
Mika Riepponen

Selection of open-source web vulnerability scanner as

testing tool in continuous software development

Master’s Thesis in Information Technology

April 4, 2024

University of Jyväskylä

Faculty of Information Technology

Author: Mika Riepponen

Contact information: mika.riepponen@student.jyu.fi

Supervisor: Tapio Frantti

Title: Selection of open-source web vulnerability scanner as testing tool in continuous soft-

ware development

Työn nimi: Avoimen lähdekoodin web sovelluksen haavoittuvuusskannerin valinta testaustyökaluksi

jatkuvassa ohjelmistokehityksessä

Project: Master’s Thesis

Study line: Software Engineering

Page count: 41+7

Abstract: Security is a critical part of web applications and vulnerabilities should be pre-

vented or identified and fixed as early in the development process as possible. The purpose

of this study is to determine how well open-source web vulnerability scanners suit for test-

ing commercial web application in continuous software development. The need for this

study came from Secapp Oy. Two open-source web vulnerability scanners, ZAP and Wapiti,

were chosen to be evaluated. These two scanners were chosen because they were the only

open-source web vulnerability scanners found from the latest studies that had command-line

interface and were still in active development. Both scanners contributed to improving the

security of the target web application. Neither of the scanners was so fast that it could be

included in the integration pipeline as a test. Both scanners can be utilized as periodical

automated scanner. ZAP offered more customization options for the scan, most importantly

possibility to flag scan findings as false positive and skip crawling phase and only scan listed

URLs. ZAP was also faster, more precise, found wider set of vulnerabilties and had better

crawling coverage. Based on the results ZAP was chosen to scan the target web application

in between the releases to test each major version for vulnerabilities.

Keywords: web vulnerability scanner, web scanner, dynamic application security testing,

dast, development security operations, devsecops, continuous software development

i

Suomenkielinen tiivistelmä: Tietoturva on kriittinen osa web sovelluksia ja haavoittuvu-

udet tulisi ennaltaehkäistä tai tunnistaa sekä korjata mahdollisimman aikaisin ohjelmiston

kehitysprosessissa. Tämän tutkimuksen tarkoitus on määrittää kuinka hyvin avoimen lähdekoodin

web sovellusten haavoittuvuustestaustyökalut sopivat kaupallisen web sovelluksen testauk-

seen jatkuvassa ohjelmistokehitysprosessissa. Tarve tälle tutkimukselle tuli Secapp Oy yri-

tykseltä. Arvioitavaksi valittiin kaksi avoimen lähdekoodin web haavoittuvuusskanneria,

ZAP ja Wapiti. Nämä kaksi skanneria valittiin sen perusteella, että ne olivat ainoat vi-

imeisimmistä tutkimuksista löytyneet avoimen lähdekoodin web haavoittuvuusskannerit, joissa

oli komentorivi käyttöliittymä ja joita edelleen kehitettiin aktiivisesti. Kumpikin skanneri

myötävaikutti kohteena olevan web sovelluksen tietoturvan parantamiseen. Kumpikaan skan-

nereista ei tulosten perusteella sovellu integraatioputkessa ajettavaksi testiksi. Kumpaakin

voidaan kuitenkin hyödyntää ajoittaisena automaattisena skannerina. ZAP tarjosi enemmän

vaihtoehtoja mukauttaa skannausta, tärkeimpänä mahdollisuus luokitella skannauksen löy-

döksiä vääriksi positiviiksi ja kohdistaa skannaus vain ennalta määritettyyn listaan URL-

osoitteita sen sijaan, että skanneri yrittäisi löytää niitä lisää. ZAP oli myös nopeampi,

tarkempi löytämään oikeita haavoittuvuuksia, löysi enemmän eri haavoittuvuuksia ja oli

parempi löytämään uusia sivuja crawler toiminnoillaan. Tulosten perusteella ZAP valittiin

testaamaan kohteena oleva web sovellus pääversioiden julkaisujen välillä haavoittuvuuksien

löytämiseksi.

Avainsanat: web haavoittuvuusskanneri, web skanneri, dynaaminen ohjelman tietoturvan

testaus, dast, ohjelmistokehityksen tietoturvatoimet, devsecops, jatkuva ohjelmistotuotanto

ii

Glossary

Acunetix Commercial web vulnerability scanner.

Altoro Mutual Vulnerable web site published by IBM to demontstrate the ef-

fectiveness of IBM products in detecting vulnerabilites in web

applications.

AppSpider Commercial web vulnerability scanner.

Arachni Partly open-source web vulnerability scanner.

CWE Common Weakness Enumeration is a category system for hard-

ware and software weaknesses and vulnerabilities.

Burp Suite Professional Commercial web vulnerability scanner.

CLI Command-line Interface.

DAST Dynamic Application Security Testing. Security testing an ap-

plication while it is running.

DVNA Damn Vulnerable Node Application. Node.js application that

demonstrates OWASP top ten vulnerabilities

DVWA Damn Vulnerable Web Application. Vulnerable PHP/MySQL

web application.

false positive Positively identified result that was actually negative.

F-measure Measure of a test’s accuracy. Calculated from the precision

and recall of the test.

IBM International Business Machines Corporation is an American

multinational technology corporation.

IronWASP Iron web-application advanced security testing platform. Open-

source web vulnerability scanner.

OWASP The Open Web Application Security Project. A nonprofit foun-

dation that works to improve the security of software.

OWASP Benchmark Java based test suite to evaluate software vulnerability detec-

tion tools.

OWASP Juice Shop Vulnerable web application written in Node.js, Express and

Angular. Demonstrates OWASP top ten and other security

iii

flaws.

OWASP NodeGoat Node.js based web application that demonstrates OWASP top

ten vulnerabilities.

OWASP WebGoat Insecure application containing vulnerabilities commonly found

from Java-based applications that use common and popular

open source components.

ZAP Zed Attack Proxy. Formerly known as OWASP ZAP. Open-

source web vulnerability scanner.

JavaScript Programming language that is one of the core technologies of

the World Wide Web.

LDAP Lightweight Directory Access Protocol. Protocol for serving

directory information over Internet Protocol network.

LFI Local File Inclusion. A type of attack.

MySQL Open-source relational database management system.

NetSparker Commercial web vulnerability scanner.

Node.js JavaScript runtime environment that executes JavaScript out-

side browsers.

Precision True positive results divided by the number of true positive and

false positive results.

PHP Scripting language intended to be used in web development.

Recall True positive results divided by the all results which are sup-

posed to identify as positive.

RFI Remote File Inclusion. A type of attack.

Skipfish Open-source web vulnerability scanner.

SQL Structured Query Language used for managing data in rela-

tional database management system.

SQLi SQL injection. A type of attack.

true positive Positively identified result that was correctly identified.

URL A Uniform Resource Locator. Commonly known as web ad-

dress.

Vega Open-source web vulnerability scanner.

iv

WackoPicko Website that contains common and known vulnerabilities.

Wapiti Open-source web vulnerability scanner.

Watabo Semi automated open-source web vulnerability scanner.

WAVSEP The Web Application Vulnerability Scanner Evaluation Project.

A vulnerable web application that can be used for evaluating

web application vulnerability scanners.

WIVET Web Input Vector Extractor Teaser. A benchmarking tool for

web application vulnerability scanners.

WVS Web Vulnerability Scanner.

W3AF Web application attack and audit framework. Open-source web

vulnerability scanner.

XSS Cross Site Scripting. A type of injection attack.

ZAP OWASP Zed Attack Proxy. Open-source web vulnerability

scanner.

v

List of Figures
Figure 1. False positive finding in ZAP report. 23
Figure 2. Flagging the finding as false positive in Automation Framework YAML file.. . . . 23

List of Tables
Table 1. Summary of important qualities of reviewed open-source scanners. 10
Table 2. Reported vulnerabilities by Wapiti. 20
Table 3. Reported vulnerabilities by ZAP. 21
Table 4. Scan times. 22
Table 5. Crawling coverage. 24
Table 6. An overall comparison based on results. 26

vi

Contents
1 INTRODUCTION . 1

2 WEB VULNERABILITY SCANNERS. 3
2.1 Continuous integration and vulnerability testing . 3
2.2 Web vulnerability scanner . 3
2.3 OWASP top ten . 5
2.4 Recent studies of web vulnerability scanners . 6
2.5 Selecting web vulnerability scanners for this study . 10
2.6 ZAP and Wapiti . 11

3 RESEARCH QUESTIONS . 12

4 RESEARCH METHOD . 13
4.1 Design science method . 13
4.2 Following the design science method . 14

5 RESEARCH PROCESS . 16
5.1 Setting up the Wapiti vulnerability scanner . 16
5.2 Setting up the ZAP vulnerability scanner . 16
5.3 Performing the vulnerability scans . 18
5.4 Further configuring to handle false positive findings . 19

6 RESULTS . 20
6.1 Scan results . 20
6.2 Handling false positive findings . 22
6.3 Crawling coverage . 24
6.4 Automation and integration features of the scanners . 24
6.5 Suggestions for way of use for the scanners in continuous software devel-

opment . 25
6.6 Evaluation and criticism . 26

7 CONCLUSIONS. 28

BIBLIOGRAPHY . 29

APPENDICES . 34
A Wapiti run commands . 34
B ZAP run command . 34
C ZAP Automation Framewok YAML . 35

vii

1 INTRODUCTION

Security is a critical part of web applications, but threats that compromise the security of

applications have been steadily evolving (Baldassarre et al. 2020) and web applications have

become increasingly vulnerable to malicious attacks (Althunayyan et al. 2022). Verizon re-

ports from 2020 (Widup et al. 2020), 2021 (Widup et al. 2021), and 2022 (Widup et al. 2022)

show a continuous rise in data breaches, as the number of confirmed breaches rose from 3950

out of 32002 analyzed incidents in 2020 to 5258 out of 29207 in 2021 and to 5212 out of

23896 in 2022. Web applications were the most frequent attack vectors in the breaches.

