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ABSTRACT
Classifying behavior by tracking acceleration has received increased interest lately. Here, we evalu-
ated the performance of three commercial activity trackers in differentiating seven dog behaviors.
Adult companion dogs (N = 70) performed still (lying, sitting, standing) and dynamic (walking, sniff-
ing, trotting, playing) tasks, while wearing ActiGraph GT9X Link, Kaunila and FitBark devices placed
on the neck collar and ActiGraph GT9X Link placed on the back. Each task was performed for 3min
within a session and repeated in two sessions; the behaviors were confirmed from video record-
ings. Activity scores of devices were calculated as median values for behavioral differentiation, and
asminute-based values for inter-device correlations and cutoff analysis. Measurements of all devices
correlatedwith each other, andmedian activity scores of all devices−unaffected by dog age,weight
or sex− differentiated the still from dynamic behaviors. Dynamic behaviors were also differentiated
from each other, with exception of walking vs. sniffing by back-placed ActiGraph GT9X and Kaunila.
The definition of cutoffs between behaviors varied from moderate to high accuracy; defined cut-
offs for standing and walking were the least accurate. The classification performance of the cutoffs
had an accuracy of 80% in all the devices; thus, they performed reasonably well in classifying these
behaviors.
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1. Introduction

Behavior quantification based on large databases and the
utilization of artificial intelligence are becoming more
popular also in the field of veterinarymedicine− increas-
ing, for example, the standardization of methods [1].
Behavior-related databases can be compiled in many
ways, and tracking the activity of animals by their motion
and acceleration in certain situations is one way of
collecting such information [2–4]. For dog owners, com-
mercially available activity trackers can provide motiva-
tional information related to dog state and exercise [5,6].
However, activity trackers can encompass a wide vari-
ety of devices with different properties and components.
They vary from devices containing the simplest uniax-
ial accelerometers to more complex devices with triaxial
accelerometers, triaxial gyroscopes, triaxial magnetome-
ters and thermometers, amongother components.

In animal research, activity trackers are used for esti-
mating energy expenditure and assessing behaviors in
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wildlife studies (e.g. [7–9]), animal welfare research [10]
and in veterinary medicine (e.g. [11–13]). There are sev-
eral devices for research purposes, from which raw data
can be extracted, such as Hobo [14], VetSens [15], Acti-
Graph GT3X/GT3X+ [16,17] and Actical [18,19]. The
latter two are the most commonly used in canine stud-
ies (e.g. [11,13,17]). On the other hand, commercial dog
activity trackers have become popular in everyday life
activity monitoring of pet dogs. These devices are small,
inexpensive and easy to use; they are targeted at dog own-
ers and also have the potential for clinical use [20] but
only limited information about their accuracy and valid-
ity is offered. Of the commercially available dog activity
trackers,Whistle [21], and initially also PetPace [22] have
been validated with or close to scientific accuracy; addi-
tionally, PetDialog+ and FitBark have been examined
with observational methods [20,23].

The most useful feature of the activity trackers, both
scientific and for everyday use, is differentiating various
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dog behaviors from the tracker data. There have been
multiple attempts and approaches to extracting behav-
ioral classes from activity measurements. The potentially
more precise approach, but also more technologically
complex, is using different algorithm classifiers and
machine learning techniques (e.g. [24–26]). The behav-
ior classification approach has reached 69% of accuracy
for differentiating 16 separate behaviors, showing bet-
ter performance for small and medium dogs than for
large dogs [26]. More recent studies have succeeded in
detecting resting and itching-related (i.e. head shaking
and scratching) behaviors with high accuracies (86% and
>99%, respectively) [27,28]. Another potentially less
accurate, but easier-to-apply, approach is the determina-
tion of thresholds (i.e. cutoff values) for each behavior
using ROC (Receiver Operating Characteristic) curves.
Typically, cutoffs have been used to define up to three
activity levels in dogs [16,17]. In this study, we used this
latter approach.

In addition to the activity of the dog itself, other fac-
tors might also affect the activity readings, such as the
placement of the tracker [29,30] and dog signalment (e.g.
[31–33]). In the current study, we focused onmedium- to
large-sized dogs and compared activity tracker placement
on the ventral neck versus on the back, between scapu-
lae. Furthermore, links between activity, age and weight
were considered, as younger dogs may have higher activ-
ity scores [31–34] and heavier or overweight dogs might
have lower activity scores [17,31,35,36].

