Joonas Uusi-Autti

Exploring the Prevalence and Common Types of Technical

Debt in a CRM Software

Master’s Thesis in Information Technology

March 24, 2024

University of Jyviaskyld

Faculty of Information Technology

Author: Joonas Uusi-Autti

Contact information: jopeuusi@student. jyu.fi

Supervisor: Tommi Mikkonen

Title: Exploring the Prevalence and Common Types of Technical Debt in a CRM Software
Tyon nimi: Teknisen velan yleisyys ja yleisimmat tyypit asiakkuuksienhallintaohjelmistossa
Project: Master’s Thesis

Study line: Software and telecommuunications technology (Ohjelmisto ja tietoliikennetekni-

ikka)
Page count: 51+0

Abstract: This master’s thesis researched the prevalence of the technical debt and its com-
mon types in a customer relationship management software. The software is used by a large
company and it has been built solely for this companys needs. The software has been run-
ning for over ten years and the prevalnce of the technical debt has been unknown but it is

presumed that it exists.

The research was conducted with a case study model, utilixing "code smells", which are
useful to gather information about technical debt and its types. The data was gathered using
two different tools. First one was the IDE’s (integrated development environment) own code
inspection tool and the second one was PMD and it was decided using previous research and

downloaded from the IDE’s marketplace.

To examine the code smells a frame and inclusion/exclusion critrias were built. With the help
of these frames, it was possible to examine that the software has a medium level technical

debt and most common types were linked to the performance parts of the software.
Keywords: Technical debt, CRM, code smells

Suomenkielinen tiivistelmé: Téssd pro-gradu tutkielmassa tutkittiin teknisen velan yleisyytta

ja sen yleisimpid muotoja asiakkuuksienhallintaohjelmistossa. Tarkastelun kohteena oleva

ohjelmisto on ollut kdytossd suurella yritykselld ja se on rakennettu juuri timén yrityk-
sen tarpeisiin. Ohjelmisto on ollut kdytossd yli kymmenen vuotta, mutta teknisen velan
yleisyys ei ole ollut tiedossa. Teknisti velkaa oletetaan kuitenkin olevan olemassa kyseisessi

ohjelmistossa.

Tutkimuksessa kdytettiin tapaustutkimus -menetelmid, hyodyntéden "koodihajuja", joilla voidaan
saada tietoa teknisestd velasta yleisesti ja sen yleisimmistd muodoista. Teknisti velkaa tutkit-
tiin kahdella eri tyokalulla, jotka olivat IDE:n (integrated development environment) oma
koodihajutyokalu ja IDE:n marketplacesta saatava koodihajutyokalu PMD. Jidlkimméaiseen

tyokaluun paddyttiin olemassa olevan tutkimuksen perusteella.

Koodihajujen tutkimiseen rakennettiin raamit, jotka sisdllyttivét tietyin kriteerein koodiha-
juja. Niiden raamien avulla pystyttiin selvittiméén, ettd ohjelmistosta 10ytyy kohtalainen

midra teknistd velkaa sekd yleisimpien teknisen velan tyyppien liittyvén suorituskykyyn.

Avainsanat: Tekninen velka, CRM, koodihajut

il

List of Figures

Figure 1. IntelliJ IDEA’S Results Chart............co.viiiiiiiiiiiie i eeiieeenns 21]
Figure 2. PMD Results Chart ... 29|
List of Tables

Table 1. Software product releases in SCRUM. (Schwaber|1997)]
Table 2. Mostly invisible parts of technical debt. (Philippe Kruchten November 2012)....
Table 3. Common examples of code smells. (Kralj 2023)............coooiiiiiiiiiiiiiiinn. 8]
Table 4. PMD inClUuSion Criteria.ueuuettte it ettt et e et e e 14
Table 5. Intellij IDEA’S €XCIUSION CIIteIIa .. v vt e ettt e e e e e e e e 16}
Table 6. CRM characteristics and impacts. (Yurong Xu2002))coooiiveiiiiiinnnn.. 18]
Table 7. IntellilJ IDEA inSpection repOrt OVEIVIEWeuuneetitneeeiiaeeeeineeennneeennnn 22
Table 8. PMD Inspection répOIt OVEIVIEWuuuuuuuei e 30l

il

Contents

1
2

INTRODUCTION ... e 1l
LITERATURE REVIEW ...t 2l
2.1 Agile software developmentcooiuiiiiiieeeiiiiiiiii i,
P T 11 1) B RSN 3l
2.3 Technical debtc.oiiiiniiii i
2.4 Code SMEILS ...ttt e 6
METHODOLOGY ..ttt 9
3.1 ReSEArCh SETUPttt e ()
3.2 Research qUESHIONuuiiieti it Ol
3.3 Research methodologycooiiiiiiiiiiii e 9
3.4 Data colleCtion.......cooiiiiiiiii i 10]
3.5 Research InStruments........ooviiiiiiiiiii e 10}
3.5.1 Intellij IDEA’S cOde INSPECLOreeviiiuie et [l
3.5 2 P D . (1]
3.6 Performing the research..............oiiiiiiiiiiii i (1]
CASE STUDY ..ttt e
4.1 CaSE COMPANY ...ttt ettt ettt ettt e e ettt et et e e e e 17l
N O T) 872 (P 17
4.3 Customer relationship managementoovviiiiiiiinneeeeeiiininnnnn.. 18]
RE S UL S e 20}
5.1 Most commmon types of technical debtooooiiiiiiiiiiiiin.... 20
5.2 Intellij IDEA’s code SMEIISuiiiiiiiiiiie e 20
52,1 JaVA GIOUP . ..vviiii et e e e
5.2.2 GeNEral GIOUPuutiintit ittt et e et eaass
5.2.3 SECUITLY GIOUP .. .uuutttte ettt e ettt e et e et e ettt e e e e eeeeeas 27
5.2.4 REZEXP GIOUD ...ttt ettt e 28|
5.3 PMD code inspection tool code smells..............oooiiiiiiiiiiiiiiiiiiiinn.... 28|
5.3.1 PerfOrmanceo..uiiiinni i e B1
532 BITOr Proneooi i
533 DSIZI ..ttt et e B34
5.3.4 Best PractiCesoooviiiiiiiii i 33
5.4 Prevalence of the technical debt ... 33
DISCUSSION . . e e e 37
6.1 Common types and prevalence of technical debtL. 37
6.2 Future and recommendationscooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeenn. B8]
6.2.1 Examples of preventing technical debtcooiii.L. 38|
6.2.2 Why refactor and renew codebase?ccoooiiiiiiiiiiiiiiii. L. 39
6.2.3 Future considerationsueeeiuineetiiieeeieeeiieeeeineeennnnns 39

v

0.3 LIMItAtIONS . oo ettt ettt e ettt e e e e e e e e 40|
7 CON C LU SION S . e e e e e e e e 41l

BIBLIOGRAPHY ... e 42

1 Introduction

In the ever-evolving landscape of software development, organizations try to maintain a com-
petitive edge through innovative and efficient software solutions. The development of a
large-scale software systems often involves making choices between practicality and long-
term sustainability (Timb6 2023). If these choices are not carefully managed, they can accu-

mulate in a form of hidden cost, known as Technical Debt.

Technical debt represents the compromise between delivering software quickly to meet in-
stant business needs and investing the time and effort required to ensure long-term maintain-
ability, scalability and quality. Much like financial debt, technical debt collects interest over
time. It hinders development speed and increases the risk of software defects, inefficiencies

and diminished customer satisfaction. (Timbd6 2023)).

This thesis studies technical debt within the context of a large company’s Customer Relation-
ship Management (CRM) software. CRM systems are tools that facilitate customer interac-
tions, sales and overall business success (Chalmeta July 2006). In large organizations, CRM
software often evolves over time to accommodate changing business requirements, leading

to the potential accumulation of technical debt.

The primary objective of this thesis is to conduct a case study, focusing on the CRM software.
Within this context, the following specific objectives will be pursued with the help of code
smells: assess the prevalence of technical debt within the CRM software and identify the

common types of technical debt.

The remainder of this thesis is organized as follows: Chapter 2 provides a literature re-
view, presenting an overview of Technical Debt, CRM, agile software development and code
smells. Chapter 3 describes the research methodology, detailing the case study approach,
data collection methods and analysis techniques. Chapter 4 presents the background for the
case study. Chapter 5 presents the case study findings, including the prevalence of technical
debt and common types identified. Chapter 6 discusses the implications of the findings and
proposes recommendations for addressing and managing technical debt in large-scale CRM

software.

2 Literature review

2.1 Agile software development

There have been several different software development processes during the short lifetime
of a agile software development. Some of them have survived and stayed, while many of

them are already in the past.