McAfee report (Malekos Smith, Lostri, and Lewis 2020) estimated that the cost of cyber-

crime to the global economy was increased over 50% from 2018 to 2020.

Vulnerabilities should be prevented or identified and fixed early in the development process

to maintain the security of applications. However, manually searching for vulnerabilities

from web application is difficult and time consuming, and therefore there is a need to au-

tomate this process with web application vulnerability scanner (Makino and Klyuev 2015).

The purpose of this study is to determine how well open-source web vulnerability scanners

suit for testing commercial web application in continuous software development. The need

for this study came from Secapp Oy. Automated vulnerability scanner as part of the devel-

opment process would complement other security ensuring actions.

Open source was chosen as the scope for this study. Comparing studies between open-source

and commercial WVSs (Web Vulnerability Scanners) show that open-source scanners can

also be effective at detecting vulnerabilities (Amankwah et al. 2020; Qasaimeh, Shamlawi,

and Khairallah 2018; El Idrissi et al. 2017) or perform similarly underwhelmingly (Anagan-

dula and Zavarsky 2020; Althunayyan et al. 2022).

Recent comparing studies of open-source WVSs, for example from Al Anhar and Suryanto

(2021), Althunayyan et al. (2022), Amankwah et al. (2020), Anagandula and Zavarsky

(2020) and Zukran and Md Siraj (2021), focus on comparing WVSs against applications

which have been built for testing purposes and have intentional vulnerabilities. This is sug-

gested approach so the results can be reproduced and compared (Alazmi and Conte De Leon

1

2022). However, the studies in systematic literacy review from Alazmi and Conte De Leon

(2022) show that the scanners perform differently when evaluated against different applica-

tions and even show disparate results in different studies. Thus, when the intention of using

the scanner is against a specific application, it is reasonable to evaluate them against that

specific application. In this study the scanners are evaluated against the commercial appli-

cations they are supposed to test if one of them is selected for that purpose as the result of

this study. Another reason which supports new studies comparing the scanners is that some

of the open-source scanners are updated often, so comparing studies need to be done again

with the newer versions to determine the state they are in.

Studies that compare how different WVSs could be integrated into continuous software de-

velopment as testing tools or evaluate their usability were not found. Studies researching the

usability of the WVSs were encouraged in the latest systematic literacy review (Alazmi and

Conte De Leon 2022) as they had not been performed yet. There are several factors which

can affect how well the scanner suits for being used as a testing tool in continuous software

development, for example are the authentication features able to handle login and maintain

necessary session information of the web application, is the scanner able to crawl through

the different parts of the application, how fast it performs the scan, how far the usage can be

automated, and how precise are the scan findings, since worse precision rate leads to more

false positive findings and confirming each of them takes precious working time from the

software developers.

2

2 WEB VULNERABILITY SCANNERS

This chapter covers why vulnerability testing is done and the background theory of web

vulnerability scanners needed for this study. Web vulnerability scanner as a concept is in-

troduced. Then the most critical vulnerabilities in web applications, which the scanners are

supposed to find, are explained. The end sections focus on comparing web vulnerability

scanners that were found from the recent studies and on decision which scanners were cho-

sen for this study.

2.1 Continuous integration and vulnerability testing

Continuous integration in software development is practice where developers continuously

merge their code changes into central repository (AWS 2024), which is a storing place for

a software project. This merging typically happens through a pipeline which consists of

automated jobs which for example build the software and test it (Rehkopf 2024). The testing

is important because each change to code presents a chance that something has gone wrong,

and the software is no longer working as intended. Even when the software may seem to

work as intended according to tests which evaluate the functionality of the software, it can

have security flaws. The security flaws allow malicious actor to use software in a way which

endangers the software users and their information. Vulnerability testing is a practice which

intends to find these security flaws so they can be fixed.

2.2 Web vulnerability scanner

Software testing can be divided into two approaches, black box and white box testing. Black

box testing considers software as a black box and observes the behavior of the software ac-

cording to inputs. On the contrary, white box testing is interested in what happens inside the

software during those inputs and traces them through the source code. It is more focused on

the design and implementation of the block that is under the testing. (Hamza and Hammad

2019) Web application vulnerability scanners operate with the black box testing approach

and automatically examine the web application for security vulnerabilities. They are pop-

3

ular because of the easy use, automation and because they do not depend on the specific

technologies used in the web application. (Kagorora et al. 2015)

Web Application Security Consortium (Gaucher et al. 2009) defines web application secu-

rity scanners as automated tools which are used to test web applications for common security

problems that are for example Cross-Site Scripting (XSS), SQL injection, Directory Traver-

sal, insecure configurations, and remote command execution vulnerabilities. This is done

by crawling a web application and locating vulnerabilities from application layer either by

manipulating HTTP messages or inspecting them for attributes that are suspicious.

Doupé, Cova, and Vigna (2010) described process of the web application scanners with

three phases. The scanners first crawl through the web application to collect the reachable

pages and input vectors that are associated to them. These are for example HTML forms,

parameters of GET requests or features that allow one to upload files. Then they generate

specially made input values and submit them to the application. These might be for example

JavaScript code that could trigger XSS vulnerability or strings that have function in SQL

language and trigger SQL injection vulnerability. Finally, they observe the behavior of the

application and determine if the actions triggered vulnerabilities. Hence, it appears that they

consist of three main modules that are crawler, attacker, and analysis module (Doupé, Cova,

and Vigna 2010). Kagorora et al. (2015) also described the mechanics as a three-step process

consisting of crawling, simulation of attacks and response analysis. The crawling phase was

described to have different options, such as finding the web pages of the application with

automatic web crawler, or with semi-automatic crawler which asks for operator’s assistance,

or by reading the records from a proxy.

National Institute of Standards and Technology (Black et al. 2008) defines minimum re-

quirements for web application security scanners. They should be able to authenticate to the

application and maintain a logged-in state. They should be able to identify OWASP top ten

vulnerabilities and generate a text report that indicates, specifies and identifies an attack for

each vulnerability that is identified. They should also have an acceptably low false positive

rate.

4

2.3 OWASP top ten

National Institute of Standards and Technology minimum requirements (Black et al. 2008)

for web application security scanners require that they are able to identify OWASP top ten

vulnerabilities. OWASP top ten (OWASP 2021) is a regularly updated list of web application

security risks that are deemed to be most critical as a broad consensus. OWASP recommends

that companies make sure that their web applications minimize the risks that are included to

them. The latest top ten list is from 2021 and consists of the following risks:

1. Broken access control. This happens when users can act outside of the permissions

that are intended for them. For example, the user can modify URL or parameters and

access a privileged page or resource.

2. Cryptographic failures, previously known as sensitive data exposure. This means fail-

ures related to cryptography that often lead to exposure of sensitive data. For example,

sensitive data like passwords or credit card numbers are transmitted in clear text or

encryption used is weak.

3. Injection. There are various injection types like SQL, NoSQL, OS Command, Object

Relational Mapping (ORM) and Lightweight Directory Access Protocol (LDAP). In-

jections happen when user given data is not validated, filtered, or sanitized, and is then

used in queries or search parameters.

4. Insecure design. Insecure design means design flaws that are different from imple-

mentation flaws and cannot be fixed with implementation. For example risks could

have been profiled incorrectly and security controls are missing or weak. A practical

example is using questions and answers for credential recovery, which is not secure

since more than one person can know the answers.

5. Security misconfiguration. This includes various risks that are associated to configura-

tion, for example cloud services have improperly configured permissions, unnecessary

ports are open, default accounts are enabled and unchanged, error messages reveal too

much information to users, security settings are not set to secure values or security

features are disabled.

6. Vulnerable and outdated components. Software or components have not been up-

dated and are outdated or have vulnerabilities. This includes operating system, server,

5

database management system, applications, APIs, components, runtime environments,

and libraries.

7. Identification and authentication failures, previously known as broken authentication.

For example, if brute force or other automated attacks are permitted, weak passwords

are allowed, multi-factor authentication is missing or ineffective, credential recovery

is "knowledge-based" like questions and answers, or if session identifier is exposed in

URL, or reused, or not invalidated with logout or after certain time of inactivity.

8. Software and data integrity failures. This means that code and infrastructure do not

protect against integrity violations. For example, plugins, libraries, or modules from

untrusted sources, repositories, or content delivery networks, are used, or CI/CD pipeline

is insecure, or updates are downloaded and applied without verification.

9. Security logging and monitoring failures. Logging and monitoring is insufficient and

cannot detect security breaches. For example, when user acts suspiciously the suspi-

cious actions are not logged, or the user cannot be traced from them, or when alerting

and response escalation processes are not used or they do not work effectively.