Thus, dog activity trackers are multifunctional and
promising tools for both scientists and dog owners to
detect changes in the health and behavior of dogs, but
they often lack scientifically precise and openly commu-
nicated reliability measures. Therefore, we compared two
commercial activity trackers targeted for consumer usage
and aimed for tracking dog activity (Kaunila and FitBark)
with a validated research device earlier utilized in many
different kinds of accelerationmeasurements (ActiGraph
GT9X Link) to assess their reliability in canine activity
measurement. We utilized simultaneously four separate
accelerometer measurement devices, as one ActiGraph
device was attached to the neck (collar) and one at the
back (harness) of the dog; one Kaunila and one FitBark
devicewere attached to the neck (collar).We also clarified
whether activity scores differ statistically among behav-
iors; howmany behaviors they allow to differentiate; how

accurately the differentiation can be conducted; and, by
comparing the ActiGraph devices in the neck and the
back of the dog, what is the best placement for the devices
to obtain the previous goals.

2. Materials andmethods

2.1. Animals

The experiments were conducted in the Faculty of Vet-
erinary Medicine at the University of Helsinki. The pro-
cedures were approved by the Viikki Campus Research
Ethics Committee at the University of Helsinki (min-
utes 5/2017) and all dog owners completed an informed
written consent before participating in the study.

A total of 70 healthy pet dogs (19 intact females, 19
neutered females, 25 intactmales, 7 neuteredmales) from
29 breeds and 5 crossbred dogs participated in the study.
Their mean age was 4.8 years (range 1–9 years) and their
mean weight was 24.5 kg (range 13–41 kg) (Table S1).
Participants, with the inclusion criteria of 10–50 kg
weight and 1–10 years of age, were recruited through
the internet (the project website) and social media
(Facebook).

2.2. Equipment

During the tests, dogs wore four separate commercial
activity tracker devices, three of which were different
from one another (Table 1). Kaunila, FitBark and one
ActiGraph GT9X Link were taped tightly on the ventral
side of the neck collar in this order (exchanging randomly
the position of Kaunila and FitBark between dogs), and
another ActiGraph GT9X Link was placed inside a tight
pocket made of neoprene on the back belt of dog harness.

2.3. Procedure

The measurements were conducted in a dog sporting
hall with artificial turf. The size of the testing arena was
10m× 18m. There were two testing sessions (Test 1 and
Test 2) each of them consisting of seven 3-minute last-
ing tasks: three still (lying, sitting, standing) and four
dynamic (walking, sniffing, trotting, playing) behaviors
(Figure 1). The tasks were performed sequentially in a
semi-randomized order per dog and session, alternating
between still and dynamic tasks and ending always with

Table 1. Information about the activity trackers used in the experiment and their placement in this study.

Device Placement Dimensions Weight Company City, Country

Kaunilaa neck ∅ 3.6 cm× 1 cm 10 g Kaunila Oy Kuopio, Finland
FitBark (1st version) neck 4.1× 2.8× 1.1 cm 7 g FitBark Inc Kansas City, Missouri, USA
ActiGraph GT9X Link neck and back 3.5× 3.5× 1 cm 14 g ActiGraph LLC Pensacola, Florida, USA
aKaunila sensor is based on Suunto MoveSense Technology (Suunto Oy, Vantaa, Finland).
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Figure 1. Examples of the seven tasks that dogs performed during the experiment.

a sniffing task. In walking and trotting tasks, the dog ran
around the arena in a clockwise direction in Test 1 and
in a counterclockwise direction inTest 2. The sniffing task
consisted of placing small pieces of dog treats on the floor
(spread over an area of 4m× 4m, adjacent to the testing
arena) and allowing the dog to search them by sniffing.
Playing with the dog in free-style aimed at promoting
intense activity, such as running after a ball and playing
a tug-of-war game. Except in playing and sniffing tasks,
dogs were on leash and led by their owner or experi-
menter. The leash (1.5m)was attached to a separate collar
than the one to which the devices were attached to; the
device collar was placed cranially. Owners were free to
give food rewards and give cues to their dogs as con-
sidered necessary during the test. A resting period for a
mean of 34± 21 s minutes (range 29−46min) was kept
between the two testing sessions.

2.4. Behavioral recording

Dogs’ movements and behaviors were video-recorded
during the test with Panasonic HDC-SD600 and Sony
HDR-CX450 cameras positioned in opposite lateral walls
toward the testing arena. The behavior of each dog was
annotated from video recordings post-hoc withObserver
XT 10.5 (Noldus, TheNetherlands); see Table 2. Only one
behavior at a time, lasting ≥ 1 s, was annotated. Criteria
for still behaviors were that limbs were not moving and
that there was no physical contact between handler and
dog, except if a treat was given. For walking and trotting,

Table 2. Ethogram for annotation of dogs’ behaviors from video
recordings.

