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1. Introduction

Throughout this paper, m and n will be integers such that 0 < m < n. We
consider how the upper Minkowski dimension and the packing dimension, which
was introduced by Tricot in [T], change under orthogonal projections. Since nei-
ther the upper Minkowski dimension, denoted by dimp A for all bounded A C
R™, nor the packing dimension, denoted by dimy A for all A C R", can increase
under Lipschitz maps (see [F, p. 44] for the upper Minkowski dimension and [F,
Proposition 3.8 and p. 46] for the packing dimension), we have that

dimm Py (A) < dimy A
for all bounded A C R™, and
dimp Py(A) < dimp A

for all A C¢ R"™, where Py: R™ = V denotes the orthogonal projection onto an
m-dimensional linear subspace V C R™.

We denote by G(n,m) the Grassmann manifold of all m-dimensional linear
subspaces of R™. Let v, m be the unique orthogonally invariant Radon probability
measure on G(n,m) (see (M3, 3.9]).

We use the notation dimpy for the Hausdorff dimension (for its definition see
(M3, 4.8]). Let A C R™ be a Borel set. The behaviour of the Hausdorff dimension
s = dimp A of A under orthogonal projections onto m-dimensional linear subspaces
V C R"™ depends on whether 0 < s < mor m < s < n. Infact, if s < m,
then dimpy Py(A) = s for yn,m almost all V. € G(n,m), and if s > m, then
dimyg Py(A) = m for v,,m almost all V' € G(n,m). In the plane, a geometric
proof of these projection theorems for the Hausdorff dimension was first given
by Marstrand in [M]. He considered the case where the s-dimensional Hausdorff
measure of A (for the definition of the Hausdorff measures see [M3, 4.3]) is positive
and finite. However, Davies has shown in [D] that if the s-dimensional Hausdorff
measure of any Borel set is infinite, then it has a compact subset with positive and



6 Maarit Jarvenpad

finite s-dimensional Hausdorftf measure. Potential theoretical concepts were first
used by Kaufman in [K] in order to prove these projection theorems in the plane.
In [M1], Mattila obtained extensions of these theorems to higher dimensions.

Let A C R™ be a bounded Borel set. If dimy A = dimpg A, then we have
by the above mentioned projection theorems for the Hausdorff dimension that
dimm Py (A) = min{dimm A4, m} for vn,m almost all V € G(n, m), since dimy A <
dimp A for all bounded A C R"™. One example [M3, Corollary 5.8] of this kind
of set is an arbitrary self-similar set generated by similitudes Sy, ..., Sy for which
there is a non-empty, bounded and open set U such that

13

N
Si(U) C U and S;(U)N S;(U) = 0 for 4 # j.
=1

Analogously, if A C R" is a Borel set with dim, A = dimy A, then dim, Py (A4) =
min{dim, A, m} for v, m almost all V' € G(n,m), since dimy A < dim, A for all
ACR™

In this paper, we construct an example showing that, in general, the behaviour of
both the upper Minkowski dimension and the packing dimension under orthogonal
projections differs from the corresponding behaviour of the Hausdorff dimension.
This construction gives a negative answer to a question asked by Hu and Taylor
in [HT, Introduction, p. 528].

We also show that if (e1,...,e,) is a basis of R®, then for all bounded A C
R™ there is an m-dimensional linear subspace V spanned by some of the vectors
(e1,...,€en) such that

dimy Py (4) > = dimy A.
T

Using the relation between the upper Minkowski dimension and the packing di-
mension, we obtain a corresponding result for the packing dimensions of any set
in R™ and its images under the orthogonal projections onto the m-planes spanned
by a given basis of R™. Further, these inequalities are the best possible ones, and
the analogue of these results is not true for the Hausdorft dimension.

By means of the same method for both the upper Minkowski dimension and the
packing dimension, the above mentioned results can be extended to v m almost
all V € G(n,m). In this way we are able to prove that for all bounded A C R™,

dimy Py (A) > % dimy A
for v,,,m almost all V € G(n,m), and for all Suslin sets A C R™,
. mo..
dim, Py(4) > po dimp, 4

for v,,m almost all V' € G(n,m). The cases m =1 and m = n — 1 are immediate
consequences of the above mentioned results. In fact, if m = 1 or m = n — 1,
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the assumption that A is a Suslin subset of R™ is not necessary for the packing
dimension (see Remarks 3.6 (d) and (f)). The case 1 < m < n — 1 involves some
more work including measurability considerations (see Lemmas 2.2 and 2.3). How-
ever, these estimates concerning the decrease of the upper Minkowski dimension
and the packing dimension under orthogonal projections are not the best possible
ones. After this work was completed, the best possible lower bounds were found
by Falconer and Howroyd using different methods (see [FH]). They showed that if
A C R" is bounded, then

< dimp A
14 (1/m—1/n)dimm A

dimym Py (4)

for yn,m almost all V € G(n,m), and if A C R™ is a Suslin set, then

dim, A

. A >
dimy, Py(A) > 14 (1/m —1/n)dim, A

for v,.m almost all V. € G(n,m). Note that ms/n < s/(1 4 (1/m — 1/n)s) <
min{s,m} for each 0 < s < n.

2. Preliminaries

We denote by d(A) :=sup{|ly — z| | y,2 € A} the diameter of a non-empty set
A C R"™ and by d(z,A) = inf{|c —y| | y € A} the distance between z € R"
and A. The distance between two non-empty sets A, B C R" is denoted by
d(A,B) :=inf{lz —y| |z € 4, y € B}.

Let z € R® and 0 < r < co. For closed balls we use the notation B(z,r) := {y €
R" | |z —y| < r} and for open balls the notation U(z,r) := {y € R" | |z —y| < r}.

When & is an integer with 1 < k£ < n and (z1,...,2k) is a linearly independent
sequence in R", we use the notation V(z1,...,zx) for the k-dimensional linear
subspace of R™ spanned by {z1,...,2z}. Further, if Vi and V; are linear subspaces

of R*, we define Vi + Va:={z+y |z e V,y € Va}.

Throughout this paper, a measure means a non-negative, monotone, and count-
ably subadditive set function which vanishes for the empty set. If u is a measure
on a set X, we denote by ulL A the restriction of the measure p to a set A C X,
that is,

(LLA)(B) = (AN B)

for all B C X. Further, we use the notation fyp for the image of the measure g
under a map f: X — Y, that is,

Fin(A) = u(f71(4))

for all A C Y. The following lemma, which is a modification of [M3, Theorem
1.18], will be used later when proving Theorem 3.7.
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2.1. Lemma. Let X and Y be o-compact metric spaces. If p is a Radon
measure on X with (X)) < oo and f: X — Y is continuous, then fyu is a Radon
measure on Y.

Proof. Since a measure on a o-compact metric space is a Radon measure if and
only if it is locally finite and Borel regular (see [M3, Corollary 1.11}), it is sufficient
to prove that fyu is Borel regular.

Let A C Y and (&;) be a sequence of positive real numbers such that lim; , &; =
0. Since p is a finite Radon measure, there exists for all ¢ a compact set C; C X
such that u(X \ C;) < ¢;.

For all ¢, we define

v; == pl C;.

Since p is Borel regular and C; is a Borel set with pu(C;) < oo, the measure v;
is Borel regular (see [M3, Theorem 1.9]) and finite. Thus v; is a Radon measure
with compact support for all ¢, and so fyv; is a Radon measure (see [M3, Theorem
1.18]); in particular, it is Borel regular. Thus for all ¢, there exists a Borel set
B; CY with A C B; and fﬁl/i(Bi) = fﬁl/z‘(A).
Define -
B:= () B;.
=1

Then B is a Borel set with A C B and

fin(B) < fip(Bi) < fyvi(Bi) + i = fri(A) +ei < fu(4) + &

for all 7. Thus fyu(B) — fiu(A4). o

We denote by £™ the Lebesgue measure on R"™. Further, we use the notation
a(n) := L*(B(0,1)).

