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1. Introduction 

We consider variational integrals of the form 

I(u) = f F(x,9u(x)) dx ,

G 

u is in Sobolev space where G is an open set in ]Rn 

1 � p < 00 and F(x,h) � [hf p . Usually the kernels F are assumed 

to satisfy certain natural conditions of measurability, convexity and 

growth, see e.g. [GLM, M, R3]. In Section 3 we shall determine the 

structure of the kernels which are assumed to be homogeneous in addition. 

The fundamental example /hi p of a kernel of this type turns out to be 

typical, i.e., h 4 F(x,h)l/p is always a norm. This fact will be used 

in Section 4, where we introduce a new norm in 1P(G)
n , 

( f )1/p
Ou!F F(x,u(x)) dx , 

G 

called an F-norm. The concept of an F-norm leads to a simple proof for 

the lower semicontinuity of the variational integral I with respect to 

weak convergence, a fundamental tool in Calculus of Variations introduced 

already by L. Tonelli [T], see also [L, M, S, Rl, R3]. In weak topology 

the lower semicontinuity of a norm is an elementary fact and it gives a 

proof for the lower semicontinuity of a variational integral in our case. 

At the end of Section 4 we shall characterize the kernels F whose 

induced norm makes Lp(G) n uniformly convex. 

The rest of this paper deals with the conformal invariance of 

variational integrals. Section 5 paves the way for the general case 

in Section 6. It is well-known that the conformal capacity is conform

ally invariant. We show in Section 5 that its natural generalization, 

the F-capacity, is not necessarily conformally invariant. 

In the last section we study the conformal invariance of the 

variational integral 
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I(u) = f F(x,u(x),9u(x)) dx ,

where the kernel F satisfies only the familiar measurability condi

tions of Caratheodory and the natural growth restrictions. The well

known example is the n-Dirichlet in tegral 

We will show that it is a good prototype for all conformally invariant 

variational integrals, since every such integral in ]Rn is of the form 

I(u) f k(x,u(x)) j9u(x)l n dx.

M. Grtiter 1Grl has obtained the same result in the plane case under

additional assumptions on the regularity of F He also makes use of

the fact that F does not depend on x. Our proof uses the norm

characterization of the kernels (Section 3) as a model and is based

on the fact that only the eut:liuean Lalls remain invariant under all

orthogonal maps.

2. Preliminaries

2 .1. Notation. For each set A in the euclidean space ]Rn 

n > 2 ' we let A and 3A denote the closure and boundary of A ' 

both taken with respect to ]Rn Given two sets A C B in ]Rn ' 

A cc B means that A is compact in B By x • y we denote the 

usual inner product of two vectors x and y in ]Rn , the euclidean 

norm of x is Ix! = (x • x)112 For x E ]Rn we use representations 

x = (x1,x2, ... ,x
n

) = Z�=l xiei. If x E ]Rn and r > 0, we let 
n n-1 B(x,r) denote the open ball {y E 1R I jy - xl < r} , and S (x,r) 

is the sphere 3B(x,r) Furthermore, we let Q(x,r) denote the open 

cube { y E ]Rn I I y. - x. I < r , i = 1, 2, ... , n} . We shall employ the 
l l 

abbreviations B(r) = B(O,r) , Sn-l(r) = Sn -l(O,r) , Sn-l = sn-l(l) ,

Q(r) = Q(O,r) and Q
n

_1(r) = Q(r) n {x E ]Rn I x1 = O}.

We let GL(1Rn,1Rn) denote the space of all regular linear maps 

A: ]Rn 
➔ ]Rn with the sup-norm. 
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The Lebesgue measure of a set Ac JRn will be written as 

m (A) = m(A) .n 
If A c JRn , then C(A) is the class of all continuous (real 

valued) functions on A . If U is an open set in JRn , we let Ck(U) 

denote the family of all k times continuously differentiable functions 

u: U ➔ JR, and ct(u) the family of all u E Ck(U) whose support 

spt u is a compact subset of U .  

2.2. Sobolev space w1 
and ACLP -functions. If A is a Lebesgue p 

measurable subset of JRn , then Lp(A) , p ? 1 , is the Banach space 

of all measurable functions u: A ➔ JR. = JR u { -oo > 00} with the norm 

!l ull ll ull ( J lulp \ 1 /p 

p p,A dm) 
A 

Given an open set G in JRn w1 cc) is the Sobolev space of functions 
JJ 

u E Lp(G) whose first distributional partial derivatives D.u 
l 

belong to 

1P(G) with the norm 

llull 
1 ,p ll ull +p 

n 
\ 
l 

i= l 

11D. u II 
l p

We let Vu = (D
1
u,D2 u, ... ,D

n
u) denote 

w!,o(G) is the closure of C�(G) in 

A mapping f: G ➔ JRm is said to 

if for each open n-interval Q cc G ,  

the gradient of u The space 

w1 cc)p 
be ACL if f is continuous and 

f is absolutely continuous on 

almost every line segment in Q parallel to the coordinate axes. An 

ACL-mapping has partial derivatives a.e. If these are locally Lp-

integrable, p? 1 , f 

is ACLP if and only if 

is said to be ACLP. It is well-known that f 

f is continuous and belongs to w1(D) for eachp 
open set D cc G. For basic properties of Sobolev spaces and ACL-func

tions see [M] . 

2. 3. C-functions. Let G be an open set in JRn 

F: G x ]R
m

➔ JR satisfying the Carath�odory conditions 

x >+ F(x,h) is measurable for all h E JRm
, 

h >+ F(x,h) is continuous for a.e. x E G, 

Functions 
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will be called Caratheodory-functions, abbreviated C-functions. The 

following Scorza-Dragoni property, see [ET, p. 235], is well-known. 

2.4. Lemm a. Ii function F: G X ]Rm
➔ ]R 'l,8 a C-func:lion if and

only if for each open set D cc G and E > 0 there 1.,8 a compact set 

C C D such that m(D \ C) < E and Fie ]Rm is con ti.nuous.