Behavior Description

Lying The dog torso is touching the ground and hips are on the same
level as the shoulders. The dog can change balance point
without moving limbs.

Sitting The dog has four extremities and the rump on the ground. The
dog can change balance point from central to hip or vice versa.

Standing The dog has the four extremities but not the torso touching the
ground.

Walking 4-Beat gait where the dog moves its extremities at a slow speed,
the legs are moved one by one in the order: left hind leg, left
front leg, right hind leg and right front leg. The dog moves
straight forward parallel to the wall or at a maximum 45
degrees angle from it.

Sniffing The dog has its head below its backline and moves its muzzle
close to the ground. The dogwalks, stands or performs another
slowmovement, but its chest and bottom do not touch the
ground. Taking food from the ground and eating it is included.

Trotting 2-Beat gait where the dog lifts and puts down extremities in
diagonal pairs at a speed faster than walking.

Playing Dog fast turning or spinning, accelerations, decelerations,
galloping, pacing, trotting (including when changing
direction), tugging, stalking, jumping, bowing and any other
kind of movements faster than walking. Playing was only
annotated in the Playing task.

the behavior was annotated if the gait pattern was clear
and continuous without leaning toward the handler or
pulling the leash, so that it would affect the gait pattern.

2.5. Data collection

Activity data were extracted from the FitBark and Kau-
nila activity trackers as minute-by-minute total activity
scores, hereafter referred to as ‘activity scores’. These
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were derived from triaxial accelerometer data with man-
ufacturers’ built-in algorithms. The data of these devices
were sent to the cloud server via their respective mobile
phone applications. FitBark activity scores were extracted
from the web dashboard and Kaunila activity scores were
obtained via the manufacturer; the exact algorithm used
by the devices for calculating the activity scores from
the accelerometer sensors was not open for the authors
as these are commercial devices targeted for consumer
usage. As the ActiGraph GT9X Link is a more research-
directed device that is used formany kinds of acceleration
measurement, the minute-by-minute activity value (vec-
tor magnitude; the square root of the sum of the squares
of each of the three accelerometer axes) was extracted
from 100Hz triaxial accelerometer data using ActiLife
software (ActiGraph LLC, USA). Due to the individ-
ual algorithms, these three different devices utilized in
our study have also differing scales for activity scores.
In our study including still and dynamic canine tasks,
ActiGraph GT9X Link activity score values were approx-
imately 0–25 000 (|v|); Kaunila activity scale values were
approx. 0–2500 (a.u.) and FitBark activity scores were
approx. 0–300 (a.u.). All of these values are represented
henceforth as counts per minute (cpm), unless otherwise
stated.

All themeasurementswere aligned up to aminute pre-
cision for each dog by the maximum significant value
in their cross-correlation. Behaviors obtained from video
recordings were aligned with the activity scores of the
devices by syncing the time of the laptop and phone asso-
ciated with the activity trackers with one-second accu-
racy and showing it to the camera at the beginning of the
test. The total duration of each behavior was calculated in
seconds per each minute. In other words, all the seconds
within a minute performing a behavior according to the
ethogram were summed up and divided by 60 to obtain
a percentage of the minute performing that behavior that
was later used as criteria for including and excluding data
points (see Statistical analyses).

2.6. Statistical analyses

All statistical analyses were carried out with IBM SPSS
Statistics software version 24 (IBMCorp, USA) including
Jon Peck (2013) and David Nichols (2015) Stats weighted
Kappa.spe extension. The significance level for all tests
was p < 0.05. The automatization of the analyses, the
data splitting, the sensitivity and specificity calculation,
and the calculation of the Youden index were performed
using Python 3.

The statistical analyses included three parts: differ-
entiating behaviors; determining cutoffs for the statisti-
cally different behaviors of each device; and comparing

between minute-based activity scores of each device
directly and investigating the effect of age, sex and weight
on the mean activity scores. The analyses of the two for-
mer parts included the data of the minutes in which
the dog performed the target behavior according to the
ethogram ≥92% of that minute (i.e. ≥ 55 s of the 60 s).
For statistical analysis, still behaviors were also combined
together as an additional static category. This category
consisted of the behaviors of lying, sitting and standing
when one and only one of those behaviors fulfilled the
time requirement (≥ 92%of theminute); in other words,
those minutes got double label: lying, sitting or standing,
as well as ‘static’.

