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A B S T R A C T   

Background: Intra-individual variability (IIV), a measure of variance within an individual’s performance, has 
been demonstrated as metrics of brain responses for neural functionality. However, how mental fatigue modu
lates IIV remains unclear. Consequently, the development of robust mental fatigue detection methods at the 
single-trial level is challenging. 
New methods: Based on a long-duration flanker task EEG dataset, the modulations of mental fatigue on IIV were 
explored in terms of response time (RT) and trial-to-trial latency variations of event-related potentials (ERPs). 
Specifically, latency variations were quantified using residue iteration decomposition (RIDE) to reconstruct 
latency-corrected ERPs. We compared reconstructed ERPs with raw ERPs by means of temporal principal 
component analysis (PCA). Furthermore, a single-trial classification pipeline was developed to detect the changes 
of mental fatigue levels. 
Results: We found an increased IIV in the RT metric in the fatigue state compared to the alert state. The same 
sequence of ERPs (N1, P2, N2, P3a, P3b, and slow wave, or SW) was separated from both raw and reconstructed 
ERPs using PCA, whereas differences between raw and reconstructed ERPs in explained variances for separated 
ERPs were found owing to IIV. Particularly, a stronger N2 was detected in the fatigue than alert state after RIDE. 
The single-trial fatigue detection pipeline yielded an acceptable accuracy of 73.3%. 
Comparison with existing methods: The IIV has been linked to aging and brain disorders, and as an extension, our 
finding demonstrates IIV as an efficient indicator of mental fatigue. 
Conclusions: This study reveals significant modulations of mental fatigue on IIV at the behavioral and neural 
levels and establishes a robust mental fatigue detection pipeline.   

1. Introduction 

Prolonged working hours and high cognitive demand tasks are 
common experiences in modern life. However, human cognitive re
sources are limited and our mental fatigue level increases when we 
engage in work and tasks for a long period of time. Mental fatigue 
generally leads to behavioral performance deterioration, reduced 
motivation, and failure of sustaining attention (Liu, Zhu, et al., 2020). 
This is referred to as the time-on-task effect (Gao et al., 2022) and/or 

vigilance decrement (Reteig et al., 2019). Mental fatigue has been re
ported as the main factors of traffic accidents and poor work efficiency 
(Liu et al., 2023). In order to alleviate such consequences, efforts have 
been made to reveal the underlying mechanisms of mental fatigue (Liu 
et al., 2024) and to monitor the levels of mental fatigue (Chen et al., 
2023). The modulatory effects of mental fatigue have been examined on 
numerous cognitive functions, such as inhibition responses (Guo et al., 
2018; Kato et al., 2009), visual selective attention (Faber et al., 2012), 
sustained attention (Boksem et al., 2005; Liu et al., 2023), and top-down 
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cognitive control (Kok, 2022; Lorist, 2008). Nevertheless, the majority 
of cognitive and neurophysiological studies have assessed average dif
ferences across trials between alert and fatigue states, and thus over
shadowed the neural underpinnings on intra-individual variability (IIV). 
In particular, the changes of IIV modulated by mental fatigue have been 
poorly studied in the literature. 

IIV, or response variability, reflects dynamic, transient, and within- 
subject changes in behavioral performance and brain functions (Wei 
et al., 2021).Together with inter-subject variability and inter-group 
variability, they have been shown to be three empirical sources of 
intrinsic variations in cognitive functions (Braver, 2012). Here, we aim 
to gain more insights into the mechanisms that are central to mental 
fatigue and in the intra-individual response variability. Growing evi
dence has suggested that IIV is not a random phenomenon, but a result of 
different neurological processes (Fjell and Walhovd, 2007; Leue et al., 
2013; Mirajkar and Waring, 2023). Furthermore, response variability is 
generally discussed in several attributes such as: magnitude, latency, 
intensity, or quality (Fiske and Rice, 1955; Joly-Burra et al., 2018). IIV in 
behavior performance (e.g., increased fluctuations in reaction time) has 
been shown to be a common component of brain disorders and 
aging-related cognitive decline (MacDonald et al., 2006). Similarly, IIV 
in brain responses has been suggested as an effective indicator of neural 
functionality and neurophysiological characteristics of the brain 
(Ouyang et al., 2017). 

High-temporal-resolution electroencephalography (EEG), especially 
event-related potentials (ERPs) is a well-known approach to character
izing neural dynamics of the brain during cognitive processes (Zhang 
and Luck, 2023). Response variability from single-trial ERPs have been 
used for depicting within-subject variations at the neural level (Leue 
et al., 2013). Specifically, IIV is generally found in late ERP components 
such as N2 and late positive component (LPC) (Barry et al., 2020; Polich, 
2020). The LPC has been shown to consist of three subcomponents, 
namely P3a, P3b, and slow wave (SW). Leue et al. (Leue et al., 2013) 
have shown that response variability in N2 amplitude incorporates 
systematic variance derived from a cognitive control task. Furthermore, 
intra-individual P3a amplitude variation has been found to be positively 
associated with age and negatively related to fluid intelligence and 
cortical thickness (Fjell and Walhovd, 2007; Joly-Burra et al., 2018). 
Recent IIV studies go beyond ERP amplitude and also seek to exploit the 
ERP latency variability associated with cognitive functions and mental 
abilities (Ouyang et al., 2017). The latency of P3 component, an efficient 
measure of mental chronometry, has been reported to be closely related 
to the corresponding reaction time (Duncan et al., 2009). Although 
response variability from ERPs has been used in brain research, 
retrieving objective information from single-trial ERP, especially esti
mating component latency, has proven challenging owing to the low 
signal-to-noise ratio (SNR) and overlapping spectrum of noises and 
signals (Da Pelo et al., 2018). 

