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1. Introduction
We consider variational integrals of the form

I(u) = J F(x,%(x)) dx ,
G

. . n
where G 1is an open set in 1R

, u is in Sobolev space w;(c) ,

1 <p <= and F(x,h) * |h|p . Usually the kernels F are assumed

to satisfy certain natural conditions of measurability, convexity and
growth, see e.g. [GLM, M, R3]. 1In Section 3 we shall determine the
structure of the kernels which are assumed to be homogeneous in addition.
The fundamental example |h|p of a kernel of this type turns out to be
typical, i.e., h = F(X,h)llp is always a norm. This fact will be used

. . . . n
in Section 4, where we introduce a new norm in Lp(G) s

lully = [ J F(x,u(x)) dx Jl/p ,
G

called an F-norm. The concept of an F-norm leads to a simple proof for
the lower semicontinuity of the variational integral I with respect to
weak convergence, a fundamental tool in Calculus of Variations introduced
already by L. Tonelli ([T], see also [L, M, S, Rl, R3]. 1In weak topology
the lower semicontinuity of a norm is an elementary fact and it gives a
proof for the lower semicontinuity of a variational integral in our case.
At the end of Section 4 we shall characterize the kernels F whose
induced norm makes Lp(G)rl uniformly convex.

The rest of this paper deals with the conformal invariance of
variational integrals. Section 5 paves the way for the general case
in Section 6. It is well-known that the conformal capacity is conform-
ally invariant. We show in Section 5 that its natural generalization,
the F-capacity, is not necessarily conformally invariant.

In the last section we study the conformal invariance of the

variational integral



I(u) = J F(x,u(x),Vu(x)) dx ,
el

where the kernel F satisfies only the familiar measurability condi-
tions of Carathéodory and the natural growth restrictions. The well-

known example is the n-Dirichlet integral

J |Vu[n dm .
G

We will show that it is a good prototype for all conformally invariant

variational integrals, since every such integral in R" is of the form

I(u) = J k(x,u(x)) un(x)ln dx .
G
M. Griiter [Gr] has obtained the same result in the plane case under
additional assumptions on the regularity of F . He also makes use of
the fact that F does not depend on x . Our proof uses the norm
characterization of the kernels (Section 3) as a model and is based
on the fact that only the euclidean balls remain invariant under all

orthogonal maps.

2. Preliminaries

2.1. DNotation. For each set A in the euclidean space R" R
n> 2, we let A and 9A denote the closure and boundary of A ,

both taken with respect to R" . Given two sets A c B in R" s

A cc B means that A is compact in B . By x * y we denote the
usual inner product of two vectors x and y in r" , the euclidean
norm of x is Ix] = (x x)ll2 For x € R" we use representations
X = (Xl’XZ""’Xn) = Z?=l X.e, . If xe€ R" and r > 0, we let
B(x,r) denote the open ball {y € H{‘I ly - x| <r} , and Sn_l(x,r)
is the sphere 8B(x,r) . Furthermore, we let Q(x,r) denote the open
cube {y € Hﬁil Iyi - Xil <r, i=1,2,...,n} . We shall employ the

abbreviations B(r) = B(0,r) , Sn—l(r) = Sn—l(O,r) , Sn_l = Sn_l(l) ,
Q(r) = Q(0,r) and Q _;(r) =0Q(r) n {x e R" | x; =0}

We let GL(Dfigmn) denote the space of all regular linear maps
A: R" » R" with the sup-norm.
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The Lebesgue measure of a set A c R" will be written as
mn(A) = m(A) .

If Ac Bgl, then C(A) 1is the class of all continuous (real
valued) functions on A . If U 1is an open set in IR , we let Ck(U)
denote the family of all k times continuously differentiable functions
u: U~» R, and CS(U) the family of all u e Ck(U) whose support

spt u is a compact subset of U .

2.2. Sobolev space Wl and ACLP-functions. If A is a Lebesgue
measurable subset of R" , then LP(A) , p > 1, is the Banach space

of all measurable functions u: A + R = R U {-w,0} with the norm

1/p
_ - P, )
Hu"p = "u“p,A [ J |u| dHlJ

A

Given an open set G in R"

, wi(c) is the Sobolev space of functions
u € LP(G) whose first distributional partial derivatives D.u belong to

LP(G) with the norm

n

lhull = full _ + ) ID.,ull_ .

1,p p L Tip
i=1

We let Vu = (Dlu,DZu,...,Dnu) denote the gradient of u . The space

w;,o(c) is the closure of CE(G) in W;(G) .

A mapping f: G - R™ is said to be ACL if f is continuous and
if for each open n-interval Q cc G, f 1is absolutely continuous on
almost every line segment in 6 parallel to the coordinate axes. An
ACL-mapping has partial derivatives a.e. If these are locally LP-
integrable, p > 1, f 1is said to be ACLp. It is well-known that f
is ACLp if and only if f 1is continuous and belongs to W;(D) for each

open set D cc G . For basic properties of Sobolev spaces and ACL-func-

tions see [M].

2.3. C-functions. Let G be an open set in R" . Functions

F: 6 x R" + R satisfying the Carathéodory conditions

x = F(x,h) 1is measurable for all h e Dfn,

h » F(x,h) 1is continuous for a.e. x € G ,



will be called Carathéodory-functions, abbreviated C-functzons. The

following Scorza-Dragoni property, see [ET, p. 235], is well-known.

2.4, Lemma. A function F: G x R" > R s « C~-funciton if and
only if for each open set D cc G and € > 0 there s a conmpact set

CcD such that m(D \ C) < € and F c m s continuous.

x R

2.5. Weak convergence. I1f X 1is a topological vector space and
if X' stands for its dual, then a sequence X eX, n=1,2,...,
is said to comverge weakly to x, € X , abbreviated x > x, weakly

(in X), if

lim f(xn) = f(xo)
n->oo
for all f e X'

In particular, u, > u weakly in Lp(A) means that

lim J u v dm = J u,v dm
—>00 n O
n A
for each v e L9(A) , where q =p/(p - 1) ; if p=1, then q = « .
The following elementary consequence of Hahn-Banach theorem is

well-known, see e.g. [DS, Lemma II.3.27].