Minute-based activity scores were not normally dis-
tributed; thus a nonparametric approach was selected.
A Friedman test followed by Wilcoxon Signed Ranks
tests were used for behavioral differentiation analyses of
median activity scores of the behaviors within devices
and multiple comparisons were corrected by the False
Discovery Rate (FDR) setting the q-value at 0.05. Results
are reported as medians with their respective first and
third quartiles (Q1 and Q3). Those behaviors whose
median activity scores differed from each other regarding
Wilcoxon SignedRanks tests were further used to analyze
the cutoffs between different behaviors. For the usage in
ROC curves, the behaviors or categories, between which
the activity scores did not differ according to Wilcoxon
Signed Ranks tests, were regrouped to form new behav-
ior categories and reanalyzed as one behavior (i.e. a
new activity score median was calculated including the
data from the behaviors forming it) until clearly distinct
behaviors or categories could be established.

Next,a 10-fold cross-validation was performed, using
the training subsets of data to determine the optimal
cutoff values of activity scores and the testing subsets
to evaluate its performance. Following the procedure of
Morrison et al. [37], ROC curves were calculated with
SPSS software, assigning the positive value (1) to the
behavior for which the cutoff was calculated and the neg-
ative value (0) to the others. Those scores with the maxi-
mum generalized Youden value (J) were selected in each
subset and the average among the scores with the high-
est generalized Youden value was considered as optimal
[38]. Reported results are area under the curve (AUC),
sensitivity (Se) and specificity (Sp) of cutoffs. Criteria
for AUC accuracy defined by Greiner et al. [39] were
used: highly accurate (AUC > 0.9), moderately accurate
(0.7 < AUC ≤ 0.9), less accurate (0.5 < AUC ≤ 0.7) or
noninformative (AUC ≤ 0.5). Contingency tables and
two quadratic weighted kappa values (κ) were used to
evaluate the cutoff classification performance. Both κ

included all the behaviors whose cutoffs were calculated,
but one (κstill) did not include static and the other (κstatic)
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Figure 2. Correlation of the activity scores obtained by different devices (panels A-C) and locations (panel D), given in counts perminute
(cpm).

included none of the respective still behaviors but the
static category, unless otherwise stated in the text. Alt-
man [40] criteria were used for rating κ values: ‘poor’
(≤0.20); ‘fair’ (0.21–0.40); ‘moderate’ (0.41–0.60); ‘good’
(0.61–0.8) and ‘very good’ (0.81–1.00).

Furthermore, Spearman’s correlation coefficients
between minute-based test activity scores of each device
were calculated. Pearson’s correlation coefficients for dog
age and weight and mean activity scores per dog and
device were also calculated. The differences between
sexes and their interaction with neutering status in
mean activity scores were also tested by using one-
way ANOVA. Pearson’s correlation and ANOVA results
are reported as supporting information (Table S2 and
Table S3, respectively).

3. Results

3.1. Activity score agreement between devices and
with dog signalment

Data were collected for a mean of 57min per dog and
device (range of 41–68min). However, at least part of the
Kaunila data (in seven dogs) and ActiGraph GT9X Link

data (in six dogs) were lost due to technical problems,
affecting a total of 25 testing sessions. Therefore, a total
of 3964min were collected from ActiGraph GT9X Link
placed on the back, 3733min from the ActiGraph GT9X
Link placed on the neck, 4010min from FitBark and
3644min fromKaunila. A total of 3073min from 58 dogs
were obtained simultaneously from all devices and used
to calculate the comparisons in Figures 2 and 3. From
those, a total of 988, 907, 996 and 922min (respectively,
4–30min per dog) fulfilled the time criteria of a behavior
lasting ≥92% of the minute (i.e. 55 s of the minute) to be
included in differentiation and classification analyses.

Activity scores of the three activity trackers were
correlated statistically significantly strongly or very
strongly with each other, despite utilizing different scales
(Figure 2). Neither age nor weight correlated with the
mean activity scores of any device (Table S2) and neither
sex nor its interaction with neutering status had an effect
on activity scores (Table S3).

3.2. Behavioral differentiation

Median activity scores of dynamic behaviors for each
device exceptKaunilawere, from the lowest to the highest
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Figure 3. Medians (with Q1 and Q3) of minute-based total activity score (in counts per minute; cpm) for the analyzed behaviors (in the
horizontal axis), measured by the four devices.

scores, as follows: walking, sniffing, trotting and play-
ing. For Kaunila, the median activity scores per dog were
higher for trotting than for playing (see Figure 2). The
median activity scores between walking vs. sniffing by
Kaunila and the back-placed ActiGraph GT9X Link did
not differ significantly (Wilcoxon, p > 0.05). Further-
more, the median activity scores did not differentiate
between the still behaviors (lying, sitting and standing) in
any of the devices (see Figure 3). Median activity scores
differed significantly between all the other behaviors in
all devices (Wilcoxon, p < 0.05).