Several single-trial ERP latency estimation methods have been pro
posed in the literature. They can roughly be divided into four categories: 
filtering and peak-picking, template matching, maximum likelihood 
estimation, and decomposition methods (Ouyang et al., 2017). Among 
these methods, temporal filtering is a typical approach, which assumes 
that an ERP component possesses a specific frequency band. For 
example, a low-pass filter at 3–5 Hz has been applied to estimate 
single-trial P3 latency by removing high frequency distracting peaks 
(Jaškowski and Verleger, 2000). Temporal filtering is restricted by the 
fact that EEG noises are mixed in the low frequency components. The 
basic assumption of template matching is a specified waveform 
morphology of the ERP component. In previous template matching 
studies (Alvarado-Gonzalez et al., 2016; Woody, 1967), single-trial P3 
latency was characterized by using an iterative procedure. Still, EEG 
noises cannot be excluded from the mimicking morphology. The 
maximum likelihood methods were developed based on the hypothesis 
that the statistical properties of EEG noises follow the normally 
distributed Fourier coefficients across trials, and the likelihood of noises 

will be maximised when there is the best Gaussian properties approxi
mation (Jaškowski and Verleger, 1999). A major restriction of the 
method is that it is greatly affected by EEG noises, even leading to 
convergence problems. In terms of decomposition methods, they mainly 
depend on a variety of definitions of ERP components such as topog
raphy, temporal, or statistical properties. Principal component analysis 
(PCA) is one of the most widely used decomposition methods, it is 
generally efficient for separating average-based ERP components 
without considering latency variations (Dien, 2012; Zhang et al., 2020). 
Taking into consideration the advantages of the above-mentioned 
methods, Ouyang et al. (Ouyang et al., 2011, 2015a) proposed the res
idue iteration decomposition (RIDE) method to assess trial-to-trial la
tency variations from single-trial ERP. RIDE integrates ERP 
decomposition based on latency variation and single-trial latency esti
mation using template matching, low-pass filtering, and likelihood 
methods. 

In addition to revealing how mental fatigue modulates intra- 
individual response variability, it is important to develop robust 
methods to detect and assess mental fatigue (Lin et al., 2022). With the 
development of brain-computer interface (BCI) (Blankertz et al., 2011; 
Lotte et al., 2007, 2018), decoding mental states from single-trial ERP 
has become an important branch of modern neuroscience. Although 
great efforts have been made in single-trial analyses, it remains a chal
lenging task to achieve good performance owing to trial-to-trial vari
ability and low single-trial SNR. 

In the present study, based on an EEG dataset recorded from a long 
period of flanker task, we explored how mental fatigue affected IIV in 
behavioral performance and single-trial ERPs. Within-subject variations 
of response time (RT) has been used to measure a subject’s inconsistency 
of behavioral performance (Adleman et al., 2016). Trial-to-trial ERP 
latency variability was estimated from comparisons of latency-corrected 
ERPs with raw ERPs. Especially, latency-corrected ERPs were recon
structed from single trials by using RIDE. To cope with challenges during 
ERP analysis such as a mixture of latent underlying components, tem
poral PCA was used to separate ERP components from both raw and 
reconstructed ERPs. We then compared temporal PCA results to explore 
the influence of mental fatigue on latency variations. In our previous 
study (Liu, Zhang, Zhu, Ristaniemi, et al., 2020), a single-trial analysis 
pipeline integrating discrete wavelet packet transformation (DWPT) and 
multilinear principal component analysis (MPCA) was used to detect 
and localize heart diseases by using electrocardiography (ECG). Here, 
we extended our previously established single-trial analysis pipeline to 
monitor changes in mental fatigue. Altogether, this study provided new 
insights for the application of RIDE to investigate the modulations of 
mental fatigue on ERP latency variability and proposed a feasible 
analysis pipeline to detect mental fatigue from single-trial ERP. 

2. Materials and methods 

We used our previously recorded EEG dataset and shortly summa
rized experimental setup and recording sessions here. The details of 
participants, experimental task, procedures, and acquisitions can be 
found in an earlier study (Liu, Zhang, Zhu, Liu, et al., 2020). 