Agile software development is iterative and flexible approach to software development that
focuses on collaboration, customer feedback and the ability to adapt to changing require-
ments. It aims to deliver functional software increments in short cycles, known as iterations
or sprints, while maintaining a focus on customer needs and continuous improvement. The
roots of the agile software development can be traced back to 1970s and 1980s when iterative
and incremental development approaches started gaining popularity. The "Agile” term and
the principles came into existence in 2001 with publication of the Agile Manifesto. (Beck

et al. 2001).
The four main values for agile software development are:

1. Individuals and interactions over processes and tools. The agile movement puts effort
to the relationship of the software developers and to the close team work as opposed to the

institutionalized processes. (Abrahamsson et al. 2002).

2. Working software over comprehensive documentation. The main focus of the software
team is to continuously deliver working software. New releases are produced at a high pace
(even daily). The developers have to keep the code base clean, straightforward and from a
technical point of view, as up-to-date as possible. This decreases the documentation burden

to a reasonable level. (Abrahamsson et al. [2002)).

3. Customer collaboration over contract negotiation. Values the relationship between
the developers and the clients over strict contracts, even though the importance of well-
documented contracts is essential and grows at the same pace as the project. The negotiation

process should have main focus on achieving and maintaining a viable relationship. Ag-

ile software development is focused on delivering business value immediately and by that,

decreasing the risk of contract issues. (Abrahamsson et al.[2002).

4. Responding to change over following a plan. The development group, which contains
both software developers and customer representatives should be compenent enough to con-
sider possible adjustment needs during the whole development process. This means that the
participants are prepared to make needed changes and that existing contracts are formed in a

way that supports and allows these modifications. (Abrahamsson et al.[2002).

With the ongoing pressure to deliver new features with tight time schedules, the agile meth-
ods can create technical debt in the project. And if it is not handled efficiently, it can accumu-
late and make the software error prone and diminish performance in the software. (Philippe

Kruchten November 2012)).

2.2 Scrum

Scrum is one of the most popular and widely adopted frameworks in agile software devel-
opment and it was first introduced in 1997 (Hron |2018)). Scrum increases flexibility and
produces a system which is responsive, considering the initial and additional requirements
in the development process (Schwaber |1997). Scrum splits the development process into
iterations, called sprints. In Scrum, the customer is the product owner and requirements are
represented in the form of user stories. The backlog of the product is updated continuously

and serves also as a documentation.

Software product releases are planned based on the variables in Table [T| below. These vari-
ables form the initial plan, can change during the project and has to be taken into account in

a successful development methodology.

Normally Scrum process consists of three phases: pre-game phase, development phase and

post-game phase.

Pre-game phase. The pre-game phase includes planning and architecure. Planning includes
definition of the system, product backlog, requirements originating from different teams (eg.

sales, marketing). Requirements are prioritized and given a time period. In the Architecture,

Variable Meaning

Customer requirements How the current system needs enhancing

Time pressure what time frame is required to gain a competitive advantage
Competition What is the competition up to and what is required to best them
Quality What is the required quality, given the above variables
Vision What changes are required at this stage to fulfill the system vision
Resource What staff and funding are available

Table 1: Software product releases in SCRUM. (Schwaber|1997)

the design of the system, including the architecture is planned based on the backlog. If the
system needs enhancements, the backlog items are identified with the problems they may

cause. (Abrahamsson et al. [2002).

Development phase. The development phase, also known as the game phase is the agile
part of the Scrum process. The development phase acts as a black box, where every possible
outcome is expected. The different environmental and technical variables which may change
during the process are observed and controlled during the sprints development phase. Rather
than only taking these into consideration in the beginning of the project, Scrum process

controls them constantly in order to be flexible and adaptative. (Abrahamsson et al. 2002).

Post-game phase. The post-game phase includes the release of the product. This phase
is achieved when the agreement has been made that the environmental variables such as
the requirements are completed. The post-game phase also includes the documentation,

integrations and testing for the system. (Abrahamsson et al. 2002).

In Scrum, technical debt is almost always inevitable phenomenom. And it usually involves
the process on how to manage it. In most cases, it is unclear who is responsible for it. Is it
product owner, the team or who? But it is a concept that should be taken into consideration.

(Frederico Oliveira 2015)).

2.3 Technical debt

Sometimes when using these aforementioned agile methods, or other similar processes, there
is a possibility to gain technical debt. The metaphor of technical debt in software develop-
ment was first introduced by Cunningham (October 1992). The metaphor was created to
acknowledge and think about the problem that when something is done "quick and dirty", it
sets technical debt on the project, much like financial debt. Through the years, it has been
refined and extended by numerous other researchers (Philippe Kruchten November 2012).
The metaphor of technical debt was not in massive use in it’s early days but from 2000s and
especially since 2010, it has been used to define basically all kinds of software flaws. Even

though it has more spesific meaning (Kruchten et al. [2013)).

One of the more recent definitions of technical debt is from Steve McConnell, A design or
construction approach that’s expedient in the short term but that creates a technical context
in which the same work will cost more to do later than it would cost to do now (including

increased cost over time). (Kruchten et al. 2013)).

The landscape of technical debt consist of visible and mostly invisible parts and it is divided
into Evolution issues (evolvability) and Quality issues (maintainability). Both visible issues
(evolution and quality) are linked to the mostly invisible issues. Evolution issues consists
of new features and additional functionality, while quality issues consists of defects and low
external quality. Mostly invisible part is divided into two subsections, architecture and code

as seen in Table

Architecture Code

Architectural debt Low internal quality
Structural debt Code complexity
Test debt Code Smells

Documentation debt | Coding style violations

Table 2: Mostly invisible parts of technical debt. (Philippe Kruchten November 2012)

Most agree on the fact that the cause of technical debt is schedule pressure and it does not

matter if the teams’s working method is agile and iterative or if it is more old-fashioned

5

waterfall-like process. In the end it comes down to the choices made along the way. The
choices in coding include choosing expedient or suboptimal solution in the present. It is often
the result of taking shortcuts or making trade-offs to meet the deadlines. While technical debt
is not just bad coding, the tools for detecting technical debt are for analyzing the codebase.
When using these static code analyzers there lies a danger of undetecting such technical debt
which is not detectable by these tools, eg. structural or architectural debt. (Philippe Kruchten
November 2012).

Technical debt is not a sudden one-time phenomenom and developers and stakeholders have
to remember that addressing technical debt is an ongoing process. It is essential to find a
balance between delivering new features and maintaining a healthy codebase, even though

scheduling pressure is always existing.

2.4 Code smells

Code smells are a term used in software development to describe certain patterns or char-
acteristics in the source code that indicate potential design or implementation issues. They
are called "code smells" because they are indicative of underlying problems in the code-
base, much like bad odors can indicate problems in the physical world. Code smells do not
necessarily indicate bugs, but they do suggest that the code could be improved to enhance

maintainability, readability and extensibility. (Team 2023-07-20).

Code smells are essential to identify early in the development process to avoid future com-
plications and technical debt. Developers often use code smells as a signal to refactor the

code, making it cleaner and easier to maintain.

Detecting and addressing code smells is an ongoing process in software development. Tools
like static code analysis and code review can help identify code smells. Refactoring is the
practice of restructuring the code to remove code smells while preserving its external behav-
ior. (Kralj|2023). And by paying attention to code smells and refactoring regularly, devel-
opers can maintain a healthy, maintainable codebase that is easier to understand, modify and

extend over time.

Table 3|in the next page, presents common examples of code smells. And some of these code
smells are subjective, so they are based on opinions and experience. Every code smell is not
supported by concrete evidence and some may be inspired by aesthetic reasons. Typecasts
are one of these, some developers try to minimalize the use of typecasts and some do not see
any harm in using them and do not want to describe them as code smells. (Eva van Emden

2002).

Code smells are not always precise and this is related to the fact that code smells are sub-
jective. For every project, one needs to define what the actual parameters are, e.g. which
variable naming practices are used and what is the maximum size of classes and methods

that are allowed.

Code smell

Definition

Long Method

Large Class

Duplicated Code

God Class

Long Parameter List

Feature Envy

Switch Statements

Data Clumps

Primitive Obsession

Shotgun Surgery

A method that is excessively long, making it hard to read
and understand. It can lead to duplication and make it chal-

lenging to maintain or modify

A class that has grown too big, containing too many methods
and responsibilities. This can lead to poor cohesion and high

coupling

Repeated code snippets across the codebase, indicating a

lack of abstraction or code reuse

A class that does too much, handling multiple responsibili-

ties and violating the Single Responsibility Principle

A method with an excessive number of parameters, making

the method call cumbersome and reducing readability

When a method in one class excessively uses the data or
methods of another class, indicating that the method might

belong more naturally to the other class

Overuse of switch or if-else statements, which can indicate

a need for better polymorphism and object-oriented design

When several data elements appear together in multiple
places, suggesting they should be grouped into a single data

structure

Relying too heavily on primitive data types instead of us-
ing objects and classes, leading to code duplication and de-

creased maintainability

When a single change requires modifications to many dif-
ferent classes, indicating a lack of cohesion and proper en-

capsulation

Table 3: Common examples of code smells. (Kralj[2023)

8

3 Methodology

3.1 Research setup

This research was performed using the Customer Relationship Management software used
by the case company. And the main focus was on the backend codebase of the case software.
The codebase, from some parts is quite old as is the whole softwares lifecycle. There was
a hunch that the software has technical debt, but the prevalence and the types of the techni-
cal debt were mainly only guesses. And they were only guesses, since there has not been
done a research to examine the technical debt types and how common it is. There might be
several reasons for accumulation of the technical debt but time pressure and the fast cycle of

deploying the product over the years, could be the main reasons for it.