2.5. Weak convergence. If X is a topological vector space and 

if X' stands for its dual, then a sequence xn EX , n = 1,2, ... ,

is said to converge weakly to x0 EX , abbreviated x
n 

➔ x0 weakly

( in X), if 

for all 

In 

for each 

f 

lim f(x ) 
n 

n➔oo 

EX' 

particular, 

llm f unv 

n➔oo A 

VE Lq(A) '

u ➔ un 

dm f 
A 

where 

weakly in LP (A) means that 

u0v dm

q = p/(p - 1) ; if p = 1 ' then q =00 

The following elementary consequence of Hahn -Banach theorem is 

well-known, see e.g. [DS, Lemma II . 3 . 2 7 ] . 

2.6. Lem m a. Let X be a normed space and xn E X , n
O; 1,2, .... If x ➔ x weakly, thenn 0 

llxA II < lim llx II 
u n n ,oo 

Conformal mapp1·.ng.s. l,P.t r, ;incl 

A homeomorphism f: G ➔ G' is conformal if 

G' be domains in 

f E c 1(G) and if 

]Rn 

for every x E G and h E ]Rn . Here IAI denotes the sup- norm of a 

linear map A .  Alternatively, a c
1-homeomorphism f is conformal if 

and onlyif [f'(x)l n =IJ(x,f)I for all xEG , where J(x,f) de

notes the Jacobian determinant of f at x . We shall frequently use 
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the following fact: Suppose that u is an ACLP-function in G' and

that f: G + G' i-s a c
1
-mapping. Then v = u of is ACLP in G and

Vv(x) f' (x)''' Vu(f(x)) 

a.e. i-n G; see e.g. [GLM, 6.10]. As usual, A* is the adjoint of a 

linear map A: JRn ➔ JRn . 

X e: G 

,\ t 0 

A function f: G ➔ JRn is 

' for some orthogonal map 

and h e: JRn 

3. Variational kernels

a similarity if f(x) = .\ O(x) 

0: JRn ➔ JRn and for some ,\ 

We are mainly interested in variational integrals 

I(u) = f F(x,Vu(x)) dx , 

+ h 

e: JR 

where F(x,h) = !hip Integrals of this type have been extensively

studied, see e.g. [GLM, M, R3J. In this section we shall derive some 

alternative characterizations for kernels F of the elliptic and 

homogeneous type. 

Suppose that G is an open set in JRn and that the kernel 

F: G x JRn 
➔ JR satisfies the following assumptions, cf. [GLMJ: 

(a) For each open set D cc G and E > 0 there is a compact

set Cc D with m(D \ C) < s and Fie x llf is continuous. 

(b) For a.e. x e: G the function h + F(x,h) is convex.

(c) There are constants 1 < p < 00 and 0 <a< S < 00 such that 

for a.e. x e: G 

for all h E JRn 

(d) For a.e,

h e: JRn 

The kernels F 

X e: G ' F(x,.\h) l.\l
p 

F(x,h) 

can also be characterized as 

for all ,\ e: JR and 

follows. 



10 

3.1. Th e o r e m. A kernel F: G x JR.
n

->- JR. satisfies (a)-(d) if

and only if it satisfies the following two conditions: 

(i) For all h E JR.
n 

the function x � F(x,h) is measurable in

G . 

(i i) There exist a constant p E [ 1 ,00) and a set D c G such

that m(G \ D) = 0 and

P = { h ➔ F(x,h)l / p I x E D} 

&S a uniformly equivalent family of norms &n IR
n 

. 

A family p of norms 

if there exist constants 0 

f: 

< a 

IRn 
➔ lR 

< � < 00 

is called unifonnly equivalent

such that a jhj S f(h) S � !hi 
for all h E IRn and f E p

Theorem 3.1 is an immediate consequence of the Scorza-Dragoni 

pro perty (2.4) and the following lemma. 

3. 2. Lemma. Suppose that X 1,,S a vector space and that p

[ 1 '�) A non-ne!Jaliue Juncl ion I: X ->- JR. is a norm if and only if

(i) fp &8 convex,

(ii) f(h)P 
= IAIP f(x) p for all A E IR and X E X

' 

(iii) fCxl = 0 irrrplies X = 0 

E 

Proof. Obviously,a norm f: X ➔ IR satisfies (i)-(iii). For the 

converse,it suffices to show the triangle inequality. Fix x ,  y EX 

Set f(x) t and f(y) = s 

u = t + s Now

We may assume that t s  f 0 

whence the convexity of fp together with (ii) yield 

Thus the condition (ii) implies the triangle inequality. 

Write 

3.3. Re ma rk. A s imilar reason in g to above gives: For a fixed

p E [1, 00) a non-negative function f: X->- JR. is a semino:rm if and only
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if the conditions (i) and (ii) of Lemma 3.2 are satisfied. 

A norm f: X ➔ ]R is called strict if f(x + y) f(x) + f(y) 

implies y = 0 or X = >..y for some >.. > 0 

A kernel function F: G X ]Rn ➔ ]R is said to be strictly convex 

if for a.e. X E: G 

F(x,t y + (1 - t) h) < tF(x,y) + (1 - t) F(x,h) 

for t e: ( 0, 1) and y , h e: ]Rn , y f h . 

3.4. Theorem. Suppose that F: G x JRn 
➔ JR satisfies (a)-(d} 

for some < p < 00 
• Then F 1,s strictly convex if and only if for a.e.

x e: G the norm h ·+ F(x,h) 1 /p is strict.

Proof. The sufficiency easily follows from the strict convexity 

of h � lhl p For the converse.let f(h) F(x,h) l /p be a norm such 

that fp is strictly convex. Fix h ,  y e: ]Rn with f(h + y) = f(h) + 

f(y) We may assume that h , y f O . As in the proof for Lemma 3. 2 

we obtain 

1 f (h : yr � 

where f(h) = t ' f(y) = s 

1 f Ol)
p 

+ � f (y)
p 

= 1 , 
u lt u s 

and u = t + s . Observe 

(O,u) Thus the strict convexity of fp yields 

h yt s

This completes the proof. 

that t ' s E: 

3.5. Inner product kernels. If < , >: ]Rn x ]Rn 
➔ JR is an 

inner product in JRn , there is a self-adjoint, positively definite 

linear mapping T: ]Rn 
➔ ]Rn with 

(3.6) <h , y> T h  • y 

for all h , y e: ]Rn , and, conversely, by ( 3. 6) each such mapping T 
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induces an inner product in IRn . Thus a norm f in IR11 is induced by 

an inner product if and only if there exists a self-adjoint T such that 

f(h) = (T h • h) l /Z 

for all h E IRn 

X E G 

stants 

If 8: G ➔ GL(IRn,IRn) is a measurable mapping such that for a.e. 

is self-adjoint and that there exist con -the linear map 8(x) 

0 < a < b < 00 with 

8(x) h • h 

for a.e. x E G and all h E JR
n 

, then the kernels 

1 < p < 00 ' 

satisfy (aJ-(d). Note that a kernel function F is of the type F8 if

and only if for a.e. x EC the norm h ,-;. F(x,h) l /p is induced by an 

inner product. Therefore we call kernels F 8 1,nner product ke1°ne ls.

