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1. Introduction

Throughout this paper, m and n will be integers such that O < m < n. We 
consider how the upper Minkowski dimension and the packing dimension, which 
was introduced by Tricot in [T], change under orthogonal projections. Since nei
ther the upper Minkowski dimension, denoted by dimM A for all bounded A C 
Rn , nor the packing dimension, denoted by <lim

p 
A for all A C Rn , can increase 

under Lipschitz maps (see [F, p. 44] for the upper Minkowski dimension and [F, 
Proposition 3.8 and p. 46] for the packing dimension), we have that

for all bounded AC Rn , and 

<lim
p 

Pv(A) ::; <lim
p 

A 

for all A C Rn , where Pv: Rn -+ V denotes the orthogonal projection onto an 
m-dimensional linear subspace V C Rn.

We denote by G( n, m) the Grassmann manifold of all m-dimensional linear
subspaces of Rn. Let r'n ,m be the unique orthogonally invariant Radon probability 
measure on G(n, m) (see [M3, 3.9]). 

We use the notation dimH for the Hausdorff dimension (for its definition see 
[M3, 4.8]). Let AC Rn be a Borel set. The behaviour of the Hausdorff dimension 
s = dimH A of A under orthogonal projections onto m-dimensional linear subspaces 
V C Rn depends on whether O ::; s ::; m or m < s ::; n. In fact, if s ::; m, 
then dimH Pv(A) = s for ,'n ,m almost all V E G(n, m), and if s > m, then 
dimHPv(A) = m for ,'n ,m almost all VE G(n,m). In the plane, a geometric 
proof of these projection theorems for the Hausdorff dimension was first given 
by Marstrand in [M]. He considered the case where the s-dimensional Hausdorff 
measure of A (for the definition of the Hausdorff measures see [M3, 4.3]) is positive 
and finite. However, Davies has shown in [D] that if the s-dimensional Hausdorff 
measure of any Borel set is infinite, then it has a compact subset with positive and 
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finite s-dimensional Hausdorff measure. Potential theoretical concepts were first 
used by Kaufman in [K] in order to prove these projection theorems in the plane. 
In [Ml], Mattila obtained extensions of these theorems to higher dimensions. 

Let A C Rn be a bounded Borel set. If dimM A = dimH A, then we have 
by the above mentioned projection theorems for the Hausdorff dimension that 
dimM Pv(A) = min{ dimM A, m} for rn ,m almost all VE G(n, m), since dimH A=:; 
dimM A for all bounded A C Rn. One example [M3, Corollary 5.8] of this kind 
of set is an arbitrary self-similar set generated by similitudes S1, ... , SN for whic:h 
there is a non-empty, bounded and open set U such that 

N 

LJ S;(U) c U and S;(U) n S1(U) = 0 for i =/= j. 
i=1 

Analogously, if AC Rn is a Borel set with <limp A= dimH A, then <limp Pv(A) =
min{dimp A,m} for rn ,m almost all VE G(n,m), since dimHA::; dimp A for all 
Ac-Rn . 

In this paper, we construct an example showing that, in general, the behaviour of 
both the upper Minkowski dimension and the packing dimension under orthogonal 
projections differs from the corresponding behaviour of the Hausdorff dimension. 
This construction gives a negative answer to a question asked by Hu and Taylor 
in [HT, Introduction, p. 528]. 

We also show that if ( e1, ... , en) is a basis of Rn, then for all bounded A C
Rn there is an m-dimensional linear subspace V spanned by some of the vectors 
(e1, ... , en) such that 

dimM Pv(A) 2 
m 

dimM A. 

Using the relation between the upper Minkowski dimension and the packing di
mension, we obtain a corresponding result for the packing dimensions of any set 
in Rn and its images under the orthogonal projections onto the m-planes spanned 
by a given basis of Rn . Further, these inequalities are the best possible ones, and 
the analogue of these results is not true for the Hausdorff dimension. 

By means of the same method for both the upper Minkowski dimension and the 
packing dimension, the above mentioned results can be extended to rn ,m almost 
all V E G( n, m ). In this way we are able to prove that for all bounded A C Rn,

dimM Pv(A) 2 m dimM A
n 

for r
n ,m almost all VE G(n,m), and for all Suslin sets AC Rn,

<limp Pv(A) 2". 
m 

<limp A 
n 

for rn ,m almost all V E G( n, m ). The cases m = 1 and m = n - 1 are immediate 
consequences of the above mentioned results. In fact, if m = 1 or m = n - 1, 



On the upper Minkowski dimension, the packing dimension, and orthogonal projections 7 

the assumption that A is a Suslin subset of Rn is not necessary for the packing 
dimension ( see Remarks 3. 6 ( d) and ( f)). The case 1 < m < n - 1 involves some 
more work including measurability considerations (see Lemmas 2 .2 and 2.3). How
ever, these estimates concerning the decrease of the upper Minkowski dimension 
and the packing dimension under orthogonal projections are not the best possible 
ones. After this work was completed, the best possible lower bounds were found 
by Falconer and Howroyd using different methods (see [FH]). They showed that if 
A C Rn is bounded, then 

. dimMA 
dimM Pv(A) 2: 1 + (1/m - 1/n) dimM A

for 1'n,m almost all VE G(n,m), and if AC Rn is a Suslin set, then 

dimp A 
<limp Pv(A) 2: 1 + (1/m - 1/n) <limp A

for 1'n,m almost all V E G(n,m). Note that ms/n < s/(1 + (1/m - 1/n)s) <

min{s,m} for each O < s < n.

2. Preliminaries

We denote by d(A) := sup{IY - zl I y, z EA} the diameter of a non-empty set 
A C  Rn and by d(x,A) := inf{lx - YI I y E A} the distance between x E Rn 

and A. The distance between two non-empty sets A, B C Rn is denoted by 
d(A, B) := inf {Ix - YI I x  EA, y E B}. 

Let x E Rn and O < r < oo. For closed balls we use the notation B(x, ,) := {y E 
Rn I Ix - y I ::; r} and for open balls the notation U ( x, T) : = { y E Rn I Ix - y I < r}. 

When k is an integer with 1 ::; k ::; n and ( x1, .. . , x k) is a linearly independent 
sequence in Rn, we use the notation V(x1, ... ,xk) for the k-dimensional linear 
subspace of Rn spanned by { x 1, ... , Xk }. Further, if Vi and Vz are linear subspaces 
of Rn, we define V1 + Vz : = { x + y I x E Vi , y E V2} .

Throughout this paper, a measure means a non-negative, monotone, and count
ably subadditive set function which vanishes for the empty set. If µ is a measure 
on a set X, we denote by µ L A the restriction of the measure µ to a set A C X, 
that is, 

(µ L A)(B) =µ(An B) 

for all B C X. Further, we use the notation Juµ for the image of the measureµ 
under a map J: X -, Y, that is, 

for all A C Y. The following lemma, which is a modification of [M 3, Theorem 
1.18], will be used later when proving Theorem 3.7. 
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2.1. Lemma. Let X and Y be a-compact metric spaces. Ifµ is a Radon 
measure on X with µ(X) < oo and f: X---+ Y is continuous, then f#µ is a Radon 
measure on Y. 

Proof. Since a measure on a a-compact metric space is a Radon measure if and 
only if it is locally finite and Borel regular ( see [M3, Corollary 1.11 ]), it is sufficient 
to prove that f#µ is Dorel regular. 

Let A C Y and ( Ei) be a sequence of positive real numbers such that lim i->oo Ei = 
0. Since µ is a finite Radon measure, there exists for all i a compact set Ci c X
such that µ(X \ Ci) < Si.

For all i, we define 
Vi:=µLCi. 