2.6. Lemma. Let X be a normed space and x € X n =

3
0;1,2,... . If x> X weakly, then

0

IxAf < Llim x|
0" - =— ""n
n roo

O , . . . n
2.7. Conformal mappings. Let G and G' be domains in IR

A homeomorphism f: G » G' 1is conformal if f Cl(G) and if

[£7Go Bl =[£G (bl
for every x € G and h € R" . Here lA] denotes the sup-norm of a
linear map A Alternatively, a Cl-homeomorphism f 1is conformal if

and only if ]f'(x)[n = [J(x,f)( for all x € G , where J(x,f) de-

notes the Jacobian determinant of f at x . We shall frequently use
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the following fact: Suppose that u s an ACLP-function in G' and
. 1 R R R
that f: G - G' %s a C -mapping. Then v = u o f 18 acL? in G and

vv(x) = f'(x)* vu(f(x))

a.e. tn G ; see e.g. [GLM, 6.10]. As usual, A* is the adjoint of a
linear map A: RrR" > R" .

A function f: G+ R" is ¢ stmilarity if f(x) = A0(x) + h ,
x € G , for some orthogonal map O: R" > R" and for some A = R

A+ 0, and he R .

3

3. Variational kernels

We are mainly interested in variational integrals
I(u) = J F(x,vu(x)) dx,

where F(x,h) = |h[p . Integrals of this type have been extensively
studied, see e.g. [GLM, M, R3]. In this section we shall derive some
alternative characterizations for kernels F of the elliptic and
homogeneous type.

Suppose that G 1is an open set in R" and that the kernel
F: G x R" » R satisfies the following assumptions, cf. [GLM]:

(a) For each open set Dcc G and ¢ > 0 there is a compact
set Cc D with m(D\ C) < £ and F|C < B is continuous.

(b) For a.e. x & G the function h = F(x,h) is convex.

(c) There are constants 1 < p <« and 0 < a < B <« such that

for a.e. x € G
o [hf? < F(x,n) < 8 [n|?

for all h e R" .
(d) For a.e. x € G, F(x,Ah) = ]le F(x,h) for all A & IR and
he R

The kernels F can also be characterized as follows.
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3.1. Theorem. A kernel F: G x R » R satisfies (a)—(d) zf
and only <f it satisfies the following two conditions:

(i)  For all he R" the Junction x v F(x,h) <s measurable in

(ii) There exist a constant p € [1,») and a set Dc G such
that m(G\ D) = 0 and

P=1{hw F(x,h)l/p | x €D}

<8 a uniformly equivalent family of norms <n Rr" .

A family P of norms f£: R" > R is called uniformly equivalent
if there exist constants 0 < a < B < @ such that o |h| < £(h) < B |h|
for all he R" and feP.

Theorem 3.1 is an immediate consequence of the Scorza-Dragoni

property (2.4) and the following lemma.

3.2. Lemma. Suppose thet X is a vector space and that p &
[1,%) . A non—neyalive funclion [: X > R is a norm if and only if

(i) P s convex,

(i)  £fOx)P = AP £(x)? forall X e R and x X,

(iii) £f(x)P =0 implies x =0 .

Proof. Obviously,a norm f: X - R satisfies (i)-(iii). For the
converse, it suffices to show the triangle inequality. Fix x,y € X .
Set f(x) =t and f(y) =s . We may assume that ts # 0 . Write

u=t+s . Now

fP  together with (ii) yield

f(x_w“_xjp<£f(§)p+§f(x)p=t+s=1
u - u t u s u

Thus the condition (ii) implies the triangle inequality.

whence the convexity of

3.3. Remark. A similar reasoning to above gives: For a fixed

p € [1,°) a non-negative function £: X ~ R <s a seminorm if and only
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if the conditions (Z) and (i7) of Lemma 3.2 are satisfied.

A norm f: X - R 1is called strict if f(x +y) = f(x) + £(y)
implies y =0 or x = Ay for some A > 0 .
A kernel function F: G x R" » R is said to be strictly convex

if for a.e. x € G
F(x,ty + (1 - t) h) < tF(x,y) + (1 - t) F(x,h)
for t e (0,1) and y,h € R" , vy¥h.

3.4, Theorem. Suppose that T: G x R" > R satisfies (a)-(d)
for some 1 < p < e . Then F s strictly convex if and only if for a.e.

/p

x € G the norm h -~ F(x,h)1 18 strict.

Proof. The sufficiency easily follows from the strict convexity
of hw [h|P . For the converse,let f(h) = F(x,h)l/p be a norm such
that f° is strictly convex. Fix h,y € R" with f(h + y) = f(h) +
f(y) . We may assume that h,y $ 0 . As in the proof for Lemma 3.2

we obtain

P
1=f(h_:1] <

e It

f{%)p + 2 f@}p =1,

where f(h) =t , f(y) =s and u=t+ s . Observe that t,s €

(0,u) . Thus the strict convexity of P yields
h_y
t s

This completes the proof.

n

3.5. Inner product kernmels. If < , > R" x R" » R is an

inner product in r" , there is a self-adjoint, positively definite
linear mapping T: R" » R with

(3.6) <h,y>=Th * y

for all h,y e R" , and, conversely, by (3.6) each such mapping T
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n

induces an inner product in 1R Thus a norm f in R" 1is induced by

an inner product if and only if there exists a self-adjoint T such that

£(h) = (Th - h)}/2

for all h e R" .
If 8: G » GL(R",R") is a measurable mapping such that for a.e.
X € G the linear map 6(x) 1is self-adjoint and that there exist con-

stants 0 < a < b < = with
alh/? < 8(x) h - h<blnf?

for a.e. x € G and all h e r" , then the kernels
Fe(x,h) = (6(x) h - h)p/2 , 1<p<e,

satisfy (a)-(d). Note that a kernel function F is of the type F if

1/p 6

and only if for a.e. x € C the norm h =~ F(x,h) is induced by an

inner product. Therefore we call kernels F8 inner product kernels.
These kernels have been studied by Yu. G. Reshetnyak [R2, R3] in the case
p = n . They play an essential role in the theory of quasiregular
mappings; see [R2, R3] and also [BI, GLM].