These kernels have been studied by Yu. G. Reshetnyak [R2, R3] in the case 

p = n They play an essential role in the theory of quasiregular 

mappings; see [R2, R3] and also [BI, GLM]. 

The inner product property is connected to the smoothness of F 

3.7. Theorem. Le-t F: G x JR
n

->- 1R satisfy (a)-(d) for p E 

[l,oo) Then F 1,s an inner product kernel if and only if for a.e.

x E G -the function h �>- F(x,h)
Z

/p belongs -to c
2

(JR
n

) . 

Proof. For an inner product kernel F, the function h ,-;. F(x, h) Z /p

is a C
00

-function in IRn for a.e. 

to prove: If f(h) = F(x,h) l /p 

then the parallelogram law 

g(h + y) + g(h - y) 

x E.G For the converse,it suffices 

is a norm such that g = f2 E c2(IRn) ;

2 g(h) + 2 g(y) 

holds for all h, y E IRn ; see [Y, p. 39]. 

First note that the homogeneity of f implies 
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a.a.g(>-h) = a.a.g(h) ,
1 J 1 J i ' j 1,2, ... ,n , 

for all A f O and h E JRn . Letting A ➔ 0 we obtain 

a.a. g(O) = a.a. g(h)
1 J 1 J i ' j 

for all h E JRn . Now Taylor's formula yields 

(3. 8) g(h) 

for all h E JRn . 

n 

1 \
2 l 

i, j=l

1,2, ... ,n , 

To complete the proof let h , y E JRn . By (3. 8) 

g(h + y) + g(h - y) 

n 

1 \ 
= 2 L 

i ,j=l 
n 

\ l a.a.g(O)(h.h. + yl. y
J
.)

1 J 1 J 

i, j=l 

as desired. 

n 
\l 

i,j=l 

2 g(h) + 2 g(y) 

3.9. Re mark. Theorem 3.7 yields for p = 2: If h >+ F(x,h) 

be longs to cP ( JRn) , then F is an inner product l<erne l. For p + 2 

this is not true. For example, for n > 2 ' consider the kernels 

n 

F(x,h) \ I h. I
p

' 1 < p < 00 

l 1 

i=l 

Observe that the norm 

n 

f(h) = ( l 
i=l 

is induced by an inner product if and on ly if p = 2 . However, the 

function h >+ F(x,h) belongs to cP(JRn) for p = 2,3,4, .... 

Furthermore, h � F(x,h) even belongs to C
00

(JRn) for p = 2k , 

k = 1,2, ... . 

13 
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4. F-norm

A variational kernel F satisfying (a)-(d) induces a new norm, 

called an F-norm in This leads to a simple proof for the 

lower semicontinuity of a variational integral, and we also study the 

uniform convexity of LP(G)n , p E (l,00) , under the F-norm. 

4.1. F-noPm. Suppose that G is an open set in 

F: G x ]Rn
➔ JR satisfies (a)-(d) for some p E [l,oo) . 

1P(G)n the cartesian product Lp(G) x ••. x Lp(G) ( n 

]Rn and that 

We denote by 

times) with the 

norm 

llu ll 
1P 

i=l 

llu.11 
l p

where u = (u1, ... ,u
n

) E 11\G)n and llui ll
p 

i = 1,2, ... ,n , is the 

usual Lp(G)-norm of u
i

We introduce another norm II IIF in Lp(G)n
,

ca l led an F-noPm,

( J ,
1

/p
llu llF = F(x,u(x)) dx

)

The assumptions (a)-(d) together with Lemmas 2.4 and 3.2 immediately 

yield: 

4. 2. Lem m a. F-noPm is a noPm 1,n 1P (G) 
n

equivalent to the norm 

4.3. Rema rks. ( 1) If p = 2 an d F is an inner product 

then L2(G)
n is a 

(2) If A C 

llu llF,A

for u E Lp(A)11 

LP(A)n-norm 

Hilbert space under the F-norm. 

G is a measurable set, we write 

( J F(x,u) dx Y/p 

Obviously, llu llF ,A is equivalent to the usual

L llu.11 A .
l p, 

i=l

kernel, 
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4.4. Lower semicontinuity. The concept of an F-norm can be used 

to give a simple proof for the lower semicontinuity of the variational 

integral 

I(u) = J F(x,vu(x)) dx 

under the assumptions (a)- (d). There exist several proofs for this fun

damental result in a more general case; see e.g. [D, M, Rl, R3, SJ. 

For a simple proof based on Banach-Saks' theorem see [L]. These proofs 

do not make use of the homogeneity assumption (d). 

4.5. T h eo r em. Let I and G be as above and let u. ' 
l 

1 f 
l 

O; 1, 2, ... be a sequence of W - unch,ons ?JI G such that vu. _, vuo 
' p l 

weakly 1-n 1P(G)
n 

Then

I(u
0) Slim I(ui) 

i➔oo 

Proof. In 1P
(G)

n we use the F-norm. By Lemma 4.2, vui ➔ vu0
Thus Lemma 2.6 implies 

and hence 

as desired. 

tt vu0ttF < lim tt vuittF,
i➔= 

I(u0) < lim I(ui ) 

i➔oo 

4.6. Rem a r k s. (1) The above reasoning can also be used in a 

more general situation. Let F: G x ]R_k x JRnk 
➔ ]R_ satisfy the conditions 

(a)-(d) modified in an obvious way (i.e., F(x,Au,Av) = l1cl p F(x,u,v) ).