As mentioned before, we use the notation G(n,m) for the Grassmann manifold
consisting of all m-dimensional linear subspaces of R*. For V ¢ G(n,m), wc
denote by V+ € G(n,n—m) the orthogonal complement of V and by Py: R* — V
the orthogonal projection onto V. Tdentifying V € G(n,m) with R™, we can
determine the m-dimensional area measure for any subset of V' by using the m-
dimensional Lebesgue measure £L™. By means of this identification, any orthogonal
projection onto an m-dimensional linear subspace of R™ becomes a map onto R™.

Equipped with the metric

o(V,W) :=||Py — Pw]||

for V,W € G(n,m), where ||L|| := supj,—; |Lz| denotes the usual norm for a
linear mapping L, the Grassmann manifold G(n,m) is a compact metric space.
As mentioned before, there exists a unique orthogonally invariant Radon prob-
ability measure on G(n,m). We denote it by v, m.
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We use the notation N for the set of all infinite sequences of positive integers.
Then N is a cartesian product with all factors equal to the set consisting of all
positive integers, and using the discrete topology on each of these factors, we can
define the cartesian product topology on /. A Suslin subset of a topological space
X is a set of the form p(C') where p: X x N' — X is the projection and C C X x N
is closed. Every Borel set in R™ is a Suslin set (see [F1, p. 66]), and every Suslin
set in R™ is Lebesgue measurable (see [F1, Theorem 2.2.12]). Further, if 4 is a
Suslin subset of R™, then Py(A) is a Suslin subset of V for all m-dimensional
linear subspaces V C R™ (see [F1, p. 65]) .

Let A C R"™ be non-empty and bounded. Define for all 0 < ¢ < oo

A(e) :={z e R" | d(z,A) < e}
The upper Minkowski dimension of A is defined by
dimym A :=inf{s | M°(A) =0} = sup{s | M°(A) > 0},

where

M?*(A) := limsup (2¢)* 7" L"(A(¢))

g0

is the s-dimensional upper Minkowski content of A for all real numbers s > 0.
Then 0 < dimpm A4 < n.

There are some clearly equivalent ways to define the upper Minkowski dimension
(see [F, pp. 38-41]). For example,

dimp A = lim sup M
e—s0 —loge

where for all 0 < £ < oo,

P(A,¢) := max{k | there are z1,...,zx € A such that
B(zy,€),...,B(z,¢€) are disjoint},

and further,

log N(A
dimp A = lim sup M-,
e-—0 - log 3

where for all 0 < € < o0,
N(A,¢e) := min{k | there are Ey, ..., Ex C R™ such that

k
AC U E;and d(E;) <eforall 1 <: <k}

=1
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The upper Minkowski dimension can also be determined by using dyadic cubes in
R™, that is, cubes of the form

{z e R | k27" <aj < (kj+1)27 forall 1 < j <n},

where k; and ¢ are integers. We use the notation N;(A) for the number of the
dyadic cubes with side-length 27* which intersect A. Then

log NV;
dimp A = lim sup —M.

1—+00 ilog2
Finally, we set dimp 0 := 0.
Let A ¢ R™ The packing dimension of A can be defined by means of the
packing measures (see [M3, 5.10]), which were introduced by Tricot in [T] and
independently in a different form by Sullivan in [S]. Apart from the proof of Co-

rollary 3.10, we only need the following equivalent definition, which is based on
the relation between the upper Minkowski dimension and the packing dimension:

dimp A := inf{supdimym E; | E; C R™ is bounded for all ¢ and 4 C |J E;}.
' i=1

1=

Clearly, dim, A < dimy A whenever A is bounded. Further, dimg A < dim, A for
all A C R (see [F, (3.29))).

2.2. Lemma. If A C R" is bounded, then the map f: G(n,m) -~ R defined
by
f(V):=dimm Py (A)

for all V € G(n,m) is a Borel function.
Proof. We may assume that A # (. Since

dimpy Py(A) = lim sup log M(Py(4), ')

700 — log Ci ’

where i tends to infinity through integer values, M(Py(A),r) is for all r > 0 the
smallest number of closed balls with radius r which cover Py(A), and 0 < ¢ < 1
(see [F, p. 41]), it is enough to prove that for fixed » > 0 the map ¢g: G(n,m) — R
defined by

g(V) := M(Py(A),r)

for all V' € G(n,m) is lower semicontinuous, that is,

M(Py(A),r) < liminf M(Py,(A),r),
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when V; € G(n,m) for all i with lim; oo 0(V;,V) = 0. Indeed, since any lower
semicontinuous function is a Borel function, this gives the desired result.

Define k; := M(Py,(A),r) for all 7 and k := liminf; ,o k;. Since (k;) is a
bounded sequence of positive integers, there exists a subsequence (k;; ) such that
ki; = k for all j. So we may assume that M(Py;(A),r) = k for all <.

For all 2, we fix a:},,a:i € V; such that

k
(1) Py, (4) ¢ U B(z,7).
j=1
Since (z!), where 2! = (2@,...,2%) for all 4, can be identified with a bounded

sequence in R"™F, it has a convergent subsequence. By considering this sub-
sequence, we may assume that for all 1 < j <k there is z; € V with lim;_,c 2% =
zj. Now it suffices to show that

Py(A) C ij B(zj,r).

i=1

Consider z € A. Let (e;) be a sequence of positive real numbers such that
lim;_, o €; = 0. For all I, there is an integer I(!) such that

I(1
|ac]-()—:cj| <€

forall 1 <j <k and
|PV1(1)(‘77) - PV($)| < €.
Consider a positive integer {. By (1), there is an integer 1 < j(I) < k such that

[Py, () — mjl((ll))l <r. Then,

I(l I(l
|Py(z) = 2] < [Pyv(e) = Py (@)l + [Py (2) = $j((z))| + ij((z)) — x| < 74 2e,
and so there are a subsequence (¢;,) of (&;) and an integer 1 < j < k such that
|Pv(:L‘) — .’cj[ <r+4 2€1p

for all p. Thus |Py(z) —z;] <r.o

2.3. Lemma. If A C R" is compact, then the map ¢: G(n,m) — R defined
by
¢(V) := dimy, Py (A)

for all V- € G(n,m) is measurable with respect to the o-algebra consisting of the
Yn,m-measurable sets.
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Proof. We may assume that A # (). We use the notation L(R") for the family
of the non-empty, compact subsets of R"™ and equip K(R") with the Hausdorff
metric

p(K,L) = sup{d(:z:,L),d(y,K) |z € K,yeL)
for K,L € K(R"™). Now we obtain for all real numbers ¢ that

{VeGn,m)|g(V)>c}=f1{K cKR")|dim, K > c}),
where f: G(n,m) - K(R") is a continuous function defined by
f(V):=Pv(4)

for all V € G(n,m). The measurability of ¢ is an immediate consequence of a
result by Mattila and Mauldin (see [MM)]) stating that for all real numbers ¢, the
set {K € K(R") | dimp K > ¢} is a Suslin subset of K(R™). Then f~'({K €
K(R™) | dimp K > ¢}) is a Suslin subset of G(n,m) (see [F1, p. 66]) and thus
Yn,m-measurable (see [F1, Theorem 2.2.12)). o

2.4. Remark. It is easy to see that Lemma 2.3 holds for o-compact sets. In
fact, if A = (J;2, A; where A; is compact for all 7, then, by [F, (3.26)], g = sup, g;
where the map g¢; : G(n,m) — R defined by

gi(V) := dimp Py (4;)

for all V & G(n,m) is by Lemma 2.3 measurable with respect to the o-algebra
consisting of the v, m-measurable sets for all «. Thus g is measurable.

3. Projection results

The behaviour of both the upper Minkowski dimension and the packing di-
mension under orthogonal projections differs from the projection properties of the
Hausdorff’ dimension, as shown by the following example, which is a modification
of a construction from [M2]. In fact, it also gives an example which shows that
the upper Minkowski dimension and the packing dimension estimates discussed by
Falconer and Howroyd in [FII] are the best possible ones (for other such examples,
see [FH)).