With these reasons, the product owner allowed that a master’s thesis would be done with
the product, so that the company and the developer team would get insights if the ongoing

technical debt.

3.2 Research question
The research question of this Master’s thesis is:

RQ1: What is the prevalence of technical debt in this software and what are the most common

types of technical debt that developers face in this context?

Research question focuses only to the back-end code and every file which does not contain
the "java" suffix, is left out from the analysis. By this it is possible to narrow down the

scope, since the application at hand is very large.

3.3 Research methodology

This research uses case study as a research methodology. Case study is described to be deep
and practical based research or experiment which examines complex phenomena in their

natural settings to increase the understanding of the phenomenom. (Roberta Heale January

2018)).

The steps in case study are the same as in other types of research. First is to define the single
case or identifying a group of similar cases. Then a search conducted about what is known
about the case, which usually involves a literature review to gain more information about the
case(s) and informs the development of research question. The nature of the data is usully
qualitative, but not in every case. Case studies aim to provide rich, detailed and contextually
relevant insights into a particular phenomenon, organization, event or individual. It is usually

used in social studies but also suitable for other fields as well. (Roberta Heale January 2018)).

The analysis is important factor in case study. Case studies tend to be more selective and
focus usually on one or two issues that are the most important parts to understand from the

system, which is being examined. (Tellis|1997-006).

3.4 Data collection

In this case study, data collection was made with the help of code smells. Two different
tools are used for data collection, Intellij Idea’s code inspector tool and PMD plugin for Java
code inspection. With these tools it was possible to gather crucial information about the
technical debt from the software and visualize it. Today’s IDE’s (integrated development
environment) provide various different tools for code smells. In this thesis, the used tools
were free of charge and downloaded from the Intellij’s IDEA’s marketplace and in Section
3.5] more information about these tools can be found. The data was gathered on 23.09.2023
from the projects master branch, without any harmful bugs and software was running as it

should.

3.5 Research instruments

In this section we go through the tools to be used in the code base analysis and why they
were chosen. The idea was to use one tool directly from Intellij IDEA and the other one

should be a plugin based inspector tool.

10

3.5.1 Intellij IDEA’s code inspector

Intellij IDEA holds set of built-in code inspection tools. With these tools, user can detect
and correct abnormal code in the project before compiling. It can eg. detect dead code, find

bugs and improve the overall code structure. (documentation July 18, 2023a).

Some times the inspection requires global code analysis and by default, they are disabled in
the editor. These inspection tools are for eg. code smells. To get a full and detailed report,

these inspections are ran manually. (documentation August 21, 2023b).

Intellij IDEA’s own code inspection is the first tool to find code smells and to get data about
technical debt in the project. To get more reliable data about technical debt, code base is ran
by other inspection tool also. The tool provided by Intellij IDEA needed some configuration

to search only .java files from the project and it was done directly from the inspection tool.

3.5.2 PMD

The second tool was decided from these four different tools inFusion, JDeodorant, PMD and
JSpIRIT. These tools were used by Paiva et al. (2017-10-06) in their research and the tools
analyze Java code. The building of the exclusion criteria began by investigating if these tools
were available in Intellij IDEA, since in the referenced research, the tools were applied in

Eclipse IDE.

Only JDeodorant and PMD were available in the Intellij IDEA’s marketplace. The reserch
made an analysis of the accuracy of the used tools and they held high of the precision value
over recall. From these two metrics, PMD had higher precision in the systems they tested
with these tools. And therefore, the second code smell inspection tool is PMD. PMD inspects

only .java by default, so further configuration was not needed.

3.6 Performing the research

This research was done with the analysis of the whole backend codebase and using case
study as a research framework. The software is so large, that the research was forced to

focus only to backend code. Also since the backend holds the logic to the software, it was

11

reasonable to narrow the scope and inspect the technical debt where it usually accumulates.

The case study was to identify and analyze potential code smells from the software. From
the found code smells, analysis was gathered to represent how common technical debt is and
what kind of technical debt is most the common in this context. From the analysis, a set of

guidelines and future actions was represented how to minimize the technical debt.

The data analysis made with the help of the Intellij IDEA’s own code inspection tool and a
plug-in PMD code inspection tool, required some textfile parsing and inclusion criterias to

set the scope for the research more reasonable.

The HTML file which was created by PMD code inspection tool was almost two million
lines long, since it held the information eg. about the code smell, the java class from which
it was found and the spesific description of the code smell in the html table. And because it
was not great to read for human eye, it needed parsing. The HTML file held the information

as shown in Listing [3.1] below:

Listing 3.1: PMD result example

<tr>

<td align="center">317920</td>

<td width="%%">C:\ hidden\hidden\hidden\hidden\theJavaFile.java</td>
<td align="center" width="5%">632</td>

<td width="x%">

<a href="https ://pmd. github.io/pmd-6.55.0/pmd_rules_java_design.
html#lawofdemeter ">

Potential violation of Law of Demeter (object not created locally)

</td>

</tr>

And the parsing was done with a small Python program shown below in Listing [3.2}

12

Listing 3.2: Python program for parsing html file and writing results to a output file

import re

from collections import Counter

Read the HIML content from the file

input_filename = ’report.html’
with open(input_filename , 'r’) as input_file:
html_content = input_file.read ()

Define a regexp pattern to match the text between ’'#° and ">

pattern = r’#(.%x?)">"

Use the regular expression to find all matches in the HIML content

matches = re.findall (pattern, html_content)

Count occurrences of each warning message

warning_counts = Counter (matches)

Calculate the total count of all warning messages

total_count = sum(warning_counts. values ())

Sort the warning messages by count in descending order
sorted_warnings = sorted (warning_counts.items (),

key=lambda x: x[1], reverse=True)

Write the total count at the top of the list

sorted_warnings.insert (0, (f"Total_Count:_{total_count}", total_count))

Write the sorted warning messages and their counts to a new file
output_filename = ’output_file.txt’
with open(output_filename , ’w’) as output_file:

for warning_message, count in sorted_warnings:

output_file.write (f"{warning_message.strip ()} ,_Count:_{count}\n")

The program in Listing [3.2] created a text file containing the total count of code smells, the

13

code smell and the count of how many times it occurred in the file as seen in Listing [3.3|

below:

Listing 3.3: Example of the output file

Total Count: 317920, Count: 317920

cyclomaticcomplexity, Count: 1900

After the file was readable and code smells sorted by count, it was necessary to go through
the list and select the code smells to the final results by an inclusion criteria. Every code
smell was found from the PMD documentation (PMD (October 6, 2023¢) and with that, it
was possible to check if the code smell matched to the inclusion criteria. The inclusion
criteria is shown below. By this inclusion criteria, the final sum of different code smells was

45.

Inclusion criteria

Clean code principles

Design

Performance

Best practices

priority higher than medium, except in performance

Table 4: PMD inclusion criteria

The Intellij IDEA’s own code inspection tool also generated a html file from the analysis
results and it was hard to read and required parsing and inclusion criteria with the same idea

as the PMD’s results.

The analysis results from Intellij IDEA were quite different in their form and it needed some
skimming and analysing the text to find patterns. After finding the patterns from the text file,
which was copied from the html page, it was clear that by including the lines with the words

“inspection’ and ’group’, it was possible to gather the correct data from it.

The text file from the html page had the structure presented in Listing [3.4}

14

Listing 3.4: Example Intellij IDEA’s code inspection

IntelliJ IDEA inspection report:
Inspection tree:

"Inspections Results’ project 5575 warnings 2089 weak warnings 2421 typos

General group 102 warnings 1 030 weak warnings
Duplicated code fragment inspection 1 030 weak warnings
class JavaClassService 1 weak warning

WEAK WARNING Duplicate code: lines 119-130

And for parsing right contents from it, a Python program was created as seen from Listing

3.9

Listing 3.5: Python program for parsing Intellij IDEA’s results

input_filename = ’intellijidea.txt’

>

output_filename = ’intellijidearesult.txt

Open the input file in read mode
with open(input_filename , 'r’) as input_file:
Read all lines from the input file

lines = input_file.readlines ()

Filter lines containing the words "group" and "inspection"

but not "’group’"

or "’inspection’”

filtered_lines = [line for line in lines if (’_group_.’ imn line.strip ()
and "’group’" not in line) or (’inspection’ in line.strip () and
"’inspection’" not in line)]

Open the output file in write mode and write the filtered lines
with open(output_filename , ’w’) as output_file:

output_file.writelines (filtered_lines)

The parsing had to be done differently with keyword ’group’, the file contained different

15

text parts containing the word. But the right lines were captured adding whitespace to the

keyword as seen in the Python program.
And with the help of the Python program, the final text file was in the form as seen from

Listing [3.6}

Listing 3.6: Intellij IDEA’s final output file

IntelliJ IDEA inspection report:

General group 102 warnings 1 030 weak warnings
Duplicated code fragment inspection 1 030 weak warnings
Redundant suppression inspection 102 warnings

HTML group 4 warnings

Obsolete attribute inspection 4 warnings

After the file was readable, an exclusion criteria was added to the process to narrow down ir-
relevant code smells and finalizing the the actual code analysis for the results. The exclusion

criteria for Intellij IDEA’s code inspection was as follows:

Exclusion criteria

HTML group

JVM language group

Proofreading group

Kotlin group

Weak warnings

Code style issues group

Code maturity group

Documentation related

Table 5: Intellij IDEA’s exclusion criteria

For both code inspection tools, the main priority was performance, design and only Java

code.