10. Server-side request forgery. This happens when web application fetches remote re-

source without validating the user given URL. This allows the attacker to send tailored

requests that identify as requests coming from the server authenticate as the server.

For example the attacker can provide URL which points to local resource in server or

metadata storage of could service.

2.4 Recent studies of web vulnerability scanners

Next is a comparison of open-source WVSs (web vulnerability scanners) that were found

from the latest studies. The most popular and studied open-source WVSs in the recent studies

presented here are ZAP (Zed Attack Proxy), Arachni, Skipfish, W3AF (web application

attack and audit framework), Wapiti, Vega and IronWASP (Iron web-application advanced

security testing platform). Across studies that were examined the performance of WVSs

(Web Vulnerability Scanners) varies depending on the scanned target.

Amankwah et al. (2020) evaluated multiple WVSs (Acunetix, HP WebInspect, IBM App-

Scan, OWASP ZAP, Skipfish, Arachni, Vega and Iron WASP) against DVWA and Web-

6

Goat. While the included commercial scanners were considered effective, OWASP ZAP and

Skipfish were considered equally efficient at detecting command execution, cross-site script-

ing, and SQL injection. Skipfish had precision score of 75% for both testing targets, while

OWASP ZAP, Arachni and Vega had only 56%. Precision score of 56% means that 44% of

the findings were false positive.

Study from Zukran and Md Siraj (2021) compared OWASP ZAP and Skipfish and found that

OWASP ZAP outperformed Skipfish with precision rate by almost two times when evaluated

against WAVSEP. The authors reported that OWASP ZAP performed better with small differ-

ence against DVWA. OWASP ZAP also had better coverage overall. In another study from

Althunayyan et al. (2022) OWASP ZAP, Burp Suite Professional, Vega, Skipfish and Wapiti

were evaluated against OWASP Juice Shop. OWASP ZAP and Burp Suite Professional found

out vulnerabilities while Vega, Skipfish and Wapiti did not identify any correctly. However

even ZAP and Burp Suite Professional only found out two out of the seven vulnerabilities.

Researchers concluded that this was because of the lacking crawling abilities, and lacking

abilities to detect all different types of injection vulnerabilities.

Another study from El Idrissi et al. (2017) compared commercial (Burp Suite, Acunetix,

Netsparker, AppSpider, Arachni) and open-source scanners (Wapiti, Skipfish, W3AF, Iron-

WASP, OWASP ZAP, Vega) against the WAVSEP, which benchmarks how the scanners find

SQL injections, reflected XSS, RFI (remote file inclusion), LFI (local file inclusion) and path

traversal. OWASP ZAP, Vega and IronWASP detected most true positive RFI out of all scan-

ners, and ZAP and Vega detected also LFI better than other scanners excluding AppSpider,

which was strongest at detecting LFI. All scanners except W3AF and AppSpider found all

SQLi vulnerabilities. Also, all scanners except Wapiti, W3AF and IronWASP found more

than 90% of the XSS vulnerabilities. W3AF found only 30% of the XSS, Wapiti 67% and

IronWASP 79%.

OWASP ZAP was compared to Arachni with OWASP benchmark in a study from Mbu-

rano and Si (2018). They found that ZAP outperforms Arachni when detecting command

injection, SQL injection and XSS, but Arachni outperformed ZAP by huge margin when

detecting LDAP injection. This study also chose these two scanners out of OWASP ZAP,

Arachni, W3AF, Wapiti and Watabo, because they considered them the most popular and

7

well maintained.

Study from Al Anhar and Suryanto (2021) compared Burp Suite Professional, Arachni,

OWASP ZAP and Wapiti against node applications DVNA and NodeGoat. Burp Suite Pro-

fessional and OWASP ZAP found most vulnerabilities from DVNA, still finding only 57%

(recall) out of all vulnerabilities in DVNA. Burp Suite Professional was best against Node-

Goat with a recall score of 60%, Arachni came second and ZAP third. Wapiti performed

worst, detecting zero vulnerabilities from DVNA and identifying vulnerabilities from Node-

Goat with only 30% recall.

OWASP ZAP, Wapiti and Burp Suite Professional were also compared in another study from

Anagandula and Zavarsky (2020) where commercial scanner Nessus Essential Edition was

included too. The scanners were evaluated for stored XSS and stored SQL injection detec-

tion against WackoPicko and Scanit, which is custom testbed from Concordia University

of Edmonton. In this study the scanners were anonymized, but the researchers concluded

that there was not great difference in performance between the commercial and open-source

scanners. Researchers recommended that the scanners need to be improved with correct at-

tack vectors for detecting stored XSS and stored SQL injection. They performed better in

detecting stored XSS which did not require login and needed single step, but did not handle

well multistep stored XSS that required login.

Another study (Sagar et al. 2018) compared ZAP, W3AF and Skipfish against DVWA. In

this study W3AF did not find any vulnerabilities and had a huge running time of five hours

compared to the running time of ZAP and Skipfish, which were under three minutes. Re-

searchers also noticed that W3AF configuration and usage was complex in comparison to

ZAP and Skipfish. In this study ZAP correctly identified six vulnerabilities out of eight and

Skipfish identified four. ZAP missed one SQL injection and blind SQL injection, which both

Skipfish missed too.

Another study (Alsaleh et al. 2017) compared Skipfish, Wapiti and two different versions

of Arachni (1.0.2 and 0.4.3) on multiple factors. Skipfish was fastest when scanning three

test sites, taking at most 27 minutes while Arachni took at least 23 minutes and Wapiti took

at least hour and half. Crawling coverage was assessed with WIVET scores. Arachni 1.0.2

8

was best with 94% coverage, Skipfish had 48%, Wapiti 44% and older Arachni 19%. Wapiti

also had better crawling coverage with 44% versus older Arachni with 19% when evaluated

against 140 websites trending in 2007-2013. Test site Altoro Mutual and WAVSEP were used

to assess the accuracy of the four scanners. Arachni 1.0.2 found all 135 SQL vulnerabilities

from WAVSEP, Arachni 0.4.3 found 134, Wapiti found 131 and Skipfish 104. Arachni 1.0.2

also found most XSS vulnerabilities from WAVSEP with 64 out of 73, Skipfish found 63,

Arachni 0.4.3 found 47 and Wapiti 45. Surprisingly Arachni 0.4.3 found most vulnerabilities

when evaluated against Altoro Mutual, Wapiti was second. Every scanner had over 95%

accuracy and over 97% f-measure in identifying SQL attacks, except Skipfish, which had

79% accuracy and 87% f-measure. Arachni 1.0.2 had the best accuracy with 89% and f-

measure with 93,4% in detecting XSS, Skipfish came very close with 88% accuracy and

92,7% f-measure and Wapiti was weakest with 61% accuracy and 74% f-measure.

In a study from Qasaimeh, Shamlawi, and Khairallah (2018) OWASP ZAP and commercial

scanners (Acunetix, Burp Suite, NetSparker, Nessus) were evaluated against seven different

applications designed to evaluate vulnerability scanners. OWASP ZAP found nearly the

same number of vulnerabilities as the best commercial scanner Acunetix (758 vs 763) while

surpassing the other commercial scanners Burp Suite, NetSparker and Nessus. ZAP had

lower false positive rate than Burp Suite, but higher than the others. ZAP had 73% accuracy

versus Burp Suite 50%. Acunetix and NetSparker had 91% accuracy.

In recent systematic literacy review from Alazmi and Conte De Leon (2022) it was con-

cluded that the studies reviewed reported disparate and inconsistent efficacy from the scan-

ners and most studies evaluated only SQLi and XSS vulnerability types with one or two

scanners evaluated against one or two nonstandard web applications. It was also concluded

that no published evaluations that assess the quality of use or usability of web vulnerability

scanners were found. It was recommended that future studies should benchmark web appli-

cations against all OWASP top ten vulnerabilities, standard benchmark application should

be created, inclusion or lack of commercial sponsors should be disclosed and the usability of

WVSs should be evaluated.

9

2.5 Selecting web vulnerability scanners for this study

Scanner CLI Latest update In active development

ZAP yes 2024 yes

Wapiti yes 2024 yes

Arachni yes 2023 no

W3AF yes 2020 no

Skipfish yes 2012 no

Vega no 2016 no

IronWasp no 2013 no

Table 1. Summary of important qualities of reviewed open-source scanners.

Github has the most recent source code from the earlier mentioned open-source scanners

(Bennetts 2022a) except IronWASP. IronWASP only has source code from 2013 (Kuppan

2013), but appears to have newer version according to the issues page, which is however no

longer available since the website is down (Kuppan). When comparing repository activity

of these other open-source scanners, ZAP and Wapiti are the ones with most recent commits

within a week, Arachni has most recent commit from May 2023, W3AF from 2020, Vega

from 2016 and Skipfish has the oldest most recent commit from 2012 (Bennetts 2022a).

Vega (Ahmad, Leidl, and McKinney) and IronWASP (Kuppan 2013) were excluded from the

selection since they only offer graphical user interface. Fluent integration into software de-

velopment process requires automation, so command-line interface is favored because it can

be utilized in scripts. ZAP and Wapiti appear to be the only scanners which are still actively

developed, since excluding Arachni the most recently updated other scanners have been up-

dated two years ago, and Arachni readme file (Laskos 2022) states that the application is

heading towards obsolescence.