3.1. Example. Fer any 0 < s < n and s/(1 + (1/m — 1/n)s) < ¢ < min{s,m}
there is a compact set E C R™ such that dimy E = dimp E = s and MY (Py(E)) =
0 for all V € G(n,m); in particular, dimy Py (F) <t for all V € G(n,m).

Consider 0 < s < n. Let Ry = 1. For all integers £ > 1, we choose an integer
lt+1 > 1 and define

(2) TR = % and Rgyy:= Lk
oo o
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Then, Ry > rg > R4 and
(3) lZ+1R‘i+1 = Ry
for all k¥ > 1. Further, we obtain by induction that
(4) (p...10)"RS = 1

for all &£ > 2.

Let P;,;1 be a closed cube with side-length R; and Q1,1 C P;,1 a closed cube
with the same centre as P;,; and side-length ;. We divide (1,1 into {3 closed
cubes Py 1,..., P2y with side-length R,. For all 1 <4 <, let Q2 C Py, be a
closed cube with the same centre as P, ; and side-length 7,. When dividing each
cube Q2 ; into I} closed cubes with side-length R3, we obtain (I5l3)™ closed cubes
P31,...,P;3 (1,15)»- We continue this construction and define

oo (l2...Lg)"

E = ﬁ U Qk,i-
k=2 1=1

€r2 )

— Ry ——

R y
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Let 0 < € < Ry. We fix k > 2 such that Ry4; < e < Ry.

If Riky1 < e <y, then for all 1 <4 < (Iy...0)", the cube Q,i can be covered
with p™ n-cubes with side-length € for some p < 2r;/e. Since E is contained in
(Iz...1k)"p" such cubes, we obtain, using (4), (2), and (3), that

(5) N(E,\/ﬁa) S (12 e lk)npn S 2nR}c—8 Z+1[Z+1€-n s 2nRZ_;ig€—n S 2”6_8.
If rp <e < Iy, then by (4),
(6) N(E,v/ne) < N(E,v/nrg) <(lg... )" = Ry* <e™°.

Now, (5) and (6) together imply dimy E < s.
Since for all & > 2,
Ly di)"
:1

1

we have by (4) that
LYE(V/nRi)) > (... Iy)"Ry = R} %,

and so M?*(E) > 0, which gives dimy E > s. Thus dimy E = s.
Since dimpM(E N Qk,;) = s for all k,¢, we have that dimy(E NU) = s for all
open U C R™ with ENU # 0, and so [F, Corollary 3.9] implies that dimp, £ = s.
Consider s/(1+(1/m —1/n)s) < t < min{s,m}. We choose [} and positive real
numbers u; and vi such that limg e Ur = limg_oo v = 0 and

(7) wk(vr Rick1)* ™ = (Rpgalier) " Ry
for all k. Since (7) is equivalent to the equation

ukvz(m_t)/t — (l2 o Zk)nm(s—t)/stlgc\:llm"(s(n"m)‘I‘nm)t)/st

by (3) and (4), this is possible by choosing successive {341 so large that the right-
hand side tends to zero as k£ — co.

Consider V € G(n,m). Let rgq1 < € < rp with & > 2. We first assume
that (viRpt1)*/t < e. Since for all 1 <4 < (Ip...0;)" the projection Py (Qy,:)
can be covered with p™ m-cubes with side-length ¢ for some p < Znrg/e, the
projection Py (E) can be covered with p™(l;...[;)" m-cubes with side-length .
Since Py(E)(e) NV is contained in (3p)™ (I ...I)™ such cubes, we obtain, using
(4), (2), and (7), that

(8)  (20)"L™(Py(E)e)NV) <27™(Bp) (.. k)"
<28 (6n) P Ry fet ™ < 207 (6n)™ (Rigalk4 )" Ry e T
< 2™(6n) M ug.
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We now assume that ¢ < (vkRi+1)%/t. Since E can be covered with (I3 ... lk41)"
n-cubes with side-length €, Py(E)(¢) NV is contained in (2n)™(ly ... lx41)™ m-
cubes with side-length €, and so we obtain by (4) that

(9) (26)t—m£m(Pv(E)(6) N V) < Qt_m(2n)m(lg - lk_}.])n&t
=20 (2n) " R3¢t < 2t=™(2n) " vy.

Now, (8) and (9) together imply M*(Py(E)) = 0, which completes the construc-

tion. o

We now consider some projection properties of the upper Minkowski dimension
and the packing dimension. We begin our consideration by comparing the upper
Minkowski dimension of a bounded set in R™ with the upper Minkowski dimen-
sions of its images under the orthogonal projections onto the m-dimensional linear
subspaces spanned by a given basis of R"™. As a corollary, we obtain a correspond-
ing result for the packing dimension. For this purpose, we need the following
two lemmas, in which we study the relations between the n-dimensional Lebesgue
measure of a Suslin set in R™ and the m-dimensional Lebesgue measures of its
images under the orthogonal projections onto the m-dimensional linear subspaces
spanned by a given basis of R™. The first one of these two lemmas, Lemma 3.2,
is used when proving the second one, Lemma 3.3. In Theorem 3.4, the estimates
of Lemma 3.3 are applied to compact sets in order to prove the above mentioned
result for the upper Minkowski dimension.

3.2. Lemma. If (e1,...,€e,) is a basis of R", then there exists a constant
0 < ¢ < oo such that for all bounded Suslin sets A C R"
L Py ey rer,_)(A)) 2 LM (AT

for somel <11 <+ <ip—1 SN
Proof. Let A C R™ be a bounded Suslin set. We may assume that £L*(A) > 0
and |e;| =1 for all 1 < i < n. We proceed by induction on n. Let n = 2. Define a
linear map L: R? — R? by
L(t161 + tzeg) = (1 i (61 . 82)2)—1[(t1 — t2€1 . 62)61 + (tz — t161 . 62)62]

for real numbers t; and t, where e; - ¢; denotes the usual inner product. Then,
L(Py(,)(z) + Py(e,)(z)) = z for all z € R?, and so

L2(A)'* < [ det LIV2(L1 (Py(ey) (A))L! (Py(en) (A)))' 2
< (1= (e e2)”) VAL (Prie)(A)) + L1 (Py(en) (A))),
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where det L denotes the determinant of L. Thus, either
LY (Pyey(A)) = (1= (ex - e2)?) 2 L2 (A)/*

£ (Pyen(A)) 2 (1= (o1 - e2))2L7(4)/2,

Now, let n > 3 be such that the lemma holds with n replaced by n — 1. We use
for all t € R the notation

A ={z e W |z +te, € A},

where W € G(n,n — 1) denotes the orthogonal complement of V(e, ). Then A} is
a Suslin set since it is the inverse image of the Suslin set A under the continuous
function z — z + te,, where ¢ € W (see [F1, p. 66]).

We first assume that £~ 1(A?) > £L(A)® D/ for some t € R. If W =
V(ery .. en—1), then L" Y (Py(ey,..en_n)(A)) > LP7HAR) > LP(A)-D/7,

W #V(e,...,en—1), then W:=WnV(e,...,en 1) € G(n,n —2). For all
z € W we define

Ay = {y € A7 | Py (y) =2}

and
B, ={y € PV(e1,...,en—1)(A?) | PVT/(y) =z},

Then L'(B;) = L'(A;)cosa, where 0 < a < 1 is the angle which the line
V(en) forms with the orthogonal complement of V(ey,...,en—1). Using Fubini’s

theorem, we obtain that

£r(A) D/ ecosa < LPTHAY ) cosa = /~ LY(A)cosa dL™ 2
Jw
[

~ Ja”

< 'Cn—l(\Pv(el,-—~,en~1)(A))’

( “Z) dL:n_g.’C = L"n_l(PV(el,...,en_1)(‘4?))

where the last inequality follows from the translation invariance of the (n — 1)-

dimensional Lebesgue measure £"~!.
We now assume that £ 71(A}) < L*(A)™~D/" for all t € R. Using Fubini’s
theorem, we obtain that

(10) L£r(A)mD/m :ﬁ"(A)‘l/”/E”‘l(A?)dtg/ﬁ”‘l(A?)(”‘Q)/(”‘l)dt.
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For all 1 < ¢ < n — 1, there exists & € V(ei,e,) such that |é;] = 1 and
€; - en =0, whence €; € V(e;,en) N W. Since (e1,...,e,) is a basis of R, we see
that W = V(€,...,€,-1). Further, using the fact that V(e;,en) = V(&;,ey,) for
all 1 <1< n-1, wesee that

(11) Vieiry - s€in_gren)=V(€i,..., € _, €n)

foralllSil < e <K ipeg Sn—1.

