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1. Introduction

In the early 1970s Muckenhoupt discovered his famous concept of Ap weights 
in connection with weighted norm inequalities for the Hardy-Littlewood maximal 
function. In general, weighted norm inequalities have the form 

j ITJ(y)!Pw(y)dy::; c j lf(y)!Pw(y)dy

where, for example, T is a singular integral operator or a maximal function opera
tor, and the constant c depends only on n, p, and the weight w. Such inequalities 
arise naturally in many areas of harmonic analysis in Rn . During the past two 
decades a number of papers have appeared concerning different types of integral 
transforms, in particular, singular integral operators (see [GR] and [Tor]), weighted 
nonlinear potential theory (see [Ad] and [HKM]), weighted Sobolev spaces (see 
[Ch], [FKS], and [Ku]), and weighted Beppo Levi spaces (see [Ail). 

In the first part of the paper we investigate weighted Hausdorff measures, 
weighted capacity densities, and weighted content densities. It turns out that 
in many cases the weighted Hausdorff dimension can be estimated from below 
in terms of the ordinary Hausdorff dimension. Weighted capacity densities and 
weighted content densities are studied by making a comparison between them. 
A connection between the weighted Hausdorff dimension and the weighted ca
pacity density is given in terms of weighted content density closely related to 
weighted capacity density and a linearly increasing gauge. This leads to upper 
and lower bounds for the weighted Hausdorff dimension of a set on condition that 
the weighted capacity density of the set is zero everywhere. Moreover, we produce 
upper bounds for the ordinary Hausdorff dimension of a set of zero weighted ca
pacity density by means of the weighted Hausdorff dimension. For earlier results 
concerning the subject see [Ne], [Res], [Fe], and [Ma]. 

In the second part we characterize weighted Sobolev spaces as weighted Bessel 
potential spaces. This is a generalization of a well known result in the unweigb.tecl 
case, see [AMS] or [St]. Roughly speaking, every function in a weighted Sobolev 
space of order k has a representation by means of Bessel kernels and Riesz trans
forms. As a byproduct, we obtain the fact that weighted Sobolev space and the 
space of integrable functions up to order p, l < p < oo, with respect to the 
measure induced by a given weight are quasi isometrical. Furthermore, each func
tion in the latter space can be represented in terms of Bessel kernels and Riesz 
transforms. 

List of Notations. The following notation will be used thoroughout this 
paper. 

x = ( X1, x2, . .. , Xn) a point in the Euclidean n-space Rn , 
x • y = "I:,j=I x j • Yi the inner product of x and y,
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lx l = (x · x)½ the norm of x in Rn , 
S the closure of a set S in Rn , 
B(x,r) = {y: Ix - YI< r} an open ball with center x and radius r,  
Q(x,r) = {y: lxi-Yil < f, Vj = 1, ... ,n} an open cube with center x 
and edge length r,  
sptu = {x: u(x) /:- O} the support of u, u: n � R, and n is an open 
set in Rn , 
8d the ith weak partial derivative of f,
'\I 9 = (819,829, .. . , 8n9) the gradient of 9 ,  
XE the characteristic function of a set E,

IEI = f
Rn XE dy the Lebesgue measure of a set E, 

j f dy = IB(;,r)I { f dy 
JB(x,r) } B(x,r) 

is the mean value of a locally integrable function f,
w the area of the unit sphere in Rn , 
c, c1 , c2 , c3 positive constants, c = c( n, p, a, ... , /3) means that c de
pends on n, p, a, ... , and /3 only. 

Let n be an open set in Rn . 
Ct(f2) k-times continuously differentiable functions whose supports be
long to n, and C0 = C0 (Rn), 
6 the class of Schwartz test functions, see [SW, §3 p. 19). 

2. Preliminaries

In this chapter we introduce weights and weighted variational capacities. We 
also state some auxiliary results concerning basic properties of capacity. That is, 
we find lower and upper bounds for capacity and the subadditivity of capacity. It 
is pointed out that all the lemmas in the chapter are well known and therefore 
some proofs are omitted. 

A nonnegative measurable function w defined on Rn is called a weight if 
0 < w < oo a.e. ( almost everywhere) in Rn and w is locally integrable (in the 
Lebesgue sense). We also identify the weight w and the corresponding measure 
E � f

E
w(y)dy. 

Since, by the definition of a weight w, the Lebesgue measure and J E w(y) dy 

are mutually absolutely continuous, there is no need to specify the measure when 
using the phrase "almost everywhere". Moreover, we need not identify the measure 
when speaking about a measurable set or function. 

2.1. L!); spaces. Let 1 :::; p < oo and let w be a weight. If f: Rn 
--+ 

RU { oo} U {-oo} is measurable, we write 
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The collection of all functions f with llfllLJ; < oo is denoted by Lfu.
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2.2. Doubling weight. A weight w is called a doubling weight if there is
a constant, denoted by Cv = Cv(w), such that

(2.3) r w dy :::; CD r w dy
} B(x,2t) } B(x,t) 

for all balls B(x, t) in Rn . We call (2.3) the doubling condition and Cv is said to
be the doubling constant of w.

2.4. A
p 

weights. Let p E [1, oo). We say that a weight w on Rn is an A
p weight if

(2.5) ( J wdy) ( J w 1�P dy) p-l:::; CA if 1 < p < oo
hJ(x,t) hJ(x,t) 

or

(2.6) _[ w dy :::; CA ess inf w(y) if p = l
hJ(x,t) yEB(x,t) 

for all balls B(x, t) in Rn and for a finite constant CA independent of B(x, t).
This is the well known Muckenhoupt A

p 
condition and CA is the A

p 
constant of

w. To express that w is an A
p 

weight we write w E A
p 

and use a phrase "w
belongs to the A

p 
class". Moreover, the A00 class is defined by letting

2. 7. Remarks. (a) Let 1 < p < oo. From (2.5) and the Holder inequality it
follows that

(2.8)

whenever B(x, t) C Rn . Repeating the argument, using (2.6), we find that the
corresponding double inequality holds for p = l as well. Hence we have 1 :::; CA <
oo for every A

p 
weight.

( b) It is due to the geometry of Rn that a cube sometimes gives us an advan
tage over a ball in the integral calculus. Thereby, sometimes a ball is replaced by
a cube in definitions 2.2 and 2.4 for the sake of convenience in calculus. However,
we point out that these changes produce concepts which are similar to the old ones
in connection with the doubling weights.



8 Esko Nieminen 

(c) A function w defined by w(x) = lxl7 satisfies the Muckenhoupt Ap condition, 1 < p < oo ,  exactly if -n < 1 < np - n, where n is the dimension of
the space Rn , see [Tor, Corollary 4.4 p. 237]. 

( d) Let 1 < p < oo and suppose that w j is measurable and O < w j ( x) < oo
a.e. in R for j = 1, ... , n. Then the following two conditions are equivalent:

(i) The functions w j for j = 1, ... , n are Ap weights on the real line R. 
(ii) Thefunction w(x) =w1(x1)w2(x2)···wn(xn) belongs to the Ap class in

Rn .
That (i) implies (ii) is a consequence of the Fubini theorem and (b ). It follows
from (2.8), (b ), and the Fubini theorem that (ii) implies (i). 

For Xj E R define Wj(Xj) = lxjl-Y; provided that -1 < 1j < p - 1 and
j = 1, ... , n. Since Wj is in Ap on R, the function

w( X) = lx1171 lx2172 
• • •  lxn l"Yn

satisfies the Ap condition on Rn whenever -1 < ,j < p - 1 for j = 1, ... , n.

2.9. Lemma. Let 1 :S p < oo and w E Ap . Then w is a doubling weight
with Cn = 2PnCA .

Proof Since A1 C Ap , there is no loss of generality in assuming that p E
(1 , oo). Now (2.8) yields

f wdy :SCA IB(x,2t)IP ( / w l�p dyr-p 

} B(x,2t) } B(x,2t)

:S 2pn cA IB(x,t)lp ( / w 1�P dyr-p 

j B(x,t) 

:S 2PnC A f w dy ;
j B(x,t) 

hence the doubling condition holds with Cn = 2PnCA , as desired. D
For further information on doubling weights and Ap weights, see [GR) and

[Tor). Now we turn our attention to weighted capacities.
2.10. Capacity. Let n be an open set in Rn and let F be a compact subset

of n. The pair (F, n) is said to be a condenser. Let
A(F,Q) = {u E CJ(n): u 2 0 and u(x) 2 1 for all x E F}.

