the ANN which had an increase in MAE when moving to pricing ITM 
options rather than the whole dataset. As presented in Figures 10 and 11 the 
price of the option increases as it moves towards deeper ITM (moneyness 
increases). As shown in Equation 33 MAPE is calculated by dividing the error 
by the price of the option. As the denominator increases the value of the MAPE 
decreases and thus the higher the price of the option is the lower the MAPE is. 
This is why MAPE is not a suitable performance measure to compare different 
moneyness categories but rather compare the models to each other in the same 
moneyness category. 
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TABLE 11 Pricing results for ITM options 

 MSE x 𝟏𝟎−𝟓 MAE x 𝟏𝟎−𝟑 MAPE 𝑹𝟐 

ANN 7.53 5.96 0.0480 0.9270 
BSM 8.46 3.59 0.0315 0.9180 
MCS 8.44 3.61 0.0317 0.9182 
 
For near-the-money options, the pricing performance of the stochastic models 
as well as for the ANN model is nearly the same as for the whole dataset, as is 
explained by Table 12 according to all performance measures but the 𝑅2. This is 
expected as Table 4 presents that the NTM has the most observations in the 
whole dataset and is thus weighed more in the whole dataset comparison as 
well. The network is able to price the options accurately and is superior to the 
stochastic models measured with every performance measure. 

Table 12 shows that the 𝑅2 values for the stochastic models have changed 
quite drastically to the whole dataset measured in Table 10. The low 𝑅2 value 
indicates that the stochastic models are not able to explain a lot of the variance 
happening in the option prices, even though the absolute errors stay the same 
on average. As shown later in Figure 15 and noted by Malliaris and 
Salchenberger (1993a) the BSM overvalues OTM options a lot. Figure 15 also 
shows that NTM options are also often overpriced. This means that their 
pricing errors are often large which is also highlighted by the difference in MSE 
and MAE of the stochastic models when compared to the network as shown in 
Table 12. Equation 35 notes how the 𝑅2 is calculated where the pricing error of 
the model that is squared is in the numerator of the fraction, and the fraction is 
subtracted from 1. Because the pricing errors of the stochastic models are large 
for OTM options, that means that the fraction is large and this in return means 
that a large number subtracted from 1 yields a small number as shown in Table 
12 𝑅2 for the stochastic models. This same behavior of the 𝑅2 should also come 
up during OTM option pricing and the effect should be even larger. 

TABLE 12 Pricing results for NTM options 

 MSE x 𝟏𝟎−𝟓 MAE x 𝟏𝟎−𝟑 MAPE 𝑹𝟐 

ANN 4.48 4.50 0.145 0.9299 
BSM 18.6 9.35 0.612 0.7094 
MCS 18.6 9.35 0.612 0.7094 
 
The pricing of OTM options has been difficult for the stochastic models as noted 
by prior literature. Table 13 further demonstrates this difficulty, as the MSE and 
MAE increase a lot when compared to the whole dataset presented in Table 10. 
On the contrary, the ANN was able to price OTM options more accurately than 
the whole dataset of options according to MSE and MAE. When comparing the 
different models and their MSE, MAE, and MAPE it is clear that the 
performance of the ANN is superior to the performance of the stochastic 
models. The BSM and MCS once again do not show any difference in their 
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performance. As mentioned before, the MAPE does not allow for moneyness 
category comparisons, as the denominator for the MAPE in Equation 33 
decreases and thus drives up the value of the MAPE on its own. 

The 𝑅2 for the ANN is noticeably less than for the whole dataset meaning 
that even though the ANN yields lower errors in the OTM category than for the 
whole dataset, it still cannot explain as much of the variance in the OTM 
category. For the stochastic models, the 𝑅2 behaves very differently in pricing 
OTM options as well, and it is a difficult measure in this case. As discussed 
earlier the overpricing of options in the OTM category causes the stochastic 
models to have a small 𝑅2 value. This problem with the 𝑅2 is a lot clearer in 
pricing OTM options in Table 13 than it is in NTM option pricing in Table 12. 
The pricing of OTM options is very difficult for the stochastic models measured 
with every performance measure and especially when measured with 𝑅2. 