Identifying W with R"~! and A? with a Suslin subset of R*™! for all t € R,
we find that there exists by the induction hypothesis a constant 0 < ¢ < oo such
that

(12) En—l(A?)(n-—Z)/(n—l) <

[ N

> L Py ey s, ) (AT))

1<i1 <o Kino2<n—1

for all t € R. Using (10), (12), Fubini’s theorem, and (11), we obtain that

1
Lr(A)n=D/n < = > /ﬁ"‘z(PV(a,l,...,éen_z)(A?))dt
¢ 1<41 < <in—2<n—1
1 e
. Z L 1(PV(é,-1,...,E;n_2,en)(A))
1< <o 2 n—1
1 .
= E Z L I(PV(e,'l,...,e;n_2,en)(A))-
1<iy <o <in_p<n—1
Thus,
—_ c n n— n
£ 1(PV(6¢1,...,een_g,en)(A)) > n — 1‘C (A)( v/

forsomel <11 <+ <ipp<n-—1.0

Using Lemma 3.2, we obtain:

3.3. Lemma. If (e1,...,e,) is a basis of R", then there exists a constant
0 < ¢ < oo such that for all bounded Suslin sets A C R™

LY (Py iy sy ) (4)) 2 LT(A) T/

for somel <1 <+ <ip—m <M.

Proof. Let A C R™ be a bounded Suslin set. We proceed by induction on m. If
m = 1, the result follows from Lemma 3.2.

We now assume that there are a constant 0 < ¢; < oo depending only on n, m,
and the basis (eq,...,e,), and an (n — (m — 1))-dimensional linear subspace W;
spanned by {e:,,...,€i,_,_, } for some 1 <iy < -+ <ip_(n—1) <7 such that

LD (P, (4)) 2 e L (4)m =D,
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Identifying Wy with R?»~("=1) and Py, (A) with a Suslin subset of R*~(™m~1) and
using Lemma 3.2, we find a constant 0 < ¢z < oo depending only on n, m, and the
basis (€., €i,_(,_1y), and an (n —m)-dimensional subspace W, C W, spanned
by {€iys vy €i; 1y €iprse ,ein_(m_l)} for some j such that

En_m(PW2 PW1 (A)) 2 C2£n—(m—1)(PW1 (A))(n—m)/(n-—(m—l))‘

Thus
LP™(Py, (A)) > ¢ m/rm(m=e, pr(gyn=miin - g
By means of Lemma 3.3 we obtain:

3.4. Theorem. If (ey,...,e,) is a basis of R", then for all bounded A C R™,
. m ..
dimm Py ey, ... e, ) (4) 2 - dimpy A

for somel <1y < -+ < iy < 1.

Proof. We may assume that dimy A > 0. Let Vi,...,V; be the m-dimensional
linear subspaces spanned by the basis (e1,...,e,). Assume that dimpy Py, (4) <
(m/n)dimy A for all 1 < j <[, and fix a real number ¢ such that dimy Py;(A) <
mt/n < (m/n)dimp A for all 1 < j <. Since dimp A > t, there exists a sequence
(ei) of positive real numbers such that lim;.—eo & = 0 and P(A4,¢;) > ¢ * for all
t. Further, by Lemma 3.3 there exists a constant 0 < ¢ < oo and a subsequence
(€, ) of (&;) such that for some 1 < j <1,

L™(Py; (Aleqr))) = eL™(Ales, ))™™
for all k.

Since L™(A(€)) > P(A,e)a(n)e™ and Py, (A(e)) C (Py;(A))(e) NV; for all 0 <
€ < 00, we have that

(264, )™= L™ ((Py, (A))(£3,) N V;) > c2m/m=ma(n)™/mel /" (4, €, )™/"
> Cth/n—ma(n)m/n

for all k, and so M™!/"(Py;(A)) > 0. Thus dimy Py;(A) > mt/n, which gives a

contradiction by the choice of t. o

3.5. Corollary. If (ey,...,ep) is a basis of R™, then for all A C R",
. m ..
dimg PV(eily---,eam)(A) 2 . dimp A

for somel <1y < -+ < ipy <.
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Proof. We may assume that dimp A > 0. Let Vi,...,V; be the m-dimensional
linear subspaces spanned by the basis (e1,...,€e,). Assume that dimj Py, (4) <
(m/n)dimp A for all 1 < j <[, and fix a real number ¢ such that dim, Py;(4) <
t < (m/n)dimp A for all 1 < j < I. Then for all 1 < j <, there are bounded sets

Al A}, ... in R™ such that

and sup; dimy Ag < t. Now,

A= U Eil,...,zz’

i1l

where

l .
]:
is a bounded set, and thus

(13) dimp A < sup dimy Ejy,. i
il;v--1i121

If41,...,% > 1, then, by Theorem 3.4, there is j such that dimym Py, (E;, .. ;) >
(m/n)dimm Ej, .. ;. Thus

dimp Ei, i< — dimy ij (Eil,...,il) < dimp Afj < —t.
m m

n
m
By (13) we obtain that dimp A < mt/n, which gives a contradiction by the choice
of t. o

3.6. Remarks. (a) We will now construct an example which shows that the
inequalities proved in Theorem 3.4 and Corollary 3.5 are the best possible ones.
For this purpose, let (es,...,en) be the standard basis of R". We will show that
for any 0 < s < n there is a compact set £ C R" such that dimy E = dim, £ = s
and dimym Py (e, ei)(B) = dimp Pye, e; y(E)=ms/nforalll <ij <. <
T < M.

Consider 0 < s < n. For all 1 <1 <n, we construct a compact set E; C V(e;)
with dimyg E; — dimm B; = dimp B; = s/n. One example of this kind of set is
the Cantor A-set C'()), where A := 27"/% (for the construction of C()) see [M3,
4.10]). The fact that dimg C(A) = s/n follows from [M3, 4.10], and the fact that
dimym C(A) = s/n follows from [M3, Corollary 5.8]. Thus dimp C(A) = s/n.

We define

E:=E +- - -+ E,.
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Then, [F, Product formulas 7.2 and 7.5] imply that dimM £ = dimp, £ = s,
dimm Pv(e;, ,..ei,)(E) = dimm(Ei, + --- + Ei,,) = ms/n, and analogously,
dimp Py (e, ,....e0,)(E) = ms/n forall 1 <@y <+ <im < n, which completes the
construction.

(b) The fact that the analogue of Theorem 3.4 and Corollary 3.5 does not hold
for the Hausdorff dimension follows from [F, Example 7.8].

(c) Let A C R™ be bounded. We define

B:= {L € G(n,1) | dimm Pr,(4) < %dimM A}

and show that y,,1(B) = 0.
Since G(n,1) can be identified with S"~1/ ~, where S"~! := {2 € R" | |z| = 1}
and ~ is an equivalence relation defined for all z,y € S®~! by

T~Y < T=yorx=-—y,

we have 7,1 = mywn—1, where m: S"7! —» S/ ~ is the projection and w,_;
is the normalized area measure on S®~!. By Theorem 3.4, there is an (n — 1)-
dimensional linear subspace W C R" containing each L € B, and so 7~ !(B) lies
in W N S™ 1 whence v,,1(B) = 0.