Since µ is Borel regular and C; is a Borel set with µ( C;) < oo, the measure Vi 
is Borel regular (see [M3, Theorem 1.9]) and finite. Thus Vi is a Radon measure 
with compact support for all i, and so f#vi is a Radon measure (see [M3, Theorem 
1.18]); in particular, it is Borel regular. Thus for all i, there exists a Borel set 
Bi c Y with Ac Bi and f#vi(Bi) = f#vi(A). 

Define 
00 

B:= n Bi. 
i=l 

Then Bis a Borel set with AC Band 

for all i. Thus hµ(B) - hµ(A). □ 
We denote by ,en the Lebesgue measure on Rn . Further, we use the notation 

a(n) := £n(B(O, 1)).
As mentioned before, we use the notation G( n, m) for the Grassmann manifold 

consisting of all m dimensional linear subspaces of Rn . For V E G ( n, m), we 
denote by V 1- E G( n, n -m) the orthogonal complement of V and by Pv: Rn ---+ V 
t.hP- nrt.hne;nnal projP.r.t.ion onto V. Tdfmt.ifyine; V E (;( n, m) wit,h Rm , wp, can
determine the m-dimensional area measure for any subset of V by using the m.
dimensional Lebesgue measure £m . By means of this identification, any orthogonal
projection onto an m-dimensional linear subspace of Rn becomes a map onto Rm .

Equipped with the metric 

a(V, W) := IIPv - Pwll 

for V, W E G(n, m), where IILII := suplxl=l ILxl denotes the usual norm for a 
linear mapping L, the Grassmann manifold G(n, m) is a compact metric space. 
As mentioned before, there exists a unique orthogonally invariant Radon prob
ability measure on G(n, m). We denote it by 'Yn,m•
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We use the notation N for the set of all infinite sequences of positive integers. 
Then N is a cartesian product with all factors equal to the set consisting of all 
positive integers, and using the discrete topology on each of these factors, we can 
define the cartesian product topology on N. A Suslin subset of a topological space 
X is a set of the form p( C) where p: X X N - X is the projection and C C X X N 
is closed. Every Borel set in Rn is a Suslin set (see [Fl, p. 66]), and every Suslin 
set in Rn is Lebesgue measurable (see [Fl, Theorem 2.2.12]). Further, if A is a 
Suslin subset of Rn, then Pv(A) is a Suslin subset of V for all m-dimensional 
linear subspaces V C Rn (see [Fl, p. 65]) . 

Let A C Rn be non-empty and bounded. Define for all O < c < oo 

A(c) := {x E Rn I d(x,A)::; c}. 

The upper Minkowski dimension of A is defined by 

dimM A:= inf{s I M 8(A) = O} = sup{s I M 8(A) > O}, 

where 
M 8(A) := lim sup (2s)8-n cn(A(s)) 

e:-->O 

is the s-dimensional upper Minkowski content of A for all real numbers s � 0. 
Then O ::; dimM A ::; n. 

There are some clearly equivalent ways to define the upper Minkowski dimension 
(see [F, pp. 38-41]). For example, 

where for all O < c < oo, 

d
. 

A 1
. log P(A, s) 

IillM = Ill sup 
l 

, 
e:-->O - og c

P(A, c) := max{ k I there are XI, ... , Xk E A such that 

and further, 

where for all O < c < oo, 

B(x1, c ), ... , B(xk, c) are disjoint}, 

d
. 

A 1
. logN(A,s) 

IillM = Ill sup 
l 

, 
e:-->O - og c

N(A,s) := min{k I there are E1,••. ,Ek C Rn such that 
k 

AC LJ Ei and d(Ei) ::; c for all 1 ::; i ::; k }. 
i=l 
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The upper Minkowski dimension can also be determined by using dyadic cubes in 
Rn, that is, cubes of the form 

where kj and i are integers. We use the notation Ni(A) for the number of the 
dyadic cubes with side- length 2-i which intersect A. Then

. . logNi(A) 
d1mMA = hm sup .

1 i-+= i og 2 

Finally, we set dimM 0 := 0. 
Let A C Rn. The packing dimension of A can be defined by means of the 

packing measures (see [M3, 5.10]), which were introduced by Tricot in [T] and 
independently in a different form by Sullivan in [S]. Apart from the proof of Co
rollary 3.10, we only need the following equivalent definition, which is based on 
the relation between the upper Minkowski dimension and the packing dimension: 

= 

dim
p

A := inf{sup dimMEi I E; C Rn is bounded for all i and AC LJ E;}. 
i i=l 

Clearly, <lim
p 

A ::; dimM A whenever A is bounded. Further, dimH A ::; <lim
p 

A for 
all AC Rn (see [F, (3.29)]). 

2.2. Lemma. If AC Rn is bounded, then the map f: G(n,m)--+ R defined 
by 

f(V) := dimM Pv(A) 

for all VE G(n,m) is a Borel function. 

Proof. We may assume that A#- 0. Since 

d. p ·  .A. _ 1. 
log M(Pv(A), ci ) 

1mM v( ) - 1�sup
- loe: ci , 

., .oo ,.___, 

where i tends to infinity through integer values, M(Pv(A),r) is for all r > 0 the 
smallest number of closed balls with radius r which cover Pv(A), and O < c < 1 
(see [F, p. 41]), it is enough to prove that for fixed r > 0 the map g: G(n, m) --+ R 
defined by 

g(V) := M(Pv(A),r) 

for all V E G( n, m) is lower semicontinuous, that is, 

M(Pv(A), r)::; lim inf M(Pv,(A), r), 
•-= 
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when v; E G( n, m) for all i with limi---+oo a(V;, V) = 0. Indeed, since any lower 
semicontinuous function is a Borel function, this gives the desired result. 

Define k; := M(Pv;(A), r) for all i and k := lim infi---+oo k;. Since (k;) is a 
bounded sequence of positive integers, there exists a subsequence ( k;

J 
) such that 

k;
J 

= k for all j. So we may assume that M(PV; (A), r) = k for all i. 
For all i, we fix xi, ... , xt E v; such that 

(1) 
k 

Pv;(A) C LJ B(xj, r). 
j=l 

Since (xi ), where xi 
= (x�, ... , xk) for all i, can be identified with a bounded 

sequence in R nk, it has a convergent subsequence. By considering this sub
sequence, we may assume that for all 1 ::=:; j ::=; k there is Xj E V with lin1i---+oo xj =
x j. Now it suffices to show that

k 
Pv(A) C LJ B(xj, r). 

j=l 

Consider x E A. Let (q) be a sequence of positive real numbers such that 
limz---+oo E:z = 0. For all!, there is an integer I(l) such that 

for all 1 ::=:; j ::=; k and 
IPv1 c 1J(x) - Pv(x)I < E:z.

Consider a positive integer l. By (1 ), there is an integer 1 ::=:; j ( l) ::=; k such that 
IPv1(1) 

( x) - x�UJ I ::=:; r. Then, 

and so there are a subsequence (sz
P

) of (sz) and an integer 1 ::=:; j ::=; k such that 

IPv(x) - xii::=; r + 2cz
P 

for all p. Thus IPv(x) - xii::=; r. □

2.3. Lemma. If A C Rn is compact, then the map g: G( n, m) ---+ R defined
by 

g(V) := <limp Pv(A) 

for all VE G(n, m) is measurable with respect to the a-algebra consisting of the
rn ,m -measurable sets.
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Proof. We may assume that A-=/= 0. We use the notation K(Rn) for the family 
of the non-empty, compact subsets of Rn and equip K(Rn) with the Hausdorff 
metric 

p(K,L) := sup{d(x,L),d(y,K) Ix E K,y EL} 

for K, LE K(Rn). Now we obtain for all real numbers c that 

where f: G( n, m) -----+ K(R n) is a continuous function defined by 

J(V) := Pv(A) 

for all V E G( n, m ). The measurability of g is an immediate consequence of a 
result by Mattila and Mauldin (see [MM]) stating that for all real numbers c, the 
set {KE K(Rn) I dim

p
K 2': c} is a Suslin subset of K(Rn). Then J-1 ({K E

K(Rn ) [ dim
p

K 2': c}) is a. Suslin subset of G(n,m.) (see [Fl, p. 66]) and thus 
1'n ,m-measurable (see [Fl, Theorem 2.2.12]). □ 

2.4. Remark. It is easy to see that Lemma 2.3 holds for o--compact sets. In 
fact, if A= LJ: 1 Ai where Ai is compact for all i, then, by [F, (3.26)], g = supi gi 
where the map gi : G( n, m) -----+ R defined by 

gi(V) := <lim
p 

Pv(Ai) 

for all V E: G( n, m) is by Lemma 2.3 measurable with respect to the o--algebra 
consisting of the 1'n ,m-measurable sets for all i. Thus g is measurable. 