The inner product property is connected to the smoothness of F :

3.7. Theorem. Let F: G x R' » R satisfy (a)—-(d) for p e
[(l,o) . Then T <is an inner product kernel if and only if for a.e.
x e G the function h H’F(X,h)Z/p belongs to CZ(Rn)
Proof. For an inner product kernel F, the function h & F(x,h)z/p
is a ¢”-function in IRn for a.e. x € G . TFor the converse,it suffices
to prove: If f(h) = F(x,h)l/p is a norm such that g = f2 e CZ(IRn) N

then the parallelogram law

g(h +y) + gh - y) =2g(h) + 2g(y)

holds for all h,y e R" ; see [Y, p. 39].
First note that the homogeneity of f implies
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aiaj g(Ah) = aiajg(h) R i,j=1,2,...,n,
for all A #0 and he R" . Letting X -+ 0 we obtain
aiaj g(0) = Biajg(h) , i,j=1,2,...,n,
for all h e R" . Now Taylor's formula yields
n
(3.8) g(h)=l ) 3.9.g(0) h,h
' 2 [ i i3
h|

for all h e R" .
To complete the proof let h,y e R" . By (3.8)

gh+y) + g(h - y)
1

Z aiajg(O)(hi+yi)(hj+ yj) + 5
j=

1 i,

N

G ~—3

=1

1
n
E aiaj g(O)(hihj + yiyj) = 2g(h) + 2g(y)
]

as desired.

13

aiaj g(O)(hi -yi)(hj - yj)

3.9. Remark. Theorem 3.7 yields for p =2 : If hw» F(x,h)

belongs te CP(RP), then T is an inner preduct kernel. TFor p T 2

this is not true. For example, for n > 2 , consider the kernels

n
F(x,h) = E Ihi|p , 1 <p<K o,

i=1

Observe that the norm

£(h) =( ri |hi|P)l/p
i=1

is induced by an inner product if and only if p = 2 . However,
function h + F(x,h) belongs to cP®(®R") for p = 2,3,4,...
Furthermore, h = F(x,h) even belongs to ¢(R™) for p=2k,
k=1,2,...
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4, F-norm

A variational kernel F satisfying (a)-(d) induces a new norm,
called an F-norm in LP(G)n . This leads to a simple proof for the
lower semicontinuity of a variational integral, and we also study the

uniform convexity of Lp(G)n , p¢< (1,») , under the F-norm.

4.1, TF-norm. Suppose that G is an open set in R" and that
F: G x R" » R satisfies (a)-(d) for some p e [l,o) . We denote by

LP(G)" the cartesian product LP(G) x ... x LP(6) (n times) with the
norm

n

llult = E la. b
LP ip

i=1
where u = (ul,---,un) e L))" and Iluillp , 1i=1,2,...,n , is the
usual Lp(G)~norm of u, . We introduce another norm | "F in Lp(G)n,

called an F-norm,

\l/p
HuNF = ( J F(x,u(x)) dxj
G
The assumptions (a)-(d) together with Lemmas 2.4 and 3.2 immediately

yield:

4.2. Lemma. F-norm is a norm in LP(®)" equivalent to the norm

4,3, Remarks. (1) If p=2 and F 1is an imner product kernel,

then LZ(G)n is a Hilbert space under the F-norm.

(2) If A c G is a measurable set, we write

lulg , = ( J F(x,u) dx)l/p
A

for u e LP(A)" . Obviously, HuHF
L?(A)"-norm

A is equivalent to the usual
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4.4, Lower semicontinuity. The concept of an F-norm can be used
to give a simple proof for the lower semicontinuity of the variational

integral

I(u) = j F(x,7u(x)) dx
G
under the assumptions (a)-(d). There exist several proofs for this fun-
damental result in a more general case; see e.g. (D, M, Rl, R3, S].
For a simple proof based on Banach-Saks' theorem see [L]. These proofs
do not make use of the homogeneity assumption (d).

4.5. Theorem. Let 1 and G be as above and let u 1=
0;1,2,... , be a sequence of w;—funcﬁions in G such that Vui - VuO

weakly in P . 7hen

I(uo) < }im I(ui) .

1>

Proof. In LP(G)n we use the F-norm. By Lemma 4.2, Vui -> Vuo
weakly in LP(¢)™ . Thus Lemma 2.6 implies

HVuOHF < %im NVuiHF s

1>

and hence

I(uy) < Lim T(u,)

1-*00

as desired.

4.6. Remarks. (1) The above reasoning can also be used in a
more general situation. Let F: G x Rk x Rnk -~ R satisfy the conditions
(a)-(d) modified in an obvious way (i.e., F(x,Au,Av) = [Afp F(x,u,v) ).
) (u?i),...,u(i))
and ugi) > ugo)

J J

Then the following result holds. Let u
b . 1, .k : (i) (0)
e a sequence 1in Wp(G) . If Vuj > Vuj

P (c) s 3= 1,2,...,k , then

weakly in

1w < 1im 1))

i->00

, 1 =031,2,...
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where

I(u) = J F(x,ul(x),...,uk(x),Vul(x),...,Vuk(x)) dx .
G
(2) It is clear that in the above results we can take any

measurable set A © G instead of the open set G .

