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Blockchain-based Resource Trading in Multi-UAV
Edge Computing System

Runchen Xu, Zheng Chang, Senior Member, IEEE, Xinran Zhang
and Timo Hämäläinen, Senior Member, IEEE

Abstract—Unmanned aerial vehicle (UAV) assisted mobile
edge computing (MEC) systems have emerged as a promising
technology with the capability to expand terrestrial networks.
UAVs, working as edge computing nodes and mobile base stations,
can be deployed closer to user equipment (UEs). However, with
the rapid increase of UEs, the scarcity of spectrum resources
and computing resources has become a critical challenge for
future mobile communication systems. Additionally, the inherent
characteristics of wireless transmission and untrusted broadcast-
ing pose significant security and privacy concerns for multi-
UAV networks. To address these issues, this paper presents a
blockchain-based resource trading mechanism (BRTM) and a
double auction-based resource trading algorithm (DARA) for
multi-UAV edge computing systems. It combines blockchain
technology with double auction theory to ensure the security and
fairness of resource trading. The relations between UEs and UAVs
as a two-stage Stackelberg game is formulated and a pricing-
based incentive strategy is proposed. The proposed scheme
encourages active participation from both UEs and UAVs while
maximizing the sum of their utilities. The security assessment and
numerical outcomes show that the proposed method is effective
and outperforms other benchmark schemes.

Index Terms—Unmanned aerial vehicle (UAV), mobile edge
computing (MEC), blockchain, resource trading, double auction
theory.

I. INTRODUCTION

A. Background

IN recent years, the proliferation of mobile devices and the
increasing demand for real-time and data-intensive appli-

cations have posed significant challenges to traditional cloud
computing infrastructure. To address these challenges, Mobile
edge computing (MEC) has emerged as a promising paradigm
that brings computation, storage, and networking capabilities
closer to the network edge. In MEC, user equipment (UEs) can
purchase spectrum and computing resources and then offload
computational tasks to a closer edge computing node for
further execution. By leveraging the computational resources
of edge servers, MEC reduces latency, enhances application
performance, and enables the efficient delivery of services
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to end-users. However, terrestrial network coverage is limited
in remote areas, including mountains and islands, as well as
areas affected by earthquakes. In this context, unmanned aerial
vehicle (UAV) assisted MEC have emerged as a promising
technology with the capability to expand terrestrial networks.
In this case, high-altitude platforms (HAPs) and UAVs are
introduced into the system. HAPs, situated at stratospheric
altitudes, possess extensive coverage capabilities and substan-
tial payload capacities [1]–[3]. On the other hand, UAVs
exhibit limited coverage, but excel in mobility and flexible
deployment, making them suitable as airborne base stations
and edge computing nodes [3]–[5].

Despite Multi-UAV MEC have attracted broad interests
from industry and academia for various types of aerial access
Internet of Things (IoT) network applications, there are still
some key challenges that need to be addressed. On one hand,
in UAV-assisted networks, each UAV has limited spectrum
and computational resources, so it is necessary to design a
reasonable joint resource trading mechanism to ensure the
effective use of resources and prevent selfish behavior. On the
other hand, the inherent characteristics of wireless transmis-
sion and untrusted broadcasting pose significant security and
privacy issues for Multi-UAV networks. Ensuring the integrity
of resource transaction information against tampering is thus
a critical aspect that necessitates careful consideration within
such a system.

Focusing on improving resource utilization and fairness of
transactions, auction theory has been used to solve the resource
transaction problem of wireless networks in recent years.
Auction theory serves as the fundamental mechanism for the
allocation of resources, price determination, and decision-
making processes. It offers a well-structured approach that
promotes efficient and equitable resource allocation between
users and service providers.

Moreover, to guarantee the security of resource trading
and enhance the trust of parties involved, blockchain-based
wireless networks emerge as a promising solution. Blockchain
is an innovative distributed ledger technology, which functions
in a peer-to-peer decentralized fashion, allowing transactions
to be efficiently recorded among multiple participants in a
verifiable and permanent manner without the need for a central
authority. The utilization of blockchain technology offers the
potential for executing resource trading within a decentralized,
clear, and secure marketplace.
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B. Related Work

To facilitate the usage of spectrum resources, cognitive radio
systems have been proposed to enable efficient and dynamic
use of spectrum and have emerged as a promising solution to
the spectrum scarcity challenge [6], [7]. Lakew et al. [8] in-
vestigate a dynamic heterogeneous aerial access IoT (AAIoT)
network consisting of a HAP, multiple UAVs, and internet
of things devices (IoTDs). Then they solve the problem of
resource allocation of the network thus maximizing the service
satisfaction for IoTDs while minimizing total energy consump-
tion. Xiaobin et al. [9] propose a hybrid Stackelberg game for
managing communication and computation resources. Hu et
al. [10] apply contract theory to solve the problem of optimal
bandwidth pricing for multiple UAV operators at a macro base
station (BS), incentivizing both parties to engage in resource
trading.