(d) In the same way as in the previous remark, we see by Corollary 3.5 that
for all A C R™ there is an (n — 1)-plane containing each L € G(n,1) for which
dimp Pr(A) < (1/n)dimp A; in particular,

1
dimp Pr(A) > - dim, A

for v,,1 almost all L € G(n,1).
(e) Let A C R"™ be bounded. We define

1
- {V € G(n,n — 1) | dimym Py(4) < 2= dimy A}

and show that there are no V4,...,V, € B with V;* +-.- + V.- = R™.
Assume that there are Vy,...,V,, € B such that VlJ' 4.0+ VnL = R", and fix

oo UL ook that v £ 0 for .m 1< i<n
d,'] < V]' suci l.’]..l(bl/ (] 7‘ U 1L il LS J e,

Then Vi, 0 ---NV;, | ( +Vlj1) isalineforall 1 <4 < -+ <
tn-1 SN

Further, we will show that the lines which are of the form V;, Nn---NV; _,
some 1 <1 <+ <11 <nspan R™.

Wefixy, e Von- NV, ye € ViN--- NV NV NNV for 2 <k <n-1,
and y, € Vi N--- N Vy_y such that y; # 0 for all 1 < 7 < n. Assume that
there are an integer 2 < k < n — 1 (the cases k = 1 and k£ = n are similar to

for
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the case considered here) and real numbers ay,...,ak—1,ak41,...,a, such that
Y = a1y1 + - + @k—1Yk—1 + Gk+1Yk+1 + -+ - + anYn. Fix real numbers by,...,b,
such that yx = byz1 + -+ + bpzy,. Since y; - ©; = 0 whenever ¢ # j, we have that

Yk Yk =Yk (1z1 + -+ bpzn) = bryi - Tk
=br(a1yr + -+ + Ak—1Yk—1 + Gkt 1Yk41 + -+ anYn) - T = 0,

which gives a contradiction.

Thus, the lines which are of the form V;; N---NV; _, forsome 1 <1 < --- <
in—1 < n span R™. Further, for each 1 < k < n, the n — 1 lines N;»;V; with
1 <1< n,1+#k, span Vi, and so Theorem 3.4 implies that dimy Py;(A4) >
((n — 1)/n)dimp A for some 1 < j < n, which gives a contradiction by the
definition of B.

Since there are no Vi,...,V, € B such that V1L 4+ 4 an = R", the union
of the orthogonal complements of those hyperplanes V' for which dimy Py(A) <
((n —1)/n)dimpy A lies in some (n — 1)-plane. Since Yn,n—1(B) =Yn,1({V |V €
B}) by the uniqueness of the measure v, n—1, We see in the same way as in Remark
(c) that v, n—1(B) = 0.

(f) Let A C R™. Define

n-—1

B := {V € G(n,n —1) | dimp, Py(4) < dimy, A}.

Similarly to the previous remark, we see by means of Corollary 3.5 that there are
no Vi,...,V, € B such that VX +--- + V.- = R™ in particular, Ynn—-1(B) = 0.

(g) For n =2, we will now present another way of proving Theorem 3.4.

Let A C R? be bounded. We may assume that dimpy A > 0. Assume that
there exists L € G(2,1) such that dimy Pr(A) < %dimM A. We will prove that
dimm P;(4) > 1 dimy A for all L € G(2,1) with L # L. We may assume that L
is the z;-axis.

For all integers ¢ and k, we use the notation DF for the family of the dyadic
squares which meet A and are of the form

{zeR*|(k-1)27 <oy <k278, (I=1)27¢ <y <1274,

where [ is an arbitrary integer. We denote by M} the number of the squares
belonging to DF. Let K; be such an integer that

MK := max MF.
k

We consider real numbers ¢ and u such that dimy Pr(4) < t < 3 dimy A and
u < t. Then, N;(A) < N;(Py(A))M[ for all 3, N;(A) > 2% for arbitrarily large
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i, and N;(P,(A)) < 2% for all sufficiently large i. Hence, Mt > 2% for arbitrarily
large ¢. . _
Consider an integer 7 with M** > 2% and define

Q= 2. 2—'(t'—u)i‘

Let p; be the smallest integer with p; > ai_l. We may assume that p; +1 < 2ai_l.
We choose the smallest integer ! such that the square

Ql:={z e R* | (K; - 127" <z < K;27%, (1-1)27" <2y <27%)}

intersects A. Next we select, if it is possible, the square Q? € DiK‘ which is closest
to Q} such that d(Q}, Q%) > pi2™". Continuing in this way, we select a maximum
number n; of squares Q!,...,Q" € DX with d(QZ,Q{’) > p;270if j # j'. Since
2t < MK+ < ni(pi +1) < 2nia;t, we have that n; > 24

Let Ly € G(2,1) be the line forming an angle 0 < 8 < 7 with the positive
zi-axis. If the distance between two squares belonging to ’DiK‘ is greater than
27 (tan §) 7! for 0 < 6 < m and greater than 27(tan(r — §))~! for {7 < 6 < m,
then they project as disjoint intervals to the line Ly.

Now if a; < 0 < %W, then

d(Q!, QM) > 27'p; > 277! > 27 (tan )™

forall 1 < j <n;—1, and so the squares Q},..., QI project as disjoint intervals of
length greater than 27¢ to the line Ly. Thus N;(Pr,(A)) > gn; > 32**. Similarly,
we see that N;(Pp,(A)) > 32*,if 37 <6 <7 — a;.

Thus N;(Pp,(A)) > 12% for arbitrarily large integers z, and so

dimy Pp, (A) > u

for all v and ¢ with u <t < %dimM A, which gives the desired result.

(h) Let A C R?™ be a bounded set such that dimm A > 0. By generalizing
the method used in the previous remark, we can characterize the set of those
V € G(2m,m) for which dimp Py (4) < § dimp A.

We assume that there exists V € G(2m, m) such that dimy Py (A4) < 1 dimy 4.
We will prove that dimy Py (A4) > £ dimy A for all W € G(2m,m) with VAW =
{0}. We may assume that V is the z; ...z, -plane.

Let W € G(2m, m) be such that VN W = {0}. We claim that there exists a
constant 0 < L < 1 such that

(14) Lz —y| < |Pw(z) — Pw(y)|
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for all 2,y € VL. In fact, we may assume that y = 0 and |z| = 1 in (14).
Now it suffices to observe that, since V- N WL = {0}, the continuous function
z +— |Pw(z)| on the compact set {z € V* | |z| = 1} is positive and thus attains a

positive minimum.

Let N be a positive integer such that N > (L72(1 4 /m)? + m)!/2,

k

For all integers 7 and ky,..., ks, we use the notation ’Dfl”"’ ‘™ for the family of

the dyadic cubes which meet A and are of the form
{z €R¥™ | (k; —1)27 < z; < k27 for all 1 < j < 2m},

where ki1, -- ., kom are arbitrary integers. We denote by Mikl"“’k'” the number

of the dyadic cubes belonging to Dfl ok For each i, let Ky(2),...,Kn(7) be the
integers with . .
M; = Mifn(z),...,Km(z) — kma}ls Mikl,...,km'
1yeeeshm

Consider a real number ¢ with dimy Py (A) < t < 3 dimy A. In the same way
as in the previous remark, we see that M; > 2! for arbitrarily large i.

Consider an integer 7 with M; > 2%. Letting the cubes in Df‘,l(i)"”’K"I(i) be Qf
with 1 < j < M;, we choose a! € AN Qf for each j. We use the notation

B! := Py(B(a!,N27")) + Py (B(al, N27%)).
Then, Q{ - Bz‘j for all 1 < j < M;. Further, we define
3B! := Py(B(al,3N27%) + Py.(B(a!,3N27%)).