VVe say that A(F, n) is the set of admissible functions for a condenser (F, n) . 
Let 1 < p < oo and let w be a weight. The var iational ( p, w )-capacity of a

condenser (F, n) is the number
cap

p 
w(F, n) = inf / IVulp w dy .

' uEA(F,O) lr:e. n 

We close this section with three lemmas.
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2.11. Lemma (Poincare inequality). Let p E (1,oo) and w E A
p

. Then 
there exists a constant c = c(n,p,CA) such that for all balls B(x,r) and all 
functions g E CJ(B(x, r )) we have 

Proof S ee [FKS, Theorem 1.2 p. 84]. D 

The followin g estimates are well known, see e.g. [HKM]. 

2.12. Lemma. Let 1 < p < oo, x E Rn, and r > 0.

( i) If w E A
p 

, then 

c1 r-P { wdy::; cap
p

,w (B(x,r),B(x,2r)), } B(x,r)

where c1 is a positive constant depending only on n, p, and CA. 
(ii) If w is a doubling weight, then 

cap
p ,w (B(x,r),B(x,2r))::; Cnr-p f wdy. } B(x,r)

Proof To prove (i) let w E A
p 

and let u be a function in A(B(x, r), B(x, 2r)).
Now u(z) 2: 1 for all z in B(x, r). Thus from the Poincare inequality we conclude
that 

and because u was an arbitrary admissible function we have 

c1(n,p)r-P f wdy::; cap
p

,w (B(x,r),B(x,2r)), } B(x,r)

which proves (i). 
To verify (ii) we may assume that x = 0. For a fixed j = 3, 4, ... we consider 

the continuous function Ji defined on R, 

1' 

2J /r(r(2 - 2-j) - t),

0 

r(l + 2-J+l) ::; t ::; r(2 - 2-J+l),

r(2 - 2-J+l) < t < r(2 - 2-j), 

otherwise. 
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J
2r ( .) d fi Now r Ji di= r l - 3 · 2-1 . Let z E Rn and e ne 

J1!1 Ji dt 
9j(z) = r(l _ 3. 2_j) for j = 3,4, .... 

Clearly sptgj c B(0,2r), 9j E CJ(B(0,2r)), and gj(z) = 1 for all z E B(O,r).
Hence 9j is an admissible function for the condenser ( B(0, r ), B(0, 2r)). Further
more, we have 

J;(lzl) Zi Oi9j(z) = - r(l _ 3 . 2_j) � for i = 1, ... , n 

and lfj(lzl)I � 1 for all z E Rn . Consequently 

for all z E Fr . 

From this inequality and from the doubling condition we obtain 

f IVgjf w dy � r-P(l - 3 • 2-j)-p f w dy} B(0,2r) } B(0,2r)

::::; r-P(l - 3 • 2-i)-P Cn f wdy.
J B(O,r) 

Letting j -+ oo we arrive at (ii), which completes the proof. D 
2.13. Lemma. Let 1 < p < oo and w E Ap . Assume tliat (F, f2) is a 

condenser and that ( Fj , n j) is a sequence of condensers such that F C LJ 
j 

Fj and 
nj c n for j = 1,2,3, .... Then

cap
p ,w(F,n) :s; I:cap

p ,w(Fj ,nj)-
i=I 

Proof The desired conclusion follows from [HKM]. D 
2.14. Remark Note that Ap weights satisfy a stronger inequality than the 

doubling condition (Lemma 2.9), see (Tor, Theorem 2.1 p. 226]. 
The assumption that w E Ap for 1 < p < oo in Lemma 2.1 1 and Lemma 2.13 

is not really necessary. Other weights for which the Poincare inequality holds can 
be constructed, for example, by the aid of quasiconformal mappings, see [FKS, §3 
p. 104 and Property 3 p. 107]. For more general assumptions for Lemma 2.13, see
e.g. [HKM].
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3. Weighted Hausdorff measures

An a -dimensional weighted spherical Hausdorff type measure is constructed
and a weighted Hausdorff dimension of a set in R n is introduced. For certain
weights we also discuss lower and upper bounds for the weighted Hausdorff dimen
sion of a set. This leads to an upper bound for the ordinary Hausdorff dimension 
in terms of the weighted Hausdorff dimension. The relationship between weighted 
Hausdorff measures and content densities is investigated by means of a linearly
increasing gauge on a subset of Rn . In Chapter 4 we will continue our discussion
on the ( weighted) Hausdorff dimension and content densities in connection with 
capacity densities. 

We begin by introducing gauges and contents. Let p be a positive measurable
function from (0, oo) to (0, oo) and let w be a weight. We call the function h

p
,w, 

h
p
,w(x, t) = hp

,w (B(x, t)) = p(t) { W dy 
j B(x,t) 

a gauge. 

3.1. Remark. Because the weight w is locally integrable with respect to the
Lebesgue measure, we have 

h
p
,w(x,t) = h

p ,w(B(x,t)) = p(t) C wdy 
lscx,t) 

whenever B(x, t) is a closed ball in Rn . 

Let E be a subset of Rn and let h
p
,w be a gauge. For 0 < 8::; oo define

00 

Hi,w(E) = inf I: hp
,w (x1, r1),

j=l 

where the infim um is over all coverings { B ( x j, r j)} of E with r j < 8 for all
j = 1, 2, 3, .... The quantity Hi,w (E) is called the ( 8 -pw )-content of E.

It is easy to see that a content H!,w is an outer measure on Rn . If p(t) =ta , 
a E R, we write ha,w = h

p
,w and Htw = Hi,w. 

First we prove a well known lemma of Cartan for the contents H!,w. See (Ne,
Theorem of Cartan p. 146] or (Res, Lemma 3.7 p. 115]. 

3.2. Lemma. Suppose that h
p
,w is a gauge and that v is a fi.nite Borel 

measure on Rn . Let co> 0 and r > 0. If

Er = {x E Rn : T v(B(x, t)) ::; h
p
,w(x, t) for all O < t <co},
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then there exists a constant c depending on n only such that 

whenever co < 8 s; oo . 
Proof For each point x of Rn \ Er there is a radius rx s; c0 such that

(3.3) 

Hence 
Rn \Er C LJ B(x, rx) where

xERn \Er 

sup r x s; co < oo . 
xERn \Er 

By the Besicovitch covering theorem [Z, Theorem 1.3.5 p. 9) we find a constant 
c( n) < oo and a new covering of Rn \ Er such that

00 00 

LXB(xj,rj)(x) s;c(n) and Rn \Er C LJB(xj, rj), 
j=l j=l 

where x j and rj = rxi 
satisfy (3.3). Hence 

00 00 

j=l j=l 

s; c(n)Tv(Rn), 

which establishes the result. 0 

We use the well known Caratheory construction to obtain weighted Hausdorff 
measures; for this construction see [Fe, §2.10 p. 169]. The construction is applied 
to the gauge 

ha ,w(x, t) = t0 
� W dy, 

h1cx,t)

where a E R and w is a weight. Let H� w be the corresponding content and let
E be a set in Rn . Define 

(3.4) rla,w(E) = lim H! w(E) = sup H! w(E) . 
8->0 

' 
8>0 

' 

The quantity rla ,w is called the a -dimensional weighted spherical H ausdorff mea
wre on Rn or, for short, the weighted Hausdorff measure. Because for a fixed
E C Rn the content H� w(E) increases as {; decreases, the limit in (3.4) exists 
but may be infinite. 
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3.5. Remark. It is easy to check that Ha ,w is a metric outer measure and so 
every open set is measurable. In fact, Ha ,w is a Borel regular measure on Rn , see 
[Fe, §2.10 p. 169]. 

For a set E in Rn , the number 

dimw(E) = n + inf { a E R : Ha ,w(E) = O} 

is called the weighted Hausdorff dimension of E. 

3.6. Remarks. (a) For E C Rn , dimw(E) 1s uniquely determined by the 
properties: 

Ha ,w(E) = 0 if dimw (E) < n +a, 
Ha ,w(E) = oo if n +a< dimw(E). 

(b) For all subsets E of Rn we have dimw(E) .S n and, in particular,
dimw(Rn) .S n. On the other hand, note that dimw(E) can be negative, see 
Theorem 3.10 and Example 3.12.(c) below. 

(c) In case w = l the gauge ha ,w has a form

Here w stands for the area of the unit sphere in Rn . The ordinary (spherical) 
Hausdorff dimension of a set E in Rn is defined as 

dim(E) = inf {/3 > 0: lim { L tf: EC UB(xi, ti), ti < 8} = o}, 
6-+0 

see [Fa, §1.2 Hausdorff measure p. 7]. The ordinary Hausdorff dimension of a set 
coincides with the weighted Hausdorff dimension of the set provided that w = l . 