TABLE 13 Pricing results for OTM options 

 MSE x 𝟏𝟎−𝟓 MAE x 𝟏𝟎−𝟑 MAPE 𝑹𝟐 

ANN 2.00 2.67 0.455 0.8114 
BSM 34.2 13.2 3.76 -2.219 
MCS 34.2 13.2 3.76 -2.223 
 
When comparing these different moneyness categories to each other, the ANN 
outperforms the stochastic models when pricing NTM and OTM options and all 
of the models seem to be about as good in pricing ITM options. When measured 
with squared and absolute errors the performance of the ANN is the best for the 
OTM options and the worst for ITM, whereas the performance of the stochastic 
models yielded the opposite results as their performance is the best for ITM 
options and the worst for OTM options. This was also found out by Bennell and 
Sutcliffe (2004), who found out that with their sample and network architecture, 
the pricing of ITM options also resulted in comparable results between the BSM 
and the ANN where the BSM might have been better.  

When measured with 𝑅2 the ANN performs the best in the NTM category 
and the worst in the OTM category. This means that the ANN is able to explain 
more of the variance of the option prices for NTM options than for other 
categories. The results for the stochastic models are similar to those results 
acquired when using MSE and MAE as they are best at pricing ITM options and 
worst at OTM option pricing. 

Pricing errors of each model to their moneyness are highlighted in Figure 
16, where the first plot represents the errors of the ANN, the second is the 
errors of the BSM model, and finally on the second row are the errors of the 
MCS. The pricing error is on the Y-axis and moneyness is on the X-axis with 
OTM options being closer to the Y-axis. The errors of the ANN seem to be more 
clustered together, and there are no extreme outliers in the whole data. It might 
be of interest to observe the error plot of the ANN with its Y-axis scaled based 
on its own errors and not by those it is compared to. Figure 17 represents a plot 
for the ANN’s errors to moneyness, with the Y-axis (the error axis) scaled better. 
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As highlighted by Tables 12, and 13 already the ANN prices options more 
accurately than the stochastic models OTM and NTM and Figure 16 graphics 
are consistent with this finding. According to Figures 16 and 17 as well as Table 
11, the errors of the ANN also spread out more when moving deeper into ITM, 
where the ANN performed the worst out of the three categories. A majority of 
these errors are above the zero line, which implies that the model underprices 
the ITM options. The ANN underpricing ITM options was also found out by 
Malliaris and Salchenberger (1993a). It could be said that systematically for ITM 
options the ANN makes more errors in its pricing whereas the stochastic 
models make more large errors.  

The error plots for the BSM and MCS seem very identical as expected so 
they will be discussed as one. These stochastic models seem to have a lot more 
outliers in every moneyness category. These outliers are also shown in Tables 
10, 11, 12, and 13 as the MSE for the stochastic models is large in comparison to 
the ANN in every single category. The MSE weighs extreme errors more than 
other error measurements. The error plots are also extremely one-sided, as there 
seem to mainly be pricing errors on the negative side of the Figure’s Y-axis. This 
means that the stochastic models constantly overprice the prices of the options, 
and this is especially true for the OTM options. Nearly the whole cluster of 
errors in OTM is also below the zero line. This graphic is very much in line with 
Table 13 which also shows the difficulty of pricing OTM options by the 
stochastic models. This discovery also aligns with the results reported by 
Malliaris and Salchenberger (1993a), who also noted that OTM options are often 
overpriced by the BSM model. The pricing performance of the stochastic 
models does get better for ITM options, but the plot is still one-sided with the 
data points outside of the main cluster of pricing errors. If the stochastic models 
make a large pricing error it is consistently overpricing the options, rather than 
underpricing. 