3. Projection results

The behaviour of both the upper Minkowski dimension and the packing di
mension under orthogonal projections differs from the projection properties of the 
Hausdorff dimension, as shown by the following example, which is a modification 
of a construction from [M2]. In fact, it also gives an example which shows that 
the upper Minkowski dimension and the packing dimension estimates discussed by 
Falconer and Howroyd in [FII] are the best possible ones (for other such examples, 
see [FH]). 

J.l. �xampie. For any O < s < n and s/(i + (i/m - i/n )s) < t < min{s,m}
there is a compact set EC Rn such that dimM E = <lim

p 
E =sand M t (Pv(E)) = 

0 for all VE G(n,m); in particular, dimMPv(E)::;: t for all VE G(n,m). 

Consider O < s < n. Let R1 = l. For all integers k � l, we choose an integer 
lk+l > l and define 

(2) 'rk ·-
.- z(n-s)/s 

k+l 

and 
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(3) 

for all k 2: 1. Further, we obtain by induction that

(4) 

for all k 2: 2. 
Let Pi,1 be a closed cube with side-length R1 and Q1,1 C Pi,1 a closed cube

with the same centre as Pi,1 and side-length r1. We divide Q1,1 into l'2 closed
cubes P2 ,1, ... , P2 ,1� with side-length Rz. For all 1 :s; i :s; l'2, let Q2,i C P2,i be a
closed cube with the same centre as P2 ,i and side-length rz. When dividing each
cube Qz ,i into l3 closed cubes with side-length R3, we obtain ([zt3r closed cubes
P3 ,1, ... , P3 ,(/2

/
3
)n. We continue this construction and define

oo (/2 ... lk)
n 

E := n u Qk,i·
k=2 i=l 

� r2 � 

fffi 

�
Ra 

EE§ 

t----------R1 ________ ____,
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Let O < c < Rz . We fix k 2'.'. 2 such that Rk+1 Sc S Rk. 
If Rk+l SC< T'k, then for all 1 Si S (l2 ... zk r, the cube Qk ,i can be covered

with p
n n-cubes with side-length c for some p S 2,k/c. Since E is contained in 

(l2 ... lk tPn such cubes, we obtain, using (4), (2), and (3), that 

(5) N(E,fo,c) S (lz ... lk tPn S 2nR-i;8R',';+1 lk+1
E-n 

= 2nRt;;c-n S 2nE-8• 

If Tk Sc S nk, then by (4),

(6) 

Now, (5) and (6) together imply dimM ES s. 
Since for all k 2'.'. 2, 

(/z ... lk )n 

LJ Pk ,i C E( ynRk), 
i=l

we have by ( 4) that 

and so M 8(E) > 0, which gives dimM E 2:: s. Thus dimM E = s. 
Since dimM(E n Qk,i) = s for all k, i, we have that dimM(E n U) = s for all 

open UC Rn with En U-/- 0, and so [F, Corollary 3.9] implies that <limp E = s.

Consider s/(1 + (1/m - l/n)s) < t < min{s, m}. We choose lk and positive real 
numbers Uk and Vk such that limk-+oo Uk = limk-+oo Vk = 0 and 

(7) 

for all k. Since (7) is equivalent to the equation 

s(m-t)/t _ (l z )nm(s-t)/st z(snm-(s(n-m)+nm)t)/st UkVk - 2. • • k k+l 

by (3) and ( 4 ), this is possible by choosing successive lk+l so large that the right
hand side t.emls to 7,ero as k -. oo. 

Consider V E G( n, m ). Let rk+1 S c < T'k with k 2'.'. 2. We first assume 
that (vkRk+i )s/t S c. Since for all 1 Si S (l2 ... zkr the projection Pv(Qk,i)

1 , • ,  1 "l"Yl 1 ' ,  1 • 1 1 , 1 (> /' c,, I , 1 can be coverea wnn p--· 1n-cuoes wnn s1ue-1engtn t· ror sorne p ::::: l',Tl-'f"k; t·, tne 
projection Pv(E) can be covered with pm(l2 ... lk t m-cubes with side-length c. 
Since Pv(E)(c) n V is contained in (3p)m(l2 ... lkt such cubes, we obtain, using 
( 4), (2), and (7), that 

(8) (2c)t-m .cm(Pv(E)(c) n V) S 2t-m(3pr(Zz ... lktct 

:s: 2t-m(6nr,k R,;8ct-m s 2t -m(6nr(Rk+1 lk+1 r K;;sct-m 

S 2t-m(6nruk. 
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We now assume that c S ( VkRk+l )sft. Since E can be covered with ( l2 ... lk+l r 
n-cubes with side-length c, Pv(E)(c) n Vis contained in (2nr(l2 ... lk+ir m
cubes with side-length c, and so we obtain by (4) that

(9) (2 c)t-m ,em(Pv(E)(c) n V) s 2t-m(2nr(l2 ... lk+ 1 rct 

= 2t-m(2nrRk�lE:t S 2t-m(2nrv1,.

Now, (8) and (9) together imply M\Pv(E)) = 0, which completes the construc
tion. □ 

We now consider some projection properties of the upper Minkowski dimension 
and the packing dimension. We begin our consideration by comparing the upper 
Minkowski dimension of a bounded set in Rn with the upper Minkowski dimen
sions of its images under the orthogonal projections onto the m-dimensional linear 
subspaces spanned by a given basis of Rn. As a corollary, we obtain a correspond
ing result for the packing dimension. For this purpose, we need the following 
two lemmas, in which we study the relations between the n-dimensional Lebesgue 
measure of a Suslin set in Rn and the m-dimensional Lebesgue measures of its 
images under the orthogonal projections onto them-dimensional linear subspaces 
spanned by a given basis of Rn. The first one of these two lemmas, Lemma 3.2, 
is used when proving the second one, Lemma 3.3. In Theorem 3.4, the estimates 
of Lemma 3.3 are applied to compact sets in order to prove the above mentioned 
result for the upper Minkowski dimension. 

3.2. Lemma. If (e 1 , ... , en) is a basis of Rn , then there exists a constant 
0 < c < oo such that for all bounded Suslin sets A C Rn 

for some 1 S i1 < · · · < in-I S n. 

Proof. Let AC Rn be a bounded Suslin set. We may assume that ,en(A) > 0 
and je; I = 1 for all 1 S i S n. We proceed by induction on n. Let n = 2. Define a 
linear map L: R2 -----+ R2 by 

for real numbers t1 and t2 , where e; • e1 denotes the usual inner product. Then, 
L(Pv(e

1
)(x) + Pv(e2)(x)) = x for all x E R2 , and so 

,e2(A)1 /2 S I det Ll 1 /2(£ 1 (Pv(e1)(A)) £1 (Pv(e2)(A)))1 /2 

S ½(1 - (e 1 • e2)2)-1 12(£1 (Pv(ei)(A)) + £1 (Pv(e2)(A))),
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where det L denotes the determinant of L. Thus, either 

or 

Now, let n � 3 be such that the lemma holds with n replaced by n - l. We use 
for all t E R the notation 

Af := {x E WI x + ten EA}, 

where WE G(n, n -1) denotes the orthogonal complement of V(en), Then Af is 
a Suslin set since it is the inverse image of the Suslin set A under the continuous 
function x � x + ten, \vhere x E Tiff (see [Fl, p. 66]). 