For O < d .S oo we let 

P(E,d) = LJ B(y,d) 
yEE 

be the d-infiation of a set E in Rn . 
Next we derive a lower bound for the weighted Hausdorff dimension of a set by 

means of the ordinary Hausdorff dimension. We point out that the lower bound 
is always nonpositive. Recall that dimw(Rn) .S n and dimw (0) = -oo. Our 
approach to the lower bound is based on the comparison of dimw and dim. First 
we investigate what is the connection between the two different weighted Hausdorff 
dimensions of a set. 
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3. 7. Theorem. Let E be a nonempty subset of Rn and let 1 < q < oo.
Assume that v is a doubling weight and that w is a function such that wv is

1 a weigl1t with J
P(E,do)w(y)1-qv(y)dy < oo for some O <do< oo. Moreover,

suppose that -oo < /3 ::; dimv (E), A� 0, and dimwv (E)::; n - A. Then

A::; q(n - /3), dimv (E)::; n - ¾, and n + q(/3 - n)::; dimwv(E).
Proof Let a > -,\. From the fact that O < w( x) < oo a.e. in Rn and from

the Holder inequality we obtain
(3.8)

1 .i=.!. 

hg_,v(x,r) = r � C vdy::; (r° C wvdy) q ( C wl�qvdy) q
q h3(x,r) ln<x,r) ls<x,r) 

for all closed balls B(x,r) in P(E,do). Let O < d < do/3. Since dimw(E) <
n + a, we have H�,wv(E) ::; Ha,wv(E) = 0. Thus we may choose a covering
{B(xj,rj)}jEN of E such that rj < d for all j EN and
(3.9) L ha,wv(Xj,rj) < H�,wv(E) + 1 = 1 .

jEN
Vve may assume that B(xi, ri) n E is nonempty for all j E N; thus B(xj, ri) C
P(E,3d). 

Employing a standard covering theorem [Z, Theorem 1.3.1 p. 7] we find a
subfamily {B(xj,rj)}jEJ of {B(xj,rj)}jEN such that

LJ B(xi, ri) C LJ B(xi, 5rj), JC N,
jEN jEJ 

and that the balls in {B(xj,rj)}jEJ are pairwise disjoint. Hence using the dou
bling condition, (3.8), the Holder inequality, and (3.9) we arrive at
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Since E c LJiEJB(x1,5r1) and P(E,3d) C P(E,do) whenever O < d < do/3, we
have

By letting d � 0 we find
q-1

rlg,JE)s5�Cv(v)3 ( I w l �qvdy) q <oo .q jP(E ,do) 

Now it follows that dimv(E) :S n - ¾ and, in particular, A :S q(n -/3). Con
sequently n + q(/3 -n) :S dimwv(E), which completes the proof of the theorem.
D

3.10. Theorem. Let E be a nonempty subset of An and let 1 < q < oo.
1 Suppose that w is a weight with JP(E ,do) w l -q dy < oo for some O < do < oo .  If

A 2: 0 and dimw(E) :Sn -A, then A :S nq and dim(E) :Sn -¾.
In particular, n -nq :S dimw( E) :S n.
Proof. The result follows from Theorem 3. 7 with v = 1 and /3 = 0. □
3.11. Corollary. Let w be in A= and q = inf{t > 1 : w E At}. Suppose

that E is a nonempty set in An . If A 2: 0 and dimw(E) S n -A, then >. :S nq
and dim( E) :S n -¾ . Moreover, n -nq S dimw( E) :S n.

Proof. The conclusion is obtained from Theorem 3.10. D
3.12. Examples. (a) Such non trivial weights will be constructed such that

it is possible to calculate weighted Hausdorff dimensions of sets in An in terms of
ordinary Hausdorff dimensions.

To this end, let k equal to 1, 2, ... , n ,  and let An-k be a subspace of An ,
An-k={xEAn :x1=0 for all j=n-k+l, ... ,n}. Let A be in (k,oo). The>. weight W is defined by w(x) = nj=n-k+

l 
lx1II- 1 where X = (x1,X2, ... ,xn ) E

An . Now, if E is any subset of Rn-k, then dimw(E) = dim(E) -A+ k.
To prove the formula, recall that w belongs to the A= class since -1 <

f - 1 < p - 1 whenever p > f, and so w E A
p 

C A= for some p > f, see
Remarks 2.7.(d). Furthermore, we recall that dimw (and dim) does not change
if we replace a ball covering by a cubic covering, since w is a doubling weight.
So, let us consider a cube Q(x,r) = {y E Rn : lx1 -y1 1 S � for j = 1, ... ,n}
centered at a point x = (x1, x2, ... , Xn-k, 0, 0, ... , 0) E Rn-k and a gauge ha ,w
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for a> ->. - n + k. In this case we obtain 

2k->.. \ -k kk h ( ) = A a+>..-k ,l x, r .

That is, if x E Rn-k and c(>., k) = 2k->.. >.-k kk , then 

(3.13) 

Now we are in a position to prove that if E is a subset of Rn-k, then 

(3.14) 

for a>->. - n + k. To this purpose, let {Q(xj,rj)} be a covering of E with 
ri" < d for all j = 1, 2,... . With no loss of generality we may suppose that 
Q( x J°, r J°) n E is nonempty for all j = 1, 2, 3, . . . . By the projection of the cen ter 
XJ° of Q(xi",ri") to Rn- k we are able to find a cube Q(xj,ri") such that xj E An -k

and rj < d. In particular, Q(xj,ri") n E = Q(xj,rJ°) n E. Thus we have a new 
covering of E obtained from the covering { Q( x J°, r J°)} such that E C LJ J° Q( xj, r J°) 
and ri" < d for all j = 1,2, .... 

For a > ->. - n + k from (3.13) we infer that 

Hence 

h0 ,w(xj,rj) = c(>.,k)ha+>..-k ,1(x1,rJ 
= c( >., k) r'J+>..-k+n 

= c(>.,k)ha+>..-k ,1(xhrj)-

CX) CX) 

Lha,w(x1,r)) = c(>.,k) Lha+>..-k ,1(x]°,rj) 
j=l J°=l 

and passing to the infima, the left part of (3.14) follows. 
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Using again (3.13), the fact that Q(xj,ri) C Q(xj,2rj), and the doubling 
condition we obtain for a> -,\ - n + k 

Consequently, 

and by taking the infimum over all coverings, we arrive at the right part of (3.14). 
Finally, by letting d � 0 in (3.14) we find for EC Rn -k 

(3.15) 

Now, if a+,\ - k + n = dim(E), then a= dim(E) - ,\ + k - n. Hence (3.15) 
yields dimw( E) = dim( E) - ,\ + k for ,\ in ( k, oo) and k = 1, 2, . .. , n,  as desired. 

(b) We show that in Corollary 3.11 the upper bound for the ordinary Hausdorff
dimension of a set is sharp whenever ,\ is in (1, oo). Indeed, if k equals to 
1, 2, . .. , n ,  then for all ,\ E ( k, oo) there exist a set E in Rn and a weight w 
satisfying the assumptions of Corollary 3.11 such that dimw(E) = n - ,\, 0 < ,\ :s;

nq, and dim(E) = n - ¾, Here q = i = inf{p > 1 : w E A
p

}. 
To this end, let Rn-k and the weight w be as in (a) for k = 1, 2, ... , n and 

,\ E (k, oo). Now, by (a) we have that w is in A00 and q = i; clearly /\ is 
in (0, n/]. Let E be a unit cube in Rn-k. It is known that dim(E) = n - k. 
From (a) it follows that dimw(E) = n - k - ,\ + k = n - ,\, and moreover, 
dim( E) = n - k = n - � . To complete the example, choose k = 1.  

q 

( c) It is shown that dimw can be strictly negative. Again, let Rn -k and the
weight w be as in (a) when k = 1. Now q = f. Furthermore, let E be a cube 
in Rn-k_ If,\ is in (n,oo), then,\ is always in (n,n,\] and n - n,\ < n - /\ =

dimw(E) < 0. However, dim(E) = n - 1 .  
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( d) In Corollary 3.11 the lower bound for the weighted Hausdorff dimension
of a set is sharp if ,\ belongs to ( n, oo). Of course, the corresponding upper bound 
for the ordinary Hausdorff dimension of the set is zero, and in particular, the upper 
bound is also simultaneously sharp. In other words, for each ,\ in ( n, oo) there 
exist a set E and a weight w in the A00 class such that dimw( E) = n- nq = n - A,
q = ¾ = inf {p > 1 : w E A

p
} , and dim( E) = 0. 