Then the following result holds. Let 

be a sequence in w
1

(G)k 
If Vu�i)

p J 
1P (G) , j = 1,2, ... ,k then 

I(u(O)) < lim I(u(i) ) , 
i➔oo 

(i) (i) (i) u (u
1 , ... ,u

k 
) , i = 0;1 ,2, ...

➔ vu�
O) 

and u�i) 
➔ u�O) weakly in

J J J 
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where 

I(u) = f F(x,u1(x), ... ,uk(x),Vu/x), ... ,17uk(x)) dx. 

(2) It is clear that in the above results we can take any

measurable set Ac G instead of the open set G. 

4. 7. C o r o 1 1 a r y. Suppose that G c JR
n 

·is an open set and that

F: G x JR
n

-+ lR satisfies (a)-(d).

-+ lR , i = 1 , 2, . . . , are such that 

Furlhennm-eJ, suppose that 

( i) F. satisfies (a) for each 1 

(ii) For•a.e. x e: G F.(x,h) >0 Jo.F all h E JR
n 

and ie: JN .

( iii) 

m(G \ C) 

If 

< E 

m

Fu1· eauh t, > 0 lhe1·e io u uurrtf)CW l oe l 

and F. + F unifonnly in C x JR
11 

• 
1 

m = O; 1,2, ... , are w
1
-funct·ions in 

p 
weakly in 

C c G 0uuh lhal 

G such that vu ->
m 

lim J F.(x,17u.(x)) dx > J F(x,17u0.(x)) dx 
-.- l l 

i-+oo G G 

Proof. Consider first a set A C G with m(A) < 00 

and choose Ck 
A with m(A \ Ck) < 

1 and F.compact sets C 

k 1 

formly in C, X ]Rn Now there is an L such that i > iA
K u u

for all (x,h) e: c
k

X ]Rn Theorem 4.5 (cf. 4.6 (2)) yields 

The last term tends to 

F . ( x, 17u . ( x) ) dx 
1 1 

Fix E > 0

➔ F uni-

implies 
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f F(x,Vu0(x)) dx - E 

A 

as k ➔ 00
• Letting E ➔ 0 we obtain 

17 

To complete the proof,note that the absolute continuity of the integral 

allows us to choose for each E ) 0 a compact set A C G 
E 

f F(x, Vu0(x)) dx < J F(x, Vu0(x)) dx + E • 

Hence 

for each 

G A 

f 
G 

< 

E ) 

E 

F(x,vu0(x)) dx < lim
i ➔oo 

lim f F.(x,Vu.(x) ) dx 
l l 

i➔oo G 

0 

( 
J 

E 

F.(x,Vu.(x)) dx + E 
l l 

+ E

such that 

4.8. Uniforn1 converity. The rest of this section deals with uni

form convexity; especially, we study the uniform convexity of 1P(G)n , 

p e (l,oo) , under the F�norm. 

E ) Q 

imply 

A normed space (X, II· II ) is called uniformly convex if for each 

there is 6 > 0 such that llxll S 1 , llyll S 1 and !Ix - yll > E 

1 1 IIJx + JYII < 1 - 6 . For alternative definitions see [K]. We

use some of them in what follows. 

We call a family N of norms g: X ➔ IR equiuniformly convex if 

for each E > 0 there is 6 > 0 such that for each g e N the condi

tions g(x ) < 1 , g(y) < 1 and g(x-y) > E imply 

Further, if Uc X is a convex set and if F is a family of con

tinuous functions f: U ➔ IR then F is called equistrict ly convex

if for each compact set Cc U and E > 0 there is 6 > 0 such that 

x ,y e C and llx-yll > E imply 
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Obviously,an equiuniformly convex family of norms is not equistrictly 

rnnuov ;,f diin X > l . The connection between the above-mentioned con

cepts is discussed in 4.13; see also 4.22. 

The following lemma is a generalization of McShane's idea [K, 

pp. 360-362, McSJ. 

4. 9 . L e mm a. Suppose that X is a normed space and that N is a

f arrri ly of norms in X T,et p E ( 1 , 00) • Then N 1'..s eq1n'.um'.for>mly con-

VeJ; if and 011 ly if f01' each 1c > 0 lhe1'e is o > 0 such llw l fol' eue1'y

f E N  the conditions f(x) < 1 ,  f(y)::: and f(x - y) > E imply 

(4.10) 

Proof. The equiuniform convexity of N immediately follows from 

(4.10). To prove the converse, it suffices to show that for each € > 0 

there is 6 > 0 such that for every f E N the conditions f(x) 

f(y) < 1 and f(x-y) > € imply (4.10). 

Let us suppose that there are t, > 0 arn..l se4uem;es xn' yn 
E 

and f i.= N such that f (x ) = 1 , f (y ) < 1 , f (x - v ) > E am!n n n n n - n n ·n 
that 

(4.11) 1 . 

Then 

< q 

lim f (y) = 1 , since otherwise there is 
n-+oo n n 

for some subsequence denoted again by f (y )n n 
p < 1 such that 

since the function 

is strictly increasing in [0, l] we may choose 

q < l with f (y )n n 
Then there exists 
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p ( 1 + q)p (1 + qp)-l 21 -p 

1 1 p f
n

(2xn + zYn
) 

1 1 )P 
2+2f

n
(y

n 
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Now (4.12) yields 

< p < 1 ' 

which con tradicts (4.1 1). Hence lim n➔co 
f (y ) n n 1, and (4.11) implies

1 im f ( l x + l v ) 1 , 
n 2 n 2" n 

which contradicts the equiuniform convexity of N. This completes the 

proof. 

4.13. Corollary. Suppose that p E (1,00) and that F 1,s

a family of continuous functions f: JRn 
+ JR such that

(i) f(,,\x) = l:\IP f(x) for all :\ E JR, x E JRn , and

(ii) there exist constants O <a< B < 00 with

for all x E JRn 
and f E F . 

Then F is equistrictly convex if and only if F11P = 

{ f1 /p I f E F} is an equiuniformly convex family of norms.