4.7. Corollary. Suppose that G c R" is an open set and that

F: G x R' + R satisfies (a)-(d). Furthermore, suppose that Foi G ox R"
> R, 1i=1,2,... , are such that
(1) F. satisfies (a) for each i
1

(ii1) For a.e. x € G , Fi(x,h) >0 forall h € R" and i€ IN.
(iiL) For each e > 0 Lhere 1s « compucl sel C < G such Lhal

m(G \ C) < & and F. > F uniformly in C x R" .
If uw , m=2031,2,... , are w1—funct¢ons in G such that Vu -~

m 0 P m
Vu, weakly in tP(o)t , then

Lim J F (70, () dx > J F(x, 0uy(x)) dx .
g G
Proof. Consider first a set A ¢ G with m(A) < = . Fix € > 0
and choose compact sets C, ¢ A with m(A \ Ck) < L and Fi + F uni-

k k

formly in Ck x Bfl. Now there is an iO such that 1 > iO implies

€
P (x,h) 3 F(x,h) - =

for all (x,h) e C, R" . Theorem 4.5 (cf. 4.6 (2)) yields

Lim

i—)oo

Fi(x,Vui(x)) dx > lim J Fi(x,Vui(x)) dx

i»>o

>

k

m(C, )
J F(X,Vui(x)) dx - ;KKS—E

Ck

>1

lim
i>o0
m(Ck)

F(x,Vuo(x))dx - ;sz—e .

[V
T e,

The last term tends to
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J F(x,VuO(x)) dx - €
A

as k >« , Letting € > 0 we obtain

Llim J Fi(x,Vui(x)) dx > I F(X,Vuo(x)) dx .
1> A A
To complete the proof, note that the absolute continuity of the integral

allows us to choose for each € > 0 a compact set AE c G such that

J F(X,Vuo(x)) dx < J F(x,VuO(x)) dx + ¢
G A
€
Hence

J F(X,Vuo(x)) dx < lim Fi(x,Vui(x)) dx + ¢
i >00
G

>

=

< lim J Fi(x,Vui(x)) dx + ¢
G

1->c0

for each € > 0

4.8. Uniform convexity. The rest of this section deals with uni-
form convexity; especially, we study the uniform convexity of Lp(G)rl ,

p € (1,) , under the F-norm.

A normed space (X,l+l) 1is called uniformly convex if for each
€ >0 there is 6 > 0 such that Ixl <1, |yl <1 and lx-yl > ¢
imply H%X + %y“ <1 -4 . For alternative definitions see [K]. We

use some of them in what follows.

We call a family N of norms g: X > R equiuniformly convex if
for each € > 0 there is & > 0 such that for each g e N the condi-
tions g(x) <1, g(y) <1 and g(x-y) > e imply

N

s
(

o

1 1
g(5x + 5y) <

Further, if U c X 1is a convex set and if F is a family of con-
tinuous functions f: U > IR, then F is called equistrictly convex
if for each compact set C c U and € > 0 there is & > 0 such that

x,y€C and Ix-yl > e imply
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thx v dy) < - e KW
Obviously,an equiuniformly convex family of norms is not equistrictly
convex if dim X > 1 . The connection between the above-mentioned con-
cepts is discussed in 4.13; see also 4.22.
The following lemma is a generalization of McShane's idea [K,

pp. 360-362, McS].

4.9. Lemma. Suppose that X s a normed space and that N <s a
family of norms in X . Let p € (1,%) . Then N is equiuniformly con-
vex Lf and only if for each « > 0 Lhere is § > 0 such Lhal [or every

f e N the conditions f(x) <1, f(y) <1 and f(x-y) > ¢ <Imply

P p
(4.10) f(%x + %V)p < (1 -8) fiil_%%iill_

Proof. The equiuniform convexity of N immediately follows from
(4.10). To prove the converse, it suffices to show that for each e > 0

1,

i

there is & > 0 such that for every f € N the conditions f(x)
f(y) <1 and f(x-y) > e imply (4.10).

N

Let us suppose that there are ¢ > 0 and sequences XY e X

n
and fn N such that fn(Xn) =1, fn(yn) <1, fn(xn ~yn) > e and
+h oo+

1 1 p
f (=x +=y.)
(4.11) lipg 2202 il
n-e E + i’fn(y )
Then limn_)oo fn(yn) = 1 , since otherwise there is g < 1 with fn(yn)
< q for some subsequence denoted again by fn(yn) . Then there exists

p < 1 such that

(4.12) £ Gx +3y )P < GUHE GNP <A+ ()P,

since the function

P
t9(1+t)
1+ tP

is strictly increasing in [0, 1] ; we may choose
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o=(1+qP 1+ qp)'JL 2P Now (4.12) yields
1 L. yp
fn(an + Zyn)

1.1 P
2 + 2fn(yn)

<p<l,

which contradicts (4.11). Hence limn_)m fn(yn) =1, and (4.11) implies

1
lim fn(ZX + Zyn) =1,
n—>ow
which contradicts the equiuniform convexity of N . This completes the

proof.

4.13. Corollary. Suppose that p € (1,») and that F <s
a family of continuous functions f: R" > R such that
(i)  £fOx) = (AP f(x) forall 2 eR, x R, and

(ii) there exist constants 0 < o < 8 < » with
o x|P < £(x) <8 x]P

for all x € R" and feF .
Then F is equistrictly comvex if and only if pt/e

{f1/p | fe F} <s an equiuniformly convex family of norms.

Proof. Suppose that F 1is equistrictly convex. Then each f e F

is strictly convex, cf. [RV, Section 71]. By Lemma 3.2, Fl/p is a

family of norms in R" . Choose
¢ =B8(0,a1/P) .

Then f_l([O,l]) c C for each f e F; hence Lemma 4.9 implies the

FL/e

equiuniform convexity of For the converse let C c R" be a

compact set, C # {0} . Then condition (ii) yields
- - crl/p,
0<KM=sup {g(x) | xeC,gefF } <o,
Hence % fl/p(C) c [0,1] , and Lemma 4.9 implies the desired result.

