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Abstract We derive an expression for the energy–momentum
tensor in the discrete lattice formulation of pure glue QCD.
The resulting expression satisfies the continuity equation for
energy conservation up to numerical errors with a symmet-
ric procedure for the time discretization. In the case of the
momentum conservation equation, we obtain an expression
that is of higher accuracy in lattice spacing (O(a2)) than the
naive discretization where fields in the continuum expres-
sions are replaced by discretized counterparts. The improve-
ments are verified by performing numerical tests on the
derived expressions using classical real-time lattice gauge
theory simulations. We demonstrate substantial reductions
in relative error of one to several orders of magnitude com-
pared to a naive discretization for both energy and momen-
tum conservation equations. We expect our formulation to
have applications in the area of pre-equilibrium dynamics
in ultrarelativistic heavy ion collisions, in particular for the
extraction of transport coefficients such as shear viscosity.

1 Introduction

Lattice gauge theory [1] is a powerful tool commonly used
to address nonperturbative problems in Quantum Chromody-
namics (QCD). This lattice framework encodes gauge invari-
ance by construction and therefore preserves this crucial
property of gauge theory. However, the lattice discretization
modifies or breaks some of the underlying symmetries of the
theory, such as translational or rotational invariance.

The energy–momentum tensor (EMT) is an observable
that encodes energy and momentum conservation in the form
of a continuity equation. The conserved quantities in this
case arise from invariance under space-time translations as

a e-mail: pragya.phy.singh@jyu.fi (corresponding author)

described by Noether’s theorem. Furthermore, the energy–
momentum tensor is traceless at the classical level due to
conformal symmetry. In a lattice discretized formulation,
these symmetries are modified, as invariance under space-
time translations becomes a discrete symmetry instead of a
continuous one. The conformality of the theory is also bro-
ken by involving an explicit scale, the lattice spacing. In spite
of these issues, one typically evaluates the classical energy–
momentum tensor by taking its continuum expression and
replacing the fields with their discretized counterparts. It is
not clear a priori that the resulting expression satisfies the
continuity equation.

Our interest in this topic is motivated by the early-time
dynamics in the context of ultrarelativistic heavy-ion colli-
sions. Directly after the collision the system consists of over-
occupied gluon fields, is typically modeled using classical
Yang–Mills theory, and is often referred to as the Glasma
[2–4]. Recently, the Glasma stage has received substantial
attention [5–22], especially in terms of its properties as a
medium, described by transport coefficients [23–30].

This paper aims to construct an improved expression for
the lattice energy–momentum tensor of a nonabelian gauge
field following classical equations of motion, such that the
tensor satisfies the continuity equation exactly whenever
possible and improves the accuracy of energy–momentum
conservation when this is not the case. As our applications
lie in the domain of real-time simulations [4–6,10–12,15–
20,23–25,31,32], where a classical-statistical approximation
is employed, our approach will inevitably differ from that
used in lattice QCD. This is due to the fact that the EMT in
lattice QCD is constructed to satisfy Ward–Takahashi identi-
ties [33–35] at the quantum level after renormalization. These
identities play the role of Noether’s theorem for quantum field
theories. Hence, while our approach is similar aiming to cap-

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-12725-6&domain=pdf
mailto:pragya.phy.singh@jyu.fi


  368 Page 2 of 18 Eur. Phys. J. C           (2024) 84:368 

ture the same physical phenomena, the two approaches are
nevertheless not identical.

For an impatient reader, who is only interested in our
main results and less in the technical details concerning their
derivation, we summarize our results as follows. The energy
density component T 00 of the EMT is given by Eq. (18),
which redistributes the total energy on the lattice into local
energy densities that are spatially symmetric and centered at
a lattice site. The Poynting vector components T 0i are then
obtained by requiring that a discretized continuity equation
for energy conservation be satisfied. This procedure leads to
T 0i given by Eq. (29) that satisfies the energy conservation
continuity equation up to numerical errors. We will also dis-
cuss how to further improve this expression by making use of
time symmetrization to synchronize the electric and magnetic
fields in Sect. 3.2.2. For the spatial components T i j , we start
from the Poynting vector and impose the continuity equation
for momentum conservation. This leads to an expression for
the discrete analog of the Maxwell stress tensor T i j . How-
ever, within this derivation, we will have to perform a few
approximations due to additional complications. These arise
from parallel transport on the lattice and from the fact that on
the lattice we do not have a suitable analog of the continuum
Bianchi identity. Our final result is given by Eq. (63) and, as
we will show in a separate section, it satisfies the continuity
equation to an accuracy of order O(a2

s ).
We believe that the idea and the algorithm presented here

to derive a conservedTμν (with high precision) can be utilized
much more broadly. Nonconservation of Tμν is expected to
occur in every theory discretized on a lattice due to the break-
ing of the space-time translational symmetry. Particularly
interesting examples of potential applications beyond heavy-
ion collisions are real-time lattice simulations performed in
the context of postinflatory cosmology using the classical
approximation [36–38].

This paper is structured as follows. Section 2 describes
our discretization framework. In Sect. 3 we construct the
discrete energy–momentum tensor and introduce its time-
symmetrized formulation. Section 4 shows the numerical
comparison among the naive and discretized approaches. We
conclude in Sect. 5.

2 General formalism and classical equations of motion

In line with established practice within classical-statistical
lattice gauge theory simulations, we begin with the dis-
crete Kogut–Susskind Hamiltonian [39] of classical SU(Nc)
Yang–Mills theory in temporal axial gauge (At = 0),

H =
∑

m

a3
s

(
− 1

2
√−det(gμν)

∑

μ>0

gμμE
μ,a
m Eμ,a

m

+ 2Nc

g2

∑

0<μ<ν

1

a2
μa

2
ν

gμμgνν

×√−det(gμν)
(

1 − 1

Nc
ReTr(Uμν,m)

))
(1)

=
∑

m

a3
s

(
1

2

∑

μ>0

Eμ,a
m Eμ,a

m

+ 2Nc

g2

∑

0<μ<ν

1

a2
μa

2
ν

(
1 − 1

Nc
ReTr(Uμν,m)

))
. (2)

Here m denotes the lattice site on the spatial grid and
a = 1, . . . , N 2

c − 1 is the color index. In this paper, we con-
sider the Minkowski metric with gμν = (+1,−1,−1,−1)

and
√−det(gμν) = 1. The coupling constant g enters in the

form of the gauge coupling 2Nc/g2. The discretization is per-
formed on a three-dimensional lattice with size Nx×Ny×Nz ,
lattice spacing aμ in the spatial direction μ̂, and the product
a3
s = axayaz . To guarantee gauge invariance, the theory is

formulated in terms of gauge links Ui,m = eiai gAi,m instead
of gauge fields Ai,m . Links enter Eq. (2) in terms of plaquettes

Uμν,m = Uμ,mUν,m+μ̂U
†
μ,m+ν̂

U †
ν,m, (3)

where μ̂ denotes a unit vector in the μ direction.1 In analogy
to the links, plaquettes are related to the field-strength tensor
Fμν via Uμν ≈ eigaμaνFμν .

Links and plaquettes are group elements Uμ,m,Uμν,m ∈
SU(Nc) in the fundamental representation, and correspond-
ingly we will use the generators of the fundamental rep-
resentation ta to go between the color components of the
electric field and the fundamental representation matrix
Eμ
m = Eμ,a

m ta . Using the (continuum) relation between the
field-strength tensor and the chromomagnetic field Bi =
− 1

2εi jk Fjk , the Hamiltonian (2) reduces to the correct
expression

∫
d3x 1

2

∑
j>0(E

j,a E j,a + B j,a B j,a) in the con-
tinuum limit aμ → 0.

The Hamiltonian (2) is associated with2 the Hamiltonian
equations of motion for the link matrices and the electric field
variables, which are discrete in space but continuous in time

∂0Uμ,m = igaμE
μ,a
m taUμ,m (4)

∂0 gE
μ,a
m =

∑

0<ν �=μ

2aμ

a2
μa

2
ν

ReTr
(
itaUμν,m + itaUμ−ν,m

)
(5)

=
∑

0<ν �=μ

2

aμaν

ReTr
(
ita[DB

ν , Uμν,m]). (6)

1 To simplify the notation, we will often write μ instead of μ̂.
2 We have rescaled the chromoelectric fields Eμ,a

m to correspond to
the continuum field, with dimension GeV2, thus they differ from the
canonical momentum variables of the discrete theory by a multiplicative
factor.
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These equations of motion are typically solved using a
leapfrog algorithm, which is second-order accurate in the
time stepdt . In this discretization paradigm, the electric fields
and links are located half a timestep apart. This is illustrated
in the right panel of Fig. 1.