Proof. Suppose that F is equistrictly convex. Then each f E F 

is strictly convex, cf. [RV, Section 71]. By Lemma 3.2, Fl /p is a

family of norms in ]Rn Choose 

Then f-1 ([0, l]) c C for each 

equiuniform convexity of Fl /p
f E F ; hence Lemma 4. 9 implies the 

For the converse let C c ]Rn be a 

compact set, C f {O} Then condition (ii) yields 

0 < M sup { g ( x) I x E C , g E F 1 / P } < co • 

Hence � fl /p(C) c [0,1] , and Lemma 4.9 implies the desired result.

The above connection between equistrictly convex and equiuniformly 
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convex families is not true in infinite dimensional spaces; see 4.22. 

4.14. Uniformly convex kernels. Suppose that G is an open set 

in ]R
n 

and that F: G X ]Rn 
➔ ]R satisfies (n)_(,.1) for p E (l,.Y)),�, ,�, 

The kernel F is unif01°mly convex if there is G' C G such that 

m(G \ G') = 0 and that the family F = { h re> F(x,h) I X E G' is equi-

strictly convex. 

Corollary 4.13 yields: 

4.15. Lemma. Suppose that p E (1,00) 

+ 1R -is uni.form ly convex if and only -if ther'e is G' c G such lhat
1/p ! } m ( G \ G ') = 0 and N = { h •+ F ( x, h) i x E G' 

convex family o .f nonns.

is an equ-iuwifonnly 

The next theorem says that all inner product kernels belong to this 

class. 

4. 16. The o r em. Suppose that G is an open set -in 1R
n 

and

that F: G x 1R
n 

+ 1R ls an umeY' pr'oducl keY'nel 1Jith p E (1, 00) Then 

F 1,s uniformly convex.

Proof. Fix s > 0 and choose 

J 1 - ( 1 - s2 /4) 1 /2 
if s < 2 

cS 

L1 if s > 2 

The parallelogram law y1eias that the desired inequality in 4.8 holds 

for an inner product norm g(h) = F(x,h) l /p .

4. 1 7. Re m a rk. A strictly convex kernel is not necessarily uni

formly convex, even though it is continuous. Fix p E ( l,00) and let 

G = B(O,l) \ {O} c ]Rn Define F: G x 1Rn 
+ JR by 

F(x,h) = ( L 1 /fxl
)

lxf p
/h. [ 

1 

i=l 

Then F is continuous and a strictly convex kernel, see 3.4. However, 
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F is not uniformly convex. To see this,consider sequences hi= 

(a.,a., ... ,a.) 
1 1 1 

and 

Choose 

y. = (-a.,a.,a., ... ,a. ) , where 
1 1 1 1 1 

i = 2,3, ... 

but 

x. such that jx. j = i-l
1 1 

lim F(x. , h. - y. ) = z
P > 0 .

. 1 1 1 
1➔00 

a. = n 
1 

-1/i

Then F ( x . , h . ) 
1 1 

2 1

1 

The next theorem characterizes the kernels F for which 1P(G)n , 

p E (l,oo), is uniformly convex under the F-norm. The sufficiency part 

generalizes an idea of McShane's [McSJ. 

4. 18. The or em. Suppose that G is an open set in lR
n 

and

that F: G x lRn + ]R_ satisfies (a)-(d) for some p e: (1,00) Then 

LP (G) n 
LS uwiformly convex under the F-no1°m if and only "if F LS um,

formly convex. 

Proof. Suppose first that F is uniformly convex. Fix E > 0

and choose f, g e: 1P(G)n such that llfllF = 1 , llg llF = 1 with

Write 

f Ep

} 
A= 

l 
x E G I F(x, f(x) - g(x)) > T(F(x, f(x)) + F(x, g(x))) .

Then A is measurable,and by Lemmas 4.9 and 4.15 there is o > 0 such 

that 

(4.19) ( 
1 ( ) 1 ( )) < (l _ ') F(x ,f(x)) + F(x, g(x))F x,2f x +2g x  o z 

for a.e. x e: A Since 

f F ( x , f ( x) - g ( x) ) dx 

G\A 

G 

Ep
(F(x, f(x)) + F(x, g(x))) dx � 2



22 

we obtain 

J F(x, f(x) - g (x)) dx > Ep - Ep Ep

2 =2 
A 

Now ll f - gllF, A 
-1/p � E 2 , and hence max { II fll t A , II g II � , A} > Ep2-(p+l) .

Thus the condition (b) and (4.19) yield 

J l 1 1 1 (2F(x, f(x)) + 2F(x, g(x)) - F(x, 2f(x) + 2g(x)) dx

G 

) J ( ½ F ( X , f ( X)) + ½ F ( X , g ( X)) - F ( X , ½ f ( X) + ½ g ( X))) dx 

A 

) ½ J ( F ( X , f ( x) ) + F ( x , g ( X) ) ) dx > O ,c: p 2 -( p+ 2 )

A 

Hence 

which implies the desired result. 

To prove the converse, suppose that there exist s > 0 , Ac G 

and sequences uk, vk: G ➔ ]Rn , k = 1,2, ... , such that m(A) > 0

and for all x EA, F(x, uk(x)) � 1 , F(x, vk(x)) � 1 , 

F(x, uk(x) - vk(x)) 2 2 E and F(x, ½uk(x) + ½vk(x)) > 1 - t , cf. 

Lemma 4.15. By approximation we may suppose that F(x, uk(x)) < 1 and 

F(x, vk(x)) < 1 in A Now the condition (a) gives a compact set 

Cc A such that m(C) > 0 

The continuity of FI nC X JR 

and Fjc x ]Rn is continuous.

allows us to choose for each 

open neighbourhood N k such that for every x EN kn Cy, y, 

Fix 

y EC an 

F(x, uk(y)) < l , F(x, vk(y)) < 1 , F(x, uk(y) - vk(y)) 2 s and 

F(x,½uk(y) + ½vk(y)) > 1 - �. Since C is compact and m(C) > 0 ,

there is y0 EC with m(Ny0,
k n C) > 0 . Write hk = uk(y0 ) , yk =
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and 

where 

and 

stands for the characteristic function of Then 

are measurable, 

f F ( x , f k ( x ) ) dx < 1

G 

and f F ( x , gk ( x)) dx < 1 

G 

f F ( x , f k ( x) - gk ( x)) dx

G 

m(Bkf l f F(x, hk - yk) dx > s 

Bk 

Furthermore, 

which tends to 1 as k ➔ 00
• This contradicts the uniform convexity

of 1P(G)n under the F-norm,and the proof is complete. 