The above connection between equistrictly convex and equiuniformly
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convex families is not true in infinite dimensional spaces; see 4.22.

4.14. Uniformly convex kernels. Suppose that G 1is an open set
tn R" and that F: G x R” > R satisfies (a)-(d) for p € (1,=)
The kernel F is uniformly convex if there is G' < G such that
m(G \ G') = 0 and that the family F = {h » F(x,h) | x € G'} is equi-
strictly convex.

Corollary 4.13 yields:

4.15. Lemma. Suppose that p e (1,°) . The kernel F: G x R"
+ R Zs uniformly convex if and only <if there is G'c G such that
m(G \ G') =0 and N = {h~ F(x,h)1/p | xe G') is an equiuniformly

convex family of norms.

The next theorem says that all inner product kernels belong to this

class.

4.16. Theorem. Suppose that G is an open set in R" and
that F: G x R® » R s an inner product kermel with p e (1,o) . Then

P <s uniformly convex.

Proof. Fix € > 0 and choose
fl-(l-sz/a)l/2 if e<2

§ =
11 if e>2

The parallelogram law yields that the desired inequality in 4.8 holds

for an inner product norm g(h) = F(x,h)l/p .

4.17. Remark. A strictly convex kernel is not necessarily uni-
formly convex, even though it is continuous. Fix p € (1,o) and let
G = B8(0,1) \ {0} ¢ R" . Define F: G x R" » R by
n ‘X[
F(x,h) =[ E |h11”"‘|) ’
i=1

Then F 1is continuous and a strictly convex kernel, see 3.4. However,
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F is not uniformly convex. To see this,consider sequences hji =
-1/4
a,,a,...,a,) and y, = (-a,,a.,a,,...,a,) , where a, =n
( 15 1’ 3 1) yl ( 1’ 1’ 1) ’ i ’ i

i' . Then F(x,,h.,) =1
1 1

’

i=2,3,... . Choose xi such that Ixi]
= F(x,,v.) and
i’74

N P TN
%1m F(Xi’ 2h. + Zyi) =1,

1
1>

but

lim F(x, ,h, - y,) =2P >0
. i’ i i
i-oo
The next theorem characterizes the kernels F for which Lp(G)n s
p € (1,o), is uniformly convex under the F-norm. The sufficiency part

generalizes an idea of McShane's [McS].

4,18, Theorem. Suppose that G s an open set in R"  and
that F: G x R" » R satisftes (a)-(d) for some p € (1,») . Then
P s uniformly convex under the F-norm <f and only if F %8 unt-

formly convex.

Proof. Suppose first that F is uniformly convex. Fix € > 0
and choose f,g Lp(G)rl such that HfHF =1, HgHF =1 with

If - git,, > e . Write

F

_J P
A= lx e G | F(x, f(x) - g(x)) > 4 (F(x, f(x)) + F(x,g(x))) ¢ .

Then A 1is measurable,and by Lemmas 4.9 and 4.15 there is § > 0 such
that

(4.19) F(X’%f(x)+ %ghd) <1 _6):ﬂx,f(xn ;FTx,g(xD
for a.e. x € A . Since
f F(x, £(x) - g(x)) dx
G\A
<€ [ @ e + 76 g0 ax ¢ =,
G



22

we obtain

P P
J F(x, f(x) - g(x)) dx > P - %r = %r.
A
B -1/p p p p,-(p+l)
Now IIf g"F,A > €2 , and hence max {"f"F,A’ "g”F,A} > € 2 .

Thus the condition (b) and (4.19) yield

[ Grec£60) + 3G 8G0) - B, GO + Ja() ax
G

> [ RO, £0) + 3G, 800) - F(x, FG0) + Fa(x)) dx

A
2 % J (F(x, f(x)) + F(x,g(x)))dx > & €Pz"(p+2) .

Hence

-(p+2)

|
Hh
+
[
oo
o
[N

yen P P _ P
ﬂfHF + HgHF §et 2

N
B[

<1 - 8P (PF2)
which implies the desired result.

To prove the converse, suppose that there exist € > 0, AcG
Kt Vi G R, k=1,2,... , such that m(A) > 0
and for all x €A, F(x,u(x)) <1, Flx,v (x)) <1,

and sequences u

1 1 1
F(x ,uk(x) vk(x)) >2¢ and F(x, 2uk(x) + 2vk(x)) > 1 - X cf.
Lemma 4.15. By approximation we may suppose that F(x ,uk(x)) <1 and
F(x ,Vk(x)) <1 in A . Now the condition (a) gives a compact set

C c A such that m(C) > 0 and F|C " IRn is continuous. Fix k € N.

The continuity of F allows us to choose for each y € C an

C x R"

open neighbourhood Ny K such that for every x € Ny K nc

Flx,u (y)) <1, F(x: v, (y)) <1, Flx,uly) - vk(})) > e and

F(x, %uk(y) + %vk(y)) > 1 - % . Since C is compact and m(C) > 0 ,

there is y, € C with m(Nyo’k nc)>0. Write h, = uk(yo) yoVy =
vi(yy) and B = Nyo,k nNeC . Set

- ) i \“1/9

.Ll \X ll\Dk [11 XB
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and

g () = n(8 ) /Py g

stands for the characteristic function of B, . Then f

where k K

X
By

and g, are measurable,

f F(x ,fk(x)) dx < 1 and J F(x ,gk(x)) dx <1

G G

c 1Pce)?
Thus £, ,g, €L ()", Mf iy <1, lgly <1 and

- b . -
£, - gty J F(x, £, (x) - g, (x)) dx
G
= m(B )_l F(x,h -y, ) dx > ¢
k >k k -
By

Furthermore,

1 1P -1 L 1 .2

156 + 58 F m(B, ) ) F(x, She t 5y ) dx > 1 - ¢,

Bk

which tends to 1 as k » = . This contradicts the uniform convexity

of Lp(G)n under the F-norm, and the proof is complete.