Let ,\ E ( n, oo). Choose the set E to be { 0} and the weight to be defined
,\ ,\ ,\ 

by w(x) = lx11"ri"-1lx2 ln-1 • • • lxnln-1 for X = (x1, . . .  ,xn) in Rn . According to
(a) we arrive at dimw(E) = dim(E)-..\+n with q =¾whenever,\ is in (n,oo).
This yields

n - nq = n - n� = n - ,\ = dimw(E),
n 

with dim(E) = 0, as desired. 
As a consequence, the weighted Hausdorff dimension of the origin can be as 

small as we please although the ordinary Hausdorff dimension of the origin is zero. 
( e) The next counterexample shows that the following conclusion is false: if

0 < ,\ :S nq and dim( E) :S n - % , then dimw( E) :S n - ,\, where E, n, q, and w
are as in Corollary 3 .11. 

Let w( x) = lx2 I for x E R2 . Hence q = 2. Choose a set E to be ¼-Cantor 
set, see [Fa, §1.5 p 14], lying in the coordinate axis {x E R2 : x = (x1,0), x1 ER} 
with dim(E) = ½· Let,\= 3.  Now w E A3 c A00 and dim(E) = ½ = n- % =

2 

2- ! . Moreover, from (a) for w(x) = lx2 II-1 we obtain dimw(E) = dim(E) -1.
Therefore

dimw(E) = ½ - 1 = -½ > -1 = 2 - 3 = n - ,\,

as required. 

Next we are going to compare the content Hi,w with the content Ht,w for
o < d :S oo .  Trivially the latter is less than the former. The question is: when can
we obtain a reverse inequality? 

Let E be a nonempty subset of Rn . We say that a gauge h
p
,w is linearly

increasing on E if there exists a pair of constants co and d, c0 
2:: 1, 0 < d :S oo,

such that 

(3.16) 

for all x E E and all O < ii :S t2 < d.

For the sake of brevity, the gauge h
p
,w is called linearly increasing on E, or

linearly increasing on E with constants co and d, if (3.16) holds for all x E E
and all O < t1 :S t2 < d.

Furthermore, we say that the gauge h
p
,w is linearly increasing if it is linearly

increasing on Rn with c0 and oo. 
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3.17. Examples. (a) Let w(x) = lxl7. We recall that w E A
p 

whenever 
-n < ,y < np- n, see Remarks 2.7.(c). A straightforward calculation shows that
I • 1

7 is a doubling weight with CD = c1 ( n, ,y) whenever ,y > -n.
We will verify that there exists a constant c(n,,') such that if 'Y > -n and 

a 2: max{-n, -,' - n} then 

(3.18) tf C lvl7 dy $ c(n,,y)tg C lvl7 dy}B(x,t1) }B(xh) 

for all x E Rn and all O < t1 $ t2 < oo. Consequently, the gauge ho: ,w is linearly 
. . mcreasmg. 

To this end, suppose first that O < t1 $ t2 $ lxl/2 and -n < 'Y < 0. Now 

ho:,w(x, t1) = tf C lvl")' dy $ tf ( 1¥ )" C dy 
}B(x,t1) }B(x,ti) 

= !!:!. to:+n(B)-Y < !!:!. to:+n( 3lxl )1'3- 1' 
n l 2 - n 2 2 

$ 3-")' tg C lvl7 dy = 3--y ho:,w(x, tz) 
}B(x,t2) 

provided that a+ n 2'. 0. Applying a similar method in case 'Y 2: 0 we see 

(3.19) 

where a+ n 2'. 0 and O < t1 $ t2 $ lxl/2. 
Secondly, suppose that lxl/2 $ t1 $ t2 < oo and -n < ,' < oo. Using the 

doubling condition twice we obtain 

(3.20) 

ho:,w( x, t1) = tf C !vii' dy $ tf C lvl7 dy}B(x,t1) }B(o,3t1) 
_ 3-y+n w to:+i'+n 

< 3 i'+n w to:+")'+n - n (-y+n) 1 - n(-y+n) 2 

= 3 1'+n tg C lvl7 dy $ 3 i'+n tg C lvl")' dy}B(O,t2) }B(x,3t2) 

::;3 7+n cbtg C lvli'dy =c1(n,,,,)ho:,w(x,t2) 
}B(x,t2) 

whenever a+ 'Y + n 2'. 0. 
Finally, suppose that O < t1 $ lxl/2 $ t2 < oo and -n < ,y < oo. It follows 

from (3.19) and (3.20) that

(3.21) 
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for a 2 max{-n, -1 - n}. Thus invoking (3.19), (3.20), and (3.2 1) we arrive at 
(3.18). 

(b) Choose a= -n - 1  and,= -n + 1 .  Then

a+ n = -n - 1 + n = -1 < 0 and 
a + 1 + n = -n - 1 - n + 1 + n = -n < 0 . 

It follows from (3.19), (3.20), and (3.2 1) that we can find a constant c(n) such 
that 

ti"n-l C IYl-n+ldy 2c(n)t;-n-1 C IYl-n+ldy
}-B(x,t1) h3(x.t2)

whenever O < t1 :'.S t2 < oo and x E Rn . Since for each 8 < 0 we have tf > tg if 
t1 < t2, for all a < -n-1 the corresponding gauge h0 ,w is not linearly increasing. 
In spite of that the weight I· 1-n+l is in Ap for every p with 1 :'.S p < oo. Therefore 
neither the Ap condition nor the doubling condition implies the linearly increasing 
property (3.16) of a gauge. 

( c) It is easy to see that if a gauge h01 ,w is linearly increasing on a set in 
Rn , then for every a2 2 a1 a gauge h02

,w is also linearly increasing on the set. 

3.22. Lemma. Assume that E is a set in Rn and x E Rn . Let w be a 
doubling weight and suppose that hp,w is linearly increasing on E with constants 
co and d. If O < i :'.S 8 and 8 < d :'.S oo, tl1en

where c = 17n Cv6 co. 
Proof We may suppose that En B(x, r) is nonempty. Let {B(xj, ri)}J° be 

a covering of En B(x,r) with rj < d for all j = 1,2,3, .... If rj < 8 for all 
j = 1, 2, 3, ... , then there is nothing to prove. 

Assume that 8 :'.S rk < d for some k and B(xk,rk)nEnB(x,1·) is not empty. 
Similarly as in the proof of the Besicovitch covering theorem ( cf. [Z, Theorem 
1.3.5 p. 9]), we may find points Zj E B(x,r), j = 1, ... ,m, such that the balls 
{B(zj,f)} cover EnB(x,r) and the balls {B(zj,!

6
)} are mutually disjoint and 

that B(zj, f) n En B(x,r) is nonempty for all j = 1,2, ... ,m. Comparing 
Lebesgue measures of Uf=1B(zj, !6 ) and B(zj, 1i7;) we infer that m :'.S 17n .

Now fix an integer j = 1, ... , m and pick a point z' from B(zj, -D n En

B(x,r). From the doubling condition and from (3.16) we infer that 

hp,w(Zj, f) = p({i) J, . r W dy :'.S p(fi) J, 
1 

r W dy 
B(z

J
,8) B(z ,4)

:'.S Cvp(fi) C wdy :'.S Cvcop(rk) C wdy. 
}B(z',i) }B(z',rk)



Hausdorff measures, capacities, and Sobolev spaces with weights 21 

But B(z', rk) C B(xk, 18rk) and hence by a repeated use of the doubling condition 
we have 

in other words, 

hp ,w(zj, fl :S Cv co p(rk) � 
w dy 

ln(xk,18rk) 

$Cv6 cop(rk) � wdy, 
ln(xk,rk) 

This with EnB(x,r) C LJ7
=1

B(zi,�) for f < i $ 8 implies 

00 

17n cv6 co Lhp
,w(Xj,rj) 217n cv6 cohp

,w(Xk,rk) 
j=l 

m 

2 Lhp
,w(Zj,f) 

j=l 

2 Hi,w(EnB(x,r)), 

which completes the proof. D 
Let E be a set in Rn and let ha ,w be a gauge. If v is an outer m easure on 

Rn , t > 0, and 8 > 0, then we write

R(E, v, t, 8) = { x EE: v(E n B(x, r)) :St ha,w(x, r) for all 0 < r $ 8}. 

For 0 < 8 < l we use the abbreviation 

3.23. Lemma. Let E C Rn and 0 < 8 < 1. If w is a. doubling weight and 
Ht

w
(T(E,8)) < oo, then H!,w(T(E,8)) = 0. 