Now, [F1, Corollary 2.8.5] implies that there are 1 < j; < --- < jp, < M; such
that the family {B* |1 < k < P;} is disjoint and

U @c U Bic U 3B},

1<7<M; 1<<M; 1<E<P;
and so, by comparing the 2m-dimensional Lebesgue measures, we obtain that

P; > a(m)™2(3N)7*™M; > a(m)~2(3N)~2m2t,
Assume that 1 <k <[ < P;. Then,

(2N27? < laf* — al'|* = |Py(al*) = Py(al)I* + |Pys(ad*) = Py (al' )
<m27 4 |Pys(al*) - Pya(al)P,

and so

(15) |Pyi(al*) — Pyi(al)| > (4N? — m)' /227",
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Now we have by (14), (15), and the choice of N that

|Pw(al*) = Pw(al')
> |Pw(Py«(al*)) = Pw(Pys(al)| = |Pw(Pv(al*)) = Pw(Pv(al))|
> L|Py.(al*) — Pyo(al')| = |Pyv(al*) — Py(al)|
> (L(AN? —m)Y? — /m)27t > 27,
Hence, P(Pw(A),327") > P; > a(m)2(3N)~?™2%. Since i can be chosen arbit-
rarily large, we get dimy Pw(A) > t. Since this holds for all ¢t < %dimM A, we

get the desired result.
Thus, if we define

B :={V € G(2m,m) | dimy Py(4) < 7 dimy A}

and assume that there exists V' € B, then we have by the above considerations
that
B C{W € G(2m,m) | VNW # {0}},

and so, using [M3, Lemma 3.13], we obtain that Y2 m(B) = 0.

The method by which Theorem 3.4 and Corollary 3.5 can be extended to vp m
almost all V' € G(n,m) is based on the following theorem.

3.7. Theorem. Assume that B C G(n,m) has the following properties:
(i) B is n,m -measurable.
(ii) For every basis (ey,...,e,) of R™ there are
1<4 <+ <im <n such that V(e;,,...,€,,) ¢ B.
Then yp,m(B) = 0.

Proof. We assume that v, m(B) > 0. Then B has a compact subset with positive
measure (see [F1, p. 63]); clearly, condition (ii) is also true if B is replaced by this
subset. Thus, by considering this subset, we may assume that B is compact.

We usc the notation

U:={(z1,...,&2m) € U(0,1)™ | the sequence (z1,...,Zm)

is linearly independent}
and define a continuous function f: U — G(n,m) by

fzy,. . zm) =V (e, ..., 2m).
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Then f~!(B) is closed in U.

By Lemma 2.1, the measure fy((£L™ x --- x L") L U), which is orthogonally
invariant, is a Radon measure on G(n,m). So the uniqueness of v, m implies that
there exists a constant 0 < ¢ < oo such that

Ynm = cfy((L" x - x LTYLT).

Now L™ x -+ x L*(f~1(B)) > 0, and so f~!(B) has a density point (by,. .., bn)
(see [M3, Corollary 2.14]), that is,

(16)  fim X X LB, X X Blbm, 1)) 0 S (B))

r—0 ﬁnx...xﬁn(B(bl,T)>('-~><B(bm,7‘)) -t

We now select bpt1,...,0n € V(b1,...,by) such that (b;,...,b;,,) € U for all
1< <+ <typ<n. Thenforalll<k<n—mandl1l<i < - <ty <
m+k—1there exists a¥(i1,...,im) € R\ {0} for all 1 < j <m such that

m
k- .
btk = Zaj(zl,...,zm)bij.
i=1

Define

M = max { Z|a Ulyeresim |}

1<k<n—m
1<i1 < <im Sm4-k—1

Since U is open, there exists R > 0 such that

Bi1,...,im(7') = B(bil,r) X oere X B(b

Tm Y

rycU

forall1<i; < <4y, <nandr <R
We will prove that there are constants 0 < C < 1 and 1 < D < oo such that for
all1 <1 <<ty <n

(17) L% X -+ X L™(Biyoin () N U\ f7H(B)))
<DL x -+ x LYB1,.m(r/C)N U\ f71(B)))

forallr <CR/M.
In order to prove (17), we will show that for all 0 < & < n—m there are constants
0<Cr<landl1<Dp<oosuchthatforalll1<ij < - < ¢, <m+Ek

(18) L™ x -+ X L™(Biy,yim(T) ﬂ(U\f_l( )
< DRL™ X+ x LYBy,...m(r/C)N U\ f1(B)))
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for all r < CxR/M. This gives (17) when we choose C := Cp_yp, and D := D,,_,.

To prove (18) we proceed by induction on k. The case k = 0 is trivial.

We now assume that (18) is true for k. Let 1 <43 < -+ <t <m+k+1. If
im < m+k, then by the induction hypothesis, (18) is true for k+1 when we choose
Cr+1 < Cr and Dy4q = Dg. So it suffices to consider the case ¢, = m + &k + 1.

Let I > 1 be the smallest integer with [ #¢; forall1 <j <mand1<p<m
the smallest integer with | < ¢,. We assume that p > 2; the case p = 1 only
involves some slight modifications in the following notation.

We define jx := i for all 1 < k < p—1, j, := {, and jr := 131 for all
p+1<k<m.

Define a Lipschitz map Li, ... i.: Bj,,.. j.(7) = Bij,..i.(R) for all r < R/M
by

Lil,...,im(xla' .. )‘Tm) = (1‘13 OO )mp—lvxp+1, vy Ty Z .71) .. a]m)$z);
recall that here oz "1, . 9m) € R\ {0} for all 1 <4 < m and
(19) bip = bmprt1 = Zak“(h, oy Jm)bj;-

Since Bj,,...i,.(R) C U, we have that

)

(20) Vi(zi,...,om) = V(Li; . i (1,0, 2m))
for all (z1,...,2m) € Bj,,....j.. (7). Furthermore, we will see that
(21) Bh,...,im('r) C Lzl,...,im(Bh,...,jm(r/k(il yoee azm)))

for all » < k(%1,...,im)R/M, where

i) = mind Ll G, ) (14 S G gnl)
i#Ep
Now, (21) foliows from thc fact that
(21,0 y@m) = Liy i (@1, Tpe1, Yy Tpy e v v Trne1)
for all (z1,...,%m) € Bi,,..,i,.(7), where

( k+1(]17 ..,jm))—1($ _a1+1(.717"'7jm)m1—

k+1(_717 7jm)$p——l - ap-H(]l" e 7jm)$P T O‘fn+1(j1>- .- ,jm)$m—1)-

y_.
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Here we have by (19) that

[y =55, = (05 G, s o)) = by e
_...—a,;d’-i(]], __,jm)xp_l—(lp+1(]1,---,jm)$p

— s —ag, (]1,...,jm)$m_1—a’;+1(jla-..,jm)bjp|
T ) R T A CTN

_..._a£+i(31, ey Jm)Tp_1 — Z:H(]la ey Jm)Tp
k+l(]1, ..,jm)xm—l_ak—,—l(]ly -',jm)bjpb

< T(|a1§+l(j1a"'ajm D_l <1+Z|a5+1 ]1,---,jm),) < T/k(il,'--,im)’
i#p
whence y € B(b;,,r/k(i1,...,im)).