2.1. Participants 

Twenty right-handed university students (12 females, mean age =
21.9, SD = 2.4, range 18–28 years) participated in the experiment. They 
all have normal or corrected-to-normal visions, regular sleep patterns, 
and no history of prescription medications. This study was approved by 
the Ethical Committee of the Liaoning Normal University and was 
conducted in accordance with the tenets of the Declaration of Helsinki. 
All participants were informed about the contents of the experiments 
and gave their informed and written consent. 
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2.2. Stimuli and task 

Participants were asked to perform a modified Eriksen flanker task 
(Eriksen and Eriksen, 1974), in which a five-letter string consisting of 
the letters M and N was used. Congruent (e.g., MMMMM) and incon
gruent (e.g., NNMNN) stimuli were respectively presented with a pro
portion of 60% and 40% of the trials in a random order. The participants 
were instructed to respond to the central letter M or N on the keyboard. 
Each trial lasted a total of 3 seconds, starting from a fixation cross in the 
middle of the screen. After 1000 ms, a stimulus was presented for 200 ms 
and then a response was required within a maximum of 600 ms. 
Following the responses, an interval of 200 ms was provided for error 
response awareness, and then the final feedback of responses (e.g., 
‘Correct’) was shown for 1000–1500 ms. 

2.3. Procedures 

Participants did a practice session in order to be familiar with the 
flanker task. In addition, they were asked to abstain from coffee, tea, and 
alcohol 24 h before the experiment. On the experiment day, participants 
were instructed to hand over their mobile phones and watches to remove 
the effects of time indication during the experiment. Thereafter, the 
participants performed the task for 140 min without a break in a sound- 
attenuated and electrical-shielded room. The experiment included seven 
20-min blocks, each block consisting of 400 trials (2800 trials in total). 
Furthermore, we provided a monetary reward in blocks 2 and 6 to study 
the interaction between mental fatigue and reward (Liu, Zhang, Zhu, 
Liu, et al., 2020). In the present work, we analyzed the behavioral and 
EEG data from block 1 (alert state) and block 5 (fatigue state) in order to 
explore the modulations of mental fatigue on intra-subject variability. 
The evidence to support that block 1 and block 5 were respectively in 
alert and fatigue states was provided by analyzing behavioral perfor
mance in these two blocks in Results. 

2.4. EEG acquisition and preprocessing 

During the stimulus presentation, continuous EEG was recorded 
using a 64-channel EEG system (ANT Neuro by Hengelo, The 
Netherlands) at a sampling frequency of 500 Hz. The impedance of each 
electrode was kept below 10 kΩ, and the EEG signals were online 
referenced to the CPz electrode. 

The EEG data were processed offline using MATLAB (The Math
Works, R2022a). First, a notch filter at 50 Hz was applied to the EEG 
signals followed by a high-pass filter at 0.5 Hz and a low-pass filter at 
30 Hz. Subsequently, noisy EEG channels were visually inspected and 
replaced by surrounding signals using the spherical spline interpolation 
method (Perrin et al., 1989). Next, the direct current (DC) offset was 
removed from the EEG signals. Further, a wavelet threshold method was 
applied to the EEG to remove large spikes and drifts (Zhang et al., 2018). 
By utilizing the independent component analysis (ICA) (Himberg and 
Hyvärinen, 2003), artifact components were removed including ocular 
and muscle movements. Thereafter, EEG signals were offline referenced 
to the averaged mastoid electrodes (M1 and M2). Finally, the EEG was 
segmented into epochs from 500 ms pre-stimulus to 1000 ms after 
stimulus onset. 

2.5. Data analysis 

2.5.1. Behavioral performance 
For the RT metric, incorrect trials, and trials with RT < 100 ms and >

600 ms were excluded. First, response accuracy and mean RT from 
blocks 1 and 5 were computed to illustrate these two blocks were in the 
hypothesized alert and fatigue states. Next, within-subject variability of 
behavioral performance from RT was examined. The standard de
viations of RT (Jensen, 1992) across experimental trials in the alert and 
fatigue states, respectively were calculated. 

2.5.2. Temporal PCA to ERPs 
Trials were re-segmented into epochs lasting 800 ms after stimulus 

onset with a pre-stimulus baseline of 200 ms. Correct trials with am
plitudes under 100 µV were used to calculate grand mean ERPs. 
Consequently, the number of remaining trials in the alert and fatigue 
states differed, which induced a bias when comparing the alert and fa
tigue conditions. To exclude this bias, an equalization method was 
performed on each subject by randomly and repeatedly selecting a 
subset of trials with the minimum trial number (mean =235 trials, 
SD=73) from all conditions. The equalization procedure was repeated 
1000 times, and grand mean ERPs from all 1000 repetitions were 
averaged to generate the final ERPs. 

The stimulus-locked ERPs with temporal and spatial information 
from the two conditions and all participants were constructed to form a 
matrix with 2480 cases (20 participants × 62 channels × 2 conditions) 
and 500 variables (time points). Temporal PCA was applied to the ERP 
matrix and the factor loadings were estimated from the covariance 
matrix as it provides an electrophysiological meaningful explanation 
(Kayser and Tenke, 2003). The oblique factor rotation Promax was used 
to attenuate the influence of volume conductivity on EEG data (Dien, 
2010; Dien et al., 2007). The PCA components explaining more than 1% 
variance were displayed in order of latency. 