3.3. Determination of activity cutoffs for the
behaviors

Statistical difference between behaviors is needed to be
able to correctly determine thresholds between categories
using ROC curves. Thus, the behaviors that did not
differ from each other in terms of the median activ-
ity scores were combined into new categories, selecting

those combinations of behaviors that maximized the
total number of categories. Following this procedure, the
new behavioral categories (statistically differing from the
other categories, all p < 0.05, Wilcoxon) were the fol-
lowing: lying-sitting for all devices except from Kaunila,
Lying-Standing for Kaunila and walking-sniffing for the
ActiGraph GT9X Link placed on the back and Kaunila.

ROC curves were calculated based on the statisti-
cally different behaviors and new behavioral categories
(Table 3). Behavior classification accuracy was moderate
to high for all behaviors in all devices (Table 3), except for
standing in the ActiGraph GT9X Link (both locations)
and walking in the ActiGraph GT9X Link placed on the
neck and FitBark, which were less accurate.

When these cutoffs were applied to the testing sub-
sets, the cutoffs showed very good agreement, classified
according to Altman [40] between the observed behavior
and that classified using the activity scores for all devices
(mean κstill ≥ 0.88 for all devices). The agreement was
further improved when still behaviors were regrouped as
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Table 3. Accelerometer cutoffs and their accuracy for the different behaviors (lying, sitting, stand-
ing, walking, sniffing, trotting and playing) and devices (ActiGraphGT9X Link placed on the back and
on the neck, FitBark and Kaunila). Cutoff = mean optimal cutoff calculated among the 10 training
subsets; AUC (95% CI) = mean area under the curve with its 95% confidence interval among the 10
training subsets; Se = mean sensitivity among the 10 training subsets and Sp = mean specificity
among the 10 training subsets.

Device Behaviors Cutoff AUC (95% CI) Se (%) Sp (%)

ActiGraph GT9X Link (back) Lying-sitting 0–82 0.878 (0.854–0.902) 64.51 85.35
Standing 83–1082 0.689 (0.651–0.727) 45.29 80.27
Static 0–1082 1 (1–1) 99.35 100
Walking-sniffing 1083–4193 0.773 (0.743–0.802) 81.38 96.69
Trotting 4194–9452 0.811 (0.784–0.838) 61.48 96.32
Playing ≥ 9453 1 (1–1) 98.08 100

ActiGraph GT9X Link (neck) Lying-sitting 0–74 0.871 (0.846–0.896) 30.32 95.38
Standing 75–1378 0.681 (0.642–0.719) 76.34 65.21
Static 0–1378 0.993 (0.989–0.997) 90.37 98.82
Walking 1379–3138 0.699 (0.663–0.735) 61.35 88.76
Sniffing 3139–4079 0.776 (0.747–0.806) 41.36 96.75
Trotting 4080–8159 0.802 (0.772–0.832) 53.02 96.05
Playing ≥ 8160 1 (1–1) 100 100

FitBark Lying-sitting 0–0 0.864 (0.839–0.889) 34.56 91.49
Standing 1–14 0.705 (0.667–0.743) 60.25 66.14
Static 0–14 0.990 (0.986–0.994) 93.25 98.90
Walking 15–27 0.653 (0.620–0.687) 69.51 93.44
Sniffing 28–66 0.748 (0.718–0.778) 73.68 97.61
Trotting 67–123 0.863 (0.840–0.886) 95.37 95.17
Playing ≥ 124 0.994 (0.990–0.997) 69.37 99.67

Kaunila Sitting 0–78 0.780 (0.750–0.811) 60.54 73.07
Lying-standing 79–417 0.793 (0.762–0.823) 44.81 85.45
Static 0–417 1 (0.999–1) 98.78 99.69
Walking-sniffing 418–1309 0.75 (0.717–0.782) 98.20 98.69
Playing 1310–1976 0.928 (0.909–0.947) 94.75 99.41
Trotting ≥ 1977 0.998 (0.996–1) 95.19 99.55

Table 4. Confusion matrix showing the classification accuracy of ActiGraph GT9X Link placed on
the back for the behaviors classified using activity scores. Classification accuracy is reported as the
percentage (%) of the average amount of minutes fulfilling the time requirement and belonging to
each category among the 10 testing subsets.