In order to derive Eq. (6) from Eq. (5), we have used the
identity U †

μ−ν,m = U †
ν,m−ν̂

Uμν,m−ν̂Uν,m−ν̂ and introduced
the backward and forward gauge covariant derivatives

DB
μ,mX = (

Xm −U †
μ,m−μ̂

Xm−μ̂ Uμ,m−μ̂

)
/aμ (7)

DF
μ,mX = (

Uμ,mXm+μ̂U
†
μ,m − Xm

)
/aμ. (8)

By utilizing the equation of motion for the link matrices
Eq. (4), one can deduce the time derivative of the magnetic
field part of the energy density

∂0ReTrUμν,m = ReTr
(
igaμaν

[
DF

μ , Eν
m

]
Uμν,m

− igaμaν

[
DF

ν , Eμ
m

]
Uμν,m

)
. (9)

3 Constructing the energy–momentum tensor

In this section, we outline our methodology for acquiring a
discretized representation of the energy–momentum tensor
(EMT). In a broad sense, Noether’s theorem introduces the
framework for establishing a connection between the tem-
poral and spatial translation invariance inherent in Yang–
Mills theory and the energy–momentum tensor. In the con-
tinuum, the canonical EMT can then be computed from
Noether’s theorem and leads to a non-symmetric tensor that
requires an additional gauge transformation to become sym-
metric. Instead, one can use the (Hilbert) EMT Tμν obtained
by taking a functional derivative of the Yang–Mills action
S = ∑

m a3
s

√−det(gμν)L with respect to the metric tensor
gμν ,

Tμν = 2√−det(gμν)

δS

δgμν

= 2
∂L

∂gμν

− gμνL. (10)

On the lattice, our starting point is a situation where the
metric is purely diagonal. Indeed, both the Hamiltonian (1)
and the corresponding action S only include diagonal met-
ric elements. Hence, there is no straightforward way to vary
off-diagonal components of the metric in a continuous way
around zero in order to calculate derivatives with respect to
the metric as in (10). This approach is therefore not appli-
cable to our purposes. Furthermore, off-diagonal terms play
a crucial role when investigating transport coefficients, such
as shear viscosity.

We will first describe in Sect. 3.1 how the EMT could be
constructed naively inspired by the continuum expressions.

Then we will explain our improved procedure that is directly
based on the continuity equation for energy–momentum con-
servation

∂μT
μν = 0. (11)

We will start in Sect. 3.2 by allowing spatial redistribution for
the energy density, i.e., the temporal component T 00 while
requiring that it sums up to the Hamiltonian that corresponds
to the total energy (2). The components T 0i are then con-
structed from (11) for ν = 0. The remaining components
will then be constructed in Sect. 3.3 in the same way by tak-
ing T 0i as the starting point and requiring that T i j satisfy
the remaining continuity equations for ν > 0. This proce-
dure determines T 0i up to a transformation T 0i → T 0i +φi ,
where ∂iφ

i = 0. This transformation, however, leaves con-
served quantities intact.

3.1 Energy momentum tensor in the continuum and naive
discretization

The naive discretization of the energy–momentum tensor
proceeds by taking the continuum expression and replac-
ing E and B fields with their spatially averaged discretized
counterparts

T 00
m = 1

2

(
E2
m,loc + B2

m,loc) (12)

T 0i
m = εi jk

(
E j
m,locB

k
m,loc

)
(13)

T i j
m = 1

2
δi j
(
E2
m,loc + B2

m,loc

)

− Ei
m,locE

j
m,loc − Bi

m,locB
j
m,loc

= δi j T 00
m − Ei

m,locE
j
m,loc − Bi

m,locB
j
m,loc (14)

where E2
m,loc = Ei,a

m,locE
i,a
m,loc and Ei,a

m,loc and Bi,a
m,loc are local

electric and magnetic (cloverleaf) fields. Since the electric
field labeled as Ei,a

m corresponds to the time derivative of the
gauge field between m and m + î , it is rather centered at the
pointm+î/2. Similarly, a plaquetteUi j,m is actually centered
at m + î/2 + ĵ/2. Thus a natural way to construct electric
and magnetic fields at a site m is to take nearest neighbor
averages to obtain symmetric expressions:

Ei,a
m,loc = 1

2

(
Ei,a
m +U †

i,m−î
Ei,a
m−î

Ui,m−î

)
(15)

Bi,a
m,loc = − εi jk

8ga jak
ReTr

×
(
i ta
(
Ujk,m +Uj−k,m +U− jk,m +U− j−k,m

))

(16)
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3.2 Continuity equation for energy conservation

Our starting point will be the scalar component of the conti-
nuity equation

∂0T00 = ∂i T0i , (17)

which will be used to obtain T0i after T00 has been con-
structed. As the Hamiltonian density characterizes the energy
density of the system, we utilize this insight to identify the
μ = 0, ν = 0 component of the energy–momentum ten-
sor Tμν . It is worth noting that in the Hamiltonian formula-
tion, the electric field labeled Ei

m is located at the position

m+ î
2 + dt

2 , taking also the finite timestep dt into account. The
magnetic field strength, expressed by the plaquette Ui j,m , is

located at m + î
2 + ĵ

2 . To determine the energy density at
lattice site m, we compute an average over the “outgoing”
and “incoming” electric fields E j,a

m and E j,a
m− j and various

plaquette orientations. The left panel of Fig. 1 illustrates the
spatial averaging procedure for electric and magnetic con-
tributions. This averaging procedure allows us to obtain a
representative value for the energy density at a specific lat-
tice site

T00,m =
∑

j,k>0

1

g2a2
j a

2
k

×
[
Nc − 1

4

(
ReTrUjk,m + ReTrUj−k,m

+ ReTrU− jk,m + ReTrU− j−k,m

)]

+ 1

4

∑

j>0

(
E j,a
m E j,a

m + E j,a
m− j E

j,a
m− j

)
(18)

Both the electric and magnetic field components of
Eq. (18) lead to the same total energy as the Hamiltonian3

(2), while slightly redistributing the local energy density. This
formulation preserves the interpretation of the temporal com-
ponent of the energy–momentum tensor as energy density.

In several works of the literature [15,18,21,22,24,25,40],
the square of the symmetrized electric field Eq. (15) has been
used for the energy density. However, this is not equivalent
to the actual Hamiltonian (2):

3 In Eq. (18), we employed a summation over all values of j and k
instead of the constrained sum in the Hamiltonian (2). The equivalence
between the two equations is established by the relation

∑
j,k>0 =

2
∑

0< j<k .

∑

j,a

(
E j,a
m +U †

j,m− j E
j,a
m− jU j,m− j

)2

�= 2
∑

j,a

[
E j,a
m E j,a

m + E j,a
m− j E

j,a
m− j

]
. (19)

Furthermore, if one used the square of a symmetrized elec-
tric field as on the left-hand side of Eq. (19) to calculate
the time derivative of T00, the equation of motion (4) would
introduce cubic terms in the electric fields into T0i , which
are not present in the continuum expression. Thus using the
right-hand side of (19) is more suitable for the purposes of
this paper.

To write the magnetic field part of Eq. (18) in a form where
the equivalence to the Hamiltonian (2) is more explicit, one
needs to write the plaquettes that start from the base point m
in Eq. (18) as plaquettes with a base point at the “lower left”
corner, parallel transported to the site m. This can be done
by making use of the identities

U−k j,m = (Uj−k,m)† = U †
k,m−kU jk,m−kUk,m−k (20)

Uk− j,m = (U− jk,m)† = U †
j,m− jU jk,m− jU j,m− j (21)

U− j−k,m = U †
j,m− jU

†
k,m− j−kU jk,m− j−kUk,m− j−kU j,m− j

(22)

and the fact that the parallel transporting links cancel in the
trace Tr(U†MU) = TrM. This allows us to rewrite the energy
density T00,m as

T00,m =
∑

j,k>0

1

g2a2
j a

2
k

[
Nc − 1

4

×
(

ReTr
(
Ujk,m +Ujk,m− j +Ujk,m−k +Ujk,m− j−k

))]

+ 1

4

∑

j>0

E j,a
m E j,a

m + E j,a
m− j E

j,a
m− j . (23)

3.2.1 Constructing the Poynting vector

We now want to use the fact that the continuity equation
relates the time derivative of the energy density to the spatial
derivative of the momentum density to deduce the compo-
nents T0i . To employ this method, we apply the evolution
equation for plaquettes (9) and electric fields (6) to calculate
the time derivative of the energy density in Eq. (23):