4.20. Corollary. OSuppose that F: G x R" > R is a unt formly

convex kernel. If u € W;(G) , m=0;1,2,... are such that u g

in LP(Q) with

(4.21) mj F(x, 7u (x)) dx < J P(x, Tug(x) dx
m->o0 m
G
then u >y in W;(G)

Proof. We use the F-norm in Lp(G)n . Since Lp(G)n is uniformly
convex, it suffices to show that Vum > Vu0 weakly in LP)™ ; cf.
Theorem 4.5 and [HS, p. 233]. This is easily seen by standard reasoning.
Note that (4.21) implies the boundedness of HDjume , jJ=1,2,...,n .
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4.22. Remark., Corollary 4.13 connects equistrictly convexity
and equiuniform convexity in R™ . Such a result is not true in in-

finite dimensional spaces, since the unit norm ball is never compact in

—

an infinite dimensional normed space, cf. e.g. [Y, p. 85]. TFor example,

consider the strictly convex function I: Lp(G) - R ,

I(u) = j F(x,u(x)) dx ,
G

Il/p

where F is as in 4.17. By Theorem 4.18,the F-norm is not uni-

formly convex though the singleton {I} 1is equistrictly convex.

4.23. An application to the Calculus of Variations. For a bounded

T fix u. e w;(c) . Write

open set C in IR 0

_ . s _ _ 1 .
F={wG->R|u-uyje wp,O(G)}

Function v in F is called an extremal for the variational integral

I(u) = J F(x, 7u(x)) dx
G

with boundary values U, if

I(v) = inf {I(u) | ueF}

Suppose that F: G x R' > R is a uniformly convex kernel. Since
VF = {Vu | ue F} is a convex and closed set in Lp(G)n, it contains
a unique element Vv with minimal F-norm. This proves the existence

and the uniqueness of the extremal with fixed boundary values Uy

5. F-capacity and conformal mappings

For a given norm f: R" >+ R and a constant p e (1,0) we write
F(h) = f(n)P , he r" Suppose that G 1is a domain in R"  and that
CO,C c 3G are compact sets. The F-capacity of CO and C vrelative to

G is the number
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capF(CO,C;G) = inf { j F(Vu) dm | u € W(C,,C36G) },
G

where

W(CO,C;G)

={uec(GUC,UC) | u is AcL®? in G <0 and u

0

c2 1}

0 » Ve

We call an F-capacity conformally invariant (or similarity—invariant)

if for each domain G ¢ R™ and all compact sets C C c 3G

O bl
capF(CO,C;G) = capF(h(CO) ,h(C) ; h(G))

for each conformal mapping (similarity) h defined in some open neigh-
bourhood of G . If f is the euclidean norm in IR" , the F-capacity
is the familiar p-capacity, which is known to be conformally invariant
in the case p = n . This follows also from Theorem 6.3, where a more
general situation is studied. In this section we shall prove the fol-

lowing theorem.

5.1. Theorem. The F-capacity s similarity—invariant i1f and

only if there exists X > 0 such that TF(h) = >\|h|n for all h e B
Theorem 5.1 immediately yields

5.2. Corollary. The F-capacity is conformally invariant if and
only if there exists X > 0 such that TF(h) = >\|h|n for all h e RrR"

Since the conformal invariance of F-capacity, F(h) = X[h[n , is
obtained from Theorem 6.3, we shall consider only the converse part.

The proof is divided into four lemmas.
n-1

Write g = flsn—l: S > R, %y = min g and BO =max g , Then
0 < e < BO < o . Furthermore, ag = BO if and only if for some X > 0,
f£(h) = A |h| for all he R" . Tor x,<sS" ! we set

0

LX0= {tx, | t e R}

X

Let P be the projection of R onto L , lhee, Poo(x) = (xvx.)x. .
0 %0 Xg 0770
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1

5.3. Lemma. Suppose that xg € g (BO) . Then f(x) > f(PXO(X))
for all % e R" .
Proof. Write vy, = x./B, ; then f(y,) =1 . Fix x € R . We
0 0'"0 0

may assume that f(x) = 1 and that PX (x) = WYg s M > 0 . Suppose
that u > 1 , Since 0

U
=< o= = [uygl = [, GO =[x xyl [x5] < [x]
BO BO 0 X, 0 0

n-l( —l)

it follows by elementary geometry that there are y € S BO

and

t « (0,1) such that

zg = ty + (1l -t) xe {syo | s (1,u)}
In particular, f(zo) > f(yo) =1 . On the other hand, f(y) < BO|y| =13

hence the convexity of f yields
1< flzg) < tf(y) + (1 - ) £(x) <1,

which is impossible. Thus n < 1 and f(x) > f(PX (x)), as required.
0
Fix X € ghl(BO) . Let T: R® > R® be an orthogonal mapping
such that Te, = Xg Write G =TQ(l) , C, =T{x € 3Q(1) | X, = -1}

1 0
and C = T{x e 3Q(1l) | X, = 1}

5.4, Lemma. capF(CO,C;G) = Ban—p .

Proof. If u e W(CO,C;G) , then Lemma 5.3 yields

|P

(5.5) F(vu) > F(PXO(VU)) = 88 [ Vu " X

in & . Now Holder's inequality implies for x e TQ
1 0 1
p-1 P
1< [ [ [Tul + tx)) xol dt) <2 J [oulx + txg) » x4|" dt,
-1

n-l(l)
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) - x0|p dt dm_

j F(Vu) dm > Bg f f [Fu(x + txg -1

TQ _,(1) -1

p 1-p _ P ,0-p
> 8, mn-l(Qn-l(l)) 2 =8y 2 .