16

4 Case study

4.1 Case company

The company and the software in this case study are anonymous due to the request of the
company, so the background for the case company and the case software are quite general and
short and aliases are created for them to ease the writing process. The aliases are Good Test
Oy, for the company and Silverback, for the software. Software’s type is CRM (Customer
Relationship Management) system and it has been built solely for this company and it has

been in use for over a decade.

The Good Test Oy is a Finnish company founded many years ago with a strong focus on
the pulp and paper, energy and other process industries. Over the years it has evolved and

diversified its operations in many ways to become a strong company in its areas of expertise.

The Good Test Oy has thousands of employees and a lot of subcontractors which deliver

solutions to the main company.

4.2 Case software

The Silverback’s lifecycle started over 15 years ago and has been in use ever since. Silver-
back’s software type is customer relationship management and it is one of the most used
softwares in the company. The software is a web-application using Java Spring framework

which is the most popular application development framework for enterprise Java.

The Silverback holds important information about the company’s customers, suppliers and
other stakeholder groups. It has integrations to many other platforms and services and the
software can have over 1000 simultaneous users. It also has a mobile application, which is

not updated so often and is excluded from the research.

The Silverback is developed by a subcontractor with a team of three members at the moment.
The developer team has seen changes during the years and software has seen over 30 different

developers during its lifecycle but the core has been the same for many years, which has

17

been a strong point for the development of the software. In the next section, case software’s

characteristics and history are gone through in general.

4.3 Customer relationship management

A CRM (Customer Relationship Management) software is a type of business application
designed to help organizations manage and analyze interactions and relationships with their
customers. It provides a centralized system for storing customer data, tracking customer
interactions and managing various aspects of the customer lifecycle. It is customer-focused
system which aim is to create and add value to for the company and its customers (Chalmeta
July 2006). For example, a company creates database about their customers, which shows
sufficient and detailed relationships so that eg. management and salespeople could access the
information and provide services and needs for their customers. It also helps the company
utilize its customers profitability to their full potential, in present and in the future (Yurong

Xu 2002).

Normally, CRM has four characteristics, salesforce automation, customer service and sup-
port, field service and marketing automation. Characteristics have an impacts as shown in

Table 6| below. These characteristics are the baseline for CRM applications.

Characteristics Impact

Salesforce automation Empowered sales professionals

Customer service and support Customer problems can be solved efficiently through
proactive customer support

Field service Remote staff can efficiently get help from customer ser-
vice personnel to meet customers’ individual expecta-
tions

Marketing automation Companies can learn clients’ likes and dislikes to better

understand customers’ needs

Table 6: CRM characteristics and impacts. (Yurong Xu 2002)

First wave of CRM solutions are dated back to 1980s and early 1990s and the market grew

18

rapidly in the 2000s. First web-based CRMs were introduced by SAP in 1999 (Yurong Xu
2002)) and with internet’s involvement functions of a CRM changed a lot. With the help of
the internet customer can actually transact with the companies and by that the companies can

implement more functionality to their customers and create value for them.

19

5 Results

5.1 Most commmon types of technical debt

When examining the results from both inspection tools, most of the code smells were re-
lated to the Performance and Maintainability issues. The inclusion and exclusion criterias
for Intellij IDEA’s and PMD inspection tools also quided towards performance and main-

tainability.

5.2 Intellij IDEA’s code smells

The total code smell count from Intellij IDEA’s code inspection tool was 10085 (after inclu-
sion/exclusion criteria) and from that with the help of the exclusion criteria, the Java group
had the most code smells with the count of 3347. Intellij IDEA’s inspection report included
different sub groups which then holds more information about the group. It also states the
count of warnings and weak warnings in each group. In table below, the count of warnings

have a suffix "W’ and weak warnings have a suffix "w’.

In Figure [I|below, total code smells by group are visualized by percentages. The counts are
from the data after implementing inclusion and exclusion criterias. The biggest percentage

was from Java group, which has mainly performance and design related smells.

20

Java group

&=—— RegExp group
Security group

General group

Figure 1: IntelliJ IDEA’s Results Chart

In Table [7] a more detailed view of the results is presented. Empty cells indicates that there

are not anymore code smells in that particular area of code smells.

21

Table 7: IntelliJ IDEA inspection report overview

Java group

General group

Security group

RegExp group

Java language level
migration aids group,

Count: 1875W

Redundant suppression

inspection, Count: 102W

Vulnerable imported
dependency inspection,

Count: 50W

Duplicate character in
character class inspection,

Count: 12W

Javadoc group, Count:
873W

Unnecessary non-capturing
group inspection, Count:
IW

Class structure group,

Count: 331W

Verbose or redundant code
constructs group, Count:

T0W, 28w

Memory group, Count:

74W

Performance group, Count:

42W

Control flow issues group,

Count: 3W 3w

Numeric issues group,

Count: 16W

Resource management

group, Count: 15W

Probable bugs group,
Count: 13W

Threading issues group,

Count: 3W

Cloning issues group,
Count: 1W

In the next sections, the most important smells are gone through in more detail from every

code smell group. Every code smell definition in the following sections, has been searched

from the JetBrains code inspection documentation. The documentation was an aid to de-

scribe the code smells in a more detailed way, if it was possible or if the smell was found

from the documentation.

22

5.2.1 Java Group

The largest primary group for code smells was Java group. The inspection tool found a
total of 5406 warnings and 840 weak warnings from the Java group. There were total of
12 sub-groups and since the number is quite low, every sub-group is also described in more
detail. Except the Javadoc group, since it is document related. Also as stated before in
the exclusion criteria, weak warnings are not included to the final results, so only notable

warnings are gone through in more detail.

Java language level migration aids group: had a total of 1875 warnings and all of the
warnings were in the subsub-group called Java S group and the warnings are described

below.

1. ’BigDecimal’ legacy method called inspection: this reports BigDecimal legacy method
usages in the project and this had 96 warnings.

2. Raw use of parameterized class inspection: this inspection identifies situations
where a programmer is using a generic class without specifying its type parameters.
For example using List<T>, without specifying the type parameter (eg. List<String>).

This may result in runtime errors or make the code less readable and maintainable.

Class structure group: had a total of 331 warnings and all of them were in the Non-final
field in ’enum’ inspection. This means that when programmer declares a field in an enum

without marking it as final, code inspection tool declares it as a violation.

Verbose or redundant code constructs group: had a total of 70 warnings 28 weak warnings

and the notable warnings were spread on to four different inspections.

1. Condition is covered by further condition inspection: this inspection is designed
to find situations where a conditional statement is unnecessary due to a prior condi-
tion. This inspection is aimed at improving code clarity and efficiency. Redundant
conditions can make code harder to read and maintain. This had 61 warnings.

2. Explicit array filling inspection: this identifies instances where an array is explicitly
filled with the same value for all elements. Instead of manually populating each ele-

ment with the same value, it suggests using the Arrays.fi1l1 method. This had one

23

warning.

3. Manual min/max calculation inspection: This reports situations where a program-
mer manually calculates the minimum or maximum of two values instead of using the
built-in Math .min or Math .max methods (JetBrains May 16, 2023a). This had four
warning.

4. Unnecessarily escaped character inspection: this reports instances where a character
is unnecessarily escaped in a string literal. Example string [] can be modified to

—; [. 1. This had four warning.

Memory group: had a total of 74 warnings and every warning was included in the Inner
class may be ’static’ inspection. This identifies the situations where an inner class could be
declared as static. Making the inner class static can have benefits in memory usage and can

also improve performance.

Performance group: is one of the most important groups in this inspection. Performance

group had a total of 42 warnings with four different types.

1. Call to ’list.containsAll(collection)’ may have poor performance inspection: this
inspection is concerned with the time complexity and might have poor performance
related issues, espescially if the list type is eg. LinkedList, as it involves iterating
through the entire list to check for each element. This had two warnings.

2. Call to ’set.removeAll(list)’ may work slowly inspection: this inspection is also
concerned with the time complexity and the set .removeAll (1ist) may work
slowly if the Set is implemented as a TreeSet. With HashSet the operation is gener-
ally fast. This had six warnings.