∂0T00,m =
∑

j,k, j �=k

a jak
2ga2

j a
2
k

{
ReTr

(
i[DF

k , E j
m]Ujk,m

+ i[DF
k , E j

m− j ]Ujk,m− j + i[DF
k , E j

m−k]Ujk,m−k

+ i[DF
k , E j

m− j−k]Ujk,m− j−k
)+ 2ReTr

(
i E j

m
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Fig. 1 (Left:) Illustration of discretized T00,m given by Eq. (18). The
black lines with blue central points depict the plaquettes, while red cir-
cles represent electric fields. Additionally, the magnetic contribution is
illustrated by green arrows indicating the orientation of the plaquettes.
The blue and red points indicate the position of the plaquettes and elec-
tric fields respectively. The separate highlighted standard plaquette is

shown in blue, denoted Ui j,n but in fact centered at n + i/2 + j/2.
(Right:) Presentation of the standard leapfrog algorithm used to update
electric and magnetic fields: The electric field at t − dt/2 is used to
update the magnetic field from t − dt to t , and similarly the magnetic
field (links) at t − dt to update the electric field from t − 3dt/2 to
t − dt/2

× [DB
k ,Ujk,m] + i E j

m− j [DB
k ,Ujk,m− j ]

)}
(24)

=
∑

j,k, j �=k

a j

2ga2
j a

2
k

{
ReTr

× (
iUk,mE

j
m+kU

†
k,mU jk,m + i E j

mU jk,m

+ iUk,m− j E
j
m− j+kU

†
k,m− jU jk,m− j

+ i E j
m− jU jk,m− j

− iUk,m−k E
j
mU

†
k,m−kU jk,m−k

− i E j
m−kU jk,m−k

− iUk,m− j−k E
j
m− jU

†
k,m− j−kU jk,m− j−k

− i E j
m− j−kU jk,m− j−k

)}
(25)

Indeed, it is possible to write the right-hand side as a total
spatial derivative. After some rearrangement, one achieves
the following result:

∂0T
(N )
00,m =

∑

j,k,k �= j

1

2ga jak

×
{

ReTr
[
DB
k , iUk,mE

j
m+kU

†
k,mU jk,m + i E j

mU jk,m

× +iUk,m− j E
j
m− j+kU

†
k,m− jU jk,m− j + i E j

m− jU jk,m− j
]}

.

(26)

Using the definition of the covariant backward (or forward)
derivative in Eqs. (7), (8), it is now easy to see that under
the ReTr operation, this expression simplifies to an ordinary

derivative of a scalar quantity

ReTrDB
μ,mX = 1

aμ

ReTr
(
Xm −U †

μ,m−μ̂
Xm−μ̂ Uμ,m−μ̂

)

= 1

aμ

ReTr
(
Xm − Xm−μ̂

) = ∂B
μ,mReTrX.

(27)

Thus we have arrived at the first important result of this paper,
a discrete energy conservation law

∂0T00,m = ∂B
k,mT0k,m . (28)

We emphasize that this equation is an exact relation even in
the discrete case, although its correspondence with the con-
tinuum version is only realized in the limit of small lattice
spacing. From Eq. (26) we can read off the momentum den-
sity along the k-th component as follows:

T0k,m =
∑

j>0, j �=k

c jk (29)

⎧
⎪⎪⎨

⎪⎪⎩
ReTr

(
i E j

m+kU−k j,m+k + i E j
mU jk,m︸ ︷︷ ︸

T 1
0k

+ i E j
m− j+kU−k j,m− j+k + i E j

m− jU jk,m− j
︸ ︷︷ ︸

same as T 1
0kwith m→m− j

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
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where

c jk = 1

2ga jak
(30)

It is important to note that what we label by T0k,m is actu-

ally centered at the position m + k̂
2 ,4 which may initially

seem unconventional. However, this arrangement finds jus-
tification in the discrete continuity equation (28), which has
a backward derivative in the k-direction. Thus the deriva-
tive ∂B

k,mT0k , is in fact centered around m, the same position
where ∂0T00 is defined.

We also note that Eq. (29) corresponds to a gauge covari-
ant formulation of the Poynting vector in the continuum limit
T 0k → εki j Ei B j . This can be seen by expanding the pla-
quettes to quadratic order in as , thus Ujk ≈ 1 + iga jak Fjk ,
and realizing that the term with the identity vanishes because
the matrix E j is traceless.

3.2.2 Symmetric time discretization

Until now, we have treated t as a continuous variable, which is
the limit dt/as � 1 of the numerical calculation. In practice,
however, one wants to choose a larger timestep for numer-
ical efficiency. In fact, we can make a further improvement
to remove some of the finite timestep errors from the conser-
vation law in the following way. To reach this goal we can
further analyze the time dependence of ∂0T00 as described
in Eq. (18). While the Hamiltonian approach we use consid-
ers time to be continuous, our numerical simulations do, in
fact, have a discrete time step denoted by dt . Let us take a
closer look at the time dependence of each of the factors and
terms in the equation. To simplify the analysis, we will solely
focus on the temporal derivative of one of the electric field
components in the T00 expression

∂0T
E

00,m = 1

2

(
E2
m

(
t − dt

2

)− E2
m

(
t − 3dt

2

)

dt

)

=
(
Ei
m

(
t − dt

2

)+ Ei
m

(
t − 3dt

2

)

2

)

×
(
Ei
m

(
t − dt

2

)− Ei
m

(
t − 3dt

2

)

dt

)

= Ei,avg
m

(
t − dt

)
∂0E

i
m

(
t − dt

2

)
, (31)

In the leapfrog scheme, the time difference labeled ∂0Ei
m

(
t−

dt
2

)
above, corresponding to stepping the electric fields from

4 This can be seen by realizing that the first two terms cor-
respond to the continuum gauge fields in the combination(
E j (m + k + j/2) + E j (m + j/2)

)
Fjk(m+ j/2+k/2), which is cen-

tered around m + j/2 + k/2, and the second two terms that are shifted
as m → m − j make the full expression centered around m + k/2.

t − 3dt/2 to t − dt/2, involves the plaquette at the time step
t − dt , as illustrated in the right panel of Fig. 1. On the other
side of the continuity equation, this term corresponds to the
one with a spatial derivative of the plaquette, multiplied by
the electric field. Equation (31) tells us that this term in the
spatial derivative of T0k should be evaluated with the fol-
lowing timestep assignment in terms of a time-symmetrized
electric field:

E j
m[DB

k ,Ujk,m] → 1

2

(
E j
m

(
t − dt

2

)

+E j
m

(
t − 3dt

2

)) [
DB
k ,Ujk,m(t − dt)

]
. (32)

Similarly, the time derivative of the magnetic field part of
the energy density corresponds to the term in ∂kT0k where
one takes a spatial derivative of the electric field. A time-
symmetric treatment of this term requires a symmetrization
of the links in the evaluation of this term in ∂kT0k as

[DF
k , E j

m]Ujk,m → 1

2

([
DF
k (t), E j

m

(
t − dt

2

)]

+
[
DF
k (t − dt), E j

m

(
t − dt

2

)])

× 1

2

(
Ujk,m(t) +Ujk,m(t − dt)

)
, (33)

where the notation DF
k (t) refers to the link matrices in the

covariant derivative being evaluated at the time t . Note that in
the temporal gauge, such time-averagings are gauge invari-
ant, since parallel transporters in the time direction are just
identity matrices. We refer to the combination of the time
averagings (32) and (33) as the time-symmetrized discrete
formulation.

3.3 Continuity equation for momentum conservation

Our goal is to construct T jk in the same way as we con-
structed T 0i above, i.e., by utilizing the equations of motion
and the continuity equation for i > 0

∂μT
μi = 0 (34)

to derive the Ti j components from ∂0T0i . We first observe
that T0k comprises two kinds of terms, with one of them
being merely shifted in the − ĵ direction. Henceforth, we
will focus solely on the first one of the two, which we call
T 1

0k for our subsequent calculations. The second term can
then be restored in the end by shifting the site of T 1

0k . Let us
first take the time derivative of Eq. (29) and split it into terms
where the time derivatives act either on the electric fields or
the plaquettes.
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∂0T
1
0k,m = c jk

{
E j,a
m+k∂0ReTr(i taU−k j,m+k) + E j,a

m ∂0ReTr(i taU jk,m)
︸ ︷︷ ︸

∂0T 1E
0k

+ (∂0E
j,a
m )ReTr(i taU jk,m)+(∂0E

j,a
m+k)ReTr(i taU−k j,m+k)︸ ︷︷ ︸

∂0T 1B
0k

}
.