B

Next set v(x) = (x1 +.1) . Then u, =V o 771 belongs to W(CO,C;G)

and
-1 .
VuO(X) = TVv(T "x) =

in G . This yields

~ oP “p _ @b o,N-D
J F(Vuo) dm = 80 f 25 dm = BO 2
G G

and thus
.c) = gP 7P
CaPF(CO,C,G) o 2 s
as required.
5.6. Lemma. If F-capacity is similarity-invariant, them p = n .

Proof. Let h(x) =Ax , A %0, be adilation. Set G' = h(G) ,

Cé = h(CO) and C' = h(C) . Now u e W(CO,C;G) if and only if
-1

uoh e WCHLC';G') . Fix u e W(CO,C;G) . Then
7(u o h_l)(x) = %Vu(h_l(x))

in G' and thus

J F(V(u o h—l)) dm

AP j A F(va) dm
G!' G

= [AM7P J F(Vu) dm .
G
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So Lemma 5.4 yields for each A # 0
P 407D _ " ot.ory = n-p .
By 2 capp(Cy,C'3G") By capy(Cy,C36)
- |A[n—p Bg o0p :
hence p = n as desired.

The next lemma completes the proof of Theorem 5.1.

5.7. Lemma. If o, < B

0 , then F-capacity is not similarity-

0
invariant.

Proof. Fix Yo € g_l(ao) . Let 0: R" » R" be an orthogonal
mapping with O(XO) =Y - Write G' = 0(G) , C! = O(CO) and C' =

0
0(C) . Suppose that Uy is as in the proof of Lemma 5.4. Set Vo =
ug 0 O-1 . Then Yo belongs to W(C!',C';G') and
Vv (x) = 0Vu (O_l’x)\ =1y
0"’ ot YT
in G' ; hence

capF(Cé,C';G') <

Q—-~

n [ 1 ‘D
= P = P
F(Vvg) dm = ay J [2y0| dm
G

of 2" < g8 2" =

0 = capF(CO,C;G) ,

which conlradicts the similarity invariance.

6. Conformally invariant variational integrals

Suppose that G 1is an open set in R" and that F: G x R x R" =+
IR 1is a C-function in G x (IR x Hfl) . Suppose, furthermore, that there
exist constants o € [0,») , B € (0,o) and p e [1,») such that for

a.e. x € G

(6.1) 0 < F(x,u,h) < olul® + 8 |n[®
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for all (u,h) e R x R" . Setting F(x,u,h) = B!hlp for x § G we
may assume that F: R'x Rx R'> R .
If Dc IRn is an open set and if u € W;(D), then the variational

integral

IF(u) = f F(x,u(x), Vu(x)) dx
D

exists and is finite. The variational integral IF is conformally in-
variant (or similarity—invariant) if for each open set D © ¢ IR and

for every conformal (similarity) £f: D = ¥ = f£(D)

IF(u) = IF(u o f)

F(y,u(y),v(y)) dy = I F(f(x) ,uof(x), V(uof)(x)) dx
D

e —

l N
whenever u € WP(D) .

6.2. Remark. The growth restriction (6.1) is appropriate to
guarantee IF(u) finite whenever u W;(D) , see [Kr, p. 27].

The following theorem gives the structure of conformally invariant
or similarity-invariant variational kernels and generalizes a result of

M. Griiter's [Gr].

6.3. Theorem. Suppose that a C-function F: R" x (R x R") » R
satisfies (6.1). Then Ip 18 conformally invariant (or similarity-in-,
variant) if and only if there:is a C—function k: R" x R » R such that
for a.e. "x € R"

F(x,u,h) = k(x,u) |[h|"

for each ue R ==1 he R" .

Proof. To show the sufficiency,fix D c R" and a conformal
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mapping f: D » f(D) . Pick u e Wé(f(D)) . Using the change of vari-
able, see [GLM, 6.8; V, p. 113; G, Theorem 6],and the conformality of

f , we obtain

F(y,u(y), Vu(y)) dy = | [J(x,£)| k(£(x),u o £(x)) [Vu(£(x))|" dx

£(D)

K(£(x) , u(£(x))) [£'(x) ™ [Tu(£(x))|" dx

]

]
O — O — O —

K(£(x) , u(£(x))) |£'(x)* vu(£(x))|" dx

K(£(x) , u(£(x))) |V(u o £)(x)|" dx

]
O—

F(f(x),u o f(x),V(u o f)(x)) dx ,

H]
Ot—

as desired.
To show the converse,we first prove some auxiliary results.
Suppose that G is an open set in IR" and that f: G » £(G) = G'

is conformal. Suppose, furthermore, that
IF(u) = IF(u o f)
for each u € W;(f(D)) whenever D is a bounded open set in G .
6.4. Lemma. For e«.e. x € G
F(£f(x),u, £f'(x)*h) = |J(x,£)| F(£(x),u,h)
for each (u,h) € R x R" .
Proof. Since the problem is local, we may assume that f is
defined in an open set containing G and that G 1is bounded. If

D c G is open, we obtain by a change of variable (see [GLM, 6.8; V,
p. 113; G, Theorem 67)
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JF(f(x) w0 £(x), (w0 £)(x)) dx = j F(y,uly) , vu(y))

D

[

D

for each u e W;(f(D)) ., Fix ce R and he R" . Write u(x)

h»+*x+c.

nen

o

y
£(D)

J(x,£)| F(£(x) ,u o £(x),vu(f(x))) dx

Then u € w;(f(D)) for each open D € G and Vu(x) =

Choose M,N and K € IR such that

and

for every
(6.5)

Fix &8 >0

If m(Ué) >
m(U \ U5) <

Hence

[£1(G™ <M, afu(£x) [P+ 8|n|P <k

a |uCEx)) [P + g [£'(x)*n|P < N

x € G . We show that for a.e. x € G

31

F(£(x) , u(f(x)), £'(x)*h) = [I(x,£)| F(f(x), u(f(x)),h) .

and write

Ué ={xegG ’ F(f(x) ,u(f(x)), f'(x)*n)

> |J(x,£)| F(£f(x),u(f(x)),h) + &} .