We first assume that _cn -1(Af) � .Cn(A)(n-l)/n for some t E R. If W =
V(e1, ... , en -1), then _cn-l(Pv(e1, .. ,,en-i)(A)) � _cn-l(Af) � .Cn(A)(n -l)/n.

If W-/: V(e1,• .. ,en-1), then W := W n V(e1, ... ,en-1) E G(n,n -2). For all
x E W we define 

and 

Then .C 1 (B,,) = .C1 (A,, ) cosa:, where O < 0: < ½1r is the angle which the line 
V(en) forms with the orthogonal complement of V(e1, ... , en-1). Using Fubini's 
theorem, we obtain that 

.cn(A)(n -l)/n COSO::::; _cn-1(Af)cos0: = r~ .C1(A,, ) cos0:d.cn-2x
.fw 

= fw ,e1 (H,,)d.Cn-2x = ;:,n-1(Pv(e1, ... ,en-1)(A�'))

< _cn -l(Pvh, ,e;,-1)(A)), 

where the last inequality follows from the translation invariance of the ( n - 1 )
dimensional Lebesgue measure _cn-l _ 

We now assume that _cn -1(Af) ::=; .Cn(A)(n-l)/n for all t E R. Using Fubini's
theorem, we obtain that 
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For all 1 S i S n - 1, there exists ei E V( ei, en) such that lei I = 1 and 
ei • en = 0, whence ei E V( ei, en) n W. Since ( e1 , ... , en) is a basis of Rn, we see 
that W = V(e1 , ... ,en-1 ). Further, using the fact that V(ei,en) = V(ei,en) for 
all 1 S i S n - 1, we see that 

(11) 

for all 1 S i1 < · · · < in-2 S n - 1. 
Identifying W with Rn-l and Af with a Suslin subset of Rn-l for all t E R, 

we find that there exists by the induction hypothesis a constant O < c < oo such 
that 

(12) 

for all t ER. Using (10), (12), Fubini's theorem, and (11), we obtain that 

Thus, 

cn(A)(n-l)/n <! '°' fcn-2(P - -. (An))dt - C D V(eq , ... ,e,n-2) t 

lS:i1 <··•<in-2S:n-l 
1 

1 
C 

for some 1 S i1 < · · · < in-2 S n - 1. □ 

Using Lemma 3.2, we obtain: 

3.3. Lemma. If (e1, ... , en) is a basis of Rn , then there exists a constant 
0 < c < oo such that for all bounded Suslin sets A C Rn 

for some 1 S i1 < · · · < in-m S n. 

Proof Let A C Rn be a bounded Suslin set. We proceed by induction on m. If 
m = 1, the result follows from Lemma 3.2. 

We now assume that there are a constant O < c1 < oo depending only on n, m, 
and the basis ( e1 , ... , en), and an ( n - ( m - 1) )-dimensional linear subspace W1 
spanned by { ei

1 , • • .  , 
ei

n-(m-iJ} for some 1 S i1 < · · · < in-(m-i) S n such that 
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Identifying W1 with Rn-(m-l) and Pw1 (A) with a Suslin subset of Rn-(m-I) and
using Lemma 3.2, we find a constant 0 < c2 < oo depending only on n, m, and the 
basis ( ei

11 
• • •  , ein-(m-1) ), and an (n - m )-dimensional subspace W2 C W1 spanned 

by { ei1 , • • •) eij-1, eiHl l, , • ,  ein -(m-1)} for some) such that 

cn-m(P p (A)) > C cn-(m-l)(P (A))(n-m)/(n-(m-1))
W2 W1 - 2 W1 

Thus 

By means of Lemma 3.3 we obtain: 

3.4. Theorem. If ( e1, ... , en) is a basis of Rn , then for all bounded A C Rn ,

for some 1 ::; i1 < · · · < im ::; n. 

Proof. We may assume that dimM A > 0. Let Vi, ... , ½ be the m-dimensional 
linear subspaces spanned by the basis ( e1, ... , en)- Assume that dimM A

'J (A) < 
( m / n) dimM A for all 1 ::; j ::; l, and fix a real number t such that dimM P½ ( A) <
mt / n < ( m / n) dimM A for all 1 ::; j ::; l. Since dimM A > t, there exists a sequence 
(c:;) of positive real numbers such that limi ..... = Ei = 0 and P(A, E;) > c:--;-t for all 
i. Further, by Lemma 3.3 there exists a constant 0 < c < oo and a subsequence
(c:;k ) of (ci) such that for some 1 ::; j ::; l,

for all k. 
Since £n(A(c:))?: P(A,c:)a(n)En and P½ (A(c:)) C (PVj (A))(c:) n Vj for all O <

E < oo, we have that 

(">c-- )mt/n-m rm((P ,_ (A))(c:· ) n V-) > c2mt/n-m
a(n)mfn

6 '.nl/n P(A E )mfn
\�'-'Zk I-, V; Zk J - 'k ' 'k 

?: c2mt/n-m
a(n)mfn 

for all k, and so M mt/n(PVj (A)) > 0. Thus dimM P½ (A) ?: mt/n, which gives a 
contradiction by the choice of t. □ 

3.5. Corollary. If (e1, ... ,en) is a basis of Rn , then for all AC Rn , 

for some 1 ::; i1 < · · · < im ::; n. 
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Proof. We may assume that dimp A > 0. Let V1 , ... , Vi be the m-dimensional 
linear subspaces spanned by the basis (e1 , ... ,en)- Assume that dimp PVj

(A) < 
(m/n) dimp A for all l S j S l, and fix a real number t such that dimp P½ (A) < 
t < (m/n) dimp A for all l S j S l. Then for all l S j S l, there are bounded sets 
A{, Ai, . . . in Rn such that 

00 

P½(A) C LJ A} 
i=l 

and supi dimM A{ < t. Now, 

A= u E-z1, ... ,zz, 

where 

E-z1 , ... ,iz 

is a bounded set, and thus 

(13) dimp AS sup dimM Ei
1 , ... ,i1 • 

i1 , ... , i1 2': 1 

If i1, ... , iz 2: 1, then, by Theorem 3.4, there is j such that dimM P½ (Ei
1 

, ... ,i
1

) 2:
(m/n) dimMEi

1 , ... ,i1
, Thus

By (13) we obtain that dimp A S mt/n, which gives a contradiction by the choice 
oft. □ 

3.6. Remarks. (a) We will now construct an example which shows that the 
inequalities proved in Theorem 3.4 and Corollary 3.5 are the best possible ones. 
For this purpose, let ( e1, ... , en) be the standard basis of Rn

. We will show that 
for any O < s < n there is a compact set E C R

n such that dimM E = dimp E = s 
and dimM Pv(e,

1
, ... ,e,=)(E)

= 
dimp Pv(e,

1
, ... ,e,rn)(E) 

= ms/n for all l S i1 < · · · <

im Sn. 
Consider 0 < s < n. For all 1 S i S n, we construct a compact set Ei C V ( ei) 

with dimH E; :- dimM Ei = dimp Ei = s/n. One example of this kind of set is 
the Cantor >.-set C(>.), where >. := 2-n/s (for the construction of C(>.) see [M3, 
4.10]). The fact that dimH C(>.) 