The purpose of this study is to determine how well open-source web vulnerability scanners

suit for testing commercial web application in continuous software development. Based on

the qualities shown in the table 1, two of the open-source scanners were chosen to be eval-

uated: ZAP (Bennetts 2022b) and Wapiti (Surribas 2022). These scanners were selected

10

because they are present in the latest studies, have command line interface which supports

the automation purpose, they have been updated most recently and seem to be updated ac-

tively when compared to the other open-source web vulnerability scanners (Bennetts 2022a).

Arachni was also considered, but unfortunately it is heading towards obsolescence (Laskos

2022), and an inquiry about the license for this use case was left unanswered. ZAP and

Wapiti will be evaluated against commercial web application from Secapp Oy.

2.6 ZAP and Wapiti

Zed Attack Proxy (ZAP) is a popular automated web application scanner that is free and

open source (ZAP 2022). It was maintained by Open Web Application Security Project

(OWASP) foundation, that is nonprofit organization and works to improve security of soft-

ware (OWASP 2022). ZAP was formerly called "OWASP ZAP" when it was maintained

by OWASP, but in August 2023 ZAP joined Software Security Project (SSP) and is now

called just "ZAP". ZAP was declared as a flagship project for OWASP and is now one of the

founding projects in SSP. (ZAP 2024b)

ZAP is at its core a man-in-the-middle proxy that stands between browser and web applica-

tion to intercept and inspect the messages between them. It modifies the intercepted content

if needed and then forwards it to the destination. It can be used both as a standalone applica-

tion and daemon process. ZAP is advertised to be world’s most widely used web application

scanner and an ideal tool to be used in automation. (ZAP 2022) To support automation ZAP

has framework called Automation Framework which allows ZAP scan to be configured with

one YAML file (ZAP 2024a). More of Automation Framework in section 5.2.

Wapiti is a free and open-source web application scanner that is intended to be used to audit

the security of websites or web applications. It crawls through the deployed web application

and looks for scripts and forms, so it can inject data to them. Once it has found URLs, forms,

and inputs, it acts like a fuzzer and injects payloads to them to see if they are vulnerable.

(Wapiti 2022) Wapiti has currently 921 stars, 150 forks and 28 contributors in GitHub (Wapiti

2024).

11

3 RESEARCH QUESTIONS

The research questions are as follows:

1. How does ZAP compare to Wapiti with precision, crawling coverage and speed when

tested against commercial web application from Secapp Oy?

2. What options do ZAP and Wapiti offer for automated use?

3. How should ZAP and Wapiti be included as testing tools in continuous software de-

velopment?

The first question gives an answer to how well each of these tools serve their purpose and

find vulnerabilities from the designated web applications. In this study no vulnerabilities

are known beforehand, so the performance is analyzed with how well they crawl across the

applications, how precise they are about vulnerabilities they report and how fast they are.

Precision is evaluated by comparing how much vulnerabilities the scanners find, and how

much of the findings are true positives in comparison to false positives. Crawling coverage

is evaluated by comparing the crawled paths under the site domain to the total number of

paths under the site domain.

The second question gives an answer to what features both scanners offer for automated

use. These are features that support the integration into continuous software development

process. Command line interface offers usage through scripting, but it is also essential that

the scan reports are given in a format that scripts can utilize.

The third question can be answered because of the first two questions. If the scanners are

fast and offer enough features supporting automated use, they could be used in for example

CI/CD pipeline, early testing process or spontaneous developer tests, otherwise they can be

used in for example a process that runs at the night and does not take time away from the

software development that happens in daytime. This question gives answer to how each of

these web vulnerability scanners, according to their performance and usability, should be

included as testing tools in continuous software development.

12

4 RESEARCH METHOD

The method for this research is design science research. The method was chosen because

the study is of pragmatic nature, and the expected outcome will be an artifact in form of a

suggested way of use for the chosen web vulnerability scanners as testing tools in continuous

software development. This requires analyzing which way of applying the scanners into

development process is effective and takes the least amount of time from the developers to

use.

4.1 Design science method

Design science is a research strategy that is domain independent and tries to utilize opportu-

nities in a field and point out problems in a field through understanding the actions, processes,

and systems in the field (Van Aken, A., and J. 2016). The aim of the research strategy is to

develop an artifact (Peffers, Tuunanen, and Niehaves 2018) that is created to address a prob-

lem (Hevner et al. 2004, 22), or otherwise to validate generic design in a pragmatic way,

and to understand the function of the design (Van Aken, A., and J. 2016). Kuechler and

Vaishnavi (2008) emphasize the importance of understanding the design, and propose that in

addition to the relevant artifacts, the knowledge that is directly useful for construction of ar-

tifacts could be added to redefine the output of information systems design research. Hevner

et al. (2004) define artifact as a construct, model or method in addition to an instantation.

Hevner et al. (2004) present the core concepts of the design science research through seven

guidelines. The paper consolidates over 20 years of design science research (Kuechler and

Vaishnavi 2008). First and foremost, an artifact must be produced as the outcome of the re-

search. As mentioned, the artifact can be either construct, model, method, or an instantiation.

The artifact must be a solution to important and relevant business problem. The design must

be evaluated, and the utility, quality, and efficacy of the artifact must be well demonstrated.

For evaluation five methods are offered Hevner et al. (2004, 86): observation, analysis, ex-

periment, testing and description. These methods are subcategorized into case study and field

study (observation); static analysis, architecture analysis, optimization and dynamic analysis

13

(analysis); controlled experiment and simulation (experiment); functional testing and struc-

tural testing (testing); informed argument and scenarios that demonstrate the artifact’s utility

(description).

The construction and evaluation of the design artifact must be carried out with rigorous

methods. Design science research must also contribute to the area of the design artifact in

a clear and verifiable way. The design is also a search process that utilizes available means

to reach an desirable end and find effective artifact. Finally, the research must be presented

in a way that is effective for both technology-oriented and management oriented-audience.

(Hevner et al. 2004)

Peffers et al. (2007) combined the elements from the other design science studies to propose a

methodology to become a commonly accepted framework for how to conduct design science

research. The framework consists of six different activities: defining a problem and justifying

the need for a solution, defining objectives for a solution, designing and creating the artifact

that serves the purpose as a solution, demonstrating the use of the artifact to validate that it

solves an instance of the problem, evaluating the artifact as a solution and communicating

the process effectively for the relevant audiences. The communication should be carried in

a way that motivates towards solving the problem and reasons the importance of the artifact

as a solution and the rigor of its design. The activities follow closely the guidelines from

Hevner et al. (2004).

4.2 Following the design science method

In this study the design artifact answers to a business problem of ensuring the security of the

products in the development process in a way that is automated as far as possible and takes

the least amount of time from the developers to conduct. This is important to maintain the

security of constantly changing application and to free human resources to tasks that cannot

be automated.

The artifact in this study is a way of use for the web vulnerability scanners in continuous

software development. The artifact explains the current state of the selected scanners to

serve that purpose. The artifact is a method, and if plausible, leads to an instantiation for

14

one of the scanners. The success of the artifact depends on the features and efficiency of the

scanners and requires adapting to the state of those qualities to fulfill the purpose of using

them in the role. If problems arise in this process, they contribute to the knowledge of the

usability of these scanners.

A search is carried out for different options for the web vulnerability scanners, their features,

and ways of use. The performance and ways of use are evaluated with observation and

functional testing in the case of the Secapp Oy product. The research will contribute to

the usability research of the web vulnerability scanners, and to the field of development

security operations. The results are reported clearly to make sure the report is efficient for

the technology-oriented and management-oriented audience. Though the aim is to apply the

scanners into a specific use case, the results can be utilized in future research that also study

the usability of web vulnerability scanners for similar purposes.

15

5 RESEARCH PROCESS

The design does not need to be based on a formal theory or formal process, the methodology

is open to variety of processes (Peffers, Tuunanen, and Niehaves 2018). This research was

done to strengthen the continuous vulnerability testing in Secapp Oy. Secapp is a SaaS

platform for critical communication, alerting and documentation, which is built especially

to cope with emergencies and ensure safety. It helps to broadcast mass notifications, alert

individuals and teams, collect critical data and provides secure chats and videos.

5.1 Setting up the Wapiti vulnerability scanner

Wapiti was straightforward to download with pip and get ready to run in Python virtual en-

vironment. The options for the scanner were explored from the manual (Wapiti 2023a) page

which also gave a hint of the wapiti-getcookie (Wapiti 2023b) program, which could perform

the authentication and save the session cookie into a file, which could be then used with the

Wapiti scanner. This method was chosen for authentication as it did not need username and

password to be given with the shell command when launching the scanner. Alternatively, the

arguments "–form-user", "–form-password" and "–form-url" could have been used for the

authentication.

5.2 Setting up the ZAP vulnerability scanner

ZAP was more complicated to get started with than Wapiti. At first the ZAP was explored

with the graphic user interface version, because there was much to learn before just jumping

into automating the scanner. Firstly I came accross the need to set up a context, which was

set of rules applied to the scan. It included set of URLs to be scanned, set of excluded URLs,

structure for GET and POST requests, technologies used, authentication method, user cre-

dentials, session management, authorization procedure when receiving sending unauthorized

request, AJAX spider configuration, custom page list for custom error conditions and alert

filters. Out of these I configured the included and excluded URLs, authentication method,

session management and user credentials needed to be configured and rest could be left as

16

default at the start.