If we choose

Chal 1= min k(i1,...,2
* 1<i1 < <im e 1 <Em=mAk+1 ( ’ »im)

and

= 1, Lip(Liy .. 6, )"
A1 1<i < <zmm?<zm—m+k+1{’ (L))

where Lip(L;

ir,....im ) denotes the Lipschitz constant of L;, ;. _,
(21) and (20) for all 1 <43 <+ <im-1 <%pm =m+k+1 that

(22) L% x o x LBy, in(r) U\ fTH(B)))
<L X% LNy in(Bis i (7K1 1)) N (U \ F7Y(B))))
< dpp1L™ % X LBy, (r/ers1) N (U \ f7H(B)))

for all r < cxg+1R/M. Now, jm = im—1 < m+k, and so we obtain by the induction
hypothesis and (22) forall 1 <¢; < -+ <ipm_1 < tm =m + k+ 1 that

L0 x o x LBy, (1) N U\ f71(B)))
< djg1 DL™ % -0 X LY By,.m(r/(ek+1Ck)) N (U \ f7H(B)))

then we have by

for all r < cx41CrR/M. Thus, if we choose Ck+1 := cx+1Ck and Dy41 := dg41Dx,
we obtain (18) for k + 1.
Let ¢ > 0. By (16), there exists R. > 0 such that

L" %o x LT(By,..m(r)N0 (U \ f_l(B))) <eL™ x -+ x LT By,...,m(T))
for all r < R., and so by (17), we have for all 1 <7; < -++ < i,y < m that

LP % x LBy, i (M) AU\ F7YB))) < DC™™eL™ x -+ x LBy, m(r))
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for all 7 < min{CR.,CR/M}. Thusforall 1 <i; < -+ < iy < n we obtain that
L" X oo X LBy, im (1) N FH(B)>(1—=DC )L™ x -+ x L™(By,,....i,, (1))

for all r < min{CR.,CR/M}. By the following Lemma 3.8, we can choose a basis
(z1,...,25) of R® such that (z;,,...,z; ) € f}(B)foralll <i; <+ <im <.
Then V(ziy,...,zi,) = f(zi,...,2i,) € Bforalll <4 <.+ < ¢p <n, which
contradicts condition (ii) and so completes the proof. o

3.8. Lemma. Suppose that by, ..., b, € U(0,1) C R™ and that B C U(0,1)™ C
R™™ is a Borel set such that for all 0 < € < 1 there exists r > 0 such that

L" x - x L*((B(bi;,r) x -+ x B(b;,,,r)) N B)
> (1= )L % - x L(B(biyy) X -+ x B(bi 7))

forall 1 <4 < -+ < ip, < n. Then there are R > 0 and z; € B(b;, R) for

all 1 < i < n such that the sequence (z1,...,z,) is linearly independent and
(Tiyy -y Ti, ) EBforalll1 <4y <+ <ip <.

Proof. We omit the easy proof in the case m = 1 and assume that m > 2. Let
k=n—m.

We define

Mo mm{zi’m} i—1\/n—1
T -1/ \m-—1

I=max{1,i—k}

foralll <i<nand

M := max M;.
1<ikn

Then there exists £ > 0 such that

L" x - x L™(B(bi,,R) x -+ x B(b;,,,R)) N B)
>(1=M"™)L" x - x LYB(biy, R) x -+ x B(bi,, R))

foralll <i1 < <ty < 1.
We use the notation

= min L7 x oo x LY((B(bsy,R) x -++ x B(b

= R))NB
1<i1 < <im<n )) )

2Im)

and
B :=L"(B(0,R))

and fix v such that (6™ — a)!/™ <y < /M.
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Fl<i<m-landl<pi<:---<pr<iy <+ <imoi <n,then we define
for all z,, € B(b,,,R), 1 < ¢ <, a Borel set

B = {(2iy, e @i, ) € B(biy ,R) X -+ X B(biy,_,, R) |

(Tpyse-erTpyTiyyennsZiy_,) € B}

fl1<j<k+landj<iy <:+<ipm_1 <n, we define a Borel set

Az’_1,...,im_1 - {.’E € B(bj,R) l L% % e X En(B:v ) > ﬂm——l _7m_1}'

5 11 5eeyim-1

Since by Fubini’s theorem,
a<L"x- - x LY(B(bj,R) x B(bi,,R) x -+ x B(b;,_,,R))N B)
= / L X x LYB . )dL
B(b;,R)

< ﬁm—lﬁn(Ajl,...,imq) + (ﬁm_l _ 7m—1)£n(B(bj,R) \ A;l,...,im—l)
— I@m _ 7m—1(ﬁ = En(A;l,-nﬂm—l)),

we have by the choice of v that

(23) ,Cn(A;-l""’im_l) > /B — 7.

Further,if m >3,2<!<m-11<j<k+lLand1<p; < - <p_1 <J <
i1 <+ <im-1 < n, we define for all z,, € B(by,,R), 1 < ¢ <1-1, a Borel set
APty o) = {z € B(bj, R) |

L7 X X L”(Bx”""’xp"“x) > pgmt - 4mTly,

il;“',im—-l
If . )
LM% oo x LB P > pm=(=1) _ ym—(-1),

j:il)“-yim—l

we obtain, using Fubini’s theorem, that

ﬂm—(l—l) N 7m—-(l—1) <LV XX £n(BIP1?""1Pl—-1)

FrBtyeeeybim—t
_ / LM x o LBty g oy
B(b;,R)
< BmTILM AT (@ )
(B = LN B s, R\ A @y 3y )
= gmtl _ ymlg ﬁ"(A;'hm’im_l(xpn- coTp)))
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and so

(24) £"(A;-1"”’lm"'(:cp1, e Tp ) > B =1
For brevity, we will write Aj-l""’i’""(mm,...,:cp,_l) = A;“""im_l and
:fﬁf"i';_p:‘l’zj = Bzﬁj...,im_l in the case [ = 1, originally defined only in the

case | > 2,if 1 <I<m—-1,I<j<k+L1<p1 < <p1<j<u<---<
tm—1 <n, zp, € B(bp,,R) forall 1 < ¢ <1—1, and z; € B(bj, R).
We will first inductively construct z; € B(b;, R) for all 1 <7 < m — 1 such that

the sequence (21,...,&m—1) is linearly independent and
(25) L X oo x LYBTT) > gmet g

foralll<i<m-—1 max{l,i —k}<I<gand1<p; < ---<p 1 <i <t <
<7:7n—l <n.
We begin by selecting z1. By (23), we obtain that

n—1

m—1

ﬁn( ﬂ Ail,A-«yim-l)ZIB_( )7:,3—M172/3—M7>0’

1<t <<t -1<n
and so we can choose z; € B(b1, R) with z; # 0 such that

L% x 'Cn(B;Fll,...,im_l) Z Igm—-l _ ,)/m—l
foralll <i; < <itmo1 <n.

If m > 3, we continue as follows. We assume that 1 <7 < m — 2 and that we
have chosen z; € B(b;, R) for all 1 < j < 7 such that the sequence (z1,...,z;) is
linearly independent and

L7 % % En(me:---:rm—wzi) > IBm—l . ,Ym—l

2l yeeeslm—1

tm—t < n. We claim that

(26) LrALT ™ @) 2 B =

for all max{l,i+1 -k} <I<i4landl <py <---<p1<i+1<i <
o < Uy < n. In fact, inequality (26) follows from (23) if [ = 1, and from the
induction hypothesis and (24) if { > 2.
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Now we obtain, using (26), that

i+1 o
£ N N AT @ Ty )

l=max{1,:+1-k} 1<py << pioy <itl
+1<u< - <im-1<n

i+1 . .
i n—(t+1)
>3-
28 Z <l—1)< m — 1 >7
l=max{l,i+1-k}
=0 =My 2 - My >0,
whence, using the fact that the n-dimensional Lebesgue measure equals zero for

any ¢-dimensional linear subspace of R™, we can choose z;1; € B(b;4+1, R) such
that the sequence (z1,...,z:+1) is linearly independent and

L7 %0 X ﬁn(szl""’xPl—1’zi+1) > IBm—l . ,Ym—l

115yl 1

for all max{1l,i +1 -k} <I<i4+land 1<p; < <p1<i+1<ip <--- <

tm—1 < n. This completes the construction of the sequence (z1,...,Zm—1).
We will now inductively construct zm+; € B(bmi, R) for all0 <z < &k —1 such
that the sequence (z1,...,2,-1) is linearly independent, (zp,,...,Zp,, _,,Tm+i) €

Bforall0<:<k—-—1landl1<p <:- < pm-1 <m-+t1, and

n n ZTpyyeesTpi_11&m+i m—1 m~—1
(27) L X x L (Bz‘lf..,im_f ' )2 B -
forall0<:<k—1,max{l,m+i—k}<I<m-1l,and 1 <p; < - < pr-1 <
m4i<iy < <ipog<n.