(35)

Since the time derivative of a plaquette (9) involves an elec-
tric field, the first term will end up being quadratic in E , and
reduce in the continuum limit to the electric field part of Ti j ,
which we refer to here as ∂0T 1E

0k . Conversely, the time deriva-
tive of the electric field (6) is a (discrete) spatial derivative of
plaquettes, and the second term will end up being quadratic
in the magnetic field in the continuum limit, thus denoted by
∂0T 1B

0k .5

3.3.1 Chromoelectric field contribution

Let us start with the chromoelectric field contribution ∂0T 1E
0k .

We begin by employing the equation of motion for the pla-
quette to express the electric field part ∂0T 1E

0k as

∂0T
1E
0k,m =

∑

j �=k

gc jkReTr

×
{
a j
(

− E j
m+kU

†
k,mE j

mUk,mU−k j,m+k

+ E j
m+k E

j
m+kU−k j,m+k

)

+ ak
(
E j
m+kU

†
k,mEk

mUk,mU−k j,m+k

− E j
m+kU

†
k,mU j,mEk

m+ jU
†
j,mUk,mU−k j,m+k

)

+ a j
(

− E j
m E j

mU jk,m +Uk,mE j
m+kU

†
k,mE j

mU jk,m

)

+ak
(
− E j

mU j,mEk
m+ jU

†
j,mU jk,m+Ek

m E j
mU jk,m

)}
.

(36)

Here, we have utilized the evolution equation of the plaquette
U−k j,m , which can be derived in analogy to Eq. (9),

∂0ReTr(i taU−k j,m)

= igReTr
(
i taa j

(
U†
k,m−k E

j
m−kUk,m−kU−k j,m −U−k j,mE j

m
)

− i taak
(
U†
k,m−k E

k
m−kUk,m−kU−k j,m

−U†
k,m−kU j,m−k E

k
m+ j−kU

†
j,m−kUk,m−kU−k j,m

))
. (37)

5 These notations should be understood as abbreviated forms of
(∂0T 1

0k)
E and (∂0T 1

0k)
B , i.e., the E-field and B-field parts of the time

derivative, rather than time derivatives of E-field and B-field parts.

By employing the expression in Eq. (20), we can rewrite
Eq. (36) as follows:

∂0T
1E
0k,m =

∑

j �=k

gc jkReTr

×
{
a j
(
E j
m+k E

j
m+kU

†
k,mU jk,mUk,m − E j

m E j
mU jk,m

)

+ ak
(
E j
m+kU

†
k,mEk

mU jk,mUk,m

− E j
m+kU

†
k,mU j,mEk

m+ jU
†
j,mU jk,mUk,m

− E j
mU j,mEk

m+ jU
†
j,mU jk,m + Ek

m E j
mU jk,m

)}
.

(38)

Note that in the continuum limit, only the term where the
plaquette on the r.h.s is replaced by an identity matrix sur-
vives. On the lattice, however, it is not possible to rewrite
derivatives of the plaquette in such a way that they would not
themselves involve plaquettes.

In contrast to the previous subsection, where obtaining
T0i from ∂0T00 was straightforward, this part is more chal-
lenging. In Fig. 2, we illustrate the issue by examining the
time derivative of T 1

0k (see Eq. 35) at lattice point m. The
components involving two plaquettes i.e the first line on the
right-hand side depicts the magnetic field component that
we will discuss in a later section, while the second line
refers to the electric field part ∂0T 1E

0k . Notably, each term
entering the latter includes an extra plaquette, as explicitly
stated in Eq. (36). This differs from the continuum expres-
sion T E

jk = E j Ek + 1
2δ jk E2, where the electric terms are

solely quadratic in nature and not entangled with magnetic
field components that are encoded in the plaquettes.

We have not found an exact way of writing ∂0T 1E
0k as a total

spatial derivative of a quantity that could be identified as a
contribution to Ti j . We, therefore, use the approximation of
replacing the plaquettes in ∂0T 1E

0k with the identity matrix.
This introduces a relative error O(a2) and agrees with the
original expression in the continuum limit. After rearranging
certain terms and adding the contribution for ∂0T 1E

0k |m→m− j

(as in Eq. 29) the resulting expression takes the following
form:

∂0T
E

0k,m =
∑

j �=k

gc jkReTr
{
a j
(
E j
m+k E

j
m+k

− E j
m E j

m + E j
m+k− j E

j
m+k− j − E j

m− j E
j
m− j

)

− aka j
(
E j
m
[
DF

j , Ek
m
]

+Uk,mE j
m+kU

†
k,m

[
DF

j , Ek
m ] + E j

m− j

[
DF

j , Ek
m− j

]

+Uk,m− j E
j
m+k− jU

†
k,m− j

[
DF

j , Ek
m− j ]

)}
+ O(a2).

(39)
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Fig. 2 Illustration of the time derivative of T 1
0k in Eq. (35). The filled

yellow circle symbolizes the lattice point, while the electric field at a
specific point is indicated by red lines. The initial four terms on the
right-hand side represent the magnetic field component of ∂0T 1B

0k as

defined in Eq. (53), while the subsequent eight terms on the following
line correspond to the electric field component of ∂0T 1E

0k as defined in
Eq. (36)

It is important to highlight that when j is equal to k, differ-
ent terms in the first and second lines of ∂0T E

0k cancel each
other. This permits us to interchange the summations

∑
j �=k

and
∑

j,k in the above equation without altering the final
outcome. Having established this, we will apply the prod-
uct rule, allowing us to extract the spatial derivative along
the j direction. This step is essential to obtain a discretized
second (momentum conservation) continuity equation, ulti-
mately enabling us to identify T E

jk . The discretized form of
the product rule is given as

[
DF
k , Ei

m E
j
m
]

= [
DF
k , Ei

m

]
Uk,mE

j
m+kUk,m + Ei

m

[
DF
k , E j

m
]
, (40)

where we note the shift from sitem to sitem+k in the second
electric field factor in the first term. In the case of a parallel
transported field, this can be written as
[
DF
k ,U †

k,m−k E
i
m−kUk,m−k E

j
m
]

= [DF
k ,U †

m−k E
i
m−kUk,m−k]E j

m + Ei
m[DF

k , E j
m]. (41)

We utilize either of these relations to rewrite the terms
in Eq. (39), which enables us to employ Gauss’ law and
eliminate certain contributions from the equation

[DB
j ,U †

j,mE
j
mU j,mE

k
m+ j ] = [DF

j ,U †
j,m− j E

j
m− jU j,m− j E

k
m]

= E j
mU j,mE

k
m+ jU

†
j,m

− E j
m E

k
m −U †

j,m− j E
j
m− jU j,m− j E

k
m + E j

m E
k
m

= E j
m[DF

j , Ek
m] + Ek

m [DB
j , E j

m]
︸ ︷︷ ︸

= 0 Gauss Law

(42)

[DB
j ,U †

j,mUk,mE
j
m+kU

†
k,mU j,mE

k
m+ j ]

= [
DF

j ,U †
j,m− jUk,m− j E

j
m− j+kU

†
k,m− jU j,m− j E

k
m

]

= Uk,mE
j
m+kU

†
k,mU j,mE

k
m+ jU

†
j,m −Uk,mE

j
m+kU

†
k,mE

k
m

−Uk,m− j E
j
m+k− jU

†
k,m− jU j,m− j E

k
mU

†
j,m− j

+Uk,mE
j
m+kU

†
k,mE

k
m

= Uk,mE
j
m+kU

†
k,m

[
DF

j , Ek
m

]+ [
DB

j ,Uk,mE
j
m+kU

†
k,m

]
Ek
m

(43)
[
DB

j , E j
m E

k
m

] = [
DF

j , E j
m− j E

k
m− j

]

= E j
m− j [DF

j , Ek
m− j ] + Ek

m [DB
j , E j

m]
︸ ︷︷ ︸

= 0 Gauss Law

(44)

[
DB

j ,Uk,mE
j
m+kU

†
k,mE

k
m

]

= [
DF

j ,Uk,m− j E
j
m+k− jU

†
k,m− j E

k
m− j

]

= Uk,m− j E
j
m+k− jU

†
k,m− j

[
DF

j , Ek
m− j

]

+ [
DB

j ,Uk,mE
j
m+kU

†
k,m

]
Ek
m (45)

We can make slight modifications to the underlined terms in
Eqs. (43) and (45) to make use of Gauss’ law.