Recorded behavior

Lying-Sitting Standing Walking-Sniffing Trotting Playing

Classified behavior Lying-sitting 64 52
Standing 36 48
Walking-sniffing 1 84 37
Trotting 16 63 4
Playing 96

a static category (mean κstatic ≥ 0.93). Tables 4–7 show
the confusion matrices of the classification accuracies of
the ActiGraph GT9X Link placed on the back (Table 4);
the ActiGraph GT9X Link placed on the neck (Table 5);
FitBark (Table 6) and Kaunila (Table 7), for the behaviors
classified using activity scores. In all these tables, zeros
have been omitted for readability purposes.

The κstill and κstatic calculations included those the
behavior categories that showed a statistically signifi-
cant difference (as shown in Figure 3), and for clarity,
the categories are given in brackets. For the back-
placed ActiGraph GT9X Link, the measurement of
agreement between recorded and all possible classi-
fied behaviors (lying-sitting, standing, walking-sniffing,
trotting, playing) κstill = (95% CI): 0.922 (0.889–0.955);
and the measurement of agreement between recorded

and classified behaviors, with the alternatively combined
static category (static, walking-sniffing, trotting, play-
ing) κstatic = (95% CI): 0.975 (0.953–0.995). For the
neck-placed ActiGraph GT9X Link, the measurement
of agreement between recorded and classified behav-
iors (lying-sitting, standing, walking, sniffing, trotting,
playing) κstill = (95% CI): 0.880 (0.826–0.935); and the
measurement of agreement between recorded and clas-
sified behaviors, with the alternatively combined static
category (static, standing, walking, sniffing, trotting,
playing) κstatic = (95% CI): 0.937 (0.895–0.980). For
FitBark (only placed on the neck), the measurement
of agreement between recorded and all possible classi-
fied behaviors (lying-sitting, standing, walking, sniffing,
trotting, playing) κstill = (95% CI): 0.901 (0.858–0.943);
and the measurement of agreement between recorded
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Table 5. Confusion matrix showing the classification accuracy of ActiGraph GT9X Link placed on
the neck for the behaviors classified using activity scores. Classification accuracy is reported as the
percentage (%) of the average amount of minutes fulfilling the time requirement and belonging to
each category among the 10 testing subsets.

Recorded behavior

Lying-sitting Standing Walking Sniffing Trotting Playing

Classified behavior Lying-sitting 32 18
Standing 58 71 13
Walking 9 11 58 38 16
Sniffing 1 18 40 40
Trotting 1 13 22 44
Playing 100

Table 6. Confusion matrix showing the classification accuracy of FitBark placed on the neck for the
behaviors classified using activity scores. Classification accuracy is reported as the percentage (%)
of the average amount of minutes fulfilling the time requirement and belonging to each category
among the 10 testing subsets.

Recorded behavior

Lying-Sitting Standing Walking Sniffing Trotting Playing

Classified behavior Lying-sitting 33 32
Standing 60 62 6
Walking 5 5 70 23
Sniffing 2 2 20 77
Trotting 4 92 22
Playing 8 78

Table 7. Confusionmatrix showing the classification accuracy of Kaunila placed on the neck for the
behaviors classified using activity scores. Classification accuracy is reported as the percentage (%)
of the average amount of minutes fulfilling the time requirement and belonging to each category
among the 10 testing subsets.

Recorded behavior

Sitting Lying-Standing Walking-Sniffing Playing Trotting

Classified behavior Sitting 59 57
Lying-standing 40 41
Walking-sniffing 1 2 98 2
Playing 2 94 8
Trotting 4 92

and classified behaviors, with the alternatively combined
static category (static, standing, walking, sniffing, trot-
ting, playing) κstatic (95% CI): 0.961 (0.935–0.988). For
Kaunila (only placed on the neck), the measurement
of agreement between recorded and classified behav-
iors (sitting, lying-standing, walking-sniffing, playing,
trotting) κstill = (95% CI): 0.883 (0.837–0.929); and
measurement of agreement between recorded and clas-
sified behaviors with the static category included (static,
walking-sniffing, playing, trotting) κstatic = (95% CI):
0.985 (0.969–1).

4. Discussion

Today, commercially available activity trackers are rather
affordable and easy to use, and they can provide infor-
mation of dog exercise and behavior that dog owners
may find interesting and useful in their daily lives [5,6].
Here, we clarified the accuracy of three commercially
available activity trackers, two of which were especially

targeted for pet owners to be used with dogs (Kaunila
and FitBark). We compared the recordings of the devices
during a semi-controlled test in seven different tasks, in
which the dog behavior andmotionwere confirmed from
a video, and found that the activity scores (i.e. activity
points per a minute) of all three devices were strongly
correlated. Activity scores allowed differentiation of four
to six behavioral categories out of the initial seven. Nev-
ertheless, none of the devices completely differentiated
between the still postures (lying, sitting and standing)
from each other. Higher agreement between the video-
annotated and the classified behaviorswas achievedwhen
less categories were classified, i.e. when walking and
sniffing were combined; or when the still tasks were
regrouped as one static category.