We begin by selecting z,,. By (25), we obtain that

(28) )Cn(Bfnl,...,Zm_1) Z ﬂ _ ’Y.
Further, we claim that
(29) En(Airll’""im_l(xpu"'axpz-l)) > /8_7

for all max{l,m —k} <I<m-land 1 <pi < - < p-1 <m<i3 <<
im—1 < n. In fact, inequality (29) follows from (23) if I = 1, and from (25) and
(24) if 1 > 2.

Using (28), (29), the inequality S > M,,7, and the fact that the n-dimensional
Lebesgue measure equals zero for any (m — 1)-dimensional linear subspace of R",
we can choose, like before, z,, € B(bn, R) such that the sequence (z1,...,2m) is
linearly independent, (z1,...,2m) € B, and (27) is valid if 2 = 0.

If £ > 2, we continue as follows. We assume that 0 < 7 < k& — 2 and that
we have chosen zpm4j € B(bm4j,R) for all 0 < 7 < 1 such that the sequence
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(z1,...,%Tm+:)is linearly independent, (zp,,...,Zp,,_1,Tm+j) € Bforall0 <j <4
and 1 < p; <+ < pm-1 <m+7, and
L% oo X /Cn(Bxpl""’rm—l’zmH) > ﬂm_l _ 7m—l

TR
forall 0 < j <i,max{l,m+j—k}<I<m-1l,and1 <p; < - < p_1 <
m+4j<ig < <tpmo <N
We claim that
(30) LB 2=

m--i4-1

foralll1 <p; <+ <pm-1<m-+i+1and

(31) LM AR @y s Tpiy)) 2 B =y

for all max{l,m+i+1—k}<I<m-land1<p; < - <p_1<m+i+1<
iy < -+ < tm—1 < n. Inequality (30) follows from (25) if pp,—1 = m — 1, and
from the induction hypothesis if p;,—1 > m. Inequality (31) follows from (23) if
I =1, from (25) and (24) if [ > 2 and p;—1 < m — 1, and finally from the induction
hypothesis and (24) if { > 2 and p;—; > m.

By means of (30), (31), the inequality 8 > My4+i+17, and the fact that the
n-dimensional Lebesgue measure equals zero for any (m + ¢)-dimensional linear
subspace of R", we can choose, like before, €m4it1 € B(bmtit1, ) such that the
sequence (T1,...,Tm+i+1) is linearly independent, (zp,,...,Zp,. 1> Tm4it1) € B
foralll <p; < - <pm-1 <m+i1+1,and

L x . o X [ﬁn(BIpl’”"zpl—l’xmﬁﬂ) > ,Bm_l _ ,Ym—l

Plyeestim =1

for all max{1l,m+i+1-k} <I{<m—Tland1 <py <o <pog <m+i+1 <4y <
+++ < iy < n. This completes the construction of the sequence (z1,...,Zn_1).
Finally, we obtain by (25) if pm—1 =m — 1, and by (27) if p,,—1 > m that

(32) LMB Y > By

for all 1 < p1 < '+ < pm—1 < n. Using (32), the inequality § > M7y, and
the fact that the n-dimensional Lebesgue measure equals zero for any (n — 1)-
dimensional linear subspace of R™, we can choose, in the same way as before,
tn € B(b,,R) such that the sequence (z1,...,2,) is linearly independent and
(ZpyryrevesTp_1,2n) € Bforalll < p; <-- < pm_1 < n. This completes the
proof of the lemma. o

3.9. Corollary. If A C R" is bounded, then
dimy Py (4) > -T;’;— dimy A

for ¥n,m almost all V € G(n,m).
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Proof. By Lemma 2.2 and Theorem 3.4, the set
. m ..
B := {V € G(n,m) | dimy Py(A) < — dimy A}
n

has properties (i) and (ii) assumed in Theorem 3.7, and so we obtain by Theorem

3.7 that v, ,m(B) = 0. ©
3.10. Corollary. If A C R™ is a Suslin set, then

dim,, Py (4) > % dim,, A

for yn,m almost all V € G(n,m).

Proof. If A is compact, it suffices to observe that by Lemma 2.3 and Corollary
3.5 the set m
B:= {V € G(n,m) | dimp Py (4) < ™ dimg A}

has properties (i) and (ii) assumed in Theorem 3.7, and so we obtain by Theorem
3.7 that yn,m(B) = 0.

If A is a Suslin set, then [JP, Theorem 1] implies that for all positive integers
¢ there exists a compact set K; C A such that dimp A = sup; dim, K;. Further,
the above consideration implies that for all 7 there is B; C G(n,m) such that
Yn,m(Bi) = 0 and dimp Py(K;) > (m/n)dim, K; for all V € G(n,m)\ B;. We
define B := [J2, B;. Then 7,,m(B) = 0, and the monotonicity of the packing
dimension implies that

dimy Py (A) > supdim, Py (K;) > = supdimy K; = — dimy, A
7 n g n

for all V € G(n,m)\ B. o

3.11. Remarks. (a) As mentioned in the Introduction, the lower bounds
obtained in Corollary 3.9 and Corollary 3.10 were improved to the best possible
ones by Falconer and Howroyd in [FH].

(b) If A C R" is a bounded set with dimy; A = n, then we have by Corollary
3.9 that dimpm Py (A) = m for vy, almost all V € G(n,m).

(c) If AC R" is a Suslin set with dimp A = n, then we have by Corollary 3.10
that dim, Py(A) = m for ¥,,m almost all V € G(n,m).

References

[D]  Davies, R. O.: Subsets of finite measure in analytic sets. - Indag. Math. 14,
1952, 488-489.

[F] FaLCONER, K. J.: Fractal Geometry: Mathematical Foundations and Applica-
tions. - John Wiley & Sons, Chichester, 1990.



34
[FH]
[F1]

(HT)

[JP]
K]
[M]
[M1]
[M2]
[M3]
[MM]
(5]

[T]

Maarit Jarvenpaa

FALCONER, K. J., and J. D. Howroyp: Projection theorems for box and packing
dimensions (to appear).

FEDERER, H.: Geometric Measure Theory. - Springer-Verlag, Berlin-Heidel-
berg—New York, 1969.

Hu, X., and S. J. TavLor: Fractal properties of products and projections
of measures in R%. - Math. Proc. Cambridge Philos. Soc. 115, 1994,
527-544.

Jovce, H., and D. Preiss: On the existence of subsets of finite positive meas-
ure (to appear).

KaurMmaN, R.: On Hausdorff dimension of projections. - Mathematika 15,

1968, 153-155.
MARSTRAND, J. M.: Some fundamental geometrical properties of plane sets of
fractional dimensions. - Proc. London Math. Soc. (3) 4, 1954, 257-302.

MatTiva, P.: Hausdorff dimension, orthogonal projections and intersections
with planes. - Ann. Acad. Sci. Fenn. Ser. A I Math. 1, 1975, 227-244.

Martina, P.: Orthogonal projections, Ricsz capacitics, and Minkowski con-
tent. - Indiana Univ. Math. J. 39, 1990, 185-198.

MarTiLa, P.: Geometry of Sets and Measures in Euclidean Spaces. - Cam-
bridge University Press (to appear).

MarTiLa, P., and R. D. MauLpiN: Measurability of measure and dimension
functions (to appear).

Suruivan, D.: Entropy, Hausdorff measures old and new, and limit sets of
geometrically finite Kleinian groups. - Acta Math. 153, 1984, 259-277.

TricoT Jr, C.: Two definitions of fractional dimension. - Math. Proc. Cam-

bridge Philos. Soc. 91, 1982, 57-74.

University of Jyvaskyla
Department of mathematics
P.O. Box 35

FIN-40351 Jyvaskyléd
Finland



	ACKNOWLEDGEMENTS
	CONTENTS
	1 INTRODUCTION
	2 PRELIMINARIES
	3 PROJECTION RESULTS
	REFERENCES