[
DB

j ,Uk,mE
j
m+kU

†
k,m

]
Ek
m

= Uk,mE
j
m+kU

†
k,mE

k
m −U †

j,m− j

×Uk,m− j E
j
m+k− jU

†
k,m− jU j,m− j E

k
m

= Uk,mE
j
m+kU

†
k,mE

k
m −U− jk,mUk,mU

j
m− j+k E

j
m− j+k

×U−k j,m− j+kU j,m− j+kU
†
k,mE

k
m

� Uk,mE
j
m+kU

†
k,mE

k
m − 1Uk,mU

j
m− j+k E

j
m− j+k

× 1Uj,m− j+kU
†
k,mE

k
m

= Uk,m[DB
j , E j

m+k]U †
k,mE

k
m

= 0 [Gauss Law] (46)

As we transition from the first to the second equality, we intro-
duce additional gauge links in the second term on the right-
hand side, thereby forming plaquettes denoted asU− jk,m and
U−k j,m− j+k . Subsequently, in the third equality, we approx-
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imate the plaquettes with the identity, similarly as discussed
earlier, and at the same relative O(a2) error, which enables
us to apply Gauss’ law. By employing Eqs. (42)–(45), we can
rephrase Eq. (39) as follows:

∂0T
E

0k,m = g
∑

j

∑

l

cl jδ jkala jReTr

×
{[

DB
j , El

m+ j E
l
m+ j + El

m+ j−l E
l
m+ j−l

]}

− g
∑

j

c jkaka jReTr
{[

DB
j , E j

m E
k
m

+U †
j,mUk,mE

j
m+kU

†
k,mU j,mE

k
m+ j

+U †
j,mE

j
mU j,mE

k
m+ j +Uk,mE

j
m+kU

†
k,mE

k
m

]}

+ O(a2). (47)

This allows us to use the second continuity equation (34), to
identify the electric field component of the stress tensor as
follows:

T E
jk,m = g

{∑

l

cl j a j alδ jkReTr

×
[
El
m+ j E

l
m+ j + El

m+ j−l E
l
m+ j−l

]

− a jakc jkReTr
[
U †

j,mUk,mE
j
m+kU

†
k,mU j,mE

k
m+ j

+ E j
m E

k
m +U †

j,mE
j
mU j,mE

k
m+ j

+Uk,mE
j
m+kU

†
k,mE

k
m

]}
. (48)

The contribution T E
jk is located at the position6 m + j

2 + k
2 ,

precisely as expected from ∂0T0k calculations.

3.3.2 Chromomagnetic field contribution

Having found an expression for the electric contribution in
(48), our next objective is to derive an expression for the
magnetic field component of Tjk . However, before delving
into that calculation, it is beneficial to examine the continuum
expression to illustrate the issues we will encounter along
the way. For this discussion to be closer to the discretized
version, we will formulate it in terms of the field strength
tensor instead of the magnetic field. We begin by computing

6 This is easy to see as follows: the first line of Eq. (48) is a sum of
squares of electric fields leaving from and incoming to point m + j
in the l-direction, and thus centered around m + j , which is equal to
m + j/2 + k/2 for j = k. For j �= k the four terms on the second line
are products of the two electric fields associated with each of the four
corners of the plaquette Ujk,m .

the magnetic field term in the time derivative of T0i = E j Fi j 7

∂0T
B

0i = [Dj , Fjq ]Fiq . (49)

Comparing this expression to the spatial derivative of the
spacelike part of the energy–momentum tensor T B

i j =
δi j
4 Fpq Fpq − Fiq Fjq , it is clear that additional terms need to

be added to and subtracted from (49) to write it as a spatial
derivative. In fact, to see how this happens in the continuum,
it is easier to start from T B

i j = δi j
4 Fpq Fpq − Fiq Fjq and

differentiate it:

∂ j T
B
i j = [Dj , T

B
i j ] = −δi j

2
× [Dj , Fpq ]Fpq + [Dj , Fiq ]Fjq + Fiq [Dj , Fjq ]

= −δi j [Dj ,−1

2
ε pqr Fpq ]Br

+ δi j [Dj , B
r ]Br − [Dj , B

j ]Bi + Fiq [Dj , Fjq ]
= [Dj , Fjq ]Fiq (50)

In obtaining the last equality, we have utilized the relation
Br = − 1

2εrpq Fpq and the Bianchi identity [Dj , B j ] = 0.
The essential part of this manipulation was the cancellation
of the first two terms on the right-hand side of the first line
of Eq. (50):

δi j

2
[Dj , Fpq ]Fpq = [Dj , Fiq ]Fjq (51)

Appendix A presents an alternative derivation of this same
relation. An important part of the derivation was the Bianchi
identity. A version of the Bianchi identity exists on the lat-
tice [41]. It involves the product of six plaquettes, which,
in the continuum, reduces to the continuum Bianchi identity.
However, the identity we would need here would involve dis-
cretized derivatives of plaquettes, i.e., their nearest-neighbor
differences. We have not been able to formulate a suitable
exact discrete identity that could play the role of the Bianchi
identity in the derivation of the energy–momentum tensor.
Thus again, as in the case of the electric field component, we
have to resort to an approximation that reduces to (51) in the
continuum limit,

δi j

2
ReTr

(
i ta
[
DB

j ,Upq,m
])

ReTr
(
i taUpq,m

)

≈ ReTr
(
i ta
[
DB

j ,Uiq,m
])

ReTr
(
i taU jq,m

)
. (52)

Within this approximation, we are set to calculate the mag-
netic field contribution of Tjk by employing the dynamical
equations for the field on the ∂0T 1B

0k component of Eq. (35).

7 For brevity, we denote in this subsection Aa Ba = 2TrAB as simply
AB for two color matrices A and B.

123



  368 Page 10 of 18 Eur. Phys. J. C           (2024) 84:368 

These contributions are visualized in the first line of Fig. 2,
which shows the terms that appear after plugging in the tem-
poral derivatives of the electric fields

∂0T
1B
0k,m =

∑

j �=k

c jk
{
∂0E

j,a
m+kReTr(i taU−k j,m+k)

+ ∂0E
j,a
m ReTr(i taU jk,m)

}

=
∑

j �=k
j �=l

c jkd jl

{
ReTr

(
i ta(Ujl,m+k +Uj−l,m+k)

)
ReTr

× (
i taU−k j,m+k

)

+ ReTr
(
i ta(Ujl,m +Uj−l,m)

)
ReTr

(
i taU jk,m

)}

=
∑

l, j

clkdl j a j

×
{

ReTr
(
i ta
[
DB

j ,Ul j,m+k
])

ReTr
(
i taU−kl,m+k

)
︸ ︷︷ ︸

(A)

+ ReTr
(
i ta
[
DB

j ,Ul j,m
])

ReTr
(
i taUlk,m

)
︸ ︷︷ ︸

(B)

}
, (53)

where

d jl = 2a j

ga2
j a

2
l

. (54)

Transitioning from the second equality to the third, we took
into account ReTr(i ta1) = 0 under the conditions j = k and
j = l, and subsequently exchanged the indices j and l.

By employing the Fierz identity tai j t
a
kl = 1

2

(
δilδ jk −

1
Nc

δi jδkl
)

for the generators in the fundamental representa-
tion, the multiplication of two arbitrary plaquettes can be
streamlined. Let us at this point simplify our notations and
leave out contributions arising from the Nc-suppressed term
in the Fierz identity. For SU(2) this term is in fact zero because
the trace of a unitary matrix is purely real. For SU(3) the trace
of a plaquette can have an imaginary part, but it is suppressed
by powers of the lattice spacing. Since we are in any case not
obtaining an expression that is exact at all orders in the lattice
spacing, we will not write these trace terms here. With these
approximations, we obtain

ReTr(i taUμν,m)ReTr(i taUαβ,m)

≈ i2

4
ReTr

(
Uμν,mUαβ,m −Uμν,mUβα,m

)
, (55)

where we have utilized the fact that the anti-Hermitian part
of the SU (2) matrix is traceless to remove the 1/Nc term
from the equation. Now, with the approximation (55), part

(A) of Eq. (53) can be rewritten as

(A) = i2

4
ReTr

(
U−kl,m+k

[
DB

j ,Ul j,m+k −Ujl,m+k
])

= i2

4

{
ReTr

(
U−kl,m+k

[
DB

j ,Ul j,m+k
]

+ [
DB

j ,Uj,m+kU−kl,m+k+ jU
†
j,m+k

]
Ul j,m+k

− [
DB

j ,Uj,m+kU−kl,m+k+ jU
†
j,m+k

]
Ul j,m+k

−U−kl,m+k
[
DB

j ,Ujl,m+k
]

− [
DB

j ,Uj,m+kU−kl,m+k+ jU
†
j,m+k

]
Ujl,m+k

+ [
DB

j ,Uj,m+kU−kl,m+k+ jU
†
j,m+k

]
Ujl,m+k

}
. (56)

Here, we employed insights from our prior discussion on the
continuum case to add and subtract terms strategically. By
utilizing the discretized product rule, certain terms can be
combined