Proof Let {B(xj,rj)} be a covering of T(E,8) such that rj < 8 and that 
a set T(E,8) n B(xj,rj) is nonempty for all j = 1,2,3, .... Now for each j =
1,2,3, ... we canpickapoint Yi ET(E,8)nB(xj,rj) and therefore B(xj,rj)C 
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B(yj,2rj) C B(xj,4rj)- Using the doubling condition we obtain
00 H!,w (T(E,8)) S LH!, w (T(E,8) n B(xj,rj))

j=l
00 S LH!, w (T(E,8) n B(yj,2rj))

j=l

S (l -8)2-1°1 Cn-2 f)2ri)0 h- wdy 

j=I B(yj ,2rj)

S (1 -8) 2-loi Cn -2 2° f r'J � _ . w dy
j=I }B(x, ,4r1

) 

S (1 -8) 2-loi Cv -2 21°1 Cn2 f r'J � w dy 
j=I 

}B(xj ,rj)
00 

= (1- 8) L h0
, w(Xj,rj).

j=l

Since O < 8 < 1, from Ht, w (T(E,8)) < oo it now follows that Htw (T(E,8)) = 0,as required. D 
Let a E R and O < 8 S oo. The 1tpper ( 8 -a, w )-content density of a subsetF of Rn at a point x E Rn is 

15* . 
Ht,w (FnB(x,r))<I>

0,w(x,F)=hmsup h ( )r-+0 a,w x, r 

The following theorem generalizes [Fe, §2.10.19(2) p. 181]. Roughly speaking,it says that for a linearly increasing gauge on a set E with constants c0 and 8 the corresponding weighted Hausdorff measure of the set of points x in E with theproperty <I>t:w ( x, E) = 0 is zero. 
3.24. Theorem. Let w be a doubling weight. Suppose that a gauge ha ,w is

linearly increasing on a subset E of Rn with constants co and d. If Ht w(E) < oofor all O < 8 < 1, then

wl1ere c = 17n Cn6 co.
Proof. First we verify that

(3.25) F· = R(E Hd (1 -l) c- 1 2-lal C -2 1) C T(E 8)J , a,w, j D , j , 
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for 8 < min{ d, I}, j = 1, 2, 3, .... To this end, let 

X E Fj =

23 

{z EE: H�,w (En B(z,r)) :S (1- 7)c-1 2-lalcv-2 ha,w(z,r) for all O < r '.S 7}.

By Lemma 3.2 2 and by the preceding line we see that 

H!,w(E n B(x, r)) :S cH�,w(E n B(x, r)) 
< c (1 - 1,) c-1 2-lal Cv -2 h (x r) 
_ 

1 
a ,w , 

:S (1- 8)2-lal Cv-2 ha,w(x,r) 

for all O < r < 28 provided that 8 < min{ d, 1,}. Hence x E T(E, 8) and (3.25) 
J 

follows. 
Next we prove that 

(3.26) Ha,w(Fj) = 0 for j = 1, 2,3, ... . 

From (3.25) and from the fact that Htw(E) < oo for all O < 8 < l together 
with Lemma 3.23 it follows for j = 1, 2, 3, ... that Htw(Fj) = 0 whenever 8 <

min { d, 1=}; consequently 
J 

as required. 
Finally, write 

now 

F En { on O < ;r,,d* ( E) c-1 2-lal C'v-2} ., 
= X En : _ ':l:"a,w x, < 

00 

and hence by (3.26) we have 

00 

Ha ,w(F) '.S L Ha,w(Fj ) = 0, 
j=l 

which finishes the proof. D 
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4. Capacity and measure densities

First we consider upper bounds for content densities in terms of capacity den
sities. Theorem 4.7 shows that if the capacity density of a set is zero at a given
point, then the point also has zero content density. After that we prove a result
concerning capacity densities and weighted Hausdorff dimensions; it demostrates
the relationship between capacity density, linearly increasing gauges, and Haus
dorff dimensions with respect to a given set. We close this chapter by proving
upper bounds for capacity densities in terms of content densities. Regarding the first subject of the chapter in the light of earlier results, see
[Ne, Chapter V, sections 5 and 6], [Res, Theorem 3.3 p. 118], and [Ma]. 

For the next lemma, let w E Ap for some 1 < p < oo and suppose that
(4.1) g E L:/J; is nonnegative with sptg C B(O,r0) for some ro > O;
(4.2) f(x) = fRn 1;��

1
1� 1 for X in Rn .

For T > 0 write
i 1 

( ) ( ) c P w(n-l) rro 1 1 n 

(J 
1 

)
pi 4.3 IT, ro = A r n Jo p(t)"i dt + r0 - ll9IILJ; B(O,ro) w""f=""i d y ,where 1. + 1.. = 1. p pi Recall that CA is the Ap -constant of a weight. 

4.4. Lemma. Let r0 < d ::; oo. Then we have the estimate

H;,w({x E Rn : f(x) > I(T,ro)})::; c(n)(T ll9IIL!) P .
Proof. Let g satisfy (4.1) and let f be as in (4.2). Using the well knownformula 

{ IJIP dv = p r= tP- 1v( {Ill > t}) dt
}Rn Jo for a nonnegative measure v and for p 2: 1 with a change of variable we easily

arrive at 
f(x)= { 

g(y):Y_l=(n-1) r= 

{ gd y rn dt
}Rn Ix -YI Jo } B(x,t) 

=(n-1) f
ro 

{ gd y rn dt+(n-1)1
00 

{ gd yt-ndt.
Jo } B(x,t) r0 J B(x,t) 

The Holder inequality and the Ap condition yield

(4.5)

(0 

( { gd y)rn dt
Jo J B(x,t) 

::; (0 

( { gPw d y)} ( { w /_P d y) ;, en dt
Jo J B(x,t) J B(x,t) 

1 1ro J gPw d y 1. ::; Cl � ( B(x,t) ) p di. 
0 f B(x,t) W d y 
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On the other hand, a simple computation together with the Holder inequality gives

(4.6)

For T > 0 write

Er = { x E Fir : f gPw dy :S T-p hp
,w(x, t) for all 0 < t < ro} ;

jB(x,t) 

here hp
,w is the gauge of Hf

w
. If x E Er , then ( 4.5) implies

l
ro ( r g dy)cn dt :S cf nw l

ro ( hp
,w(x, t) ) ¼ dt

0 } B(x,t) 0 f B(x,t) W dy 

ci w 
l

ro l 

= ; n 
O 

p( t) P dt ;

and taking also ( 4.6) and ( 4.3) into account we have
J(x) :S I(r,ro)

and thus
{x E Fir : J(x) > I(r,ro)} C Rn \ Er .

Now from Lemma 3.2 for r0 < d :Soo we obtain

and the lemma follows. D
4.7. Theorem. Let 1 < p < oo a.nd w E A

p
. Suppose tha.t F is a. closed

set in Rn a.nd tha.t p is a. positive measurable function on (0, oo) satisfying

( 4.8) 12r 1 1 
0 p( t) P dt :S c1 p( r) P r for all r E ( 0, c0) .

I
f 2r < d :S oo and x E Rn , then

Ht,w (FnB(x,r)) 
< c cap

p
,w 

(FnB(x,r),B(x,2r))
hp

,w(x,r) - 2 cap
p ,w (B(x,r),B(x,2r))
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for all r E ( 0, c0). The constant c2 depends only on n, p, CA, and c1 . 

Proof. We may assume without loss of generality that x = 0 and that F n
B(O, r) -=/- 0 for O < r <co. Moreover, we may suppose that

cappw (FnB(O,r),B(0,2r)) 2 ( )
P 1 ' < J< = 2- P .!!. CA- W 

r-P JB(O,r) w dy w

because of Lemma 2.12 and for r < d :S oo it holds
Ht,w(FnB(O, r)) < 1 .

h
p
,w(O, r) -

Fix c > 0. Choose u E A(F n B(O, r ), B(O, 2r )) such that
( 4.9)
(4.10)

{ IVulP wdy :S capp,w (FnB(O,r),B(0,2r)) +c and}Rn 

Next we apply Lemma 4.4 with r0 = 2r < d :Soo and g = 1:ul. The function u 

has a representation (see [GT, Lemma 7.14 p. 161]),

( 4.11)
u(x)=t { Vu(y)•(x�y)dy 

}Rn Ix - y l
< l { IVu(y)I dy 

= f(x). 
- w }Rn Ix - Yln-l

Moreover, we invoke ( 4.10) and the Ap condition to obtain the following estimates

(4.12)

(2r)l-nll':ul!Li( { wl:_Pdy);,
j B(O,2r) 

:S(2r)1-n(�)}r-1( f wdy)} ( f wl:_P dy);,
J B(O,r) J B(O,2r)