Form-based authentication was chosen, but it took trying out different settings and combina-

tions to get this to actually work. Debugging why the scanner would not scan authenticated

pages properly was tedious because in addition to the scanner authenticating through login

page it also tried to attack the login page. ZAP would automatically extract the login page

POST data from the data that was gathered from manually exploring the application, but

somehow CSRF token handling did not work. After adjusting the parameters and checking

Anti CSRF token settings from the settings this was fixed. Some settings had to be disabled

from the scanned web application because otherwise the scanner constant login request at-

tack tries would have led to a situation where the scanner requests would just get blocked.

Finally, the authentication worked and ZAP would also include authenticated requests into

the report.

After learning about setting up the context for the scan and "jobs" involved in the scanning

process, including traditional spider which crawled the web application, more sophisticated

AJAX spider (ZAP 2023c) called Crawlax (Crawljax 2023), passive scan which automati-

cally scans the HTTP requests and responses (ZAP 2023g), active scanner which attacks the

target web application (ZAP 2023b) and report generation options, it was time to move on to

exploring how this could all be automated without using the graphical user interface version

of ZAP.

ZAP provides Automation Framework (ZAP 2023e) which is a framework that can auto-

mate ZAP flexibly by defining context and different jobs to run. There was no example

template found for the YAML file, even though ZAP documentation offered templates for

individual jobs and environment or context options. Luckily ZAP graphical user interface

version included a feature which would create automation plan from selected context and

jobs. Through that feature it was easy to create the Automation Framework YAML file and

then configure it further. ZAP offers ready docker images which have ZAP preinstalled. The

Automation Framework YAML file could be used together with the ready docker image con-

taining ZAP to launch automated scan. An example of the used YAML file template can be

found from appendix C.

17

5.3 Performing the vulnerability scans

The scans were run on laptop with Intel Core i7-10750H processor, NVIDIA Quadro P620

graphics card, 32GB DDR4 RAM, 512 GB SSD hard drive, and Ubuntu 20.04 LTS operating

system. The target web application Secapp was at first run locally inside docker container

and then after exploring the scanners the actual results were collected from running it on test

a server. Several scans were run with both scanners to explore their options and behavior.

Wapiti web application vulnerability scanner was run from a BASH shell with a command-

line interface. Wapiti version was 3.1.8. Python virtual environment was used to contain

Wapiti which was installed as a Python package through pip, a package installer for Python.

Python version used was 3.9.16.

With Wapiti the authentication was done with a cookie that was created before the scan with

another command line tool called wapiti-getcookie which came with wapiti. That tool was

run with a command presented in appendix A. With that command Wapiti automatically

identified username and password fields from the web application login form and asked

inputs for those. It then saved the session cookie to a file which could be used to authenticate

during the scan.

The Wapiti scan was run with the next command presented in appendix A. The scan was

targeted to whole domain with option "–scope domain", the verbosity level was defined to

be normal with "-v 1", report format was defined as html with "-f html", report output folder

was set with "-o path" and earlier scans were not taken into account with command "–flush-

session". Finally, a long list of different URLs were give to the scanner to target the scan at

least to those URLs.

ZAP was run from a docker container that was created from ZAP docker image which has

Zed Attack Proxy preinstalled. ZAP version was 2.13.0. ZAP scan was controlled by a

plan defined in YAML file with specific ZAP exclusive Automation Framework. The docker

container was also created with BASH shell command which also passed command line

options to start the ZAP scanner inside the container and finally destroy the container after the

scan finished. The command to run the scan with OWASP ZAP is presented in appendix B.

The example of Automation Framework YAML file that was used is presented in appendix C.

18

More definitive YAML file cannot be presented as it would expose details about the scanned

web application, which is Secapp property.

5.4 Further configuring to handle false positive findings

To dismiss or filter out the false positive results presented by ZAP the Automation Frame-

work offered passive scan rules to turn off some of the rules (ZAP 2023f). Additionally,

the Automation Framework also has a feature to change alert filters (ZAP 2023d), which

defines how should different findings be interpreted and should alerts be raised of them.

The scan report presented findings in a way which would often have some or all the fields

URL, parameter, attack and evidence. These alert filters were matched against these fields

and then the findings could be recategorized as ’False Positive’, ’Info’, ’Low’, ’Medium’ or

’High’. In this case the false positive findings were defined as ’False Positive’ to dismiss

them. Unfortunately, similar features were not found from Wapiti.

19

6 RESULTS

The scan results are presented in this section. Scanners are compared by how precise their

findings are, how well they crawl the application and how fast they are. Their automation and

integration features are also assessed to determine how they could be utilized in continuous

software development to strengthen the application security in development phase. All the

scan findings were handled and mitigated appropriately by Secapp Oy internal processes.

6.1 Scan results

Category Count

Content Security Policy Configuration 1

HTTP Secure Headers 2

HttpOnly Flag cookie 1

Internal Server Error 226

Table 2. Reported vulnerabilities by Wapiti.

Wapiti reported vulnerabilities from four different vulnerability categories, as shown in table

2. They were analyzed and proven true or false positive. Findings from Content Security

Policy Configuration, HTTP Secure Headers and HttpOnly Flag cookie were proven true

positive, but the majority of findings, which were reported as Internal Server Error, were

false positive. Wapiti had categorized responses with 403 forbidden status as internal server

error. The precision of this scan was approximaterly 0.17 from 4/230. Here it has to be

highlighted that without the reported internal server error findings the other findings from

the three other categories had precision of 1. The scan took 172 minutes.

ZAP reported vulnerabilities from 15 different vulnerability categories, as shown in table 3.

This does not include findings which ZAP reported with informational risk level. Find-

ings were analyzed and proven true or false positive. True positive findings were from

Absence of Anti-CSRF Tokens, Content Security Policy (CSP) Header Not Set, Missing

20

Anti-clickjacking Header, Application Error Disclosure, Cookie No HttpOnly Flag, Cross-

Domain JavaScript Source File Inclusion, Information Disclosure - Debug Error Messages,

Server Leaks Version Information via "Server" HTTP Response Header Field, Strict-Transport-

Security Header Not Set, X-Content-Type-Options Header Missing and Timestamp Disclo-

sure - Unix. In contrast to Wapiti ZAP reported three internal server errors with Application

Error Disclosure and Information Disclosure - Debug Error Messages, and they were correct

findings. High risk level alerts reported by ZAP were all false positive. The precision of this

scan was approximately 0.98 from 408/418. The scan took 18 minutes when AJAX spider

crawler job was set to have maximum time of three minutes.

Category Risk level Count

SQL Injection High 4

SQL Injection - SQLite High 2

SQL Injection - Authentication Bypass High 3

Absence of Anti-CSRF Tokens Medium 4

.htaccess Information Leak Medium 1

Missing Anti-clickjacking Header Medium 1

Content Security Policy (CSP) Header Not Set Medium 91

Cookie No HttpOnly Flag Low 19

Application Error Disclosure Low 2

Information Disclosure - Debug Error Messages Low 1

Cross-Domain JavaScript Source File Inclusion Low 3

Strict-Transport-Security Header Not Set Low 100

Server Leaks Version Information via "Server" HTTP Re-

sponse Header Field

Low 100

X-Content-Type-Options Header Missing Low 42

Timestamp Disclosure - Unix Low 45

Table 3. Reported vulnerabilities by ZAP.

21

When comparing scan times ZAP seems significantly faster. Comparison of scan times is

shown in table 4.

ZAP Wapiti

Scan time (min) 18 172

Table 4. Scan times.

6.2 Handling false positive findings

ZAP Automation Framework makes it possible to disable scan rules or flag findings false

positive. Similar feature was not found from Wapiti. Several rules and alert filters were

added to the Automation Framework YAML file, to dismiss or filter out false positive or

only informational findings from ZAP.

In the figure 1 a false positive ZAP finding is identified by plugin id and then flagged false

positive in Automation Framework YAML file presented in figure 2. The example is simple

one where whole vulnerability category ".ht access Information Leak" is flagged false posi-

tive, but the filtering could be made more definitive by adding additional "url", "parameter"

or "attack" identifiers to the filter, which can be regular expression and are used to match the

finding in ZAP report. In this example the ZAP thought this was correct finding because the

server responded with 200 status and response contained "Failed to download file".

Multiple following scans and iterations were made to adjust these rules and filters. Each

iteration reduced the number of false positive findings and did not bring new true positive

findings. The scan times ranged from 18 to 21 minutes.

22

Figure 1. False positive finding in ZAP report.

Figure 2. Flagging the finding as false positive in Automation Framework YAML file.

23

6.3 Crawling coverage

Both scanners were able to scan the given URLs in the previous scans, but when comparing

crawling coverage, both scanners were tested without giving them other URLs than base

URL, login URL and one of the URLs which requires authentication. The earlier list of

URLs given to the scanners was not fully crawlable, so in this test the crawled URLs were

compared against a more constricted set of URLs which could be crawled from the given

three URLs. Additionally, URLs with fragment part were excluded from the comparable

set of URLs as the fragment part is not sent to the web application server and could not be

recorded. The crawlers could have found at least 22 URLs with these restrictions.