= 
s/n follows from [M3, 4.10], and the fact that 

dimM C(>.) = s/n follows from [M3, Corollary 5.8]. Thus dimp C(>.) = s/n. 
We define 
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Then, [F, Product formulas 7.2 and 7.5] imply that dimM E = <lim
p 

E = s, 
dimM Pv(e;

1
, . . .  ,e;=)(E) = dimM(Ei

1 
+ · · · + Eirn ) = ms/n, and analogously, 

<lim
p 

Pv(e;
1

, ... ,e;rn)(E) = ms/n for all 1 '.S i1 < · · · < im '.Sn, which completes the
construction. 

(b) The fact that the analogue of Theorem 3.4 and Corollary 3.5 does not hold
for the Hausdorff dimension follows from [F, Example 7.8]. 

( c) Let A C Rn be bounded. We define

and show that 1'n,1(B) = 0. 
Since G(n, 1) can be identified with sn-l j ~, where sn-l 

:= {x E Rn I lxl = 1}
and ~ is an equivalence relation defined for all x, y E sn-l by

X ~ y -{==} X = y or X = -y, 

we have 1'n,l = Jl'ijWn-l, where Jl': sn-l --+ sn-l I ~ is the projection and Wn-l
is the normalized area measure on sn -l. By Theorem 3.4, there is an ( n - l )
dimensional linear subspace W C Rn containing each LE B, and so 7r-1(B) lies
in W n 5n-1

, whence 1'n,1(B) = 0. 
( d) In the same way as in the previous remark, we see by Corollary 3.5 that

for all A C Rn there is an ( n - l )-plane containing each L E G( n, l) for which
<lim

p 
PL(A) < (1/n) <lim

p 
A; in particular,

for 1'n,1 almost all LE G(n, 1). 
( e) Let A C Rn be bounded. We define

{ 
n-1

}B := VE G(n, n - l) I dimM Pv(A) < -
n

-dimM A 

and show that there are no Vi, ... , Vn E B with V/ + · · · + Vn
j_ = R". 

Assume that there are Vi, ... , Vn E B such that V/ + · · · + Vnj_ = Rn, and fix 
m .  r T7 j_ ~••~L J.L"+ m .  _j_ (\ +~~ "11 1 / ; / ~ 
._t,J C V j DLLl....11 L,Hc:t,li ,t•1 I V .LUl. <.l,.U J. ........ J ........ It-, 

Then ½ n · · · n ½ = (V.j_ 
+ · · · + V.j_ ) j_ is a line for all 1 < i1 < · • • <1 n-1 z1 Zn-1 -

in-l '.S n. 
Further, we will show that the lines which are of the form ½

1 
n · · · n v;n-i for 

some 1 '.S i1 < · · · < in-1 '.Sn span Rn. 
We fix Y1 E Vi n · · · n Vn, Yk E V1 n · · · n Vi-1 n Vi+1 n- · · 11 Vn for 2:::; k:::; n - l, 

and Yn E Vi n · · · n Vn-1 such that Yi -/= 0 for all 1 '.S j '.S n. Assume that 
there are an integer 2 '.S k '.S n - l ( the cases k = l and k = n are similar to 
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the case considered here) and real numbers a1, ... , ak-l, ak+l, ... , an such that 
Yk = a1 Y1 + · · · + ak-1Yk-1 + ak+1Yk+1 + · · · + an Yn· Fix real numbers b1, ... , bn 
such that Yk = b1x1 + · · · + bn xn . Since Yi· Xj = 0 whenever ii= j, we have that 

Yk • Yk = Yk • (b1x1 + · · · + bn xn ) = bkYk • Xk 
= bk(a1Y1 + · · · + ak-1Yk-1 + ak+1Yk+1 + · · · + an Yn) • Xk = 0, 

which gives a contradiction. 
Thus, the lines which are of the form 11;

1 
n · · · n v;n-i for some 1 S i1 < · · · <

in -l S n span Rn . Further, for each 1 S k S n, the n - l lines ni7'"1¼ with 
1 S l ::;; n, l i= k, span Vk, and so Theorem 3.4 implies that dimM PVj (A) 2:

((n - 1)/n) dimM A for some 1 S j S n, which gives a contradiction by the 
definition of B.

Since there are no V1, ... , Vn E B such that V/ + · · · + Vn
_1_ = Rn , the union 

of the orthogonal complements of those hyperplanes V for which dimM Pv (A) < 
((n - 1)/n) dimM A lies in some (n -1)-plane. Since 1n ,n -1(B) = ,n ,1( {V _1_ IV E 
B}) by the uniqueness of the measure fn ,n -l, we see in the same way as in Remark 
(c) that fn ,n -1(B) = 0.

(f) Let A C Rn . Define

B := {VE G(n,n -1) I dimp Pv(A) < 
n

: 
1 

dimp A }·

Similarly to the previous remark, we see by means of Corollary 3.5 that there are 
no V1, ... , Vn E B such that V/ + · · · + V/ = Rn ; in particular, rn ,n -i(B) = 0. 

(g) For n = 2, we will now present another way of proving Theorem 3.4.
Let A C R2 be bounded. We may assume that dimM A > 0. Assume that

there exists L E G(2, 1) such that dimM P1(A) < ½ dimM A. We will prove that 
dimM P

z-
(A) 2: ½ dimM A for all LE G(2, 1) with Li= L. We may assume that L 

is the x1 -axis. 
For all integers i and k, we use the notation 'Df for the family of the dyadic 

squares which meet A and are of the form 

where l is an arbitrary integer. We denote by Mf the number of the squares 
belonging to 1Jf. Let I<i be such an integer that 

We consider real numbers t and u such that dimM PL(A) < t < ½ dimM A and 
u < t. Then, Ni (A) s Ni (P1 (A))M(; for all i, Ni (A) 2: 22ti for arbitrarily large 
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i, and Ni(PL(A)) :S 2ti for all sufficiently large i. Hence, M{' 2 2ti for arbitrarily 
large i. 

Consider an integer i with Mt"; 2 2ti, and define 

Let Pi be the smallest integer with Pi 2: ai 1 . We may assume that Pi + l � 2ai1 .
We choose the smallest integer l such that the square 

intersects A. Next we select, if it is possible, the square Q; E vr which is closest 
to Q; such that d( Q;, Q;) 2: Pi2-i. Continuing in this way, we select a maximum 

b f Ql Qni ,nK; "th d(Qj Qj' ) > 2-i "f • _j_ ., s· num er n; o squares i, ... , i E v; w1 i , i _ Pi 1 J r J . 1nce
')ti < A;J l{i < ( + 1) < ') - 1 h ' th t '> ')Ui 
� --' 11 i --' n; Pi --' -n;a; , we a,e a n.; c._� • 

Let Le E G(2, 1) be the line forming an angle O < 0 < 1r with the positive 
X 1 -axis. If the distance between two squares belonging to vr is greater than 
r i(tan0)- 1 for O < 0 < ½1r and greater than 2-\tan(1r - 0))-1 for ½1r < 0 < 1r, 

then they project as disjoint intervals to the line Le. 
Now if O'.i < 0 < ½1r, then 

for all 1 :S j :S n; - 1, and so the squares Q;, . .. , Qf' project as disjoint intervals of 
length greater than r i to the line Le. Thus Ni(PL0 (A)) 2'. ½n; 2'. ½2ui _ Similarly,
we see that N;(PL 0 

(A)) 2 ½2ui, if ½1r :S 0 < 1r - a;. 
Thus N;(PL o 

(A)) 2'. ½2ui for arbitrarily large integers i, and so

for all u and t with u < t < ½ dimM A, which gives the desired result. 
(h) Let A C R2 m be a bounded set such that dimM A > 0. By generalizing

the method used in the previous remark, we can characterize the set of those 
...- ,.. ;--; /,-.. , ro ; • .. .. • T"",, , • , 1 .. . . 