(A) = i2

4

{
ReTr

([
DB

j ,Uj,m+kU−kl,m+k+ jU
†
j,m+kUl j,m+k

]

− [
DB

j ,Uj,m+kU−kl,m+ j+kU
†
j,m+kU jl,m+k

]

− [
DB

j ,Uj,m+kU−kl,m+k+ jU
†
j,m+k

]
Ul j,m+k

+ [
Db

j ,Uj,m+kU−kl,m+k+ jU
†
j,m+k

]
Ujl,m+k

)}

= i2

4
ReTr

([
DB

j ,Uj,m+kU−kl,m+ j+kU
†
j,m+k

× (
Ul j,m+k −Ujl,m+k

)]

− [
DB

j ,Uj,m+kU
†
k,m+ jUlk,m+ jUk,m+ jU

†
j,m+k

]

× (
Ul j,m+k −Ujl,m+k

))
, (57)

while the remaining terms can be substituted with the approx-
imate lattice Bianchi Identity in Eq. (52) to give the final
expression as

(A) ≈ i2

4
ReTr

([
DB

j ,Uj,m+kU−kl,m+k+ jU
†
j,m+k

× (
Ul j,m+k −Ujl,m+k

)]

− δ jk

4

[
DB

j ,Upl,m+k
(
Upl,m+k −Ulp,m+k

)])
. (58)

With this, we employ a similar approach for the term labeled
as (B) in Eq. (53)

(B) = i2

4
ReTr

(
Ulk,m

[
DB

j ,Ul j,m −Ujl,m
])

= i2

4
ReTr

(
Ulk,m

[
DB

j ,Ul j,m
]+U †

j,m− jUl j,m− jU j,m− j

× [
DB

j ,Ulk,m
]−U †

j,m− jUl j,m− jU j,m− j
[
DB

j ,Ulk,m
]
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−Ulk,m
[
DB

j ,Ujl,m
]

−U †
j,m− jU jl,m− jU j,m− j

[
DB

j ,Ulk,m
]

+U †
j,m− jU jl,m− jU j,m− j

[
DB

j ,Ulk,m
])

= i2

4
ReTr

([
DB

j ,Ulk,mUl j,m −Ulk,mU jl,m
]

+ [
DB

j ,Ulk,m
]× (

Ul− j,m −U− jl,m
))

≈ i2

4
ReTr

([
DB

j ,Ulk,m
(
Ul j,m −Ujl,m

)]

− δ jk

4

[
DB

j ,Upl,m
(
Upl,m −Ulp,m

)]))
. (59)

By combining the aforementioned equations (58) and
(59), along with their shifted counterparts ∂0T 1B

0k |m→m− j in
Eq. (29), we derive the approximate magnetic contribution
of the stress tensor as

T B
jk,m,CB ≈

∑

l

clkdl j
a j
4

ReTr

×
{

−Uj,m+kU
†
k,m+ jUlk,m+ jUk,m+ jU

†
j,m+k

(
Ul j,m+k

−Ujl,m+k
)−Ulk,m

(
Ul j,m −Ujl,m

)+ δ jk

4(
Upl,m+k

(
Upl,m+k −Ulp,m+k

)

+Upl,m
(
Upl,m −Ulp,m

))

−Uj,m+k−lU
†
k,m+ j−lUlk,m+ j−lUk,m+ j−l

× (
Ul j,m+k−l −Ujl,m+k−l

)−Ulk,m−l
(
Ul j,m−l −Ujl,m−l

)

+ δ jk

4

(
Upl,m+k−l

(
Upl,m+k−l −Ulp,m+k−l

)

+Upl,m−l
(
Upl,m−l −Ulp,m−l

))}
. (60)

Here, the notation T B
jk,m,CB is employed to represent the

magnetic-field component of the stress tensor derived from
the conjectured Bianchi (CB) identity. Note that in order to
write the δ jk-part of T B

jk explicitly in this form, we have used
the continuum form of the product rule, rather than the exact
one (40), and the approximate Bianchi identities (52).

We have checked the quality of the conjectured approxi-
mate Bianchi identity (52) approximation numerically, using
the setup that will be discussed in more detail in Sect. 4. The
result is demonstrated in Fig. 3. Here we show the relative

Fig. 3 Relative error (61) in the conjectured Bianchi identity at differ-
ent lattice sites in the transverse plane (A, B and C) as a function of the
longitudinal direction

error in the lattice counterpart of the conjectured Bianchi
identity, calculated as

ReTr
(
i ta
[
DB

j ,Ulk,m
])

ReTr
(
i taUl j,m

)− δ jk
2 ReTr

(
i ta
[
DB

j ,Upl,m
])

ReTr
(
i taUpl,m

)

1
V

∑
x ReTr

(
i ta
[
DB

j ,Ulk,m
])

ReTr
(
i taUl j,m

) (61)

at distinct lattice sites labeled as A, B and C within the
transverse plane. It is evident that the relative error is large
and exhibits local variations, thereby suggesting the potential
for devising an improved representation of the lattice Bianchi
identity in future studies.

For now, we need an alternative, more accurate expression.
Since our conjectured Bianchi identity is not satisfied well
for the field configurations that we would like to apply it
to, we will use another approach that circumvents the main
issues. Here, one first notices that in our derivation leading
to T B

jk , the Bianchi identity has been used only to manipulate
the total energy contribution that is proportional to δ jk . In
the continuum, the magnetic field part of the δ jk-term is just
the same magnetic field squared that appears in the energy
density. Thus, we will follow another approach that does not
rely on Eq. (52), which is to just take the magnetic field part
of the total energy density T B

00 and use it to get the magnetic
δ jk part of Tjk . This leads to

T B
jk,m =

∑

l

clkdl j
a j

4
ReTr

×
{

−Uj,m+kU
†
k,m+ jUlk,m+ jUk,m+ j

U †
j,m+k

(
Ul j,m+k −Ujl,m+k

)

−Ulk,m
(
Ul j,m −Ujl,m

)
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−Uj,m+k−lU
†
k,m+ j−lUlk,m+ j−lUk,m+ j−l

(
Ul j,m+k−l

−Ujl,m+k−l
)−Ulk,m−l

(
Ul j,m−l −Ujl,m−l

)}

− δ jkT
B

00,m+ j . (62)

This is achieved by subtracting T B
00,m+ j based on the first

term of the continuum expression Ti j = −1/4δi j FmnFmn

+ Fin Fjn . Additionally, this contribution from the energy
density needs to be taken at the point m + j , as Tjk for
j = k needs to be situated at the point m + j in order to
yield ∂0T0k centered at m + k/2 as a backward derivative in
the j = k direction. Equation (62) thus does not use the
approximate Bianchi identity and turns out to introduce only
a small relative error to the continuity equation, as we will
show below.

3.3.3 Final formula

With this, we write our final expression for Tjk by unifying
the electric and magnetic components (48) and (62)

Tjk,m =
{∑

l

gcl j a j alδ jk

× ReTr
[
El
m+ j E

l
m+ j + El

m+ j−l E
l
m+ j−l

]

− ga jakc jkReTr
[
U †

j,mUk,mE
j
m+kU

†
k,mU j,mE

k
m+ j

+ E j
m E

k
m +U †

j,mE
j
mU j,mE

k
m+ j

+Uk,mE
j
m+kU

†
k,mE

k
m

]}

+
∑

l

clkdl j
a j

4
ReTr

{
−U−kl,m+ j+k

(
U− jl,m+ j+k −Ul− j,m+ j+k

)

−Ulk,m
(
Ul j,m −Ujl,m

)

−U−kl,m+ j+k−l
(
U− jl,m+ j+k−l

−Ul− j,m+ j+k−l
)

−Ulk,m−l
(
Ul j,m−l −Ujl,m−l

)}

− δ jkT
B

00,m+ j . (63)

3.4 Final expression

For readers seeking a concise overview, we summarize the
approximation and provide the ultimate expression of the
energy–momentum tensor here. The determination of T00 at

a specific lattice site involves averaging the incoming and
outgoing electric fields and considering the various orienta-
tions of plaquettes within the Hamiltonian density:

T00,m =
∑

j,k>0

1

g2a2
j a

2
k

[
Nc − 1

4

(
ReTrUjk,m

+ ReTrUj−k,m + ReTrU− jk,m + ReTrU− j−k,m

)]

+ 1

4

∑

j>0

(
E j,a
m E j,a

m + E j,a
m− j E

j,a
m− j

)
(64)

Subsequently, by examining the equation of motion of the
plaquette and electric fields, along with the energy conserva-
tion equation, we derive the Poynting vectors T0i :