ZAP Wapiti Test URLs

Count 12 10 22

Coverage 55% 45% 100%

Table 5. Crawling coverage.

Crawling coverage results are presented in table 5. Wapiti had no option to only perform

crawl, so another full scan was done with only those three URLs given. Wapiti found 10

of the 22 URLs and the scan took 31 minutes. Crawling coverage is hence approximately

45%. ZAP had option to perform only spider and AJAX spider jobs which are the crawlers

of ZAP. When given 10 minutes time limit for AJAX spider the ZAP found 12 of the 22

URLs, which makes the crawling coverate approximately 55%. When given time to run with

unlimited time and stopped at 200 minutes, the ZAP found no more URLs but started trying

new API requests, which were not in the scope of this test. Both scanners found this specific

API endpoint. ZAP found three URLs which Wapiti did not find and Wapiti found one URL

which ZAP did not find.

6.4 Automation and integration features of the scanners

Both scanners can be used with command-line interface, which makes it possible to automate

their use in various environments. ZAP comes as docker image and Wapiti could also be

24

contained in docker container if needed. To support different scopes for the scans, both

scanners can be limited to scan only the given URLs. Both scanners can have a maximum

scan time and also use defined strength level for the attacks.

Both scanners have options to customize how crawler is used to find additional URLs within

the defined scope. Wapiti has option to limit what depth the crawler can reach from any given

URL. Default depth is 40. It also has options to limit the maximum number of links per page

or files per directory which are scanned. ZAP has options to limit the depth and time for both

crawler jobs, the traditional spider and AJAX spider. The traditional spider has depth of five

by default and AJAX spider has ten. ZAP has also numerous other settings for the crawlers,

for example the AJAX spider has setting which defines how many browser instances the

crawler uses, or should some HTML elements be excluded. ZAP also has possibility to skip

crawling phase, which Wapiti does not have.

Both scanners offer various formats for the report generated from the scan. Wapiti offers

HTML, JSON, txt and XML formatted reports. ZAP offers HTML, JSON, XML, Markdown

and PDF formats. JSON and XML formats can both be fluently processed programmatically

and hence support automated and integrated use. Both scanners support JSON and XML

formatted reports.

6.5 Suggestions for way of use for the scanners in continuous software

development

Even though it depends on the scanned application, it seems that both scanners take too long

to be included in continuous integration pipelines. However if defined to only scan restricted

set of URLs and take certain time at maximum, they could be utilized in pipeline too. In

continuous delivery or deployment pipeline they could serve as a required test, depending

on how often the releases happen, although false positive findings serving as a blocker in

a pipeline would need to be able to be bypassed manually. With ZAP the findings can be

classified false positive so they are automatically categorized false positive in future scans,

but with Wapiti all findings would need to be classified each time either true or false positive.

Both scanners can be used as developer tools to test certain parts of the application during

25

development, although they cannot replace manual vulnerability testing as they are able to

find only basic vulnerabilities. As the ZAP penetration test page suggests, the application

should be manually tested to find more vulnerabilities (ZAP 2023a). Both scanners can also

be used to automatically test the software less often than in continuous integration pipeline.

This can be done with for example scheduling the scanner to test the target software on a

timely basis.

6.6 Evaluation and criticism

In the table 6 there is an overall comparison of most important findings about the two scan-

ners tested in this study. Based on the results of this study the ZAP was chosen to scan the

target web application in between the releases to test each major version for vulnerabilities.

ZAP Wapiti

Reported true positive vulnerability categories 11 3

Precision 0.98 0.17

Scan time (min) 18 172

False positive findings can be flagged yes no

Crawling coverage 55% 45%

Table 6. An overall comparison based on results.

Most time consuming parts of this research were the theory part of gathering the information

about current reseach on open-source web vulnerability scanners and secondly configuring

and testing the ZAP to get authentication working automatically with it. Otherwise the pro-

cess of exploring and testing the two selected scanners went well.

In the studies reviewed the web vulnerability scanners were tested with specific web sites

meant for testing web vulnerability scanners which make the reliability of those results good.

In this test the reliability cannot be validated outside of the Secapp Oy. The tests were still

performed meticulously, as it is in the best interest of the company to get reliable results.

Same applies to the validity of the results. How the true and false positive findings were

identified and then how the following rules to filter out the false positive findings were added

26

based on the identification works for the best interest of the company, even when the validity

cannot be reaffirmed from the outside. The scan findings could not be presented in detail due

to the sensitivity of the subject since the scanned application is commercial.

27

7 CONCLUSIONS

Many open-source web vulnerability scanners were found from the recent research. How-

ever, it was surprising that only two of those scanners were still updated and developed. New

vulnerabilities are often reported, so scanners which are used in practice need to be kept up

to date to be able to find those new vulnerabilities.

ZAP and Wapiti scanners were tested and compared. Both scanners were able to find existing

vulnerabilities from the target web application and contributed towards fixing them. Both

scanners offer features which can be utilized to either scan the whole application or parts of

it. ZAP offers more configuration options for how and if the crawler is utilized to map the

web application for the scan. The time taken for full scan varied as Wapiti took almost three

hours while ZAP took about twenty minutes. Anticipated use cases for both scanners were

using them in integration pipeline as test job for each new code push, in developer testing

and in periodical automated test. The pipeline use case is not realistic according to results as

the scans take so much time. Periodical automated test seems the most useful form for the

use according to the results, although developer testing can also be performed.

Based on the results ZAP was more precise with vulnerability findings than Wapiti. ZAP

also found more wide set of vulnerabilties, had better crawling coverage and was faster with

how long the scan took. ZAP also offered more customization options with Automation

Framework and most importantly an option to flag findings false positive. Based on the

results ZAP was chosen to scan the target web application in between the releases to test

each major version for vulnerabilities.

The results can vary depending on the scanned web application, and the results presented in

this study can prove to be different when the scanners are tested against other commercial

web applications. More studies are needed to evaluate how the open-source web vulnerabil-

ity scanners perform against commercial web applications.

28

Bibliography

Ahmad, D., B. Leidl, and D. McKinney. Vega vulnerability scanner. https://subgraph.com/

vega/index.en.html. Accessed: 29-08-2022.

Al Anhar, A., and Y. Suryanto. 2021. “Evaluation of Web Application Vulnerability Scanner

for Modern Web Application”. In 2021 International Conference on Artificial Intelligence

and Computer Science Technology (ICAICST), 200–204. https://doi.org/10.1109/ICAICST5

3116.2021.9497831.

Alazmi, S., and D. Conte De Leon. 2022. “A Systematic Literature Review on the Character-

istics and Effectiveness of Web Application Vulnerability Scanners”. IEEE Access 10:33200–

33219. https://doi.org/10.1109/ACCESS.2022.3161522.

Alsaleh, M., N. Alomar, M. Alshreef, A. Alarifi, and A. Al-Salman. 2017. “Performance-

Based Comparative Assessment of Open Source Web Vulnerability Scanners”. Security and

Communication Networks 2017:1–14. https://doi.org/10.1155/2017/6158107.

Althunayyan, M., N. Saxena, S. Li, and P. Gope. 2022. “Evaluation of Black-Box Web Ap-

plication Security Scanners in Detecting Injection Vulnerabilities”. Electronics (Switzerland)

11 (13). https://doi.org/10.3390/electronics11132049.

Amankwah, R., J. Chen, P. Kwaku Kudjo, and D. Towey. 2020. “An empirical comparison

of commercial and open-source web vulnerability scanners”. Software: Practice and Expe-

rience 50 (9): 1842–1857. https://doi.org/https://doi.org/10.1002/spe.2870.

Anagandula, K., and P. Zavarsky. 2020. “An Analysis of Effectiveness of Black-Box Web

Application Scanners in Detection of Stored SQL Injection and Stored XSS Vulnerabilities”.

In 2020 3rd International Conference on Data Intelligence and Security (ICDIS), 40–48.

https://doi.org/10.1109/ICDIS50059.2020.00012.

AWS, Amazon. 2024. What is Continuous Integration? https://aws.amazon.com/devops/

continuous-integration/. Accessed: 04-02-2024.

Baldassarre, M.T., V.S. Barletta, D. Caivano, and M. Scalera. 2020. “Integrating security and

privacy in software development”. Software Quality Journal 28 (3): 987–1018.

29

https://subgraph.com/vega/index.en.html
https://subgraph.com/vega/index.en.html
https://doi.org/10.1109/ICAICST53116.2021.9497831
https://doi.org/10.1109/ICAICST53116.2021.9497831
https://doi.org/10.1109/ACCESS.2022.3161522
https://doi.org/10.1155/2017/6158107
https://doi.org/10.3390/electronics11132049
https://doi.org/https://doi.org/10.1002/spe.2870
https://doi.org/10.1109/ICDIS50059.2020.00012
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-integration/

Bennetts, S. 2022a. open-source-web-scanners. https://github.com/psiinon/open- source-

web-scanners. Accessed: 03-10-2022.

. 2022b. OWASP ZAP. https://github.com/zaproxy/zaproxy. Accessed: 03-10-2022.

Black, P., E. Fong, V. Okun, and R. Gaucher. 2008. Software Assurance Tools: Web Appli-

cation Security Scanner Functional Specification Version 1.0. https://doi.org/https://doi.org/

10.6028/NIST.SP.500-269.