3. Early loop exit in ’if’ condition inspection: this identifies if the code can be refac-
tored to more simpler form when there is a early exit from a loop.

4. ’InputStream’ and ’OutputStream’ can be constructed using ’Files’ methods in-
spection: this identifies situations where instances of Input St reamor Output Stream

can be more efficiently created using methods from the Files utility class. Example
InputStream inputStream = new FileInputStream(new File ("path/to/f
instead of this, one would adviced to do this as shown in Listing below:

24

Listing 5.1: InputStream method example

InputStream inputStream = Files.newlInputStream (Paths.get("path/to/file"));

this will provide a more concise syntax but also allows better handling of IOExcep-

tions.

Control flow issues group: had a total of three warnings and 24 weak warnings. All the
notable warnings were in the Minimum ’switch’ branches inspection. This reports the
situations where a switch statement has more branches than necessary. This helps to simplify

the form of the switch statement when some cases have the same behavior.

Numeric issues group: this had a total of 16 warnings and they were spread into three

different inspections.

1. Cast group: had one inspection of Integer multiplication or shift implicitly cast
to ’long’ inspection. This is built to identify situations where the result of an integer
multiplication or shift operation is implicitly cast to a long. This inspection helps
ensure that the result is correctly handled and potentially avoids overflow issues. This
had six warnings.

2. Unary plus inspection: this is designed to identify situations where a unary plus
operator (+) is used on a numeric expression unnecessarily. Example: int value = +5;.
This had seven warnings.

3. Unpredictable ’BigDecimal’ constructor call inspection: this focuses on identifying
situations where the BigDecimal constructor is called with a floating-point value. This

had three warnings.

Resource management group: this had in total of 15 warnings and all of the warnings came
from the AutoCloseable used without ’try’-with-resources inspection. This is designed
to identify situations where an AutoCloseable resource is being used but not enclosed with a

try-with-resources statement.

Example of an autocloseable statement in Listing [5.2] below.

25

Listing 5.2: AutoCloseable statement

//Using using try—-with—resources

AutoCloseableResource resource = new AutoCloseableResource ();
resource .doSomething ();

resource . close ();

// VS.

// Using try—-with—resources

try (AutoCloseableResource resource = new AutoCloseableResource ()) {

resource .doSomething ();

Probable bugs group: this had a total of 13 warnings and they were spread into three

different inspections.

1. Redundant operation on empty container inspection: this is designed to identify
situations where operations are performed on a container that is known to be empty.
E.g. declaring List<String> list variable and immediately checking if it is empty
(1f (list.isEmpty())). This had one warning.

2. Sorted collection with non-comparable elements inspection: this identifies situa-
tions where one is using a sorted collection, such as TreeSet, with elements that are
not comparable. This had nine warnings.

3. Suspicious date format pattern inspection: this identifies problems with date for-
matting, where a date format pattern string might lead to unexpected results or errors.

This had three warnings.

Threading issues group: this had in total of three warnings and every warning was in the
same inspection scope Busy wait inspection. A busy wait occurs when a loop repeatedly
checks a condition without yielding or sleeping, consuming CPU resources unnecessarily.

For example shown in Listing[5.3}

26

Listing 5.3: A Busy Wait

while (!condition) {
// Perform some actions

}

If condition is not changing inside the loop, this can result in high CPU usage as the loop

keeps checking the condition repeatedly without allowing other tasks to run.

Cloning issues group: this had in total of one warning and it was in the inspection Clone-
able class without ’clone()’ method inspection. This identifies the situations where a class

implements the Cloneable interface but does not provide a public clone () method.

5.2.2 General Group

The code inspection found total of 102 warnings and 1030 weak warnings from the general
group. Warnings were limited to only one inspection group called Redundant suppression
inspection. In this group, also weak warnings were taken into consideration, since the weak
warnings contained duplicate code inspection and it is from maintainability persperctive,
quite important tool to identify technical debt. Every weak warning was in the duplicated

code fragment inspection group.

Redundant suppression inspection: this reports usages of the elements, that can be re-
moved because the inspection they affect is no longer applicable in this context (JetBrains

May 13, 2023b). For example the use of @SuppressWarning annotation.

Duplicated code fragment inspection: this reports every duplicated code block from the

inspected scope (JetBrains May 13, 2023b).

5.2.3 Security Group

There were total of 50 warnings and 143 weak warnings in the security group. Every no-
table warning, was linked to the Vulnerable imported dependency inspection, which means

larger and more complex projects tend to need various third-party dependencies that help

27

develop productivity, extending the common libraries and frameworks functionality. And
this code smell states that there might be some kind of vulnerability issues in 50 different

dependencies, that the project uses. (JetBrains September 7, 2023c).

5.2.4 RegExp Group

In the RegExp group code inspection tool found total of 13 warnings and 67 weak warnings.
Notable warnings included the Duplicate character in character class inspection with the

count of 12 and Unnecessary non-capturing group inspection with one occurence.

Duplicate character in character class: this reports duplicate characters inside regular
expression class. These duplicate characters are not necessary and can be removed (JetBrains

May 17, 2022al).
Example: [aabc] -> [abc].

Unnecessary non-capturing group: this reports any unnecessary non-capturing groups,

which do not have influence on the result (JetBrains May 13, 2022b).

5.3 PMD code inspection tool code smells

The total code smell count from PMD code inspection tool was 18408 (after inclusion/exclu-
sion criteria) and from that with the help of inclusion criteria, Consecutive Appends Should
Reuse code smell from the Performance primary smell group held the most code smells with

the count of 3410.

In Figure [2] below, total code smells by group are visualized by percentages. The counts are
from the data after implementing inclusion and exclusion criterias. Biggest percentages here
are from Performance, but the PMD inspection tool was more precise in terms of dividing
the smells into smaller parts and the other areas are closer to it, unlike in Figure [T} where

Intellij IDEA’s inspection results are visualized.

28

Performance

Error Prone Best Practices

Design

Figure 2: PMD Results Chart

In Table [§] a more detailed view of the results is presented. Empty cells indicates that there

are not anymore code smells in that particular area of code smells.

29

Table 8: PMD inspection report overview

Performance

Error Prone

Design

Best Practices

Consecutive Appends

Should Reuse, 3410

Return Empty Collection
Rather Than Null, 423

Cyclomatic Complexity,
1900

Guard Log Statement,
2016

Avoid Instantiating Objects
In Loops, 1658

Constructor Calls

Overridable Method, 279

Modified Cyclomatic
Complexity, 1535

Avoid Reassigning

Parameters, 544

Consecutive Literal

Appends, 1198

Return Empty Array
Rather Than Null, 30

Avoid Catching Generic
Exception, 1343

System Println, 56

Redundant Field Initializer,

754

More Than One Logger, 13

Avoid Throwing Raw
Exception Types, 134

Append Character With
Char, 734

Avoid Branching
Statement As Last In Loop,
5

Class With Only Private
Constructors Should Be
Final, 5

Inefficient StringBuffering,
733

Proper Clone

Implementation, 5

Abstract Class Without
Any Method, 2

Use StringBuffer For
String Appends, 468

Logger Is Not Static Final,
4

Insufficient StringBuffer
Declaration, 404

Suspicious Equals Method

Name, 4

Add Empty String, 266

Broken Null Check, 2

Avoid Calendar Date
Creation, 139

Wquals Null, 2

Use Index Of Char, 70

Integer Instantiation, 60

Avoid FileStream, 41

Long Instantiation, 40

Simplify StartsWith, 29

String To String, 24

String Instantiation, 15

Avoid Array Loops, 13

Optimizable To Array Call,
10

Boolean Instantiation, 10

Avoid Using Short Type, 9

Too Few Branches For A

Switch Statement, 8

Unnecessary Wrapper

Object Creation, 7

Useless String ValueOf, 3

Use Arrays As List, 2

Inefficient Empty String
Check, 1

30

In the next sections, the most important smells are gone through more detailed from every
primary code smell group. In the performance group, only smells with the count of 500
and more or if priority equals/is higher than medium-high, are gone through. If a rule is

deprecated it is not gone through in a more detailed way.

5.3.1 Performance

Consecutive Appends Should Reuse code smell means that consecutive append calls with
StringBuffer/StringBuilder should be chained. This can improve the performance
by producing a smaller bytecode, reducing overhead and improving inlining. The priority

for this is medium.

Avoid Instantiating Objects In Loops this means that one should avoid creating new objects
in a loop and should be checked if it is possible to create them outside of a loop. Priority for

this smell is medium.
Consecutive Literal Appends means that one should not call
StringBuffer/StringBuilder.append(...)

with literals, since the literals are constants, they can already be combined into a single
String literal and this String can be appended in a single method call (PMD October 29,
2023d). Priority for this smell is medium.

Redundant Field Initializer this means that Java will initialize fields with known default
values so any explicit initialization of those are redundant and results in a larger class file
(approximately three additional bytecode instructions per field) (PMD |October 29, 2023d).