\I E:: li(�m,mJ tor Wh!Ch d!mMl'v(i-l.J < icilmM/L 

We assume that there exists V E G(2m, m) such that dimM Pv(A) < ½ dimM A. 
We will prove that dimM Pw(A) 2'. ½ dimM A for all W E G(2m, m) with V n W =
{O}. We may assume that Vis the X 1 ... Xm-plane. 

Let WE G(2m,m) be such that V n W = {O}. We claim that there exists a 
constant O < L '.S 1 such that 

(14) Llx - YI :S IPw(x) - Pw(Y)I 
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for all x,y E V_1_. In fact, we may assume that y = 0 and lxl = 1 in (14). 
Now it suffices to observe that, since V_1_ n W_1_ 

= {O}, the continuous function 
x f-----+ IPw(x)I on the compact set {x E V_1_ I lxl = 1} is positive and thus attains a 
positive minimum. 

Let N be a positive integer such that N > (L-2 (1 + J'm)2 
+ m)112.

For all integers i and k1 , ... , km , we use the notation D71 
, ••• ,km for the family of 

the dyadic cubes which meet A and are of the form 

where km+l, ... , k2m are arbitrary integers. We denote by M;k1 , ... ,km the number
of the dyadic cubes belonging to v7 1 , ... ,km. For each i, let I<1 ( i), ... , I<m ( i) be the
integers with 

Consider a real number t with dimM Pv(A) < t < ½ dimM A. In the same way 
as in the previous remark, we see that M; 2:: 2ti for arbitrarily large i. 

Consider an integer i with M; 2:: 2ti _ Letting the cubes in v[<i(i), ... ,Km(i) be Q{
with 1 S j S M;, we choose a} E An Q{ for each j. We use the notation 

Then, Q{ C Bf for all 1 S j S M;. Further, we define 

Now, [Fl, Corollary 2.8.5] implies that there are 1 S J1 < · · · < JP; S M; such 
that the family { B{k I 1 S k S P;} is disjoint and 

and so, by comparing the 2m-dimensional Lebesgue measures, we obtain that 
P; 2:: a(m)-2(3N)-2m M; 2:: a(m)-2 (3N)-2m2ti.

Assume that 1 S k < l S P;. Then, 

(2N2-i)2 < la{k - a{ 1 12 
= IPv( a{k) - Pv( a{1 )12 

+ 1Pv1. (a{k) - Pv 1. ( a'{1 )12 

S mT2 i + IPv 1.(a{k)- Pv1.(a{1)12 , 

and so 

(1 5) 
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Now we have by (14), (1 5), and the choice of N that 

IPw(a{k ) -Pw(a{')I 
� IPw(Pv .t(a{k ))-Pw(Pv .t(a{'))I - IPw(Pv(a{k ))-Pw(Pv(a{' ))I
� LIPv .t(a{k)-Pv .t(a{')I -IPv(a{k)- Pv(ai')I 
� (L(4N2 - m)l/2 - vm)ri > ri _

Hence, P(Pw(A), ½2-i) �Pi � a(m)-2(3N)-2m2ti _ Since i can be chosen arbit
rarily large, we get dimM Pw(A) � t. Since this holds for all t < ½ dimM A, we 
get the desired result. 

Thus, if we define 

and assume that there exists V E n, then we have by the above cum,iderations 
that 

BC {WE G(2m,m) I vnw-1= {0}}, 

and so, using [M3, Lemma 3.13], we obtain that 12m,m(B) = 0. 

The method by which Theorem 3.4 and Corollary 3.5 can be extended to 'Yn,m
almost all V E G( n, m) is based on the following theorem. 

3. 7. Theorem. Assume that B C G( n, m) has the following properties:

B is 'Yn,m -measurable.(i)

(ii) For every basis ( e1, ... , en) of Rn there are
1 ::; i1 < · · · < im ::; n such that V( e;

1
, • • •  , e;=) r/. B.

Then 'Yn,m(B) = 0. 
Proof. We assume that 'Yn,m( B) > 0. Then B has a compact subset with positive 

measure (see [Fl, p. 63]); clearly, condition (ii) is also true if B is replaced by this 
subset. Thus, by considering this subset, we may assume that B is compact. 

We rn;c Llic notation 

u := {(x1,---,Xm) E U(o,1r I the sequence (x1, ... ,xm)

is linearly independent} 

and define a continuous function f: U -t G( n, m) by 
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Then J-1(B) is closed in U.
By Lemma 2.1, the measure f#((.Cn x · · · x _en) LU), which is orthogonally 

invariant, is a Radon measure on G( n, m ). So the uniqueness of r'n ,m implies that 
there exists a constant O < c < oo such that 

Now _en X ••• X _cn u-1 (B)) > 0, and so 1-1(B) has a density point (bi , ... ' bm )
(see [M3, Corollary 2.14]), that is, 

(16) l. _en X ••• X .cn((B(b1 ,r) X ••• X B(bm,r)) n 1-
1(B))

lm -------'-'-----'----'------'----'--'--------'------:._____:_-'- = 1
r-+O ,Cn X • • • X ,Cn(B(b1 ,r) X • • • X B(bm,r)) 

We now select bm+I, ... , bn E V(b1 , ... , bm) such that (bi1
, • • •  , bim ) E U for all 

1 ::; i1 < · · · < im ::; n. Then for all 1 ::; k ::; n - m and 1 ::; i1 < · · · < im <
m + k - 1 there exists aj(i1 , ... , im) ER\ {O} for all 1 ::; j ::; m such that 

Define 

M·-.-

m 

bm+k = L aj(i1, ... , im)bij. 
j=l 

max 
l<k<n-m 

l:S::i1 <·-:-:<im :S::m+k-1 

m 

{1,I:laj(i1, ... ,im)l}-
j=l 

Since U is open, there exists R > 0 such that 

for all 1 ::; i1 < · · · < im ::; n and r ::; R.
We will prove that there are constants O < C ::; 1 and 1 ::; D < oo such that for 

all 1 ::; i1 < · · · < im ::; n 

(17) _en X ••• X .cn (Bi1 , ... ,im (r) n (U \ 1-
1(B)))

::; D.Cn X ••• X .cn(B1 , ... ,m(r/C) n (U \ 1-
1(B)))

for all r::; CR/M.
In order to prove (17), we will show that for all O::; k ::; n-m there are constants 

0 < ck ::; 1 and 1 ::; Dk < oo such that for all 1 ::; i1 < · · · < im ::; m + k 

(18) ,en X ••• X .cn(Bil ,·••, im (r) n (U \ 1-
1(B)))

::; Dk,Cn X • • • X _cn(B1, ... ,m(r/Ck) n (U \ f-
1(B)))
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for all r S CkR/M. This gives (17) when we choose C := Cn-m and D := Dn-m • 
To prove (18) we proceed by induction on k. The case k = 0 is trivial. 
We now assume that (18) is true for k. Let 1 S i1 < · · · < im S m + k + l. If

im S m+ k, then by the induction hypothesis, (18) is true fork+ l when we choose 
Ck+i S Ck and Dk+1 2: Dk. So it suffices to consider the case im = m + k + l. 

Let l 2: 1 be the smallest integer with l # i j for all 1 S j S m and 1 S p S m 
the smallest integer with l < iP ' We assume that p 2: 2; the case p = l only 
involves some slight modifications in the following notation. 