2.5.3. RIDE to reconstruct ERPs 
To address the intra-individual trial-to-trial latency variability, we 

employed an updated version of RIDE (Ouyang et al., 2015b, 2015a) to 
reconstruct raw ERPs. The updated version of the RIDE framework used 
L1 norm minimization to cope with serious distortion problems (Ouyang 
et al., 2015b). The RIDE was established on the ERP model as follows: 

EEGi(t) = M1(t − τ1i)+M2(t − τ2i)+…+Mn(t − τni)+ ξi(t) (1)  

where EEGi(t) represents the EEG data of ith trial at time point t relative 
to the stimulus onset, Mn(t) is the waveform of nth ERP component, τni 
denotes the latency of nth component for trial i, and ξ denotes the noise. 
The latency of individual ERP components is not exactly at the same 
time across single trials, namely τ is supposed to vary independently and 
is modulated by different experimental conditions. The latency vari
ability of each component can be represented by a probability density 
function of the latency distribution. Therefore, the average ERP is the 
convolution of the individual ERP components with the corresponding 
distribution of latencies across trials, represented as: 

ERP(t) = M1(t) ∗ ρ(τ1)+M2(t) ∗ ρ(τ2)+…+Mn(t) ∗ ρ(τn) (2)  

where ∗ represents the convolution operation and ρ denotes the proba
bility density function. Only if the ρ is a delta function and the compo
nents are located at the most probable latency can the latency-corrected 
ERP (ERPlc) be realized as follows: 

ERPlc(t) = M1(t)+M2(t)+…+Mn(t) (3) 

The early ERP components, such as M1(t) and M2(t), are less affected 
by latency variability, whereas the later components, Mn(t), show 
evident latency variability, as shown in Fig. 1A. In line with the general 
assumptions that ERP is composed of three component clusters associ
ated with stimulus-triggered processes, central processing, and motor- 
related responses (Luck, 2005), RIDE generally decomposes single-trial 
ERPs into three component clusters: component cluster S locked to 
stimulus onset, component cluster C without an explicit time marker, 
and component cluster R locked to responses. Still, the RIDE algorithm 
can be used in different schemes, such as S + C, according to cognitive 
processes involved in a particular study (Ouyang et al., 2017). The RIDE 
algorithm was implemented by an inner loop representing a decompo
sition module using a time marker and an outer loop representing a 
latency estimation module with a self-optimized iteration for latency 
estimation (see the flow chart in Fig. 1B). The inner loop is terminated 
when the difference in latency for cluster component C of two successive 
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iterations is smaller (< 10− 3) than that for the two initial iterations. In 
particular, the R component cluster is obtained by leveraging the RT 
metric in RIDE processing, which enables a connection between 
behavior and brain responses. In this study, we decomposed ERPs into S 
+ C + R component clusters and reconstructed latency-variant ERPs 
from single trials. Compared to averaged raw ERP, the reconstructed 
ERP theoretically reduced the distortions of ERP components from 
averaging methods and diminished a smearing effect from trial-to-trial 
latency variability, providing more evidence for relating specific ERP 
component to different cognitive processes. Similarly, temporal PCA 
was used to separate reconstructed ERPs (RIDE + PCA results) for 
comparison with PCA results, as shown in Fig. 1C. 

2.5.4. Single-trial classification analysis 
The effects of mental fatigue on IIV using feature extraction and 

classification methods on single trial analysis was explored. A flowchart 
of the single-trial classification analysis is shown in Fig. 2. The unbal
anced trials between two conditions were taken into consideration when 
performing classifications between alert and fatigue states for each 
subject, similar to PCA to ERP analysis. An equalization procedure was 
conducted by randomly selecting a minimum number of trials from two 

conditions for each subject and this procedure was repeated 100 times. 
Classification accuracy, defined as the mean values of sensitivity and 
specificity (Myrden and Chau, 2017), was computed by averaging the 
accuracies from 100 repetitions (trial-balanced data). 

To increase the SNR, we used single trial data from six channel- 
clusters rather than from single channels. The six channel-clusters 
were chosen based on the topographic activations obtained from tem
poral PCA analysis, namely cluster 1 (AF3, AF4, F1, F2, Fz), cluster 2 
(F1, F2, Fz, FC1, FC2, FCz), cluster 3 (FC1, FC2, FCz, C1, C2, Cz), cluster 
4 (C1, C2, Cz, CP1, CP2, CPz), cluster 5 (Fp1, Fp2, AF3, AF4, F1, F2, Fz), 
and cluster 6 (FC1, FC2, FCz, C1, C2, Cz, CP1, CP2, CPz). For the feature 
extraction, single-trial data from the selected channel-clusters in the 
time window of − 500–1000 ms relative to stimulus onset (considering 
the contamination of edge artifacts on results (Cohen and Cavanagh, 
2011) were entered into the DWPT, providing more precise frequency 
resolution than discrete wavelet transforms (DWT) (Rajpoot et al., 
2003). Summarizing empirical and practical knowledge (Zhang et al., 
2018), we chose the mother wavelet of “db6” and seven layers of 
decomposition, resulting in a resolution of around 2 Hz in each DWPT 
coefficient. As the frequency bands of interest were concentrated below 
30 Hz, a total of 15 DWPT coefficients (corresponding to frequency 