1 1 1 1 :S (2r)(2r)-n2-2nw-1 CA -PwPw-Pr-1 CAP(2rtwn- 1 

= .!. <.§.
2 6 ' 

Thus we can choose a number T > 0 such that
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F n B(0, r) C {x E Rn : f(x) > I(r, 2r)}.Now from Lemma 4.4 for 2r < d � oo and from ( 4.12) we infer that H;,w (Fn B(0,r)) 
[

Ci w�n-1) 
Jtr p(t)½ dt ] p� c(n)II "wu 111£P 

w ¾-(2r)l-nll':u llL,:;(Jn(o,2r)w 1.:p dy) ¾; 

Sc(n)w-P3P [d ';;(n-1) [' p(t)idt]' [cap,,w(FnB(0,r),B(0,2r)) +e]Hence letting c-----+ 0 and using (4.8) we obtain for r E (O,c0) H;,w (F n B(0, r )) � c(n) CA [3 n�l c1] P p(r)rP capp ,w (F n B(0, r), B(0, 2r )) .Since hp ,w(0, r) > 0 we have Ht,w (FnB(0,r)) ( )capp ,w(FnB(O,r),B(O,2r)) ( ) � c n,p,CA,c1 J hp,w 0, r r-P B(O,r) W dyFinally, by Lemma 2.12.(ii) we easily conclude the proof. D 
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Let a E R and O < 8 � oo. Recall that the content density of a set F in An at a point x E Rn 1s o* . Htw (FnB(x,r)) 
<l>a,w (x,F) = hm sup h ( ) . 

r-+O a,w x, r Furthermore, we say that F has zero content density at x, if 
<l>�*w (x, F) = 0 for all O < 8 � oo. ' In this case we write <l>� w(x,F) = 0. Let 1 < p < oo and 1let w be a weight. Suppose that F is  a closed set in IR 11 • For x E Rn 

* . capp ,w(FnB(x,r),B(x,2r)) 
w

P w(x,F) = hm sup ( ' 
r-+O capp ,w B(x,r),B(x,2r)) defines the upper ( p, w )-capacity density of F at x. We are now in a position to prove a result concerning the relationship between capacity density and content density. 
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4.13. Theorem. Let 1 < p < oo, w E Ap, and a> -p. Suppose that Fis 
a closed set in Rn and x E An . If w;,w(x, F) = 0, then <I>�,w(x, F) = o.

Proof. Now 
12r 

0 

" o+p " 
t v dt = _2_ 2 P r v r 

a+p 

provided that a > -p. Hence the function p(t) = t0
, a > -p, satisfies ( 4.8) with 

c,+pconstants c1 = _2_+ 2 P and c0 = oo. The desired result follows from Theorem 
a p 

4.7. □

Next we consider the connection between the weighted Hausdorff dimension of 
a set and weighted capacity densities using content densities. As a consequence, we 
obtain a result on weighted capacity density and the ordinary Hausdorff dimension 
of a set. 

Let 1 < q < oo and let E be a nonempty subset of An . Define 

(4.14) A(q,E) = inf{a > -q: a gauge ha ,w is linearly increasing on E}. 

If the gauge is not linearly increasing on E, we write A(q, E) = oo. 

4.15. Lemma. Let 1 < p < oo, w E Ap, and a> -p. Assume that Fis 
a closed set in Rn . Suppose that a gauge ha ,w is linearly increasing on F. If 
w;,w(x, F) = 0 for all x E Rn , then dimw(F) ::S n + A(p, F). 

Proof. Assume first that F is a compact set with w;,w(x, F) = 0 for all 
x E Rn . By Theorem 4.13 we see <I>� w(x, F) = 0 for all x E Rn and for all 
a > -p. Fix a > -p such that ha ,w i� linearly increasing on F with constants 
co and d. Now Theorem 3.24 gives Ha,w(F) = 0 and so dimw(F) ::Sn+ a. 

In the general case we write F as the union of sets Fj = F n B(O,j) with 
j = 1,2,3, .... Then 

00 

Ha,w(F) :SL Ha,w(Fj) = 0.

j=l 

Thus we have again dimw(F) ::Sn+ a and the lemma follows. D 

4.16. Theorem. Let 1 < p < oo, w E Ap, and q = inf{t > 1 : w E At}. 
Assume that F is a closed nonempty set in Rn and that a gauge ha ,w is linearly 
increasing on F for some a> -p. If w;,w(x, F) = 0 for all x E An , then 

n - nq :S dimw(F) ::Sn+ A(p, F) and dim(F) ::S n +
A(p, F) .

q 

Proof. Combine Lemma 4.15 with Corollary 3.11 to obtain the desired result. 
□
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Note that if A(p, F) 2 0, then the lemma and theorem above are trivial. 4.17. Examples. Let 1 < p < oo and w E A
p 

. Suppose that F is a closed nonempty set with the property w;,w(x, F) = 0 for all x E Rn . Write q = inf { t >1: w E At} .  (a) Take w = 1. Now q = 1 and the gauge ha,w( x, r) = ;; r0+n is linearlyincreasing on Rn with constants c0 = 1 and d = oo if a 2 -n. Hence, for 
n 2 p > 1 we have A(p, F) = -p and so by Theorem 4.16, 0 � dimw(F) :Sn - p. 

(b) Choose w(x) = lxl1, Recall that the weight w belongs to A
p 

if -n <'Y < np - n for p E (1, oo). Thereby q = 1 if -n < 'Y :S O and q = � + 1 if 0 < 'Y < np - n. Write 
(4.18) ha ,w(x,r)=r° C IYl1 dy. ls<x,r) Suppose that dist(F, 0) = 2d > 0. From (3.19) it follows that hc, ,w is linearly increasing on F with constants 3hl and d if a+ n 2 0. The requirement a > -p gives a + n > n - p. Hence if n 2 p > 1, we have A(p, F) = -p whenever 
-n < "( < np - n. So by Theorem 4.16 we obtain O :S dimw(F) :S n - p if 
-n < "( :S O, --y :S dimw(F) :S n - p if O < "( < np - n, and for the ordinaryHausdorff dimension, dim(F) � n - p if -n < 1 � 0 and dim(F) � n - ;�n if 0 < 1 < np - n. However, by (a) we know that dim( F) � n - p and in this case is independent of 1. ( c) Let hc,,w be as in ( 4.18) and let d be positive. In addition, suppose thatthe origin belongs to F. According to Examples 3.17.( a) the gauge hc,,w is linearly increasing on F with constants c0 = c0(n,-y) and d whenever 

20 2 0. Furthermore, the number A(p,F), see (4.14), gives a condition a+ n > n - p. Hence we obtain A(p, F) = max{ -n, -1 - n, -p}; thereby 
{

-n 
A(p, F) = -n - 1 

-p

if -n < 1 � 0 and p 2 n, if -n < 1 :S min{O,p- n}, if p - n :S 1 < np - n and n > p > l. The number q is characterized as in (b ). Consequently, by Theorem 4.16 we arrive at the following estimates for the weighted Hausdorff dimension of F: 

0 :S dimw(F) :S { �'Y 
n- p-1 � dimw(F) � n - p if

if -n < 1 � 0 and p 2 n, if -n < 1 � min{O,p- n}, if p - n :S 1 :S O and n > p > 1, and 0 < 1 < np - n and n > p > l. 
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And the corresponding inequalities for the ordinary Hausdorff dimension of F:
0 if -n < 1 :s; 0 and p 2: n,
-, if -n < 1 :s; min{O,p- n},dim (F) :s; n-p if p - n :s; 1 :s; 0 and n > p > 1,
n -..!!:L ,+n if 0 < 1 < np - n and n > p > 1.

We conclude this section by discussing upper bounds for capacity densities.
A starting point is to consider particular types of gauges

h-p
,w(x, t) = rP � w dy'ln<x,t) 

where 1 < p < oo and w is a weight. Note that p(t) = rP does not satisfy
condition ( 4.8), see the proof of Theorem 4.13. 

We need one auxiliary lemma more to establish the final result of the chapter:
if for x E Rn we have <I>�

p,w(x,F) = 0, then w;,w(x,F) = 0 as well.
4.19. Lemma. Let 1 < p < oo, w E Ap , and let F be a closed set in An .