Interestingly, the behaviors that could be differentiated
depended on the device. Activity scores of the back-
placedActiGraphGT9XLink or neck-placedKaunila did
not differentiate walking from sniffing, but the activity
scores of both the neck-placed ActiGraph GT9X Link
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and neck-placed FitBark differentiated these dynamic
behaviors from each other, although they presented less
accurate classification together with standing compared
to the other behaviors. It is possible that the back placed
ActiGraph GT9X Link did not differentiate between
walking vs. sniffing because of its position: dogs mainly
walked in sniffing, stopping a few times with minor head
movements, which might be more difficult to detect by
the device placed on the back. However, the placement
does not explainwhyKaunila activity scores did not differ
betweenwalking vs. sniffing, asKaunilawas placed on the
neck together with the other Actigraph GT9X Link and
FitBark. Also, the Kaunila device had some other partic-
ularities related to activity scores. First, Kaunila activity
scores grouped lying and standing together and separated
sitting from these, while the other devices grouped lying
and sitting together and separated standing from these
two. Second, the activity scores of Kaunila were signifi-
cantly higher for trotting than for playing, as opposed to
the other devices, in which the activity scores were higher
for playing than for trotting.

The device-related differences in grouping the behav-
iors might be related to a different G threshold utilized
in the accelerometer of these devices and the algorithms
of each company. Previously, the G threshold value was
determined to have the possibility to detect different
types of movements in dogs, such as head movements,
position transitions and whole-body movements (i.e.
dynamic behaviors) keeping the device in the same place-
ment [41]. Therefore, probably due to its G threshold,
the Kaunila device may detect accelerations of behav-
iors associated with wider body translocations, to which
higher scores were assigned. Another possible or com-
plementary explanation is that it may filter out or assign
lower scores to the smaller accelerations that imply only
partial body translocations (e.g. fast turning, tugging) or
smaller position transitions. This could also be related
to the fact that the classification performance of Kaunila
activity scores that implied different activity levels (static,
walking-sniffing, playing and trotting) was higher than
the performance of the other devices. However, Kaunila
activity scores did not differentiatemore subtle behaviors,
such as walking from sniffing, when the other devices
placed on the neck did differentiate these. Nevertheless,
the G thresholds or any other parameters of the algo-
rithms for signal processing were not available for all
the studied devices, thus we cannot confirm the reasons
behind the difference.

The results of our study regarding the ActiGraph
GT9X Link used in dogs are in line with previous lit-
erature: the obtained cutoff values of static category for
the ActiGraph GT9X Link placed on the neck were sim-
ilar as previously found with ActiGraph GT3X in the

dorsal neck (<1352 cpm; Se = 95%) [16,17]. The small
differences between the cutoffs could be due to multi-
ple factors, such as the different version of the device,
the slightly different placement and the small posture
readjustment that was allowed only in this study and
the up to 5 s in each minute doing another behavior.
However, light–moderate (1352–5696 cpm) and vigor-
ous (>5696 cpm; Se = 92.5%) behaviors of the previous
studies [16,17] were not directly comparable to ours. In
this study, playing behavior was defined and intended
to be really intense and according to its cutoff, it clearly
belongs to the previously established category of vigor-
ous dog behavior [16,17]. On the other hand, trotting
included a range of speeds, so probably the faster ones
fitted into the definition of vigorous activity [16], but the
slower speeds belonged to the light–moderate category
instead. Therefore, the lower cutoff obtained for trotting
in this study was smaller than the lower cutoff for the
previous studies [16,17]. Nevertheless, the obtained dif-
ferences were minor, and generally, the activity scores of
all examined devices allowed for behavioral differentia-
tion, especially when behaviors clearly differed in their
intensity.

The classification of the FitBark device agreed with
those of the ActiGraph GT9X Link placed on the neck
collar. Recently, the activity data produced by FitBark
were been compared to the dog step counted from a
recorded video where step counts and FitBark activity
were highly correlated when the dogs were exploring
a room off-leash and when they were interacting with
their owner [23]. When the dogs were being walked on
a leash, the correlation between step counts and FitBark
activity counts was somewhat smaller but statistically sig-
nificant. In our study, the dogs were mostly on leash. The
dynamic tasks of walking and trotting were performed
on leash, whereas sniffing and playing were performed
mostly off-leash due their nature. For the static tasks,
we expect dog being on-leash or off-leash not to have a
significant effect, as there are no steps that could be con-
sidered. We found that FitBark differentiated between all
other tasks except lying from sitting − in other words,
all dynamic tasks could be differentiated, whether the
dog was on or off leash. However, in our study, we did
not examine the different steps performed by dogs but
we adopted a more holistic approach, categorizing dog
behavior through ethograms.