Fig. 1. (A) Left: Illustration of two early ERP components and one late ERP component from single trial that are averaged to generate ERP waveforms. Right: These 
three components were reconstructed across trials using the RIDE approach and then yielded reconstructed ERP waveforms. (B) Flowchart of the RIDE framework for 
ERP reconstruction. (C) Pipeline of comparison analysis between RIDE + PCA and PCA results. 
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bands 0.5–30 Hz) were reconstructed at the seventh layer. We 
re-segmented the 15 reconstructed DWPT waveforms into 0–800 ms 
after stimulus onset and extracted mean values from fixed time windows 
corresponding to different ERP components. A total of 6 mean values 
were extracted for each channel-cluster and DWPT waveform according 
to the six ERP components derived from temporal PCA (illustrated in the 
Results). A feature tensor containing 6 channel-clusters × 15 frequency 
bins × 6 temporal values × trials were constructed and subjected to the 
MPCA for dimensionality reduction (Liu, Zhang, Zhu, Ristaniemi, et al., 
2020; Lu et al., 2008). By manipulating the percentage of energy for 
MPCA, we determined the low-dimensional and representative features 
for classification. We then estimated the accuracy of classification by 
performing 100 runs of 5-fold cross-validation with random permuta
tions. Four different binary classifiers were used for mental fatigue 
detection, consisting of support vector machines (SVM) with a linear 
kernel function (Muller et al., 2001), linear discriminant analysis (LDA) 
(Martinez and Kak, 2001), Gaussian naive Bayes (NB) (Rish, 2001), and 
random forest (Kleinberg, 2000). 

2.6. Statistical analysis 

Statistical analyses were conducted in MATLAB (The MathWorks, 
R2022a) and IBM SPSS Statistics version 29.0. Behavioral measures (e. 

g., standard deviations of RT) and temporal PCA separated components 
with and without RIDE were used as inputs for paired-samples t-tests to 
assess mental fatigue effects. Principal components (PCs) of RIDE + PCA 
and PCA results were obtained by projecting the factor scores and 
loadings onto the primitive temporal space. Grand mean values of PCs 
obtained in specific temporal windows from activated EEG channels 
were subjected to paired t-tests. The effect size of results from t-test was 
reported using Hedges’ g correction based on sample standard deviation 
of the mean difference. Statistical results of these PCs with significant 
effects were corrected using the false discovery rate (FDR) (Benjamini 
and Yekutieli, 2001, 2005) for multiple comparisons. All statistical 
2-sided p or corrected p values less than 0.05 were considered as 
significant. 

3. Results 

3.1. Behavioral performance outcomes 

Fig. 3A and 3B display the response accuracy and mean RT in block 1 
and block 5, namely the hypothesized alert and fatigue states. Paired t- 
test results revealed a significant difference between block 1 and block 5 
for accuracy () and mean RT (). Compared to block 1, accuracy was 
lower and mean RT was longer in block 5, indicating that blocks 1 and 5 

Fig. 2. The pipeline of single-trial binary classification. An equalization procedure was performed before DWPT. The averaged values from time windows of six 
components were extracted from reconstructed wavelet packet coefficients. We only considered 1–15th subbands, covering the frequency bands 1–30 Hz. The tensor 
features consisting of temporal values, channel- clusters, frequency, and samples (trials) were reduced by MPCA to obtain representative features. The reduced 
features were subjected to SVM classifiers with linear and MLP functions. 
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were in alert and fatigue states, respectively, and behavioral perfor
mance were impaired by mental fatigue. Further, the modulations of IIV 
in behavioral performance (RT) by the changes of fatigue levels are 

shown in Fig. 3C. Results from paired t-test of the standard deviations of 
RT revealed a significant difference between the alert and the fatigue 
conditions (), suggesting larger RT variability in the fatigue state relative 

Fig. 3. Behavioral performance in alert and fatigue states. (A) response accuracy and (B) mean response time in block 1 (alert state) and block 5 (fatigue state). (C) 
The modulations of mental states (alert versus fatigue) on IIV in behavioral performance, namely the standard deviations of reaction time (SD of RT). Significant 
differences are marked by black lines and **<0.01. 

Fig. 4. (A) Raw ERPs with LPC components marked with grey rectangle for statistical analysis. Temporal PCA outcomes include (B) six selected factor loadings, and 
(C) related information and factor scores visualized as activated topographies in the alert and fatigue conditions. Significant differences are marked by black lines 
and **<0.01. 
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to the alert state. The decreased response accuracy, longer mean RT and 
larger IIV of RT metric suggest that participants’ behavioral perfor
mance was impaired, and they have difficulty in maintaining stable 
response time when they were in a fatigue state. 

3.2. Temporal PCA outcomes 

Fig. 4A illustrates raw ERPs averaged from midline sites (Fz, FC1, 
FCz, FC2, C1, Cz, C2, CP1, CPz, CP2, Pz) in the alert and fatigue states. 
The raw ERPs can be identified as a series of ERP components in the 
order of latency, including N1, P2, N2, and late positive component 
(LPC). Since latency variability generally affects late ERPs, the effect of 
mental fatigue on LPC was considered. From visual inspection and 
consistent with literature that LPC is a typical broad positivity between 
400 and 800 ms after stimulus onset (Friedman and Johnson, 2000), the 
LPC averaged in the time window of 420–800 ms, marked by grey 
rectangle in Fig. 4A, was used for statistical analysis. Paired-t test 
analysis of LPC amplitude showed no difference between alert and fa
tigue conditions (t19 = 0.88, p = 0.39, g = 0.19). Although LPC 
consists of multiple subcomponents, conventional ERP analysis is 
limited by a mixture of underlying ERP components. Thus it seems 
difficult to decode the modulations of mental fatigue on separate LPC 
subcomponents from raw ERPs. 