We define )k := ik for all 1 S k S p - l, Jp 
:= l, and )k := ik-1 for all 

p+ l S k Sm. 
Define a Lipschitz map Li1 , ... ,im : Bj1 , ... ,jm (r) -+ Bi1 , ... ,im (R) for all r S R/M 

by 

m 

Lit , ... ,irn (x1 ' ... 'Xm) := (x1 ' ... 'X
p-1, Xp+l' ... ' Xm, L a7+1 u1 ' ... ,jm)xi)i 

i=l 

recall that here a71 1 (j1 , ... ,jm) ER\ {O} for all 1 Si Sm and 

m 

(19) b b '"""' k+l(. • )b irn = m+k+l = � (Yi ,)1, • • ·, )m j; • 
i=l 

Since Bi
1
, .. ,,im (R) CU, we have that 

(20) 

for all ( X1 , ... , x m) E B j
1 
, ... ,j

m 
( r). Furthermore, we will see that 

(21) B· • (r) c L • (B • (r/k(i1 i ))) 
z1, ... )lm i1, ... ,Zm Jt,•·•,Jm , • • · , m 

for all r S k(i1, ... , im )R/M, where

k(i1 ' ... 'im) := min{ 1, 1(}';+1(j1 , ... ,Jm)I ( 1 + L 1a7+1(j1 ' ... ,Jm)l)
-

l} ·
i-f.p 

Now, (21) follows from the fact that 
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Here we have by (19) that 

IY -bjp I= (la;+1(j1, • • • ,jm)l)-1 lxm -a}+1(j1, · · · ,Jm)x1
k+ 1 ( • • ) 

k+ l ( • • ) -• • • -ap-1 ]l,,,, ,Jm Xp-1 -ap+l ]l,,,, ,Jm Xp 

k+l(· • ) k+l(· • )b I-"·-am ]1, ... ,Jm Xm-1-ap J1, .. ,,Jm Jp 

� (la;+1(j1 , .. · ,jm)l)-1(lxm -bim I+ lbim -a}+1 (j1, .. · ,Jm)x1
k+ l ( • • ) 

k+ l ( • • ) -• • • -ap-1 J1, ... ,Jm Xp-1 -ap+l )1, ... ,Jm Xp 

k+l(. • ) 
k+l(

. • )b I)-···-am ]l,··•,Jm Xm-l-ap ]l,···,Jm Jp 

� r(la;+i (j1, ... ,jm)l)-1 ( 1 + L la�+1(j1, .. •, Jm)I) � r /k(i1, ... , im),
ifp 

whence y E B(bjp ,r/k(i1, .. ,,im)). 
If we choose 

and 

where Lip(Li1
, ... ,im ) denotes the Lipschitz constant of Li1

, .. ,,im , then we have by 
(21) and (20) for all 1 � i1 < · · · < im-1 < im = m + k + 1 that 

(22) en X • • • X en(Bi1 , ... ,im(r) n (U \ f
-1(B)))

� en X ••• X en(Li 1 , .. ,,im (BJt , ... ,jm (r/k(i1, ... ,im)) n (U \ 1-
1(B))))

� dk+1en X ••• X en(B]l , ... ,Jm (r/cH1) n (U \ 1-1(B)))

for all r � ck+1R/M. Now, Jm = im-l � m+ k, and so we obtain by the induction 
hypothesis and (22) for all 1 � i1 < · · · < im-1 < im = m + k + 1 that 

en X • • • X en(Bi1 , .. ,,im (r) n (U \ f-1(B)))
� dk+1Dken x • • • x en(B1, ... ,m(r/(ck+1Ck)) n (U \ f-1(B)))

for all r � ck+1CkR/M. Thus, if we choose Ck+1 := ck+1Ck and Dk+1 := dk+1Dk, 
we obtain (18) for k + 1. 

Let E > 0. By (16), there exists Rc: > 0 such that 

for all r � Rc:, and so by (17), we have for all 1 � i1 < · · · < im � n that 
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for all r S min{ CR,:, CR/M}. Thus for all l S i1 < · · · < im Sn we obtain that 

en x · · · x en(B · (r) n f-1 
(B)) > (1 -Dc-nmc:)en x · · · X en(B· · (r)) i1, ... ,im - i1, .. ,,Zm 

for all r S min{ CR,:, CR/M}. By the following Lemma 3.8, we can choose a basis 
(x1, ... ,xn) of Rn such that (xii, ... ,x;m ) E J-1 (B) for all l S i1 < · · · < im Sn.
Then V(xiu •·•,xim ) = J(x;1 , ... ,x;m ) E B for all l S i1 < ··· < im Sn, which 
contradicts condition (ii) and so completes the proof. □ 

3.8. Lemma. Suppose tha.t bi, ... , bn E U(O, 1) c R" and tha.t B c U(O, l)m c 
Rnm is a Borel set such that for all O < E < 1 there exists r > 0 such that 

en X ••• X en((B(bi1 ,r) X ••• X B(b;m,r)) nB) 

� (1-c:)en X ••• X £n(B(b;1 ,r) X ••• X B(b;m ,r)) 

for all 1 S i1 < · · · < im ::; n. Then there are R > 0 and x; E B(b;, R) for 
all 1 S i S n such that the sequence ( X1, ... , Xn) is linearly independent and 
(xii,· .. ,x;m ) E B for all l S i1 < · ·· < im Sn. 

Proof. We omit the easy proof in the case m = 1 and assume that m � 2. Let 
k = n-m. 

We define 

for all 1 S i S n and 

min{i,m} 

(

' 

) ( 

.
) L 

i-1 n-i

M ·-
i .-

l -1 m - l
l=max{l,i-k} 

Jvf := max M;.
I<i<n 

Then there exists R > 0 such that 

en x · · · x en((B(biu R) x • • • x B(b;m , R)) n B) 

> (1 -M-m )en x · · · x e,n(B(b;l , R) x · · · x B(b;m, R))

for all 1 S i1 < · · · < im S n.

We use the notation 

an<l 
/3 := e,n(B(O, R)) 

and fix I such that (/Jm - a)1 /m < 1 < /3/M. 
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If 1 S l S m - 1 and 1 S P1 < · · · < pz < i1 < · · · < im-l S n, then we define 
for all xPq E B(bPq , R), I S q S l, a Borel set 

B;1P,�.'.
·,·;::�: :={(Xii , .. •, Xim- 1 ) E B(bii , R) X "· X B(bim -ll R) I 

(xp1,··•,Xp1 ,xi 1 ,··•,xim-l) E B}.

If 1 S j S k + I and j < i1 < · · · < im-1 S n, we define a Borel set 

Since by Fubini's theorem, 

a Sen x .. • x £n((B(bj ,R) x B(bi1 ,R) x .. · x B(bim _uR)) n B) 

=J cn x•••x£n(Bx . )d£n x
z1 , .. ,,Zm-1 

B(bj ,R) 

S ,am-1 cn(A}l ,•••,im-1) + (,am-1 _ 'Ym-1 )£n(B(bj
' R) \ At···,im-1)

=,am_ 'Ym-l(,8 _ cn(A�l,•··,im- 1 )), 

we have by the choice of 'Y that 

(23) 

Further, if m 2: 3, 2 S l Sm - 1, l S j S k + l, and 1 S P1 < · · · < Pl-l < j <

i1 < · · · < im-l Sn, we define for all Xpq 
E B(bpq

, R), I S q S l - I, a Borel set 

If 

we obtain, using Fubini's theorem, that 
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and so 

(24) 

For brevl·ty, we ·11 "t Ai1, ••• ,i m-l(' ) Ail,···,i m-1 dWl wr1e j Xp1,···,Xpl-l ·-
j an 

xPI , ••• , x Pl 1 , Xj 
Bx. h [ Bi1, ... ,im_ 1-

:= i:, ... ,i m-i in t e case = 1, originally defined only in the
case l 2: 2, if 1 :S l :S m - 1, l :S j :S k + l, 1 :S PI < · · · < PI-I < j < iI < · · · <

im-1 :Sn, Xpq 
E B(bpq

,R) for all l :Sq :S l-1, and Xj E B(bj ,R). 
We will first inductively construct Xi E B( bi, R) for all 1 :S i :S m - 1 such that 

the sequence ( XI, ... , Xm-I) is linearly independent and 

(25) 

for all 1 :S i :S m - 1, max{l, i - k} :S l :S i, aml 1 :S PI < · · · < pz I < i < i1 < 