Priority for this smell is medium.

Append Character With Char means that a programmer should avoit concatenating char-
acters with St ringBuffer/StringBuilder.append methods (PMD|October 29, 2023d).

Priority for this smell is medium.

Inefficient StringBuffering this means that a programmer should avoid concatenating non-

literals in a St ringBuf fer constructor or append () method. Main reason is that JVM

31

will create and destroy intermediate buffers (PMD October 29, 2023d). Priority for this smell

is medium.

Avoid FileStream this means that the classes FileInputStreamand FileOutputStream,
contains a finalizer method which will cause pauses in garbage collection. The FileReader
and FileWriter constructors instantiate FileInputStreamand FileOutput Stream
and causing garbage collection issues while FileInput Streamand FileOutputStream

classes finalizer methods are called (PMD |October 29, 2023d)). Priority for this smell is high.

Long Instantiation this means that when calling new Long () constructor, it causes mem-
ory allocation that can be avoided by the static Long.valueOf (). It makes use of an
internal cache that recycles earlier instances making it more efficient memory-wise. Also,
new Long () has been deprecated since JDK 9 for that reason (PMD |October 29, 2023d).

Priority for this smell is medium-high.

String Instantiation this means that a programmer should avoid instantiating String objects
(String foo = new String("foo");), since String objects are immutable (PMD

October 29, 2023d). Priority for this smell is medium-high.

Boolean Instantiation this means that a programmer should avoid instantiating Boolean
objects (Boolean bar = new Boolean ("true");). new Boolean is deprecated
since JDK 9.0 and preferable way is eg. Boolean.TRUE (PMD |October 29, 2023d). Pri-

ority for this smell is medium-high.

Avoid Using Short Type this means that Java uses the short type to reduce memory usage,
not to optimize calculation. But, JVM does not have arithmetic capabilities for the short
type. In fact, the JVM must convert it into int, then do the calculations and finally convert
the short back to int. So any storage gains which the short type gained, may be offset by
adverse impacts on performance (PMD |October 29, 2023d). Priority for this smell is high.

5.3.2 Error Prone

Return Empty Collection Rather Than Null this means that if a method returns a collec-

tion, such as an array, a collection or a map, it should return an empty one rather than null.

32

This automatically removes the need for null checking and avoid Nul1PointerExceptions

(PMD November 5, 2023c)). Priority for this smell is high.

Constructor Calls Overridable Method this means that a constructor in a Java class calls
a method that can be overridden by subclasses. This can lead to unexpected behavior,
eg. NullPointerException, during object construction, especially when the subclass
overrides the invoked method. To avoid this problem, a programmer should only use meth-
ods that are static, private or final in the constructors (PMD November 5, 2023c). Priority

for this smell is high.

More Than One Logger this means that normally a class is using only one logger. This rule
supports slf4j, log4j, Java Util Logging and log4j2 (PMD November 5, 2023c). Priority for

this smell is medium-high.

Avoid Branching Statement As Last In Loop this means that using a branching statement
as the last part in a loop may be a bug and/or it might be confusing (PMD November 3,
2023c]). Priority for this smell is medium-high.

Proper Clone Implementation this reports the situations where a objects clone () method,
should be implemented with super.clone () (PMD November 5, 2023c). Priority for

this smell is medium-high.

Suspicious Equals Method Name this means that the methods name and number of pa-
rameters are suspiciously close to Object .equals () method, which can denote an in-
tention to override it. Instead of overriding the method Object .equals (), it overloads
it instead. Overloading Object .equals method can be confusing for other program-
mers, error-prone and hard to maintain (PMD November 5, 2023c). Priority for this smell is

medium-high.
Broken Null Check this means that the null check is broken since it will throw a
NullPointerException

itself. It is likely that a programmer has used | | instead of && or vice versa (PMD Novem-

ber 5, 2023c). Priority for this smell is medium-high.

33

Equals Null this report the situations where a tests for null should not use the equals ()
method. The == operator should be used instead (PMD November 5, 2023c). Priority for
this smell is high.

5.3.3 Design

Cyclomatic Complexity means that the complexity of methods directly affects maintenance
costs and readability. Cyclomatic complexity assesses the complexity of a method by count-
ing the number of decision points in a method and adding one for the method entry. These
decision points are places where the control flow jumps to another place in the program and
they include all control flow statements, such as if, while, for and case. Generally, com-
plexity numbers range from 1-4 (low complexity), 5-7 (moderate complexity), 8-10 (high
complexity) and 11+ (very high complexity) (PMD November 5, 2023b). Priority for this

smell is medium.

Modified Cyclomatic Complexity this is the same as Cyclomatic Complexity but with
speficied limit. By default, the number is 10.

Avoid Catching Generic Exception this reports situations where generic exceptions such
as NullPointerException, RuntimeException or Exception are used in a
try—-catch block. Exceptions should be defined as precisely as possible (PMD Novem-
ber 5, 2023b). Priority for this smell is medium.

Avoid Throwing Raw Exception Types this means that is hould be avoided to throw certain
exception types. Rather than throw araw Runt imeException, Throwable, Exception
or Error, one should use a subclassed exception or error instead (PMD November 5,

2023b)). Priority for this smell is high.

Class With Only Private Constructors Should Be Final this reports the situations where
classes should be made final because they cannot be extended from outside their compilation
unit. This is because all their constructors are private, so a subclass could not call the super

constructor (PMD November 5, 2023b)). Priority for this smell is high.

Abstract Class Without Any Method this means that if an abstract class does not provide

34

any methods, it may be acting as a simple data container that is not meant to be instantiated.
In this case, it would better to use a private or protected constructor in order to prevent
instantiation than make the class abstract (PMD [November 5, 2023b). Priority for this smell

is high.

5.3.4 Best Practices

Guard Log Statement means that when using a log level, it should be checked if the loglevel
is actually enabled or otherwise the associate String creation and manipulation should be

skipped (PMD |[November 5, 2023a)). Priority for this smell is medium-high.

Avoid Reassigning Parameters this means that reassigning values to incoming parameters
is not recommended. Temporary values should be used instead since then it will not break
the principle of least astonishment and making the code more understandable. It should be
noted that this rule considers both methods and constructors (PMD |[November 5, 2023a).

Priority for this smell is medium-high.

System Println this refers to situations where System. (out |err) .print are used.
Normally they are used for debugging purposes. By using a logger this behaviour can
enabled/disabled at will (and by priority) and avoid clogging the Standard out log (PMD
November 5, 2023a). Priority for this smell is medium-high.

5.4 Prevalence of the technical debt

Measuring prevalence of technical debt in a codebase is a challenging task but static code
analysis tools help to identify it. In this research, it has to be noted that there has not been
done anything like this before. And there was a lot of code smells generated by the static
code analysis tools, so solely on this information, it can be stated that the prevalence of
the technical debt would quite high. Both static code analyzers tools reported thousands
of warnings from the project and while many of them has medium or low severity, many of
them also had higher severity. The main focus was in the performance side in both inspection

tools and both of them reported lots of different code smells and warnings.

35

Even though the count of the smells and warnings were high, the age of the software has
to be taken into account. The roots of this CRM’s lifecycle dates back to 2006 and without
constant refactoring and maintaing of the code base, the count of code smells and warnings
could be a lot higher. From that point of view, the prevalence of the technical debt would
medium size at worst. And when taking the whole count of lines in the project, the prevalence
would drop to low, since the count for total lines of java code is almost one million and the

project total count of code lines is almost 3.5 million.

Since there is not anything to objectively define the technical debt, it comes down to the point
of view to define the prevalence. And since the software should be bug-free, performing at
its best, highly maintainable and clear to inspect and read for other programmers, the bottom
line for prevalence of the technical debt would be medium in the scale of low, medium,

medium-high and high.

36

6 Discussion

6.1 Common types and prevalence of technical debt

Even though the case software did not show any clear signs of technical debt, it was probable
that it existed. And as shown in Section [5] the existence of it was clearly shown. The main
area where technical debt was found was performance related. This was mainly due to the
inclusion and exclusion criterias. Many of the reported code smells in total, were related
to the style of programming, meaning that there can be multiple ways of executing a code
block and one approach is usually faster and better than the other. Also there were code
smells with deprecated functionalities, which may still work but should be refactored to the

updated state.

Also, a lot of code smells were referring to coding practices which can easily lead to errors,
harder maintainability and harder understanding. These code smells were eg. duplicate code
blocks, style violations in a sense that in some cases programmer should avoid using one
approach even though it works or something has extra parts when it would work also with
less code and issues with class, method and statement structures. These prementioned areas

can accumulate technical debt especially in the area of maintainability.

When performing conclusions of the prevalence of the technical debt question, it is harder
to create a simple answer. Like stated in Section[5.4] there is not a clear way to measure it.
The scale for the prevalence was created only to state the prevalence in some readable form.
The measuring for it was done only by the researcher with the help of the data gathered
by the tools and the common information from the software. The medium level prevalence
could be higher or lower if someone else would have done the examination from the same
data. Depending on the fact how familiar one is with the current state of the software and
the gathered data. With that said, the prevalence of the technical debt in the software can’t

be viewed as an absolute truth, but a more of a point of view from a one developer.