We also sought to compare the effect of the device
placement to the accuracy of activity tracking. Activ-
ity scores of the ActiGraph GT9X Link on the neck
were higher than those of that on the back, similarly as
found by in, e.g. goats [29]. Furthermore, both place-
ments allowed the same behavioral differentiation, except
for walking and sniffing, for which the activity scores did
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not differ if the device was placed on the back. Generally,
the classification accuracy was similar or slightly lower
for the neck than for the back. Besides, the agreement
between predicted and observed behaviorswas also lower
for the neck placement. Altogether, our results indicate a
slightly poorer behavioral differentiation performance of
the ActiGraphGT9X Linkwhen placed on the neck com-
pared to the back. However, keeping the three devices in
the same collar and using different attachment methods
for both placements might have affected the reliability;
even if the devices, the collar and the harness were tight-
ened asmuch as possible and a second collar was used for
the leash, following the recommendations ofMartin et al.
[42].

Previous findings show that dog’s individual sig-
nalment might have an effect on the activity scores
[11,17,31–36]; therefore, we also tested whether the dogs’
age, weight or sex affected the obtained activity scores.
In our study, the results of the devices were comparable
between dogs regardless of dogs’ signalment, as in pre-
vious literature [31] for most behaviors. Here, the dogs
performed semi-controlled tasks for the same amount of
time, whereas the studies that found links between sig-
nalment and activity scores measured dogs’ activity in
less controlled setups, such as daily life physical activ-
ity [11,17,32–36] or trotting up and down stairs [31]. In
the conditions of the previous studies, older dogs were
not as active as young adults [31–34] and heavier or
overweight dogs were less active [17,31,35,36]. Gener-
ally, all the devices included in this study measured the
dog movements similarly, so the possible activity dif-
ferences found in previous studies [11,17,31–36] likely
reflect individual differences in the dogs’ general activ-
ity levels. The lack of signalment effect in our study may
be due to the experiment setup: tight human control that
the dogs actually performed the tasks as intended. Addi-
tionally, we only had medium- to large-sized dogs in the
current study, thus it may be that the inclusion of small
dogs might have affected the signalment results.

Our study has several limitations that should be taken
into account. Here, we wished to obtain comparable
information from middle- to large-sized, adult dogs.
Thus, the full range of the possible sizes of dogs is not
well represented, and as dog weight may affect the activ-
ity scores [17,31,35,36], the current data may not fit to
dogs under 13 kg or over 41 kg. Likewise, puppies or
elderly dogs are not included in our sample, as the ages
of our participant dogs varied from 1 to 9 years. Here,
we did not find the effect of age, weight, sex or neu-
tering status on the short-term activity scores, possibly
due to the sample limitation as intended. Nevertheless,
as activity scores may vary with age [31–34], the cor-
respondence of the current results should be confirmed

separately for dogs outside our study sample. The possi-
ble effect of the differences in dog age, weight and sex on
the activity scores of different devices could be further
studied with a more representative sample with a larger
variation. Furthermore, this evaluation only concerned
seven different tasks that could be performed for a pro-
longed period of time; of course, natural dog behavior is
more variable, but our evaluation cannot be extended for
other tasks or behaviors on the basis of the current work.
Additionally, other tasks except for playing and sniffing
were conducted while the dogs were on leash and led by
a human handler. This was due to our aim to obtain seven
clearly different kinds of tasks that were behaviorally ver-
ified, and this is quite difficult to obtain for a sufficient
time and for video-verified behavior without human con-
trol. Although the leash was not attached to the same
collar as the measurement devices, we cannot rule out
the effect of human control to the dog behavior. The
human handler may at least affect the dog performance,
movement and speed, and consequently also the activity
scores obtained, thus obtaining similar, behavior-verified
data from freely moving dogs would be important in the
future.

To conclude, the measurements of ActiGraph GT9X
placed on the back and on the neck, FitBark and Kau-
nila correlated statistically significantly with each other,
showing reliability of the devices. In general, median
activity scores of the devices differentiated between the
still and dynamic behaviors and allowed a classification
of four to six behavioral categories depending on the
placement and the device used.Mean activity scores were
unrelated to age, weight and sex of dogs in this study.
Thus, the results provide evidence for the devices being
comparable between dogs in controlled conditions and
the possibilities of these devices to classify the behaviors
performed with a moderate reliability.
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