• • • < im-l :Sn. 
We begin by selecting XI. By (23), we obtain that 

and so we can choose x1 E B(b1 , R) with x1 #- 0 such that 

for all 1 < i1 < · · · < im-1 :S n. 
If m 2: 3, we continue as follows. We assume that 1 :S i :S m - 2 and that we 

have chosen x j E B( bj , R) for all 1 :S j :S i such that the sequence ( x1, ... , Xi) is 
linearly independent and 

for all 1:; .i � £, max{l,,i - ,��} � l � j, and 1 :S; Pt < - - - < 1-'I---i < j <ii< - · · <

im-1 :S n. We claim that 

(26) 

for all max{l, i + 1 - k} :S l :S i + 1 and 1 :S P1 < · · · < Pl-1 < i + 1 < i1 <
· · · < im-l :S n. In fact, inequality (26) follows from (23) if l = l, and from the
induction hypothesis and (24) if l 2:'. 2. 
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Now we obtain, using (26), that
i+I
n n l=max{I,i+I-k} I '.Spi <--·<p1_1 <i+Ii+I<i1<··•<im-1'.Sn

i+I 
?_(3- I: l=max{I,i+I-k}

( i ) (n - ( i + 1 )) "f
l-l m-l 

whence, using the fact that the n-dimensional Lebesgue measure equals zero forany i-dimensional linear subspace of Rn, we can choose Xi+I E B(bi+I ,R) suchthat the sequence ( XI, ... , Xi+I) is linearly independent and 

for all max{l, i + 1 - k} S l Si+ 1 and 1 S PI < · · · < PI-I < i + l < iI < · · · <im-1 S n. This completes the construction of the sequence (xI , ... , Xm-I ). We will now inductively construct Xm+i E B(bm+i, R) for all O Si S k -l suchthat the sequence (xI, ... , Xn-I) is linearly independent, (xp1 , ... , x
P m-i, Xm+i) E B for all OS i S k - l and 1 S PI < · · · < Pm-I < m + i, and 

(27) 

for all O S i S k - l, max{l, m + i - k} S l Sm - 1, and 1 S PI < · · · < PI-I <
m + i < iI < · · · < im-l S n. We begin by selecting Xm . By (25), we obtain that 
(28) 

Further, we claim that
(29) 1'n(Ai1,•••, im-l(x X ))>(3-'"V.1.., m pu···, P1-1 - 1 

for all max{l, m - k} S l S m - 1 and 1 S PI < · · · < PI-I < m < iI < · · · <

im-1 S n. In fact, inequality (29) follows from (23) if l. = l, and from (25) and
(24) if l ?_ 2. Using (28), (29), the inequality f:J > Mm"(, and the fact that then-dimensional
Lebesgue measure equals zero for any ( m - 1 )-dimensional linear subspace of Rn,we can choose, like before, Xm E B(bm,R) such that the sequence (xI, ... ,xm ) islinearly independent, (xI , ... ,xm) E B, and (27) is valid if i = 0. If k ?_ 2, we continue as follows. We assume that O S i S k - 2 and that
we have chosen xm+i E B(bm+j, R) for all O S j S i such that the sequence
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( x1, ... , Xm +i) is linearly independent, ( X
p 1

, • • •  , x
Pm

- i, Xm+ j) E B for all 0 S j S i 
and 1 S P1 < • • • < Pm-1 < m + j, and 

for all O S j S i, max{l, m + j - k} S l S m - 1, and 1 S p1 < · · · < Pt-1 <
m + j < i1 < • • • < im-1 S n. 

We claim that 

(30) 

for all 1 S p1 < · · · < Pm-1 < m + i + 1 and 

(31) 

for all max{l, m + i + 1 - k} S l Sm - 1 and 1 S p1 < · · · < Pl-1 < m + i + 1 <
i1 < · · · < im-1 S n. Inequality (30) follows from (25) if Pm-1 = m - 1, and 
from the induction hypothesis if Pm-l 2': m. Inequality (31) follows from (23) if 
l = l, from (25) and (24) if l 2'. 2 and Pl-1 :Sm - 1, and finally from the induction
hypothesis and (24) if l 2': 2 and Pl-1 2': m.

By means of (30), (31), the inequality /3 > Mm+i+ll', and the fact that the 
n-dimensional Lebesgue measure equals zero for any ( m + i)-dimensional linear
subspace of Rn , we can choose, like before, Xm+i+1 E B(bm+i+i, R) such that the
sequence (x1, ... ,xm+i+1) is linearly independent, (x

p1, ••• ,x
Pm -1'Xm+i+i) E B 

for all 1 S P1 < · · · < Pm-1 < m + i + 1, and 

fur all11mx{l,m+i+l-k} S l S m-1 an<l 1 S P1 < · · · < Pt-1 < m+i+l < i1 < 

· · · < im-l S n. This completes the construction of the sequence ( x1, ... , Xn-l ).
Finally, we obtain by (25) if Pm-1 = m - 1, and by (27) if Pm-1 2': m that 

(32) 

for all 1 S p1 < · · · < Pm-1 < n. Using (32), the inequality /3 > Mn"(, and 
the fact that the n-dimensional Lebesgue measure equals zero for any ( n - 1 )
dimensional linear subspace of Rn , we can choose, in the same way as before, 
Xn E B(bn, R) such that the sequence (x1, ... , Xn ) is iinearly independent and 
(x

p1, ••• , x
Pm

-l' Xn) E B for all 1 S P1 < · · · < Pm-1 < n. This completes the 
proof of the lemma. □ 

3.9. Corollary. If A C Rn is bounded, then 

dimM Pv(A) 2': 
m 

dimM A 
n 

for "fn ,m almost all V E G( n, m ). 
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Proof. By Lemma 2.2 and Theorem 3.4, the set 

has properties (i) and (ii) assumed in Theorem 3.7, and so we obtain by Theorem 
3.7 that rn ,m(B) = 0. □ 

3.10. Corollary. If AC Rn is a Suslin set, then 

for rn ,m almost all VE G(n, m).

Proof. If A is compact, it suffices to observe that by Lemma 2.3 and Corollary 
3.5 the set 

B := {v E G(n,m) I dimpPv(A) <: dimp A} 

has properties (i) and (ii) assumed in Theorem 3.7, and so we obtain by Theorem 
3.7 that rn ,m(B) = 0. 

If A is a Suslin set, then [JP, Theorem 1] implies that for all positive integers 
i there exists a compact set I<; C A such that <limp A = supi <limp I<i . Further, 
the above consideration implies that for all i there is Bi C G( n, m) such that 
rn ,m(Bi) = 0 and <limp Pv(I<;) � (m/n) <limp I<i for all V E G(n, m) \ Bi . We 
define B := LJ:

1 
Bi. Then rn ,m(B) = 0, and the monotonicity of the packing 

dimension implies that 

for all VE G(n,m) \B. □ 

3.11. Remarks. (a) As mentioned in the Introduction, the lower bounds 
obtained in Corollary 3.9 and Corollary 3.10 were improved to the best possible 
ones by Falconer and Howroyd in [FH]. 

(b) If A C Rn is a bounded set with dimM A = n, then we have by Corollary 
3.9 that dimMPv(A) = m for rn ,m almost all VE G(n,m).

( c) If A C Rn is a Suslin set with <limp A = n, then we have by Corollary 3.10 
that dimpPv(A) = m for rn ,m almost all VE G(n,m).
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