4.20. Coro 11 a r y. Suppose that F: G x JRn 
➔ JR 1-,s a uniformly

convex kernel. If u E w
1 

(G) , m = O; 1,2,... are such that u ➔ u
0m p m

in with 

(4.21) lim f F(x, 17u (x)) dx < f F(x , 17u0(x)) dx ,m 
m➔oo G G 

then um ➔ uO in w1 (G)p 

Proof. We use the F-norm in LP(G)n Since LP (G)n is uniformly 

convex, it suffices to show that 17um ➔ 17u0 weakly in 1P(G)n ; cf.

Theorem 4.5 and [HS, p. 233]. This is easily seen by standard reasoning. 

Note that (4.21) implies the boundedness of IID.ull, j=l,2, ... ,n . 
J m p 
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4. 22. Re m a rk. Corollary 4. 1 3 connects equistrictly convexity

and equiuniform convexity in JRn Such a result is not true in in-

finite dimensional spaces, since the unit norm ball is never compact in 

�n infinitP dimPn�inn�l nnrmPn �p�rP; cf. e,g, [Y; p, 85]. For example, 

consider the strictly convex function I: Lp(G) ➔ JR ,

I ( u ) f F ( x , u ( x ) ) dx , 

G 

where F is as in 4.17. By Theorem 4.18,the F-norm I
l

/ p is not uni

formly convex though the singleton {I} is equistrictly convex. 

4.23. 

open set C 

An application to lhe Calculus of Variatio1rn. 

in JRn fix u E w1 (c) Write0 p 

F { u: G ➔ JR I u - u E w 1 

0(G)}. 0 p, 

For a bounded 

Function v in F is called an extremal for the var1:ational 1:ntegral

I(u) J F(x , v'u(x)) dx 

G 

with boundary values u0 if 

I(v) inf {I(u) I u <=F}. 

Suppose that F: G x JRn 
➔ JR is a uniformly convex kernel. Since 

VF = { v'u I u E F} is a convex and closed set in Lp(G)n
, it contains 

a unique element v'v with minimal F-norm. This proves the existence 

and the uniqueness of the extremal with fixed boundary values u0 .

5. F-capacity and conformal mappings

For a given norm f: JRn 
➔ JR and a constant p E (l, 00) we write 

Suppose that G is a domain in JRn 
and that 

c
0 

,Cc 3G are compact sets. The F-capacity of c0 and C relative to

G i C! t-hP n11mhP-r 
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where 

inf { f F(Vu ) dm I u e: w(c0,c;G)} 

G 

25 

= { u E C(G u co 
u C) I u is ACLP in G, u[c SO and u[c? 1} .

. 0 

We call an F-capacity conformally invariant (or similarity-invariant)

if for each domain G c IRn and all compact sets c
0 

, C c 3G

for each conformal mapping (similarity ) h defined in some open neigh

bourhood of G. If f is the euclidean norm in m.
n

, the F-capacity 

is the familiar p-capacity, which is known to be conformally invariant 

in the case p = n . This follows also from Theorem 6.3, where a more 

general situation is studied. In this section we shall prove the fol

lowing theorem. 

5 . 1 . T h e o r e m . The F-capaci ty

only if there ex·ists ,\ > O such that

Theorem 5.1 immediately yields 

1,,s similarity-invariant if and 

F(h) = ,\ ihl
n 

for all h e: I.Z
n 

5 . 2 . C o r o 1 1 a r y. The F-capaci ty is conf oY'ma l ly invariant if and

only if there exists ,\ > 0 such that F(h) = ,\ lhl
n 

for> all he: JRn 
. 

Since the conformal invariance of F-capacity, F(h) = ,\ jhj n , is 

obtained from Theorem 6.3, we shall consider only the converse part. 

The proof is divided into four lemmas. 

Write g = f[s
n-1: S

n-1 
➔ IR ' ao 

min g and i3o = max g Then 

0 < 
ao 

< 

f(h) = ,\ 

Let 

130 
jhj

< 00 Furthermore, 
ao

for all h e: IRn For 

LX = { t XO 
I t E IR } .

0 

be the projection of 

i3o if and only if for some ,\ > 0 
n -1 

XO E S we set 

onto i.e.,
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5.3. Lemma. 

for all x E ]Rn . 

Then f(x) > f(P (x)) 
XO 

Proof. Write / A then f(yo) = l Fix X E 
JRn 

We Yo X,-, / p ,., 

u u 

may assume that f(x) 1 and that p (x) µ Yo ' µ > 0 Suppose
XO that µ > 1 Since

_l_ <--1:!.. = I 11 Y0 ! = IP Cx> I = Ix• xO I lxol < Ix! ' 130 130 XO 

it follows by elementary geometry that there are y E sn-1(13
-1) 0 and

t E (Q,l) such that 

zo t y+ (1 - t) xE {s yo I S E  (l,µ)}.

In particular, f(z0) > f(y0) = 1

hence the convexity of f yields 

On the other hand, f(y) < 130 !YI

1 < f(z0) < t f(y) + ( 1 - t) f(x) � 1 ,

which is impossible. Thus µ � and f(x) > f(P (x)) , 
XO 

as required. 

Fix -1 
XO E g (i30) Let T: JRn ➔ JRn be an orthogonal mapping

1 

such that T e1 = x0 Write G TQ(l) c0 = T { x E aoc 1) I x1 = -1 }

and 

(5.5) 

in G 

c = T { x E aoc 1) I x1 = 1}

Proof. If u E W(C0,C;G) , then Lemma 5.3 yields

1 

F(Vu) > F( P (Vu)) 
XO 

Now Holder's inequality 

1 

� ( f I Vu(x + t x0) xol

-1 

13P I Vu • x 1. p0 0 

implies for 

dtl
p 

< 2p -1

XE'I'Q (l)
n -1 

f jvu(x + t x0) • x0!P dt ,

-1

and hence by (5.5) and by Fubini's theorem 
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J F(Vu) dm > �� J J /vu(x + t x0) • x0/P dt dmn-l
G TQn_/1) -1
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Next set v(x) 

and 

Then -1 uo
= V O  T belongs to W(C0,C;G)

in G. This yields 

and thus 

as required. 