37

6.2 Future and recommendations
6.2.1 Examples of preventing technical debt

The foundings of this master thesis, are heavily related to performance and maintainability
issues. The researchers opinion is that the most important ways to prevent technical debt
in this scope, are code refactoring and documentation. Code refactoring concerning found
code smells would be quite easy, since the the master thesis will give the exact parts which
to refactor. Documentation is always helpful for future developers in the project, but also to
the current ones. It will clear the ongoing development and well documented project, will be
helpful in the future if some kind of bugs etc. are found. It will clearly tell how some feature
should be working, and helps the eg. debugging the issue. Below, there are some most of the
important ways of preventing technical debt. Including the most important ones regarding

this thesis, code refactoring and documentation.

Priorize and triage. Identify and prioritize the specific areas of technical debt based on
their impact on the system and business goals. Triage issues to address critical debt first. Eg.

prioritize for performance issues. (Thakkar 2022-07-19).

Refactoring. Plan and execute systematic refactoring efforts to identified code smells and

issues. Break down large refactorings into smaller, manageable tasks. (Khan 2023-07-21).

Test coverage. Improve test coverage to ensure that changes to the codebase are protected
well eoungh by automated tests. Address areas with low or no test coverage, especially those

associated with high technical debt. (Marcin Dryka 2024-01-22)

Documentation. Enhance and update documentation to improve code readability and under-
standing. Clear documentation can help developers address technical debt more effectively.

(Marcin Dryka 2024-01-22)

Monitoring and measuring. Continuously monitor and measure technical debt metrics to

track improvements over time. (Marcin Dryka 2024-01-22)

Strategic planning. Incorporate technical debt reduction into the strategic planning for fu-

ture releases. Allocate dedicated time in development cycles to focus on addressing technical

38

debt. (Marcin Dryka 2024-01-22)

6.2.2 Why refactor and renew codebase?

For longing the lifecycle of a software, it should go through analysis and renewal of codebase
from time to time. Depending on the time issues and importance of the parts which are
refactored, this is a process that product owner should take into account. In the scope of
this Master’s thesis, performance and maintainability are the parts that should be looked into

more detail as seen from the code smells.

Performance aspect of a software is important, because for users, it is more pleasurable
way of using the software when it is performing at its best. Usually when the software is

performing well, it is also reliable for users, when taking eg. memory usage into account.

Maintainability is important aspect for developers, since when a software is getting new
features and is getting refactored, it is important that the code base for the project is main-
tainable. When describing mainatability, it usually means minor code changes, while main-
taining good readability, so that possible new developers can learn the software as quick
as possible. Also it is highly important for current developers also, since many times their
work cross each others work and it also eases the workload when finding possible bugs while

debugging for example.

6.2.3 Future considerations

Since it was stated in the results, that the prevalence of the technical debt is medium in the
project when it comes down to total count of code lines, the count of code smells and the
age of the software there are some ideas and actions that should be done. And the preferred

actions should at least include factors from time pressure and resourcing the budget.

The time pressure with new features which is one of the greatest factors that creates technical
debt, it would be a good plan to allocate time and resources also to maintain the health of the
code base. A healthy codebase would build certainty for the future. And the process should

go on continuously, not just every once in a while, so that the prevention of the technical

39

debt would be as high as possible.

This master thesis can help to set a routine of exploring technical debt in the project scope.
If same or similar kind of procedure is carried out eg. bi-monthly, statistics created out of
the results, it can be helpful of seeing how the software is doing in terms of code smells
and probable technical debt. This could prevent bugs, help maintainability and detect minor

performance issues before they become major.

Also, the results presented in this master thesis can set the base for the future procedures.
The technical part of the results should be fixed, so that performance and maintainability
would be in better shape. The results are handed out in a rather technical way, so it would be

quite easy for a certain developer to fix the issues presented in the results.

6.3 Limitations

This study has its limitations when researching the technical debt from the project. The
scope focused only to back-end code and while the logic of the software is there, it is highly
possible and even probable that there lies more technical debt if the whole project would be
examined. As said about the total lines of code, back-end Java code is roughly one third

from the actual total lines of code.

When creating the inclusion and exclusion criteria, a lot of coding best practices were ex-
cluded from the project, due to the project’s unique nature and the fact that different develop-
ers write code in different ways and there is not a single way of doing it. Also the inclusion
and exclusion criterias exclude lot of weaker warnings, which alone may not be as important
or severe, but when weak warnings accumulate, they might create a situation where they are

in fact more severe than initially thought.

When taking these limitations into account, this thesis brings some overall view for the
questions what the prevalence of the technical debt is and what are the common types of
it. More detailed perspective would require analysing the whole codebase and section by

section score the severity and fix the issues.

40

7 Conclusions

The aim of this study was to research technical debt, the prevalence of it and the common
types in a CRM software. The precise research question was "What is the prevalence of
technical debt in this software and what are the most common types of technical debt that

developers face in this context?".

The results gathered from the data, showed that the prevalence of the technical debt in this
context is at medium level. The assessment of the prevalence was done solely by the re-
searcher, with knowledge about the software itself, software’s current state and the gathered

data.

The total amounts of code smells related to technical were initially so large that some ex-
clusion and inclusion criterias had to be applied. With the built criterias, the total amounts
were 10085 from Intellij IDEA’s tool and 18408 from the PMD tool. Most common types
were related to performance issues in both tools, so it is safe to say that the software’s most

common technical debt type is performance issues.

41

Bibliography

Abrahamsson, Pekka, et al. 2002. “Agile Software Development Methods: Review and Anal-
ysis”, visited on August 21, 2023. https://arxiv.org/ftp/arxiv/papers/1709/1709.08439.pdf.

Beck, Kent, et al. 2001. Manifesto for Agile Software Development. Visited on July 27, 2023.

https://agilemanifesto.org/iso/en/manifesto.html.

Chalmeta, Ricardo. July 2006. “Methodology for customer relationship management” ().
Visited on June 11, 2023. https://citeseerx.ist.psu.edu/document ?repid=rep1 &type=pdf&
doi=56f3fa514238cf67cca08f9809ee488adc0af840.

Cunningham, Ward. October 1992. “The WyCash Portfolio Management System” (): 29-30.
Visited on May 28, 2023. https://dl.acm.org/doi/pdf/10.1145/157709.157715.

documentation, Intellij IDEA. July 18, 2023a. Code inspections. July 18, 2023. Visited on
August 31, 2023. https://www.jetbrains.com/help/idea/code-inspection.html.

. August 21, 2023b. Run inspections. August 21, 2023. Visited on August 31, 2023.

https://www jetbrains.com/help/idea/running-inspections.html.

Eva van Emden, Leon Moonen. 2002. “Java Quality Assurance by Detecting Code Smells”,
visited on September 3, 2023. https://citeseerx.ist.psu.edu/document ?repid=rep1 & type=
pdf&doi=4974d6245dca38cb16370c964907b9%abaSa614af.

Frederico Oliveira, Viviane Santos, Alfredo Goldman. 2015. “Managing Technical Debt in
Software Projects Using Scrum: An Action Research”, visited on March 23, 2024. https:
//do1.org/10.1109/Agile.2015.7. https://www.hanssamios.com/dokuwiki/_media/managing_

technical_debt_in_software_projects_using_scrum.pdf.

Hron, Michal. 2018. “Scrum in practice: an overview of Scrum adaptations”, visited on Au-
gust 27, 2023. https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/c7dad016-
27792-4ec5-96a5-1941a7d43c11/content.

42

https://arxiv.org/ftp/arxiv/papers/1709/1709.08439.pdf
https://agilemanifesto.org/iso/en/manifesto.html
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=56f3fa514238cf67cca08f9809ee488adc0af840
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=56f3fa514238cf67cca08f9809ee488adc0af840
https://dl.acm.org/doi/pdf/10.1145/157709.157715
https://www.jetbrains.com/help/idea/code-inspection.html
https://www.jetbrains.com/help/idea/running-inspections.html
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4974d6245dca38cb16370c964907b9aba5a614af
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4974d6245dca38cb16370c964907b9aba5a614af
https://doi.org/10.1109/Agile.2015.7
https://doi.org/10.1109/Agile.2015.7
https://www.hanssamios.com/dokuwiki/_media/managing_technical_debt_in_software_projects_using_scrum.pdf
https://www.hanssamios.com/dokuwiki/_media/managing_technical_debt_in_software_projects_using_scrum.pdf
https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/c7dad016-2792-4ec5-96a5-1941a7d43c11/content
https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/c7dad016-2792-4ec5-96a5-1941a7d43c11/content

JetBrains. May 17, 2022a. Code Inspection: Duplicate character in character class. May 17,
2022. Visited on October 21, 2023. https://www .jetbrains.com/help/phpstorm/regexp -

duplicate-character-in-character-class.html.