 

FIGURE 16 Pricing errors to moneyness of the three different pricing models 
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As mentioned, the unsuitably scaled Y-axis of the ANN in Figure 16 calls for 
closer inspection of the ANN model’s error plotting. That is done in Figure 17. 
As the ANN’s pricing results in Tables 11, 12, and 13 tell the ANN does have 
some difficulties in pricing ITM options. The largest cluster of errors and also 
the rest of the errors plotted in Figure 17 seem to be above the 0 line especially 
for other than OTM options. This is a sign that the model underprices these 
options. Malliaris and Salchenberger (1993a) noted the same observation that 
the ANN would consistently underprice ITM options. Based on Figure 17 this 
might be true for ITM and even NTM options, but the plot for OTM options is 
close to zero. It is also evident that the main cluster or the range of the error 
points expand as options deeper ITM are priced. 

 

FIGURE 17 Pricing errors of the ANN to the moneyness with a scaled Y-axis 
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This thesis compared the artificial neural network option pricing model to two 
very similarly performing stochastic models the Black-Scholes-Merton model 
and the Monte Carlo simulation. This performance was compared for the whole 
dataset as well as for three different moneyness categories. The testing of the 
network was only done using out-of-sample data, and the three different 
models always used the same dataset in their comparisons. This thesis also 
researched and experimented with different artificial neural network 
architectures and compared several architectures to each other. The main 
results of this study are presented in Table 14. 

The main goal of the study was to compare three different models to each 
other while the emphasis stayed on the neural network model. The primary 
objective was to answer the question “Is the artificial neural network better at 
pricing the DAX-index call options than the Monte Carlo simulation method, 
and the Black-Scholes-Merton option pricing model?”. By all performance 
measures MSE, MAE, MAPE, and 𝑅2  the artificial neural network is more 
accurate in pricing the European DAX-index call options using the whole 
testing dataset. Prior literature overall seems to agree that the artificial neural 
network is generally more accurate in its pricing so the findings of this study on 
this part align with previous research in the field. 

Before doing these comparisons between the models an optimal neural 
network architecture had to be discovered for this dataset. This was done to 
answer the research question “What is the optimal number of hidden layers, 
hidden neurons, and epochs in the artificial neural network?”. For this dataset, 
the optimal number of hidden layers was 4, with 16 neurons in each layer and 
with the neural network running 1000 epochs. This finding is somewhat 
contrary to prior research. There has not been too much discussion or research 
about optimal network architectures, but all of the papers referenced in this 
research only used 1 hidden layer and around 8 neurons.  

To answer the third research question “Are the pricing performances of 
the artificial neural network, the Monte Carlo simulation, and the Black-
Scholes-Merton model dependent on the moneyness of the option?” the dataset 

8 CONCLUSIONS 
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was divided into three different moneyness categories. The ANN was the most 
accurate out of the three models in the OTM and the NTM categories, where the 
difference between the stochastic models and the ANN was very significant in 
OTM option pricing. The discrepancies between the models were significantly 
diminishing the more ITM the options moved to the point of similar pricing 
accuracy in ITM option pricing between the models. This result is very much in 
line with prior literature. The ANN seems to systematically make more pricing 
errors when pricing ITM options, whereas the stochastic models make more 
large errors.  

 The pricing errors of the stochastic models seem to be dependent on 
different moneyness categories, as they seem to overprice out-of-the-money 
options. The stochastic models also seem to have a lot more extreme pricing 
errors in all of the moneyness categories when compared to the ANN and this 
can especially be observed in Figure 16. The network seems to underprice 
options that are NTM or ITM and this was also noted by other papers before, 
and these results can be drawn from Figure 17. 

TABLE 14 The main results of the study 

Research question The answer 

Is the artificial neural network better 
at pricing the DAX-index call options 
than the Monte Carlo simulation 
method, and the Black-Scholes-
Merton option pricing model? 

The ANN is better at pricing the DAX-
index call options depending on the 
moneyness of the options. For the 
complete dataset, the ANN is more 
accurate in its pricing. 

What is the optimal number of hidden 
layers, hidden neurons, and epochs in 
the artificial neural network? 