Crawljax. 2023. Crawljax. https://github.com/crawljax/crawljax. Accessed: 01-10-2023.

Doupé, A., M. Cova, and G. Vigna. 2010. “Why Johnny Can’t Pentest: An Analysis of Black-

Box Web Vulnerability Scanners”, 6201:111–131. ISBN: 978-3-642-14214-7. https://doi.org/

10.1007/978-3-642-14215-4_7.

El Idrissi, S., N. Berbiche, F. Guerouate, and M Sbihi. 2017. “Performance Evaluation of

Web Application Security Scanners for Prevention and Protection against Vulnerabilities”,

12:11068–11076. 21.

Gaucher, R., R. Auger, Barnett., R., S. Gordeychik, S. Koussa, O. Shezaf, and B. Shura.

2009. Web Application Security Scanner Evaluation Criteria. http://projects.webappsec.org/

w/page/13246986/WebApplicationSecurityScannerEvaluationCriteria.

Hamza, Z.A., and M. Hammad. 2019. “Web and mobile applications’ testing using black and

white box approaches”. In 2nd Smart Cities Symposium (SCS 2019), 1–4. https://doi.org/10.

1049/cp.2019.0210.

Hevner, Al., S.T. March, J. Park, and S. Ram. 2004. “Design Science in Information Systems

Research”. MIS Q. 28 (1): 75–105. ISSN: 0276-7783.

Kagorora, F., J. Li, D. Hanyurwimfura, and L. Camara. 2015. “Effectiveness of Web Ap-

plication Security Scanners at Detecting Vulnerabilities behind AJAX/JSON”. International

Journal of Innovative Research in Science, Engineering and Technology 4:4179–4188.

Kuechler, W., and V. Vaishnavi. 2008. “The emergence of design research in information

systems in North America”. Journal of Design Research 7 (1): 1–16.

30

https://github.com/psiinon/open-source-web-scanners
https://github.com/psiinon/open-source-web-scanners
https://github.com/zaproxy/zaproxy
https://doi.org/https://doi.org/10.6028/NIST.SP.500-269
https://doi.org/https://doi.org/10.6028/NIST.SP.500-269
https://github.com/crawljax/crawljax
https://doi.org/10.1007/978-3-642-14215-4_7
https://doi.org/10.1007/978-3-642-14215-4_7
http://projects.webappsec.org/w/page/13246986/Web Application Security Scanner Evaluation Criteria
http://projects.webappsec.org/w/page/13246986/Web Application Security Scanner Evaluation Criteria
https://doi.org/10.1049/cp.2019.0210
https://doi.org/10.1049/cp.2019.0210

Kuppan, L. 2013. IronWASP. https://github.com/Lavakumar/IronWASP. Accessed: 03-10-

2022.

. IronWASP website. https://ironwasp.org/. Accessed: 03-10-2022.

Laskos, A. 2022. Arachni. https://github.com/Arachni/arachni. Accessed: 03-10-2022.

Makino, Y., and V. Klyuev. 2015. “Evaluation of Web Vulnerability Scanners”. In 2015

IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications (IDAACS), 399–402. Warsaw, Poland: IEEE Press.

ISBN: 978-1-4673-8359-2. https://doi.org/10.1109/IDAACS.2015.7340766.

Malekos Smith, Z., E. Lostri, and J. Lewis. 2020. The Hidden Costs of Cybercrime. https:

//www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf.

Mburano, B., and W. Si. 2018. “Evaluation of Web Vulnerability Scanners Based on OWASP

Benchmark”, 1–6. https://doi.org/10.1109/ICSENG.2018.8638176.

OWASP. 2021. OWASP Top Ten. https://owasp.org/Top10/. Accessed: 18-10-2022.

. 2022. About the OWASP Foundation. https://owasp.org/about/. Accessed: 18-10-

2022.

Peffers, K., T. Tuunanen, and B. Niehaves. 2018. “Design science research genres: introduc-

tion to the special issue on exemplars and criteria for applicable design science research”. Eu-

ropean Journal of Information Systems 27 (2): 129–139. https://doi.org/10.1080/0960085X.

2018.1458066.

Peffers, K., T. Tuunanen, M.A. Rothenberger, and S. Chatterjee. 2007. “A Design Science

Research Methodology for Information Systems Research”. Journal of Management Infor-

mation Systems 24 (3): 45–77. https://doi.org/10.2753/MIS0742-1222240302.

Qasaimeh, M., A. Shamlawi, and T. Khairallah. 2018. “Black box evaluation of web applica-

tion scanners: standards mapping approach”. Journal of Theoretical and Applied Information

Technology 22.

Rehkopf, Max. 2024. What is Continuous Integration? https://www.atlassian.com/continuo

us-delivery/continuous-integration. Accessed: 04-02-2024.

31

https://github.com/Lavakumar/IronWASP
https://ironwasp.org/
https://github.com/Arachni/arachni
https://doi.org/10.1109/IDAACS.2015.7340766
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf
https://doi.org/10.1109/ICSENG.2018.8638176
https://owasp.org/Top10/
https://owasp.org/about/
https://doi.org/10.1080/0960085X.2018.1458066
https://doi.org/10.1080/0960085X.2018.1458066
https://doi.org/10.2753/MIS0742-1222240302
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration

Sagar, D., S. Kukreja, J. Brahma, S. Tyagi, and P. Jain. 2018. “Studying open source vulner-

ability scanners for vulnerabilities in web applications”. IIOAB Journal 9:43–49.

Surribas, N. 2022. Wapiti. https://github.com/wapiti-scanner/wapiti. Accessed: 03-10-2022.

Van Aken, J., Chandrasekaran A., and Halman J. 2016. “Conducting and publishing design

science research: Inaugural essay of the design science department of the Journal of Op-

erations Management”. Journal of Operations Management 47-48:1–8. ISSN: 0272-6963.

https://doi.org/https://doi.org/10.1016/j.jom.2016.06.004.

Wapiti. 2022. The web-application vulnerability scanner. https://wapiti-scanner.github.io/.

Accessed: 18-10-2022.

. 2023a. wapiti-getcookie(1) – A Wapiti utility to fetch cookies from a webpage and

store them in the Wapiti JSON format. https://github.com/wapiti-scanner/wapiti/blob/master/

doc/wapiti-getcookie.ronn. Accessed: 01-10-2023.

. 2023b. wapiti(1) – A web application vulnerability scanner in Python. https://github.

com/wapiti-scanner/wapiti/blob/master/doc/wapiti.ronn. Accessed: 01-10-2023.

. 2024. Wapiti - Web Vulnerability Scanner. https://github.com/wapiti-scanner/wapiti.

Accessed: 14-02-2024.

Widup, S., D. Hylender, G. Bassett, P. Langlois, and A. Pinto. 2020. 2020 Verizon Data

Breach Investigations Report. https://doi.org/10.13140/RG.2.2.21300.48008.

Widup, S., A. Pinto, D. Hylender, G. Bassett, and P. Langlois. 2021. 2021 Verizon Data

Breach Investigations Report.

. 2022. 2022 Verizon Data Breach Investigations Report. https://doi.org/10.13140/

RG.2.2.28833.89447.

ZAP. 2022. ZAP - Getting Started. https:/ /www.zaproxy.org/getting- started/. Accessed:

18-10-2022.

. 2023a. A Basic Penetration Test. https : / /www.zaproxy.org /docs /desktop/start /

pentest/. Accessed: 01-10-2023.

32

https://github.com/wapiti-scanner/wapiti
https://doi.org/https://doi.org/10.1016/j.jom.2016.06.004
https://wapiti-scanner.github.io/
https://github.com/wapiti-scanner/wapiti/blob/master/doc/wapiti-getcookie.ronn
https://github.com/wapiti-scanner/wapiti/blob/master/doc/wapiti-getcookie.ronn
https://github.com/wapiti-scanner/wapiti/blob/master/doc/wapiti.ronn
https://github.com/wapiti-scanner/wapiti/blob/master/doc/wapiti.ronn
https://github.com/wapiti-scanner/wapiti
https://doi.org/10.13140/RG.2.2.21300.48008
https://doi.org/10.13140/RG.2.2.28833.89447
https://doi.org/10.13140/RG.2.2.28833.89447
https://www.zaproxy.org/getting-started/
https://www.zaproxy.org/docs/desktop/start/pentest/
https://www.zaproxy.org/docs/desktop/start/pentest/

ZAP. 2023b. Active scan. https : / /www.zaproxy.org/docs /desktop/start / features /ascan/.

Accessed: 01-10-2023.

. 2023c. AJAX Spider. https://www.zaproxy.org/docs/desktop/addons/ajax-spider/.

Accessed: 01-10-2023.

. 2023d. Alert Filter Automation Framework Support. https://www.zaproxy.org/docs/

desktop/addons/alert-filters/automation/. Accessed: 01-10-2023.

. 2023e. Automation Framework. https://www.zaproxy.org/docs/desktop/addons/

automation-framework/. Accessed: 01-10-2023.

. 2023f. Automation Framework - passiveScan-config Job. https://www.zaproxy.org/

docs/desktop/addons/automation-framework/job-pscanconf/. Accessed: 01-10-2023.

. 2023g. Passive scan. https://www.zaproxy.org/docs/desktop/start/features/pscan/.

Accessed: 01-10-2023.