�p n-p 
0 2 '

5.6. Lemma. If F-capacity is similarity-invariant, then p = n 

Proof. Let h(x) =AX, A f O , be a dilation. Set G' = h(G) , 

C' = h(C0) and C' = h(C) .0 -1 
Now u E W(C0,C;G) if and only if

u o h E W(c0,c• ;G') Fix u E W(C0,C;G) Then

-1 1 -1 V(u o h )(x) = I Vu(h (x))

in G' and thus 

J F(V(u o h-1)) dm 

G' 

/A/-p J /A/n F(Vu) dm

G 

/A/n-p J F(Vu) dm.

G 
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So Lemma 5.4 yields for each A f 0 

cap (C' C' ·G')
F O' ' 

hence p = n as desired. 

The next lemma completes the proof of Theorem 5.1. 

5.7. Lemma. If o:0 < s0 , then F-capacity i,s not similar·ity

invm,iant. 

Proof. 

mapping with 

-1 Fix Yo E g (o:o) . Let O: IRn 
➔ IRn be an orthogonal

O(x0) = Yo . Write G' = O(G) 

O(C) Suppose that
-1 

u0 is as in the proof of Lemma 5.4.

uo O O . Then Vo lJelo11gs lo 

in G' hence 

cap (C' C' ·G') 
F O' ' 

( 
< 

j 
G'

W(C' C'·G') O' ' 

F(vv0) dm
n 

o:" 

and

( .1 .n 

j !zYol" dm 

G' 

Set 

o:
p
0 211

-p < 
B
P 
0 2n

-p
= capF(c0,C;G)

which co11Lra<llcls Lhe slmllai:lty invariance. 

6. Conformally invariant variational integrals

Suppose that G is an open set in IRn and that F: G x IR x IRn ➔ 

IR is a C-function in G x (IR x IR11) Suppose, furthermore, that there 

exist constants o: E [0,00 ) , 13 E (0, 00 ) and p E [l, 00 ) such that for 

a.e. x E G

(6.1) 0 < F(x,u,h) < o: lulp 
+ 13 !hi

p
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for all (u,h) e JR x ]R
n Setting F(x,u,h) � I h I

p 
for x f G we

may assume that F: ]R
n 

x ]R x ]R
n 

➔ ]R • 

If D c ]R
n is an open set and if 

integral 

J F(x, u(x) , v'u(x)) dx 

D 

U E w1 (D) , then the variational p 

exists and is finite. The variational integral is conformally in

D c c ]R
n 

and variant (or similarity-invariant) if for each open set 

for every conformal (similarity) f: D ➔ � = f(D) 

i. e.,

f F(y, u(y), v'u(y)) dy 
'\, 

D 

J F(f(x) , u o f(x) , v'(u o f)(x)) dx 

D 

whenever U E 

6.2. Re m a rk. The growth restriction (6.1) is appropriate to 

guarantee IF(u) finite whenever u e w!(D) , see [Kr, p. 27].

The following theorem gives the structure of conformally invariant 

or similarity-invariant variational kernels and generalizes a result of 

M. Grliter's [Gr].

6.3. Th e o r e m. Suppose that a C-function F: ]Rn x (JR x JRn) ➔ JR 

satisfies (6.1). Then IF is conformally invariant (or similarity-in-.

variant) if and only if there' is a c:...function k: ]Rn x JR ➔ JR such that

for a.e. • x e ]Rn 

F(x,u,h) 

Proof. To show the sufficiency,fix D c ]R
n and a conformal 
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mapping f: D ➔ f(D) Pick u E w1 (f(D)) Using the change of vari-p 
able, see [GLM, 6.8; V, p. 113; G, Theorem 6],and the conformality of 

f , we obtain 

f F(y ,u(y) ,17u(y)) dy f IJ(x,f)I k(f(x) ,u o f(x)) 117u(f(x))ln dx

f(D) D 

as desired. 

f k(f(x) , u(f(x))) lf'(x)l
n 117u(f(x))l

n dx

D 

f k(f(x) , u(f(x))) lf'(x)''' 17u(f(x))ln dx 

D 

f k ( f ( x) , u (f ( x) ) ) I 17 ( u o f) ( x) j n dx

D 

f F ( f ( X ) , u o f ( x ) , 17 ( u o f ) ( x ) ) dx ,

D 

To show the converse,we first prove some auxiliary results. 

Suppose that G is an open set in JR.n and that f: G ➔ f(G) G'

is conformal. Suppose, furthermore, that 

for each u E w 1(f(D)) whenever D is a bounded open set in G.p 

6 . 4. L e m  m a. For a. e. x E G 

F(f(x) , u , f' (x)''' h) IJ(x,f) I F(f(x) , u ,  h) 

for each (u,h) E JR. x JR.n . 

Proof. Since the problem is local, we may assume that f is 

defined in an open set containing G and that G is bounded. If 

D c G is open, we obtain by a change of variable (see [GLM, 6.8; V, 

p. 113; G, Theorem 67)
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f F (f ( x ) , u o f ( x ) , V ( u o f) ( x ) ) dx = 

D 
I F(y, u(y),Vu(y)) dy 

f(D) 

J I J(x,f) I F(f(x), u o f(x), Vu(f(x))) dx 

D 

for each u E: W1 (f(D)) Fix c E: IR and h E: IRn .p 
1 h • x + c . Then u E: W (f(D)) for each open D c G p 

Choose M , N and K E: IR such that 

and 

for every x E: G. We show that for a.e. x E: G 

Write u(x) = 

and Vu(x) = h 

(6.5) F(f(x), u(f(x)), f'(x)'''h) = jJ(x,f) j F(f(x), u(f(x)), h) 

Fix 6 > 0 and write 

u6 {x E: G I F(f(x), u(f(x)), f'(x)'''h) 

> jJ(x,f)f F(f(x), u(f(x)), h) + 6} . 