To separate overlapping ERPs, we performed temporal PCA and then 
explored the effects of mental fatigue on separated ERP components. 
Fig. 4B and 4C show the factor loadings (temporal courses) and relevant 
factor scores (topographies) in order of latency under two conditions. 
Six principal components explaining 95.56% total variance were visu
alized, namely N1, P2, N2, and three subcomponents of LPC in the 
temporal order of P3a, P3b, and positive SW. Further, paired-t test an
alyses between alert and fatigue states on relative late ERP components 
(N2, P3a, P3b, and SW) were conducted, respectively. 

The N2 component (occupying 1.46% variance) peaked at approxi
mately 305 ms post-stimulus with activations in the frontal brain region. 
Paired-t tests on N2 showed no differences between the alert and fatigue 
states (t19 = 1.38, p = 0.19, g = 0.30). P3a component, account
ing for 18.16% variance, was activated in the centro-parietal brain re
gions and in the time window of 320–550 ms. There was a significant 
decrease for P3a in the fatigue state compared to the alert state (). Ac
counting for a variance of 58.12%, P3b was derived from 490 to 600 ms 
after stimulus onset in the fronto-central-parietal scalp regions. Statis
tical analysis comparing difference between alert and fatigue conditions 
of P3b did not reveal significant changes 
(t19 = 0.23, p = 0.82, g = 0.05). Following P3b, the SW explain
ing 3.42% of the variance was extracted, which was activated in the 
fronto-central regions spanning the time window from 620 to 800 ms. A 
stronger SW activation was observed in the fatigue state than the alert 
state (). In summary, without considering trial-to-trial variability, we 
found significant effects of mental fatigue on P3a and SW by using 
temporal PCA analysis. 

3.3. RIDE + PCA outcomes 

Trial-to-trial latency variability has been shown to influence ERPs, 
especially late ERP components (Ouyang et al., 2017). Here, RIDE was 
applied to correct intra-subject trial-to-trial latency variations. Fig. 5A 
illustrates RIDE corrected results, including the stimulus-locked 
component cluster S, no explicit time-locked component cluster C, and 
response-locked component cluster R, as well as the reconstructed ERP. 
The reconstructed ERPs from electrodes, participants, and conditions 
were used in the temporal PCA to derive components of 
latency-corrected ERP. Similarly, six components in the temporal order 
of N1, P2, N2, P3a, P3b, and SW were identified (Fig. 5B), explaining 
95.00% of total variances. Nevertheless, the explanatory variances of 
these six components were changed after using RIDE, especially for P3a, 
P3b, and N2, accounting for variances of 51.83%, 23.89%, and 10.17%, 

respectively. The temporal fluctuations and brain topographic patterns 
of these six components were almost the same as those extracted directly 
from temporal PCA, indicating the stability of existing ERP components. 
Thus, the grand mean amplitudes of RIDE + PCA outcomes were ob
tained from the same electrodes and corresponding temporal windows 
relative to the temporal PCA outcomes. 

A significant difference between the alert and fatigue states was 
detected on N2 component (), P3a component (), and SW (), indicating a 
stronger activation in N2 and SW, as well as a weaker activation in P3a 
in the fatigue state compared to the alert state. Statistical analyses of P3b 
did not reveal a significant difference 
(t19 = 0.72, p = 0.48, g = 0.16) between the fatigue and alert 
states, consistent with PCA outcomes. Taken together, after considering 
the intra-subject trial-to-trial variability using RIDE, the explanatory 
variances of separated components were greatly changed although the 
same six ERPs were extracted from the temporal PCA. The modulations 
of fatigue on LPCs were the same compared to PCA outcomes, whereas a 
significant effect of fatigue on N2 was found only in the RIDE+ PCA 
outcomes. 

3.4. Single-trial classification outcomes 

A subject-specific classification between alert and fatigue conditions 
at the single-trial level was conducted to further explore whether mental 
fatigue detection was affected by intra-individual trial-to-trial vari
ability. A feature tensor with 6 channel-clusters × 15 frequency bins × 6 
temporal values was extracted from each trial by utilizing DWPT, and 
then MPCA was used for determining the representative features by 
choosing appropriate percentage of energy for MPCA. Fig. 6A displays 
the changes of classification accuracies with increasing percentage of 
energy from 5% to 100% with a step of 5%. As can be seen from the 
figure, the accuracy of fatigue detection is relatively high when the 
energy percentage is 95%. Choosing 95% energy percentage in MPCA, 
we obtained 30 features (2 channel-clusters × 3 frequency bins × 5 
temporal values) with MPCA projection matrices as illustrated in 
Fig. 6B. The dimensional reduced features were mainly dominated in 
low frequency bands (0.5–8 Hz) almost equally distributed in all 
channel-clusters and time windows. These features were fed into clas
sifiers, fitting the rules that the ratio of samples/features should be be
tween five to ten (Lotte et al., 2007, 2018). 