Assume tbat tbe gauge h-p,w is linearly increasing on F witb constants c0 and
d . If O < :i < d :s; oo , tben

cap
p ,w (FnB(x,r),B(x,2r)) :s; c(n,p,CA,co)H�p,w(FnB(x,r)).

for x E Rn .
Proof Let {B(xj,rj)}f be a covering of FnB(x,r) such that rj < i· 1./i/e

may suppose without loss of generality that B(xj,rj) n F n B(x,r) is nonempty
for all j = 1,2,3, .... In particular, B(xj,2rj) C B(x,2r) for all j = 1,2,3, ....
Now from Lemma 2.13 and from Lemma 2.12.(ii) we infer that

cap
p,w (FnB(x,r),B(x,2r)) :s; I:cap

p,w (FnB(xj,rj),B(xj,2rj))
j=l 

CX) 

:s; Cv Lr.iP � wdy.
j=l ls(x; ,r;) 

Taking the infimum over all such coverings we arrive at

cap
p,w (FnB(x,r),B(x,2r)) :s; CvH°3.p,w(FnB(x,r)).

Hence Lemma 3.22 yields
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capp,w (FnB(x,r),B(x,2r)):::; Cv c(n,Cv,co)H�p,w(FnB(x,r))
whenever ".i < d :::; oo ,  as desired. 0

4.20. Theorem. Let 1 < p < oo, w E Ap, and let F be a closed set in
Rn . Fix a point x E Rn . If the gauge h-p,w is linearly increasing on F, then
<I>�p,w(x,F) = 0 implies w;,w(x,F) = 0.

Proof Let h-p,w be linearly increasing on F with constants c0 and d. Now
Lemma 4.19 yields for all 0 < ¼ < d

capp,w (F n B(x, t), B(x, 2t)) ( )H�p,w (F n B(x, t))
( ) 

< c1 n,p,CA,co ( )h-p,w x, t 
- h-p,w x, t 

Therefore, using Lemma 2.12.(i) we obtain

capp,w (FnB(x,t),B(x,2t)) ( )H�p,w(FnB(x,t))
(
-

) 
< c2 n,p,CA,co ( )cap

p
,w B(x, t), B(x, 2t) - h-p,w x, t 

for all 0 < ¼ < d. The theorem follows. 0

5. Weighted Sobolev spaces and weighted Bessel spaces

It is well known that the Sobolev spaces can be characterized as the Bessel
spaces. Here we prove a similar result for weighted spaces. We assume thoughout
this section that w E Ap . First we introduce some notation and basic concepts of harmonic analysis in

Let f be a locally integrable function on Rn in the Lebesgue sense. The
Hardy-Littlewood maximal function f* of f is defined as

f*(x) = sup IB( 
1 

)I [ lfldy .
r>O x,r JB(x,r) 

If f E 6 ( also in L�=l ), the Fourier transform of f is the function f defined
by letting

J(x)= [ f(y)e-21rix-ydy .}Rn
Similary, if ( is a finite Borel measure on Rn , we define [ by
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See [SW, §1 p. 2]. 
Let a > 0. If x E Rn , define

The function Ga is the Bessel kernel of order a. Our Bessel kernel is up to
constants the same as in [St, §3 p. 130]. Here r stands for the Euler gamma
function, see [Str, Definition 7.60 p. 461]. Let /3 also be positive. A computationshows that J

R
" Ga dy= 1, 

(5.1) 

(5.2) 

-- 1 Ga(x) = (l +
lxl2 )% , and

Ga * G13 = Ga+/3 .
Let 80 be the Dirac delta measure at zero. If E C Rn is measurable and

a> 0, define
µa(E) = 8o(E) + f b(cx, k) J, G2k dy,

k=l 
E 

where b(a,k) = f! (-l)k TI�,:�(-� -j), k = 1,2,3, ... , see [St, §3.2(34) p. 134]
and [Str, Theorem 7.46 p. 437]. For ex = 0 we set µ0 = 80 . Note that the measure 
�la is a finite signed Borel measure on An whenever a � 0. Thereby, for a > 0
,ve have
(5.3) 

see [St, Lemma 2 p. 133]. 
Let 1 < p < oo and w E Ap . The Riesz transform Rj , j

defined as
Ri(f)(x) = lim r( !�f-) 

f Yif(x; ;) dy
e--+O rr 2 }R"\B(O,e) jyj + 

1, . . . ,n, is

at a point x E Rn for f E Lf;;. According to [SW, §2 p. 224] and [Tor, Theorem
2.2 p. 331] this definition makes sense for every function in Lf;;. Here r is the
Euler gamma function, as in connection with Ga . For a multi index /3 = (/31, /32, ... , /3n) E Nn we write 1/31 = /31 + /32 + · · · + /3n
and, in addition, if x E Rn , we denote x/3 

= xf 1 
• xf 2 

• • • x�" . The weak partial
derivative of f of order 1/31 is denoted by
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The multi Riesz transform is defined for f E Li, 1 < p < oo, and w E Ap ,
as

Rp (f) = Rf1 
0 Rg2 

0 • • • R�n(J) 
= R1 0 • • • 0 R1 0 R2 0 • • • 0 R2 0 

.. . 
0 Rn 

O • • • 0 Rn (f) ,
..__,___., .81 times .82 times .Bn times

where o stands for a decomposition of functions. If /3 = (0, 0, ... , 0) E Nn , we
write Rp (f) = f. Now, let f E (5. It is easy to verify that
(5.4)

(5.5)
(5.6)
see [SW, Theorem 1.7 p. 4 and §2.7 p. 22 4]. 

(5.7)

Finally, let k E N. From the Binomial Theorem and by induction we obtain
k 

(1 + lxl2l = L (7)(lxl2 ) 1

l=O 

k 

= L (7) L (�)xi.81 • x�.82 ••. x;!n
l=O I.Bl=l 

l • (k) - k! d ( 1) - l! R 11 h QI - 1 w 1e1e 1 - l!(k-l)! an .B - /Ji
!•,82

!···.Bn! • eca t at . - . 
We need three different types of convolution operators defined on Lf:i when

ever 1 < p < oo and w E Ap . Next we verify that our convolutions by Ga and by
µa will malrn sense on Ll. It is due to Muckenhoupt that the Riesz transforms
are well defined convolution operators on LI;. Recall that CA stands for the A

pconstant of a weight.
5.8. Theorem. Let 1 < p < oo and w E Ap . If f E Ll, then

IIRj(f)IILi :s; c1(n,p, CA)llf* II Li :s; c2(n,p, CA)IIJ IILi for j = 1,. • • , n •
Proof. See [Tor, Theorem 4.1 p. 233 and Theorem 2.2 p. 33 1]. D
Let 1 :s; p < oo , w E Ap , and a > 0 . For f E L l define the following

functions
f *Do = f, 

Ga * f(x) = [ Ga (x -y)f(y)dy for x in Rn, and}Rn 
00 

f * µa = f *Do+ Lb( a, k) G2k *f.
k=l 
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Furthermore, if a = 0, we write Go * f = f. Observe that f * µo = f. The 
function f * 80 , and f *µa , is called the convolution of f with the measure 80, 
and the measure µa , respectively. In the same manner the function Ga * f is 
called the convolution of Ga and f. 

The inequality (i) below is a special case of a well known result in connec
tion with the convolution of the Hardy-Littlewood maximal function of a locally 
Lebesgue integrable function with a proper class of kernels, see [GR, Theorem 4.13 
p. 179]. It is easy to see that each function in Lf;; is locally Lebesgue integrable.

5.9. Lemma. Let 1 :'.S p < oo, w E A
p

, and a 2: 0. If f E Lf;;, then

(i) IGa * f(x)I :'.S J*(x) a.e. in Rn ,
(ii) IIGa * JIIL! :'.S c1(n,p,CA)llfl1L!,

(iii) llf * µa llL! :'.S c2(n,p, a, CA)IIJIIL!,
(iv) f *µa * µp = f * µa+/3 whenever /3 2: 0. 