0 , pick an open set U c G such that Ud c U and
(6 m(Ug))/MK . Then

f |3(x,£)| F(£(x) , u(£(x)), h) dx

U\Ué

Jf [£1 ()™ FOE(x) 5 u(£(x)) » h) dx
U\Ué

A

MKm(U \ Ué) < Gm(Ué)
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j F(£(x) , u(£(x)), 7(u o £)(x)) dx = j F(£(x) , u(£(x)) , £'(x)%h) dx
U U

> [ RGO L uEG0) L 1 Gxn) ax
UG
> em(uy) + J |3(x,£)| F(£(x), u(£(x)),h) dx
Us
> j |3(x,£)| F(£(x), u(£(x)) , h) dx = Jf F(y,u(y) , vuly)) dy ,
i £(U)
which contradicts the invariance of I, . Hence m(Ug) =0 . Similarly,

write

Vg = {x € G | F(f(x) ,u(f(x)), £f'(x)*h) + ¢

< |Ix,E)| FOE(x) , u(£(x)),h)} .

If m(Vﬁ) > 0 , pick an open set V c¢ G such that V<S c V and
m(V \ Vd) < (6m(Vd))/N . From the estimate

[ R(£0) L u(£(0) , £1(x)%h) ax

V\Vd

< J (o JuC£(x))|P + g [£'(x)*h|P) dx < Nm(V \ V) < Gm(Vd)
V\V,

we obtain m(Vé) = 0 as above. Since m(Ud) =0 = m(VG) for each
§ > 0, the equation (6.5) follows.

To complete the proof, write
G' = {x €6 | (u,h) » F(f(x),u,h) is continuous} .
Then m(G \ G') = 0, and if we set

A L ={xeg | F(£(x), f(x) » h + c, £'(x)¥*h)

= [J(x,f)| F(f(x),f(x) * h+c,h)},
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then m(G \ AC h) =0 by (6.5). Hence m(G \ A) = 0 , where

1)

A= N A .
cEQn c,h
he Q
Since
A={xeG | P(f(x),f(x) » h + c, f'(x)%h)

= |J(x,f)| F(f(x),f(x) * h+ ¢, h)

for all c € Q and hGQn},

the continuity of (v,h) = F(f(x),v,h) for x € A and the density of
Q XQn in R x R imply

A={xeG | F(£f(x),f(x) * h+c, f'(x)%h)
= [J(x,f)| F(f(x),f(x) » h+ c,h)

for all ¢ € R and hEIRn}

Since the function ¢~ f(x) * h + ¢ is surjective onto IR for fixed

x €A and h € IRn , we obtain

A= {xeG | PF(f(x),u, f'(x)*h) = |J(x,f)| F(f(x),u,h)

for all u € IR and hEIRn},
and the proof is complete.

6.6. Corollary. If IF is similarity-invariant, then for a.e.

F(x,u,Ah) = [A{n F(x,u,h)

for every A € R and (u,h) € R x R" .

Proof. Choose f(x) = Ax in Lemma 6.4. Then for a.e. x € R"
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F(x,u,Ah) = [A{" F(x,u,h)

for each (u,h) € IR x IRn . As in the proof for Lemma 6.4, the C-func-
tion property yields the desired result.
n-1

Proof for the necessity in 6.3. Fix ho €S . For x € R" and

u e R set

k(x,u) = F(x,u,ho) .

1

Pick h e §" and choose an orthogonal mapping f: R" » R" such that

f(ho) = h . Then

£1(x)%h = £ 1(h) = hy

for each x € R® . Hence Lemma 6.4 implies that for a.e. x € R
F<f(x)auyh0) = F(f(x),u,h)
for all u e IR . Observe that [J(x,f)l =1 . Now for a.e. x € R"

k(x,u) = F(X’u’hn) = F(X,U,h)
for all ue R . Write

G' = {x € Rr" { (u,h) » F(x,u,h) is continuous and
F(x,u,Ah) = IA[n F(x,u,h) for all
A,ue R and he R"}
and
A = {x < G' | F(x,u,h) = k(x,u) for each u e R}

Then m(R" \ Ah) =0 for every h e g1 , since m(R" \ G') =0 by
Lemma 6.4. Using similar reasoning to the proof of Lemma 6.4 we obtain

m(R™ \ A) = 0 , where
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A= {xeG" | F(x,u,h) = k(x,u) for all ue R and he Sn-l}.

Hence the homogeneity property of F in G' implies that
A={xeG' | F(x,u,h) = k(x,u) |[h|" for all ue R and he R},
which completes the proof.

6.7. Corollary. OSuppose that a C-function F: R" x R x R"
+ R satisfies (6.1) for p =n . Then I s similarity-invariant if
and only if there is a C-function k: R" x R ~ R such that for a.e.
n
x € R
F(x,u,h) = k(x,u) |[h["
for each u € R and h € RY and that for each u e R the function

x = k(x,u) Dbelongs to L7(R™)

Proof. The growth restriction (6.1) implies that for a.e. x & Rr"

n
0 < k(xu) < ol 4 g

Inf”

for every u € R and he R", h # 0 . Letting |h| + «» we obtain

the desired result.

6.8. Remark. The case p + n in (6.1) is not interesting. In
fact, if IF is similarity-invariant and p < n , it is easily seen
that F = 0 . The same result is obtained if p >n and a =0 .

If for a.e. x € R", F(x,u,h) = F(x,v,h) for every u,v € R
and h e R", we write F: R" x R® + R and F(x,h) = F(x,u,h) for

short.

6.9. Corollary. Suppose that a C-function F: R x R" - R

satisfies (6.1) for p =n . Then I is similarity-invariant if and

only if there is k € LY(R™)  such that for a.e. x € r"
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F(x,h) = k(x) [n|"

for every h e Rr" .

(BI]

(D]

(Ds]

(ET]

(6]

[GLM]

(Gr]

(HS]

(K]

(Kr]
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