The optimal architecture is 4 hidden 
layers, with 16 neurons in each layer 
and with 1000 epochs. This 
architecture might be different 
depending on other model 
specifications or the used dataset. 

Are the pricing performances of the 
artificial neural network, the Monte 
Carlo simulation, and the Black-
Scholes-Merton model dependent on 
the moneyness of the option? 

The pricing performance of the three 
models is dependent on the 
moneyness of the options. The ANN 
is the best at pricing OTM and NTM 
options, whereas the stochastic 
models and the ANN are comparable 
in ITM option pricing. 

 
Overall, the artificial neural network seems to perform well in option pricing 
when compared to the stochastic models. The BSM and the MCS performed 
nearly equivalently as expected. While measuring with MSE and MAE the 
ANN definitely excels in pricing out-of-the-money options, which are hard to 
price for the stochastic models. The search for an optimal network architecture 
is of essence while aiming for the lowest errors and the highest coefficient of 
determination, even though earlier literature showcases that even without it the 
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network still often outperforms the BSM in most moneyness categories and for 
the whole dataset together. The ANN in this thesis might have performed even 
better, if there would have been no problems with the data partitioning because 
of the interest rates. 

Training the ANN requires a large dataset and more work than the 
stochastic models. In situations where the models are comparable, such as ITM 
option pricing, it might be justified to just use the easiest-to-use model. For 
other moneyness categories where the differences between the models’ pricing 
are large, the extra work to train an ANN should be considered as the stochastic 
models’ performance is unsatisfactory. 

The main limitations of this study lie in the absence of a strong theoretical 
background as an artificial neural network is a completely empirical model. 
Especially the Black-Scholes-Merton model is strongly derived from the theory, 
and thus the results it yields do have a strong foundation. There are also no 
mechanisms to explain the pricing decisions of the network. Other limitations 
might be attributed to there being seemingly no possibility of determining the 
optimal network architecture other than experimentation, which is very time 
and computing-power-consuming. It should also be said that setting up an 
artificial neural network option pricing model and training it does require some 
knowledge of programming, which is more than what is required by the Black-
Scholes-Merton model or the Monte Carlo simulation.  

There is still a lot to be covered about machine learning in the option 
pricing framework. This thesis examined the pricing performance of the ANN 
compared to other models but also investigated the different ANN architectures. 
However, there still exists a lot of customization options for the neural 
networks that would be beneficial to be researched more. This possible future 
research includes for example different model optimizers and different 
activation functions such as leaky rectified linear units. There also exist many 
alternative pricing models beyond the stochastic models used here, which the 
ANN could be compared to. It would also be interesting to see comparisons of 
computing time required to estimate the models, depending on the different 
parameters of the model. Artificial neural network’s pricing performance could 
also be tested on more complex option contracts such as some exotic options. It 
would also be interesting to see whether any conclusions can be drawn on the 
optimal structure of the network and how the optimal architecture could be 
derived from the information of the dataset, and not only through trial and 
error. 
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APPENDIX 

APPENDIX 1 Notations and abbreviations of Table 3 

C Option price 

𝐶𝐵𝑆−𝑋 Option price given by the BSM. For X; H=BSM with historical 
volatility, V=BSM with volatility index such as VIX 

HR Hedging ratio 

K Strike price 

S Underlying’s price 

r Interest rate 

𝜎𝐶𝑎𝑙 Volatility from calibration 
𝜎𝐻 Historical volatility 
𝜎𝐼𝑀 ATM implied volatility 
𝜎𝑉 Volatility index such as VIX 

𝜏 Time to maturity 

  

CVaR Conditional value at risk 

DM Diebold and Mariano test9 

KS Kolmogorov and Smirnov twosample test10 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

MATE Mean absolute tracking error 

ME Mean error 

MPE Mean percentage error 

MSE Mean squared error 

PE Prediction error 

𝑅2 Coefficient of determination 

 

 
9 See Diebold & Mariano (1995). 
10 See Lai (2014), where he explains the test in short. 
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