T0k,m =
∑

j>0, j �=k

c jk
{

ReTr
(
i E j

m+kU−k j,m+k

+ i E j
mU jk,m + i E j

m− j+kU−k j,m− j+k

+ i E j
m− jU jk,m− j

)}
(65)

Following a similar methodology, we utilize the momen-
tum conservation equation to construct Tjk , which presents
certain challenges. Notably, terms such as Ek E jU jk emerge
in the electric field contribution of ∂0T0k , which are absent
in the continuum. Since these terms are suppressed by the
lattice spacing, we substitute the plaquette with the identity
matrix. Additionally, for the magnetic field contribution, the
lack of a suitable Bianchi identity poses difficulties in obtain-
ing the spatial derivative of T B

jk from ∂0T0k . To address this

issue, we replace the term proportional to δ jk in T B
jk with

magnetic components of the discrete energy density, result-
ing in a notable reduction in violation. The final expression
for Tjk is as follows:

Tjk,m =
{∑

l

gcl j a j alδ jkReTr

[
El
m+ j E

l
m+ j + El

m+ j−l E
l
m+ j−l

]

− ga jakc jkReTr
[
U †

j,mUk,mE
j
m+kU

†
k,mU j,mE

k
m+ j

+ E j
m E

k
m +U †

j,mE
j
mU j,mE

k
m+ j +Uk,mE

j
m+kU

†
k,mE

k
m

]}

+
∑

l

clkdl j
a j

4
ReTr

{
−U−kl,m+ j+k

(
U− jl,m+ j+k −Ul− j,m+ j+k

)

−Ulk,m
(
Ul j,m −Ujl,m

)

−U−kl,m+ j+k−l
(
U− jl,m+ j+k−l −Ul− j,m+ j+k−l

)

−Ulk,m−l
(
Ul j,m−l −Ujl,m−l

)}− δ jk T
B

00,m+ j . (66)
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Fig. 4 The relative error (71) in the energy conservation equation is
shown as a function of time on the left for Ns = 32 and on the right for
Ns = 128. The lines correspond to different formulations of the Poynt-
ing vector using the ‘naive’ continuum (13), ‘discrete’ (29) and time-
symmetrized (obtained using the procedure described by (31) and (33))

expressions. The upper panels represent dt/as values of 0.01 and 0.1 for
(Ns = 32 and Qsas = 0.25 ) and for (Ns = 128 and Qsas = 0.0625),
respectively, while the lower panels employ 0.001 and 0.01, respectively

where

c jk = 1

2ga jak
and d jl = 2a j

ga2
j a

2
l

. (67)

4 Numerical results

4.1 Initial conditions and numerical setup

To quantitatively assess our expressions for the energy–
momentum tensor, we test the conservation laws in a clas-
sical Yang–Mills simulation. In our numerical simulations,
we solve the evolution equations (4) and (6) for the lattice
fields using the standard leapfrog algorithm, and then cal-
culate components of the energy–momentum tensor. At the
beginning, we take the fields from initial conditions of the
form

〈Aa
i (p, t=0)A∗b

i (p, t=0)〉 = 2a3
s N

3
s δab

0.2

g2

Qs

p2 e−p2/2Q2
s

(68)

〈Aa
i (t = 0, p)〉 = 0 (69)

Ea
i (t = 0) = 0, (70)

where g is the coupling constant, Qs a dimensionful initial
momentum scale, and a3

s N
3
s the lattice volume. The expecta-

tion value 〈·〉 implies an average over classical configurations
of the lattice fields. In Eq. (68) we only initialize transverse
modes, pi Ai (p, t=0) = 0. With these initial conditions, all
of the energy of the system resides initially in the chromo-
magnetic fields, and electric fields are generated over the
time evolution of the system. These initial conditions are the
magnetic field part of the ones used, e.g., in [23,42]. Choos-
ing the initial condition to have a zero electric field allows
Gauss’ law to be exactly satisfied at the initial condition,
while the leapfrog algorithm for the time evolution preserves
it to machine precision.8 After the characteristic timescale

8 The exact conservation of Gauss’ law is crucial for conserved energy–
momentum tensor since our derivation of Tjk in Eq. (63) heavily relies
on it. For the purposes of this paper, we have chosen to use an initial
condition that satisfies Gauss’ law exactly, up to accumulated errors
from floating point calculations. Future studies performed using more
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t ∼ 1/Qs the energy becomes roughly evenly distributed
between the electric and magnetic fields.

Within this setup, we will present our results for lattices
with a constant physical volume Nsa, where we change the
lattice spacing as = {0.25, 0.125, 0.0625, 0.03125} and the
lattice size Ns = {32, 64, 128, 256} simultaneously. We will
also vary the time step dt . Due to computational complexity,
we will conduct all our simulations using the SU (Nc = 2)

gauge group instead of the physical SU (3) gauge group of
QCD.

4.2 Results

Based on the above expressions (18), (29) and (63) of the
energy–momentum tensor, we will now study the violation
of the continuity equations ∂μTμν = 0. We start our analysis
with the equation for energy conservation, where we quantify
the deviation in the form of a relative error

√√√√
∑

m

(
∂0T00,m − ∂i T0i,m

)2

∑
m

(
∂0T00,m

)2 . (71)

Here, the time derivative is calculated explicitly as a time
difference between two discrete timesteps.

Figure 4 illustrates the evolution of the relative error in
three scenarios: one employing the straightforward “naive”
discretization method outlined in Eqs. (12) and (13), and
the others employing the discretized approach specified in
Eq. (18) along with the Poynting vector formulated either by
Eq. (29) or the time-symmetrized discretization outlined in
Sect. 3.2.2. The results are presented for a spatially three-
dimensional lattice with Ns = 32 in the left and Ns = 128
in the right panels. The top panel corresponds to dt/as val-
ues of 0.01 and 0.1 for Ns = 32 and 128, respectively. The
lower panels illustrate the relative error for one-tenth of these
values for dt/as . First of all, it is evident that the violation
remains relatively consistent over time, even after the energy
becomes distributed over both electric and magnetic fields.
Secondly, the discrete approach with time symmetrization
exhibits exceptional performance for different lattice spac-
ings and timesteps. Thirdly, for smaller lattices, the discrete
method outperforms the naive description. However, as we
approach the continuum limit by increasing Ns and decreas-
ing the lattice spacing accordingly, the naive description
improves and approaches the discrete one as expected.

When examining the upper panel of Fig. 4 in compari-
son to the lower one with a smaller dt/as ratio by a fac-
tor of ten, one observes that the relative error of the dis-
crete approach reduces roughly by the same factor. This is

realistic conditions will, however, have to pay special attention to the
accuracy of Gauss’ law.

again consistent with the expectation that the discrete for-
mulation in this regime is dominated by timestep effects.
However, we note that the time-symmetric discrete method
is still several orders of magnitude more precise even with
a rather small timestep. The error in the time-symmetrized
formulation does not decrease anymore when the timestep is
decreased from the top row to the bottom, which we take as
an indication that it has already reached a limit where it is
dominated by machine precision effects.

In Fig. 5, we examine the relative error of the second
continuity equation (34), quantified by

√√√√
∑

m

(
∂0T

E/B
0i,m − ∂ j T

E/B
i j,m

)2

∑
m

(
∂0T

E/B
0i,m

)2 (72)

as a function of time for i = 1. The violation is measured
separately for the electric and magnetic field components for
Ns = 32 on the left and Ns = 256 on the right-hand side
as before. The naive approach is based on Eqs. (13) and
(14), while the discrete approach utilizes Eqs. (29) and (63).
In the figure, one observes that the discrete formulation sur-
passes the naive approach. This effect is particularly large for
the electric field part but is also present for the magnetic field
contribution. Indeed, the violation of the electric contribution
in the discrete case is roughly an order of magnitude smaller
than for the magnetic one, which indicates that our approxi-
mations for the electric sector of Ti j are more accurate than
for the magnetic one. As we approach the continuum limit
by considering the right panel, the violation further dimin-
ishes for both the naive and the discretized expressions, while
other trends remain consistent. Thus, while we have not been
able to achieve a description with an exact conservation law
on a discrete lattice, we have managed to find a formulation
where the lattice discretization effects on the conservation
law are significantly smaller than for a naive discretization.