If m(U0) > 0 , pick an open set Uc G such that U0 c U and 

m(U \ U0) < (om(U0))/MK. Then 

Hence 

f I J ( x, f) I F ( f ( x) , u ( f ( x)) , h) dx 

U\U
0 

f I f ' ( x) I n F (f ( x) , u (f ( x) ) , h) dx 
U\U

0 

31 
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f F(f(x), u(f(x)), V(u o f)(x)) dx f F(f(x), u(f(x)), f'(x)>'<h) dx 
u u 

> f F(f(x) , u(f(x)) , f 1 (x)i< h) dx
uo 

> o m ( U O ) + f I J ( x , f) I F ( f ( x) , u ( f ( x) ) , h) dx
u6 

> f IJ(x,01 F(f(x), u(f(x)), h) dx J F(y, u(y), Vu(y)) dy ,
U f(U)

which contradicts the invariance of IF . Hence m(U0) 0 . Similarly,
write 

V0 { x E G I F(f(x), u(f(x)), f'(x)>'<h) + o

< IJ(x,f)I F(f(x), u(f(x)), h)} 

If m(V0) > 0 , pick an open set V c G such that V0 c V and
m(V \ V0) < (6m(V0))/N , From the estimate 

r F(f(x), u(f(x)), f'(x)>'<h) dx 
V\V0
< f (a lu(f(x))IP + � lf'(x)'''hl p) dx � Nm(V \ V0) < om(V0)

V\Vo
we obtain m(V0) = 0 as above. Since m(U0) 0 = m(V0) for each
6 > 0 , the equalion (G.5) follows. 

To complete the proof, write

G' = .{ x E G I (u,h) >+ F(f(x), u, h) is continuous} . 

Then m(G \ G') 0, and if we set 

A {x e: G' I F(f(x), f(x) • h + c, f'(x)>'<h)c,h 
= IJ(x,f) I F(f(x), f(x) • h + c, h)} , 
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then 

Since 

m(G \ A ) = 0c,h 

A 

by ( 6. 5). Hence m(G \ A) 0 , where 

A {x e: G' I F(f(x), f(x) • h + c, f'(x)>'<h) 

= JJ(x,f)J F(f(x), f(x) • h + c, h) 

for all c e: Q and h e: Qn } , 

the continuity of (v,h) <➔ F(f(x), v ,  h) for x EA and the density of 

Q x Qn in JR x JRn imply 

A {x e: G' I F(f(x), f(x) • h + c, f'(x)'''h) 

= IJ(x,f) I F(f(x), f(x) h + C ' h) 

for all c e: JR and h e: JRn } . 

Since the function c � f(x) • h + c is surjectiv e onto JR for fixed 

x e: A and h e: JRn 

, we obtain 

A { x e: G' I F(f(x), u, f' (x)'''h) = jJ(x,f) I F(f(x), u, h) 

for all u e: JR and h e: JRn } , 

and the proof is complete. 

6. 6. C o r o  11 a r y. If IF is similarity-invariant, then for a. e.

X E JRn 

for every A e: JR and (u,h) e: JR x JRn 

Proof. Choose f(x) Ax in Lemma 6. 4. Then for a. e. x e: JRn 
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F(x,u,>.h) 

for each (u,h) E JR x ]Rn . As in the proof for Lemma 6.4, the C-func

tion property yields the desired result. 

Proof for the necessity in 6.3. 

u E JR set 

Fix n -1ho Es For x E ]Rn and 

k(x,u) = F(x,u,h0) .

Pick h E Sn-l and choose an orthogonal mapping f: ]Rn ➔ ]Rn such that 

Then 

f'(x)>'<h 

for each x E ]Rn . Hence Lemma 6.4 implies that for a.e. x E ]Rn 

F(f (x) , u , h) 

for all u E JR . Observe that I J(x, f) I 1 . Now for a.e. x E ]Rn 

k(x,u) F(x,u,h) 

for all u E JR . Write 

and 

Then m(JRn 

Lemma 6.4. 

m(JRn 

\ A) 

G' { x E ]Rn 

I (u,h) >+ F(x,u,h) is continuous and 

F(x,u,,\h) = l>-l n F(x,u,h) for all 

,\ , u E JR and h E ]Rn } 

Ah = { x E G' I F(x,u,h) k(x,u) for each u E JR} 

\ Ah) = 0 for every h E s n-l ' since m(JRn 

\ G I) = 

Using similar reasoning to the proof of Lemma 6.4 we 

= 0 , where 

0 by 

obtain 
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A { x E G' I F(x,u,h) k(x,u) for all u E IR and h E 
sn-l}.

Hence the homogeneity property of F in G' implies that 

A { x E G' I F(x,u,h) k(x,u) lhln 

for all u E IR and h E IRn} , 

which completes the proof. 

6. 7. Co r o 1 1 a r y. Suppose that a C-function F: JR.
n 

x JR. x JR.
n 

+ JR. satisfies (6.1) for p = n . Then IF is similarity-invariant if

and only if there is a C-function k: JR.
n 

x JR.+ JR. such that for a.e.

X E ]Rn 

F(x,u,h) 

for each u E JR. and h E lli.
n 

and that for each u E JR. the function

x � k(x,u) belongs to L
00

(JRn ) . 

Proof. The growth restriction (6.1) implies that for a.e. x E IR
n 

0 < k(x,u) < � + � 
lhl

n 

for every u e: IRn and h e: IRn , h f O . Letting I h I ➔ 00 we obtain 

the desired result. 

6.8. Re m a rk. The case p f n in ( 6 .1) is not interesting. 

fact, if IF is similarity-invariant and p < n it is easily seen 

that F = 0 The same result is obtained if p > n and a = 0 

If for a.e. x e: IRn , F(x,u,h) = F(x,v,h) for every u ,  v e: IR 

and h e: IRn , we write F: IRn x IRn 
➔ IR and F(x,h) = F(x,u,h) for 

short. 

In 

6. 9. Co r o  1 1 a r y. Suppose that a C-function F: JR.n x JR.n + JR.

satisfies (6.1) for p = n Then IF is similarity-invariant if and

only if there is k e: L
00

(JR.n) such that for a.e. x e: JR.n 
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F(x,h) 

for every h E JR.n 

. 
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