The balanced classification accuracies achieved by four different 
classifiers are shown in Fig. 6C. The SVM, LDA, NB, and random forest 
classifications of alert versus fatigue trials yielded accuracies of 73.3% ±
4.8%, 73.2% ± 5.3%,71.3% ± 5.2%, 67.3% ± 6.1%, respectively. The 
SVM and LDA classifiers generally performed better than NB and 
random forest in the binary classification of fatigue versus alert trials, 
and the random forest classifier achieved the lowest performance. 

4. Discussion 

The aim of this study was to investigate how mental fatigue modu
lates IIV and to establish a robust analysis system to assess mental fa
tigue. Based on an EEG dataset collected during a prolonged flanker 
task, the modulations of mental fatigue on intra-individual trial-to-trial 
variability at the behavioral and neural levels was examined. Regarding 
behavioral performance, we discovered larger variability in RT when 
subjects were in the fatigue state relative to alert state. In terms of 
electrophysiological indicators, before considering within-subject la
tency variations, a cascade of ERPs in the latency order of N1, P2, N2, 
P3a, P3b, and SW was derived from temporal PCA. To quantify single- 
trial latency variability, we employed RIDE to reconstruct latency- 
corrected ERPs and then applied temporal PCA. The same cascade of 
ERP components was derived from RIDE + PCA outcomes, nevertheless, 
the explained variances of these principal components, specifically on 
late ERPs, were significantly changed compared to PCA results. In 
addition, significant differences in P3a and SW between the alert and 

J. Liu et al.                                                                                                                                                                                                                                       



Journal of Neuroscience Methods 406 (2024) 110110

8

Fig. 5. RIDE results and RIDE + PCA outcomes. (A) Raw ERP was decomposed into S component, C component, and R component. Components of S, C, and R were 
used to reconstruct ERP. The reconstructed ERP was used in temporal PCA and obtained (B) factor loadings, information, and factor scores in the alert and fatigue 
conditions. Variance values in bold show large differences compared to PCA outcomes. Significant differences are marked by black lines and **<0.01. 
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fatigue conditions were detected in both PCA and RIDE + PCA out
comes. A stronger N2 magnitude was observed in the fatigue state than 
the alert state only in RIDE + PCA outcomes. In the case of trial-wise 
variations, we introduced a robust single-trial machine learning anal
ysis pipeline and achieved an acceptable alert versus fatigue classifica
tion accuracy. 

The modulations of mental fatigue on IIV in behavioral performance 
were explored by comparing standard deviations of RT across experi
mental trials between the alert and fatigue conditions. Our study showed 
larger standard deviations of RT in the fatigue state compared to alert 
state, indicating that an increased level of fatigue leads to larger trial-to- 
trial fluctuations in behavioral responses. In fact, previous research has 
placed increased focus on the importance of IIV, which can confer 
perspective information on cognitive functionality above mean perfor
mance (MacDonald et al., 2006; Myerson et al., 2007). As such, 
within-subject variations in RT have been considerably examined in 
neuroscience studies showing the following correlations: decreased IIV 
in RT through childhood (Williams et al., 2005), and increasing RT 
variability with increasing age in adulthood (Mirajkar and Waring, 
2023; Myerson et al., 2007); more variable responding for 
attention-deficit hyperactivity disorder (ADHD) (Castellanos and Tan
nock, 2002; Johnson et al., 2007); larger performance variations after 
traumatic brain injury (Stuss et al., 1994). As an extension, the present 
study supports the idea that increased intra-individual performance 
variability is associated with mental fatigue elicited by engagement in a 
long-duration cognitive task. Response variability has been considered 
as external performance of underlying alternations in the brain (Mac
Donald et al., 2006), though there have been few integration studies that 
can link behavior to brain responses in IIV. 

The modulations of mental fatigue on IIV in brain responses were 
investigated via comparisons of ERP components derived from temporal 
PCA before and after considering trial-to-trial latency variability. 
Without consideration of IIV, we applied PCA to grand mean ERPs and 
separated a sequence of ERP components in the temporal order of N1, 
P2, N2, P3a, P3b, and SW explaining variances of 2.38%, 12.01%, 
1.46%, 18.16%, 58.12%, and 3.42%, respectively. Further, a decreased 
P3a and an increased SW were detected in the fatigue state relative to 