—— May 13, 2022b. Code Inspection: Unnecessary non-capturing group. May 13, 2022.
Visited on October 21, 2023. https://www.jetbrains.com/help/datagrip/regexp-unnecessary-

non-capturing-group.html.

——— May 16, 2023a. Code Inspection: Condition can be replaced with "min()’/’max()’
call. May 16, 2023. Visited on October 29, 2023. https://www.jetbrains.com/help/phpstorm/

php-condition-can-be-replaced-with-min-max-call.html.

——— May 13, 2023b. Code Inspection: Redundant suppression. May 13, 2023. Visited
on October 21, 2023. https ://www . jetbrains . com/help / phpstorm / general - redundant -

suppression.html.

. September 7, 2023c. Vulnerable dependencies. September 7, 2023. Visited on Oc-
tober 21, 2023. https://www.jetbrains.com/help/idea/package-analysis.html.

Khan, Noor UL Ain. 2023-07-21. “The Art of Code Refactoring: Strategies for Clean and
Maintainable Code”, visited on February 28, 2024. https://medium.com/@noorulainkO0/the-

art-of-code-refactoring-strategies-for-clean-and-maintainable-code-9eac8afaS8b6.

Kralj, Kristijan. 2023. “21 Deadly Code Smells You’ll Wish You Discovered Years Ago”,
visited on September 3, 2023. https://methodpoet.com/code-smells/.

Kruchten, Philippe, et al. 2013. “Technical Debt: Towards a Crisper Definition”. ACM SIG-
SOFT Software Engineering Notes 38 (5). https://apps.dtic.mil/sti/pdfs/AD1015409.pdf.

Marcin Dryka, Matt Warcholinski, Olga Gierszal. 2024-01-22. “How to Reduce Technical
Debt — a Guide for CTOs”, visited on February 28, 2024. https://brainhub.eu/library/how-
to-deal-with-technical-debt.

Paiva, Thanis, et al. 2017-10-06. “On the evaluation of code smells and detection tools”.
Journal of Software Engineering Research and Development 5. Visited on September 6,
2023. https://do1.org/10.1186/s40411-017-0041- 1. https://jserd.springeropen.com/articles/
10.1186/540411-017-0041-1.

43

https://www.jetbrains.com/help/phpstorm/regexp-duplicate-character-in-character-class.html
https://www.jetbrains.com/help/phpstorm/regexp-duplicate-character-in-character-class.html
https://www.jetbrains.com/help/datagrip/regexp-unnecessary-non-capturing-group.html
https://www.jetbrains.com/help/datagrip/regexp-unnecessary-non-capturing-group.html
https://www.jetbrains.com/help/phpstorm/php-condition-can-be-replaced-with-min-max-call.html
https://www.jetbrains.com/help/phpstorm/php-condition-can-be-replaced-with-min-max-call.html
https://www.jetbrains.com/help/phpstorm/general-redundant-suppression.html
https://www.jetbrains.com/help/phpstorm/general-redundant-suppression.html
https://www.jetbrains.com/help/idea/package-analysis.html
https://medium.com/@noorulaink00/the-art-of-code-refactoring-strategies-for-clean-and-maintainable-code-9eac8afa58b6
https://medium.com/@noorulaink00/the-art-of-code-refactoring-strategies-for-clean-and-maintainable-code-9eac8afa58b6
https://methodpoet.com/code-smells/
https://apps.dtic.mil/sti/pdfs/AD1015409.pdf
https://brainhub.eu/library/how-to-deal-with-technical-debt
https://brainhub.eu/library/how-to-deal-with-technical-debt
https://doi.org/10.1186/s40411-017-0041-1
https://jserd.springeropen.com/articles/10.1186/s40411-017-0041-1
https://jserd.springeropen.com/articles/10.1186/s40411-017-0041-1

Philippe Kruchten, Iped Ozkaya, Robert L. Nord. November 2012. “Technical Debt: From
Metaphor to Theory and Practice” (): 18-21. Visited on June 3, 2023. https://resources.sei.
cmu.edu/asset_files/WhitePaper/2012_019_001_58818.pdf.

PMD. November 5, 2023a. Best Practices code smells. November 5, 2023. Visited on Novem-
ber 5, 2023. https://pmd.github.io/pmd/pmd_rules_java_bestpractices.html.

. November 5, 2023b. Design code smells. November 5, 2023. Visited on Novem-
ber 5, 2023. https://pmd.github.io/pmd/pmd_rules_java_design.html.

.November 5, 2023c. Error Prone code smells. November 5, 2023. Visited on Novem-

ber 5, 2023. https://pmd.github.io/pmd/pmd_rules_java_errorprone.html.

. October 29, 2023d. Perforamnce code smells. October 29, 2023. Visited on Octo-
ber 29, 2023. https://docs.pmd-code.org/latest/pmd_rules_java_performance.html.

. October 6, 2023e. PMD Documentation. October 6, 2023. Visited on October 7,
2023. https://pmd.github.io/pmd/index.html.

Roberta Heale, Alison Twycross. January 2018. “What is a case study?” (). Visited on Au-
gust 21, 2023. https://ebn.bmj.com/content/ebnurs/21/1/7.full.pdf.

Schwaber, Ken. 1997. “SCRUM Development Process”, visited on August 25, 2023. http:
//damiantgordon .com/Methodologies/Papers/Business % 200bject % 20Design % 20and %
20Implementation.pdf.

Team, SoftTeco. 2023-07-20. “What Is Code Smell And How To Reduce 1t?”, visited on
January 29, 2024. https://softteco.com/blog/whats-code-smell.

Tellis, Winston. 1997-06. “ntroduction to Case Study”. The Qualitative Report 3. Visited on
September 6, 2023. https://citeseerx.ist.psu.edu/document ?repid=rep1 & type=pdf & doi=
e6408ea90ae0050ade47a40eec7aa6204e553092.

Thakkar, Bindiya. 2022-07-19. “What is technical debt? How to prioritize and avoid with
examples”, visited on February 28, 2024. https://blog.logrocket.com/product-management/

what-1is-technical-debt-examples- prioritize-avoid/.

44

https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_58818.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_58818.pdf
https://pmd.github.io/pmd/pmd_rules_java_bestpractices.html
https://pmd.github.io/pmd/pmd_rules_java_design.html
https://pmd.github.io/pmd/pmd_rules_java_errorprone.html
https://docs.pmd-code.org/latest/pmd_rules_java_performance.html
https://pmd.github.io/pmd/index.html
https://ebn.bmj.com/content/ebnurs/21/1/7.full.pdf
http://damiantgordon.com/Methodologies/Papers/Business%20Object%20Design%20and%20Implementation.pdf
http://damiantgordon.com/Methodologies/Papers/Business%20Object%20Design%20and%20Implementation.pdf
http://damiantgordon.com/Methodologies/Papers/Business%20Object%20Design%20and%20Implementation.pdf
https://softteco.com/blog/whats-code-smell
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e6408ea90ae0050ade47a40eec7aa6204e553092
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e6408ea90ae0050ade47a40eec7aa6204e553092
https://blog.logrocket.com/product-management/what-is-technical-debt-examples-prioritize-avoid/
https://blog.logrocket.com/product-management/what-is-technical-debt-examples-prioritize-avoid/

Timbd, Rafael. 2023. “Technical Debt In Agile and Scrum”, visited on January 14, 2024.
https://www.revelo.com/blog/technical-debt-1n-agile.

Yurong Xu, Binshan Lin, David C. Yen. 2002. “Adopting customer relationship management

technology”, visited on June 19, 2023. http://modir3-3.ir/article-english/article 140.pdf.

45

https://www.revelo.com/blog/technical-debt-in-agile
http://modir3-3.ir/article-english/article140.pdf

	1 Introduction
	2 Literature review
	2.1 Agile software development
	2.2 Scrum
	2.3 Technical debt
	2.4 Code smells

	3 Methodology
	3.1 Research setup
	3.2 Research question
	3.3 Research methodology
	3.4 Data collection
	3.5 Research instruments
	3.5.1 Intellij IDEA's code inspector
	3.5.2 PMD

	3.6 Performing the research

	4 Case study
	4.1 Case company
	4.2 Case software
	4.3 Customer relationship management

	5 Results
	5.1 Most commmon types of technical debt
	5.2 Intellij IDEA's code smells
	5.2.1 Java Group
	5.2.2 General Group
	5.2.3 Security Group
	5.2.4 RegExp Group

	5.3 PMD code inspection tool code smells
	5.3.1 Performance
	5.3.2 Error Prone
	5.3.3 Design
	5.3.4 Best Practices

	5.4 Prevalence of the technical debt

	6 Discussion
	6.1 Common types and prevalence of technical debt
	6.2 Future and recommendations
	6.2.1 Examples of preventing technical debt
	6.2.2 Why refactor and renew codebase?
	6.2.3 Future considerations

	6.3 Limitations

	7 Conclusions
	Bibliography