Proof If a= 0, then (i), (ii), (iii), and (iv) are trivially true. So let a> 0. 
To prove (i) let 1 :'.S p < oo and f E Lf:i. We may suppose that f*(x) < oo since 
otherwise there is nothing to prove. We can approximate Ga from below by an 
increasing sequence of nonnegative radial simple functions (g1 )'f such that 

Now we have 

mi 

91(Y) = L akXB(O,rk)(Y),
k=l 

9j :'.S 9j+l, 
g1 -+ Ga a.e. in Fr, and 

f g j dy :'.S f Ga dy = 1.
}Rn }Rn 

for all j = 1, 2, 3, . . .. Thus the Monotone Convergence Theorem yields (i). 
Now (ii) follows immediately from (i) and Theorem 5.8 for 1 < p < oo. Let 

p = 1. Since w E A1, we have w*(y) :'.S CA w(y) a.e. in Rn . After the Fubini
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theorem we apply this and (i) to a locally integrable function w:

(5.10) 

1 IGa * l(Y)lw(y) dy ::; / Ga* lll(y)w(y) dy
Rn }Rn 

= 
1 Ga* w(y)Jll(Y) dy < 1 w*(y)lll(Y) dy

Rn Rn 

::; CA 1 w(y)lll(Y) dy ,
Rn 

which completes the proof of (ii). 
To prove (iii) let 1 < p < oo. First we observe that by (i)

(X) 00 

ILb(a,k)G2k *l(x)I::; (Llb(a, k)I) f*(x) < oo a.e. in Fr 

k=l k=l 
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since the series on the right hand converges. Hence from this and from Theorem
5.8 we infer that

(5.11)
(X) (X) 

IIL b(a, k)G2k * lllL! ::; ( L lb(a, k)I) c(n,p, CA)lllllLJ
k=l k=l 

for 1 < p < oo. It is easy to see using the same idea as in (5.10) that (5.11) is true
for p = 1 too. Now the Minkowski inequality and (5.11) with 1 ::; p < oo yield

(X) 

Ill* µallL! =Ill* 80 + L b(a, k)G2k * fllLl
k=l 

(X) 

k=l 

(X) 

::; (1+ Llb(a, k)I) c(n,p,CA) IIJIILJ.
k=l 

Hence (iii) follows. 
We omit a proof for (iv) since it is an easy application of the Fourier transform

of a measure µ0 , see (5.3), and (iii). The lemma is proved. 0
We now define the weighted Sobolev and Bessel spaces; the definitions are

similar to the classical situation. 
Let 1 ::; p < oo and w E Ap . For a � 0 the linear space of functions

{f: f = G0 * g, g E LT;;} endowed with the norm
(5.12) llfllntw = llgllL! where f = Ga* g with g E Lf:i



36 Esko Nieminen 

is called the weighted Bessel (potential) space and denoted by B�w . 
Let 1 ::S p < oo, w E Ap , and k = 0, 1, 2, . . .. The function f: Rn -, R has 

a distributional ( weak) partial derivative of order k, denoted by Of3f, l,81 = k, if 

(5.13) f f &13<p dy = (-1)1/31 f &f3f <p dy for all <p E C'f:°.
}Rn }Rn 

The set of functions f : Rn -, R such that distributional ( weak) partial derivatives 
exist up to order k and Of3f E Li whenever 0 ::S l,81 ::S k equipped with the norm 

llflls:w 
= L 11°f3f llL! 

o:::;l/31:::;k 
is said to be the weighted Sobolev space and denoted by Sf w.

5.14. Remark. Because the mapping f -, Go: * f is a one-to-one mapping 
from Li into Li, the formula (5.12) really defines a norm. This is an easy 
consequence of [Z, Exercises 2.2 p. 103], the facts that C0 c 6, Go: is radial, 
and f-, Go: * f is a one-to-one function from 6 onto 6. For further information 
see [St, §3.3 p. 135]. 

Clearly B�w is a Banach space. Since our weight w belongs to the Ap class 
1 

for 1 ::S p < oo, a function w I-p is locally integrable in the Lebesgue sense. Thus 
weighted Sobolev spaces Sf w are Banach spaces as well. 

To proceed we need a reproducing formula for every function in Sf w. In the 
unweighted case this is a classical and well known fact, see [AMS, Chapter II §5 
p. 230]. We will show that all the functions in Sfw can be represented in terms
of Bessel kernels and Riesz transforms.

5.15. Lemma. Let 1 < p < oo, w E Ap , and k = 0,1,2, ... . If f E Sfw , 
then 

k 

f = Gk * L (DGk-l * µ1 * (-21r)-l L (�)Rf3(0f3j) a.e. in Rn .
l=O I.BI=/ 

Proof. First let f E C0. Combining (5.7), (5.1), (5.3), and (5.5) we obtain 
"\'k (k) "\' ( l) 2,81 2,82 2/3n 

f(x)= L.,/=O I L.,lf3l=l .B X1 2k· X2 ···xn 
i(x) 

(1 + lxl2)2

k 

= �(x) L (7)G\-1(x)0(x) (-21r)- 1 L (�)R[J(&f3f)(x).
l=O l/31=1 
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Hence we have
k 

f(x) = Gk * L (7)Gk-l * µ1 * (-27!" )-1 L (�)R13( 813f)(x)
l=O 1/31=1
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for f E Cgo. Next, let f be in Sfw . Using a sequence (fj )J°, /j E Cgo and
Jj --+ f in Sf w, together with Theorem 5.8 and Lemma 5.9 we obtain the result
for f. □

By a slight modification of a reproducing formula we will find out that the
Bessel space includes the Sobolev space:

5.16. Lemma. Let 1 < p < oo, w E A
p

, and k = 0, 1,2, .... If f E
Sfw , then there is a unique g in LCi such that f = Gk * g and ll9IIL!, ::;
c(n, P, k, CA) llfllsfw.

Proof. Let f E Sfw . We choose
k 

g = L (7)Gk-l * µ1 * (-27r)-I L (�)R13(813f).
l=O 1/31=1

Applying Theorem 5.8 and Lemma 5.9 to this formula we see

From Lemma 5.15 it follows that f = Gk * g and Remark 5.14 implies the unique
ness of g. The proof is complete. D

Conversely, we ask if the Sobolev space includes the Bessel space. This ques
tion has an affirmative answer. For background see [St, Theorem 3 p. 135].

5.17. Lemma. Let 1 < p < oo, w E A
p

, and k = 0,1,2, ... . If g EL!};,

then G k * g belongs to Sf w with distributional partial derivatives

(5.18)
and, in addition,

IIGk * 9llsfw ::; c(n,p, k, CA) IJglJLi •
Proof. Let g E (5. Now by the Fourier transform, (5.6), (5.1 ), (5.3), and

(5.4) we see

'§;(Gk *9)(x) = (-27ri)1131xf3 (¾(x)g(x)
. . 

1/3 1 -ix1 /3 -ix /3 I 11.a1
= (27r) 1 1--,ir (-

Jx J
) i • • •  (-

lxl
n) ng(x) x I.BI 

(Hlxl2)� (Hlxl2) 2

= (27r)lf31 Gk-l/31(x) Rri(g)(x) JLl/31(x) .
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So (5.18) holds whenever g E 6. 
In the general case g E Lfu we take a sequence (gj )f E 6 such that gj ---+ g in 

Lfv. By the standard tricks together with Theorem 5.8 and Lemma 5.9 we obtain 
1 

that (5.18) is true a.e. in Rn . Furthermore, since w l -p is locally integrable in 
the Lebesgue sense, we conclude that the limit function 813 (Gk *9) satisfies (5.13), 
which finishes the proof. D 

Summing up, we have proved the following result: 
5.19. Theorem. Let 1 < p < oo and w E Ap . Then Sf

w 
= Bf

w 
for all 

k = 0, l, 2, 3, ... , and the norms are equivalent, i.e.

Proof The result follows from Lemma 5.16 and Lemma 5.17. D 
5. 20. Remarks. (a) The equivalence of the spaces Bf w and Sf w already fails

in case w = l when p = l or p = oo, see [St, §6.6 p. 160] and [Z, Theorem 2.6.1 
p. 66].

(b) The formula (5.7) derived from the Binomial Theorem used in the proof
of Lemma 5.15 can be interpreted in the following way: let 1 < p < oo, w E Ap , 
and f E Lfu. Then for k = 0, l, 2, ... we find that 

k 

f = L (7)G2(k-l) * µ21 * (-1)-1 L (�)R13R13(f) a.e. in Rn .
l=0 1/31=1 

In case k = l we have f = G2*f + f *µ2 a.e. in Rn for all f E Lfu and 1 < p < oo. 
Hence every function in Lfu has a reproducing formula, which differs from 

that one of Lemma 5.15. 
(c) The proof of Lemma 5.16 and Lemma 5.17 inspires us to define two

mappings between spaces Sf
w 

and L!}; when 1 < p < oo, w E Ap , and k = 

0, 1, 2, ... . 
The mapping J_k from Sf

w 
to Lf;; is defined by 

k 

1-kU) = L (7)Gk-l * µ1 * (-21r)-1 L (�)R13(813f)
l=O l/31=1 

for f E Sf
w . The mapping Jk from Lf;; to Sf

w 
is defined by letting 

Jk (g) = Gk * g for g EL!. 

Using the Fourier transform we verify that Jk is the inverse of J_k and that 
J_k is the inverse of h. Thus the mapping Jk provides a linear bijective quasi 
isornetry between the spaces Lf;; and Sf

w .
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