As discussed in Sect. 3.3.2, we had two formulations for
the magnetic part of Ti j , one based on a conjectured approxi-
mation that reduces to the Bianchi identity in the continuum,
the other one using the discrete energy density T 00 to recon-
struct the part of Ti j that is proportional to δi j . Figure 6 offers
a comprehensive analysis of the difference between these two
approaches for the violation of the momentum conservation
equation, as parametrized by the relative error (72). We inves-
tigate the evolution of the relative error for lattice sizes of
Ns = 32 and Ns = 128 for those two distinct stress tensor
formulations. We note that the expression based on T00 (63)
performs significantly better than the one derived utilizing
the lattice analog of the Bianchi identity (60), demonstrating
an improvement of at least one order of magnitude. As we
approach the continuum limit with Ns = 128, we observe a
decrease in violation for both cases, as anticipated. Notably,
the reduction occurs at a more favorable rate for the T00-based
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Fig. 5 Relative error (72) in the momentum conservation equation as a function of time for Ns = 32 on the left and Ns = 256 on the right. Both
are shown for the electric and magnetic field contributions in the continuum (14) and discretized (63) formulations

Fig. 6 Measuring the violation (72) in the second continuity equation
(34) by utilizing T B

i j derived from the energy density T00 (63) and the
conjectured Bianchi identity (60), considering two distinct lattice sizes:
Ns = 32 and Ns = 128.

Fig. 7 Relative error (72) in the second continuity equation (34) as a
function of lattice spacing a2

s for discretized (63) and naive (continuum
limit) electric and magnetic fields (14). Black dashed lines correspond
to the a2

s power-law

approach. This justifies our choice of the approach chosen in
(63). In future research, it would be beneficial to develop a
more refined expression for the Bianchi identity to ensure
that the derivation of a discretized Ti j aligns seamlessly with
the continuum case.

The denominator of the relative error (72) can be under-
stood as the space-integrated squared rate of change of energy
flux in the i-direction. Thus it corresponds to a physical quan-
tity, which takes a nonzero value at the continuum limit.
Hence, the relative error should tend to zero in the continuum
limit, and the as scaling of the ratio is that of the numera-
tor (discretization errors of the denominator represent a sub-
leading correction to this behavior). Figure 7 illustrates this
quantity for the naive and improved discretizations as func-
tions of the quadratic lattice spacing a2

s . The black dashed
line corresponds to a power law ∼ a2

s . We observe that in the
limit of small lattice spacing, the relative error of the naive
expression goes to zero slower than a2

s . In contrast to this,
the improved discrete expressions follow the a2

s power law
very closely, thus indicating that they are O(a2

s ).
The discretized version of the second continuity equa-

tion (34) would also benefit from the time-symmetrizing
procedure that was performed on T 00 and T 0i above. How-
ever, while deriving Eq. (62), we have already performed an
error O(a2

s ) when replacing plaquettes with identity oper-
ators. Similarly, the approximations in the magnetic sector
are at most of the same accuracy. Artifacts arising from the
time discretization are typically subleading to the spatial dis-
cretization effects since we employ dt/as � 1 to guarantee
numerical stability. Hence, we do not consider corrections to
time discretization for the momentum conservation equation.

5 Conclusions

The use of numerical simulations to gain insights into non-
perturbative aspects of classical and quantum field theories
requires discretizing space-time on a lattice and demands a
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systematic approach to study the energy–momentum tensor
for nonabelian gauge fields. We present an improved expres-
sion for the this purpose, given by Eqs. (18), (29), and (63),
that are derived using classical field equations of motion in
conjunction with the energy–momentum conservation law
for Tμν .

In comparison to a naive discretization method, where
chromoelectric and -magnetic fields are replaced by lattice
counterparts, our formulation improves the relative viola-
tion of the conservation laws by several orders of magni-
tude. The energy conservation equation (17) offers a means
of obtaining the T0k components of the energy–momentum
tensor that satisfies an exact energy conservation relation
on the lattice. Challenges arise when deriving Tjk using the
momentum conservation equation (34). The terms involving
electric fields introduce spurious contributions like E j E j Bk

that are suppressed by the lattice spacing and are not present
in the continuum expression. Furthermore, the terms involv-
ing magnetic fields cannot be written as a spatial derivative
of Tjk due to the lack of a suitable lattice Bianchi identity.
We have avoided this by replacing elements of T B

jk that are
proportional to δ jk with parts of the discrete energy density,
which has led to a significant reduction of the violation. In
the future, our focus will be on addressing these issues to
obtain the subleading terms O(a2

s ) in the expressions of Tjk .
For the energy-conserving continuity expression, we also

see that the relative error due to finite timesteps can be fur-
ther improved by orders of magnitude when using a time-
symmetrized discretization of the equation. As illustrated by
Eqs. (32) and (33), the electric and magnetic fields then lie
on the same time slice in the standard leapfrog algorithm.

We expect our work to have several interesting applica-
tions, especially with an extension to account for small per-
turbations on top of a nonequilibrium plasma [42–44]. Exam-
ples of these are transport coefficients, e.g., shear viscosity
in an over-occupied gluon plasma. In this context, the energy
conservation given by the continuity equation can hopefully
be used to prevent the activation of other modes, like sound
modes in the case of shear viscosity, ensuring a more accu-
rate depiction of the system’s behavior. We have made a first
step toward a direct measurement of such transport coeffi-
cients in App. B, where we have derived an expression for the
perturbed energy–momentum tensor after introducing small
fluctuations.

Another intriguing future research direction is to expand
our work to a wider range of metric tensors, such as
the Friedmann–Lemaître–Robertson–Walker (FLRW) met-
ric and a longitudinally expanding (Bjorken) metric in the
contexts of cosmology and heavy-ion collisions, respectively.
Indeed, including expansion in the framework would permit
a more realistic treatment of the Glasma at the initial stages
of heavy-ion collisions. Furthermore, it would extend the

applicability of our framework to cosmological applications
as well.
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Appendix A: Derivation of a relation equivalent to the
Bianchi Identity

The general proof of Eq. (51) can be given as

δi j

2
[Dj , Fmn]Fmn

= δi jδmm′

2
[Dj , Fmn]Fm′n

= 1

2

(
εkmjεkm

′i + δmiδm′ j
)[Dj , Fmn]Fm′n

= 1

2
εkmjεkm

′i [Dj , Fmn]Fm′n + 1

2
[Dj , Fin]Fjn (A1)

where the first term can be further modified as

1

2
εkmjεkm

′i [Dj , Fmn]Fm′n

= −1

2
εkmjεkm

′iεmnl [Dj , B
l ]Fm′n

= 1

2
εmkjεmnl [Dj , B

l ]Fm′nε
km′i

= 1

2

(
δknδ jl − δklδ jn

)[Dj , B
l ]Fm′nε

km′i
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= 1

2
[Dj , B

j ]Fm′nε
nm′i − 1

2
[Dj , B

k]Fm′ jε
km′i

= 1

2
[Dj , Fm′i ]Fm′ j

= 1

2
[Dj , Fin]Fjn (A2)

On combining the above two expressions, one recovers
Eq. (51).

Appendix B: Energy momentum tensor for fluctuations

Over the years, significant effort has been devoted to inves-
tigating the linear response of non-Abelian plasma, focusing
on the analysis of fluctuations superimposed on background
fields [42–44]. Calculating the linear response involves
decomposing the gauge field and electric field as follows:

Ai (x) → Ai (x) + ai (x) (B1)

Ei (x) → Ei (x) + ei (x) (B2)

The link matrix representing the combination of background
and fluctuating fields is expressed as

UBG+ f luct
i,m = (

1 + igai,ma
s
i

)
Ui,m (B3)

resulting in the following form of the plaquette:

UBG+ f luct
jk,m = Ujk,m + δUjk,m

= Ujk,m + ig
(
a j,ma

s
jU jk,m +Uj,mak,m+ j a

s
kU

†
j,mU jk,m

−Ujk,mUk,ma j,m+ka
s
jU

†
k,m −Ujk,mak,ma

s
k

)
(B4)

whereasi is the lattice spacing along the i direction. Following
this decomposition, one can formulate expressions for the
energy–momentum tensor, such as:

δT00,m =
∑

j,k>0

−1

g2a2
j a

2
k

1

4

(
ReTr

(
δUjk,m

+ δUjk,m− j + δUjk,m−k + δUjk,m− j−k
))

+ 1

4

∑

j>0

2e j,am E j,a
m + 2e j,am− j E

j,a
m− j (B5)

Similarly, the expression for the density along the k-th com-
ponent of linear momentum can be provided as:

δT0k,m =
∑

j>0

1

2g

a jak
a2
j a

2
k

{
ReTr

(
ie jm+kU−k j,m+k

+ i E j
m+kδU−k j,m+k + ie jmU jk,m + i E j

mδUjk,m

+ ie jm− j+kU−k j,m− j+k + i E j
m− j+kδU−k j,m− j+k

+ ie jm− jU jk,m− j + i E j
m− jδUjk,m− j

)}
(B6)
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