alert state. The latency variability within an individual was considered 
using RIDE, which has been developed and validated as a powerful 
method for analyzing and reconstructing latency-variable ERPs from 
single trials (Ouyang et al., 2011, 2015b, 2015a, 2017). We then sub
jected the reconstructed ERPs to PCA and derived the same cascade of 
ERP components: N1, P2, N2, P3a, P3b, SW explaining 1.94%, 2.77%, 
10.17%, 51.83%, 23.89%, and 4.41% variances, separately. Compared 
to PCA outcomes alone, the explaining variances were greatly changed 
on P3a and P3b components, followed by P2 and N2 components. 
Moreover, a similar impairment of mental fatigue on P3a and SW was 
detected, while a stronger N2 was uncovered in the fatigue state 
uniquely from RIDE + PCA outcomes. The N2 component has been 
documented as an effective neural signature of conflict monitoring 
(Borja-Cacho and Matthews, 2008). Furthermore, P3a and P3b has been 
linked to attentional mechanisms and sequential working memory 
(Barry et al., 2020; Polich and Criado, 2006), and SW has been 
demonstrated as indicators of further processing for attended stimuli 
(Squires et al., 1975; Teixeira-Santos et al., 2020) or conceptual opera
tions (Strüber and Polich, 2002). When interpreting the modulations of 
mental fatigue on the roles indicated for these ERP components, we 
speculate that mental fatigue impairs cognitive processes of conflict 
processing, attention, as well as attended information advanced pro
cessing, consistent with deteriorated attention and cognitive control 
capability affected by mental fatigue as reported in previous studies 
(Breckel et al., 2011; Faber et al., 2012; Liu, Zhu, et al., 2020; Möckel 
et al., 2015). From these results, it is clear that the IIV could lead to 
mixing and smearing effects on relatively late ERPs (e.g., N2, P3a, and 
P3b), consistent with previous studies (Fjell and Walhovd, 2007; Leue 
et al., 2013; Ouyang et al., 2017). Our results also suggest that the 
changes of fatigue levels result in different fluctuations in trial-to-trial 
latency variability. 

We further classified single-trial ERPs between alert versus fatigue 
states using our proposed analysis pipeline. An averaged subject-specific 
classification accuracy of 73.3% ± 4.8% was obtained using a liner SVM 
in this study. In an earlier passive EEG-BCI study (Myrden and Chau, 
2017), eleven participants were involved in mental arithmetic, 
anagram, and grid-recall tasks to induce mental fatigue and other 

Fig. 6. Single-trial classification outcomes. (A) The changes of classification accuracy between alert and fatigue trails with different energy percentages using SVM- 
Linear classifier from a subject. (B) Projected matrices from MPCA in the spatial, spectral, and temporal dimensions. (C) Classification results of four classifiers (in a 
binary classification of alert versus fatigue conditions. S represents Subjects 1–20. 
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emotions. Myrden and co-authors achieved an accuracy of 74.8% ±
9.1% for participant-dependent single-trial mental fatigue detection 
using a shrinkage linear discriminant analysis (LDA) binary classifier. 
This study demonstrated the feasibility and robustness of the analysis 
pipeline, firstly proposed for detection of myocardial infarction on ECG 
(Liu, Zhang, Zhu, Ristaniemi, et al., 2020), for EEG-based mental fatigue 
detection, even though there was strong trial-to-trial variability during 
prolonged task engagement. Still, the single-trial analysis pipeline in this 
study is limited to subject-specific classification. Further studies are 
needed to develop robust across-subject single-trial fatigue detection 
methods. Further studies should also explore the modulations of mental 
fatigue on inter-individual variability. 

5. Conclusion 

We introduced the RIDE algorithm to reconstruct latency-variant 
ERP and compared the reconstructed ERP with raw ERP by means of 
the temporal PCA for detecting the modulations of mental fatigue on 
specific cognitive processes and trial-to-trial latency variability. We also 
proposed a single-trial classification pipeline for monitoring the changes 
of fatigue states. These proposed methods allowed us to quantify the 
effects of mental fatigue on IIV and detect mental fatigue from single- 
trial ERP. Specifically, we explored the effects of mental fatigue on 
intra-individual trial-to-trial variability during a long-duration flanker 
task using behavioral performance and ERPs from single trials. There 
was an increased within-subject variation in RT following increased 
fatigue levels. By using temporal PCA, a total of six ERP components 
(N1, P2, N2, P3a, P3b, and SW) were extracted from both raw and 
reconstructed ERPs, and the explained variances were significantly 
changed after considering the trial-to-trial latency variability using 
RIDE. P3a and SW were detected to be affected by mental fatigue. 
Particularly, after considering latency variability, a significant differ
ence on N2 was detected when subjects shifted from alert to fatigue 
states. We further examined the possibility of classification of alert 
versus fatigue states at the single-trial level. By utilizing the proposed 
single-trial analysis pipeline, we gained an acceptable classification 
accuracy of alert and fatigue trials. In summary, these exploratory 
findings provided evidence for the modulations of mental fatigue on IIV 
and extended the roles of IIV related to aging and brain injury into 
normal fluctuations of fatigue level induced by prolonged task engage
ment. Our results further indicated that although trial-to-trial variations 
and low SNR existed, it is feasible to establish a robust machine learning 
system for single-trial analysis during a cognitive task. 
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MacDonald, S.W.S., Nyberg, L., Bäckman, L., 2006. Intra-individual variability in 

behavior: links to brain structure, neurotransmission and neuronal activity. Trends 
Neurosci. 29 (8), 474–480. https://doi.org/10.1016/j.tins.2006.06.011. 

Martinez, A.M., Kak, A.C., 2001. PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 
23 (2), 228–233. https://doi.org/10.1109/34.908974. 

Mirajkar, S., Waring, J.D., 2023. Aging and task design shape the relationship between 
response time variability and emotional response inhibition. Cogn. Emot. 37 (4), 
777–794. https://doi.org/10.1080/02699931.2023.2208860. 
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