. 2024a. Automation Framework. https://www.zaproxy.org/docs/automate/automatio

n-framework/. Accessed: 14-02-2024.

. 2024b. ZAP is Joining the Software Security Project. https: / /www.zaproxy.org/

blog/2023-08-01-zap-is-joining-the-software-security-project/. Accessed: 14-02-2024.

Zukran, B., and M. Md Siraj. 2021. “Performance Comparison on SQL Injection and XSS

Detection using Open Source Vulnerability Scanners”. In 2021 International Conference on

Data Science and Its Applications (ICoDSA), 61–65. https://doi.org/10.1109/ICoDSA53588.

2021.9617484.

33

https://www.zaproxy.org/docs/desktop/start/features/ascan/
https://www.zaproxy.org/docs/desktop/addons/ajax-spider/
https://www.zaproxy.org/docs/desktop/addons/alert-filters/automation/
https://www.zaproxy.org/docs/desktop/addons/alert-filters/automation/
https://www.zaproxy.org/docs/desktop/addons/automation-framework/
https://www.zaproxy.org/docs/desktop/addons/automation-framework/
https://www.zaproxy.org/docs/desktop/addons/automation-framework/job-pscanconf/
https://www.zaproxy.org/docs/desktop/addons/automation-framework/job-pscanconf/
https://www.zaproxy.org/docs/desktop/start/features/pscan/
https://www.zaproxy.org/docs/automate/automation-framework/
https://www.zaproxy.org/docs/automate/automation-framework/
https://www.zaproxy.org/blog/2023-08-01-zap-is-joining-the-software-security-project/
https://www.zaproxy.org/blog/2023-08-01-zap-is-joining-the-software-security-project/
https://doi.org/10.1109/ICoDSA53588.2021.9617484
https://doi.org/10.1109/ICoDSA53588.2021.9617484

Appendices

A Wapiti run commands

Command to extract session cookie:

wapiti-getcookie \

-u https://test_server_address \

-c session_cookie.json

Command to run Wapiti and record the run time:

time wapiti \

-u https://test_server_address \

-c session_cookie.json --scope folder \

-v 1 -f html \

-o /path/to/output/folder --flush-session \

-s "https://test_server_address/subdirectory" \

-s "https://test_server_address/subdirectory_2" \

...

-s "https://test_server_address/subdirectory_n"

B ZAP run command

Command to run ZAP from the docker container and record the run time:

time docker run --rm --network="host" \

-v /path/to/scan/plan/folder:/zap/wrk/:rw \

-v /path/to/report/folder/:/zap/reports \

-t owasp/zap2docker-stable \

zap.sh -cmd autorun /zap/work/plan.yaml

34

C ZAP Automation Framewok YAML

env:

contexts:

- name: "name of the context"

A mandatory list of top level urls

urls:

- "included url"

An optional list of regexes to include (not used)

includePaths:

An optional list of regexes to exclude

excludePaths:

- "excluded url"

authentication:

One of ’manual’, ’http’, ’form’, ’json’ or ’script’

method: "form"

parameters:

loginPageUrl: "login page url"

loginRequestUrl: "login request url"

String, the login request body

loginRequestBody: "login request body"

verification:

One of ’response’, ’request’, ’both’, ’poll’

method: "response"

Pattern for determining if logged in

loggedInRegex: "regex pattern"

Pattern for determining if logged out

loggedOutRegex: "regex pattern"

sessionManagement:

One of ’cookie’, ’http’, ’script’

method: "cookie"

List of 0 or more parameters (not used)

parameters: {}

35

technology:

https://www.zaproxy.org/techtags/

not used

exclude: []

users:

user credentials for the context

- name: "some name"

credentials:

username: "username"

password: "password"

parameters:

If set exit on an error

failOnError: true

If set exit on a warning

failOnWarning: false

If set will write job progress to stdout

progressToStdout: true

Custom variables to be used throughout the config file.

Not used

vars: {}

jobs:

https://www.zaproxy.org/docs/desktop/addons/

automation-framework/test-stats/

- name: "passiveScan-config"

https://www.zaproxy.org/docs/desktop/addons/

automation-framework/job-pscanconf/

type: "passiveScan-config"

parameters:

Enable scanning only in scope

scanOnlyInScope: true

Bool: Enable passive scan tags

enableTags: false

Disable all rules before applying the settings

36

in the rules section

disableAllRules: false

rules:

Used this to disable alerts that

only bring informational value

https://www.zaproxy.org/docs/alerts/ (Type: Passive)

- id: 1234

The Alert Threshold for this rule,

one of Off, Low, Medium, High

threshold: "Off"

https://www.zaproxy.org/docs/desktop/addons/

automation-framework/job-spider/

The traditional spider

- type: "spider"

parameters:

user: "the user defined earlier"

tests:

- name: "At least 100 URLs found"

Type of test, only ’stats’ is supported for now

type: "stats"

Name of an integer / long statistic,

currently supported: ’automation.spider.urls.added’

statistic: "automation.spider.urls.added"

Operator used for testing

operator: ">="

Number of URLs you expect to find

value: 100

’warn’ / ’error’ / ’info’

onFail: "INFO"

https://www.zaproxy.org/docs/desktop/addons/

ajax-spider/automation/

- type: "spiderAjax"

parameters:

37

Max time in minutes

maxDuration: 3

Max depth that the crawler can reach

maxCrawlDepth: 10

Number of browsers to be used

numberOfBrowsers: 24

Discard out of scope urls

inScopeOnly: true

user: "the user defined earlier"

tests:

- name: "At least 100 URLs found"

Type of test, only ’stats’ is supported for now

type: "stats"

Name of an integer / long statistic,

currently supported: ’spiderAjax.urls.added’

statistic: "spiderAjax.urls.added"

Operator used for testing

operator: ">="

Number of URLs you expect to find

value: 100

’warn’ / ’error’ / ’info’

onFail: "INFO"

https://www.zaproxy.org/docs/desktop/addons/

automation-framework/job-pscanwait/

Wait for the passive scanner to finish

- type: "passiveScan-wait"

parameters: {}

https://www.zaproxy.org/docs/desktop/addons/

alert-filters/automation/

Used to change the risk levels of alerts

- type: alertFilter

parameters:

Do not delete all existing global alerts

38

deleteGlobalAlerts: false

alertFilters:

Alert filters are used to change risk level of alerts.

alert ids: https://www.zaproxy.org/docs/alerts/

- ruleId: 1234

New risk level, one of ’False Positive’, ’Info’,

’Low’, ’Medium’, ’High’

newRisk: "False Positive"

Optional string to match against the alert url field

url: "regex of url"

Is url regex

urlRegex: True

Optional string to match against the alert

parameter field

parameter: "parameter name"

Is parameter regex

parameterRegex: False

Optional string to match against the alert

attack field

attack: "regex"

Is attack regex

attackRegex: True

Optional string to match against the alert

evidence field

evidence: "evidence finding"

Is evidence regex

evidenceRegex: True

https://www.zaproxy.org/docs/desktop/addons/

automation-framework/job-ascan/

The active scanner - this actively attacks the target

- type: "activeScan"

parameters:

Automatically handle anti CSRF tokens

39

handleAntiCSRFTokens: true

user: "the user defined earlier"

policyDefinition:

The default Attack Strength for all rules, one of Low,

Medium, High, Insane (not recommended)

defaultStrength: "Medium"

The default Alert Threshold for all rules, one of Off,

Low, Medium, High, default: Medium

defaultThreshold:

rules:

Disable alerts for rules that

only bring informational value

https://www.zaproxy.org/docs/alerts/

- id: 1234

The Alert Threshold for this rule,

one of Off, Low, Medium, High

threshold: "Off"

https://www.zaproxy.org/docs/desktop/addons/

report-generation/automation/

Report generation

- type: "report"

parameters:

The template id, default : traditional-html

template: "traditional-html-plus"

Where the report will be written

reportDir: "/zap/reports"

The report file name pattern,

default: {{yyyy-MM-dd}}-ZAP-Report-[[site]]

reportFile: "{{yyyyMMdd-hhmmss}}-ZAP-Report-[[site]]"

The report title

reportTitle: "ZAP Scanning Report"

The report description

reportDescription: ""

40

	1 INTRODUCTION
	2 WEB VULNERABILITY SCANNERS
	2.1 Continuous integration and vulnerability testing
	2.2 Web vulnerability scanner
	2.3 OWASP top ten
	2.4 Recent studies of web vulnerability scanners
	2.5 Selecting web vulnerability scanners for this study
	2.6 ZAP and Wapiti

	3 RESEARCH QUESTIONS
	4 RESEARCH METHOD
	4.1 Design science method
	4.2 Following the design science method

	5 RESEARCH PROCESS
	5.1 Setting up the Wapiti vulnerability scanner
	5.2 Setting up the ZAP vulnerability scanner
	5.3 Performing the vulnerability scans
	5.4 Further configuring to handle false positive findings

	6 RESULTS
	6.1 Scan results
	6.2 Handling false positive findings
	6.3 Crawling coverage
	6.4 Automation and integration features of the scanners
	6.5 Suggestions for way of use for the scanners in continuous software development
	6.6 Evaluation and criticism

	7 CONCLUSIONS
	Bibliography
	Appendices
	A Wapiti run commands
	B ZAP run command
	C ZAP Automation Framewok YAML