In recent years, blockchain technology [11], [12] has re-
ceived increasing attention from researchers due to its de-
centralized, tamper-proof, transparent and traceable features.
Initially, blockchain technology emerged from Bitcoin, but
it has evolved to encompass the field of mobile computer
networks. The authors of [13] extensively study the potential
of blockchain for spectrum sharing and identified several
scenarios for its productive implementation. Furthermore, how
to motivate the miners to participate in blockchain receives
increasing interests. Guo et al. [14] investigate a incentive
mechanism under the edge-computing-enabled blockchain to
encourage the participation of blockchain. They formulate a
two stage Stackelberg game model to optimize the utility of
miners and edge service provider. Qiu et al. [15] propose a
consortium blockchain-enabled spectrum trading framework to
improve transaction security without relying on third parties.
In addition, the authors investigate two pricing schemes,
including nonuniform pricing and uniform pricing. Wang et
al. [16] propose a consortium blockchain for vehicular edge
computing to secure the resource sharing process between
service requesters and vehicles. Additionally, a contract-based
incentive mechanism is developed to motivate vehicles to
help offload tasks from service requesters. Ling et al. [17]
propose a blockchain radio access network to develop a large
self-organized RAN by virtually combining multiple entities
without relying on a highly powerful network center. Wang et
al. [18] propose a blockchain-aided distributed access control
scheme for UAV computing networks to realize autonomous
management of identity, attributes and access policies for
UAVs. In addition, to overcome the challenges posed by
high communication complexity and scalability in blockchain,
the authors perform a committee election utilizing Verifiable
Random Function (VRF) and implement optimization through
sharding.

Auction theory was originally used in the field of eco-
nomics. In recent years, auction theory has been an effective
way to solve the resource trading problem [19], [20]. In order
to designate the most suitable user based on user reputations,
the authors introduce a selection methodology grounded in
the fixed price incentive scheme (RSFP) [21]. Zhu et al. [22]
present BISA, a blockchain-based two-stage secure spectrum

intelligent sensing and sharing auction mechanism, to guaran-
tee secure spectrum auction. The authors design a unit-utility-
based auction algorithm (UUA), which allocates the spectrum
resources of primary users (PU) auctions to secondary users
(SU) to maximize the utility of SUs. To address the problem
of multi-unit spectrum auction, an ascending-price progressive
auction algorithm (APA) is proposed [23], which introduces
Pareto optimality as the measurement for evaluating the effi-
ciency. Ji et al. [24] propose a reverse auction-based incentive
mechanism (RAIN) for mobile crowdsensing systems to op-
timize the composition of workers in the system meanwhile
reducing the long-term system cost.

C. Motivation and Contributions
The above works do not take account of the joint trading

of spectrum and computing resources in Multi-UAV MEC
scenarios. Moreover, the transaction mechanism of blockchain-
based multilayer airborne networks has not been sufficiently
explored, which is crucial in the context of heterogeneous
networks.

Motivated by the aforementioned observations, in this paper,
we exploit the blockchain technology to devise a secure
resource trading and sharing mechanism. In order to optimize
the pricing of UAVs’ spectrum and computing resources, and
the amount of UE required resources, we establish a two
stage Stackelberg game to achieve optimal results for both
UAVs and UEs. Furthermore, we maximize the social welfare
by employing the double auction method. Comparing with
the previous works, the contributions of this paper can be
summarized as follows:

• In this paper, we investigate a multi-UAV edge com-
puting system, comprising of a HAP, multiple UAVs,
and multiple UEs with varying quality of service (QoS)
demands. The integration of HAP and UAVs in an edge
computing framework presents an innovative solution to
address the growing demand for high-quality and low-
latency services in various applications, such as disaster
response, surveillance, and communication in remote or
densely populated areas.

• We propose a blockchain-based resource trading mecha-
nism (BRTM) to address security risks. The UAVs are
responsible for block generation by means of mining,
while the HAP collects information regarding UAVs and
user equipment service requirements and devises a bid-
ding strategy. Then the auction outcomes are documented
in a smart contract and added to the blockchain.

• We propose a pricing-based incentive mechanism to en-
courage resource trading between UAVs and UEs. UAVs
serve as sellers with the authority to price their spectrum
and computing resources, while UEs act as buyers by
specifying the desired resource quantity and providing
compensation to UAVs. To address the allocation con-
cerns arising between UAVs and user equipment clusters
(UECs), we introduce a double auction-based resource
trading algorithm (DARA) that maximizes social welfare
by matching UECs with UAVs, taking account of the
private information and geographic locations of both
parties.
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Fig. 1. System model.

• The impact of the number of UEs and UAVs, the total
available resources of UAV and the computational task
size are analyzed in the simulation. The simulation results
demonstrate that the proposed DARA scheme is effective
in providing incentives and outperforms other benchmark
schemes concerning the evaluated performance parame-
ters.

D. Organization

The rest of this article is organized as follows. The system
model is introduced in Section II. In Section III, we present
the BRTM. In Section IV, we present a pricing-based incentive
mechanism and formulate the utility functions for UEs and
UAVs. The solution for the optimal resources trading and
DARA are given in Section V. Numerical results and analysis
are shown in Section VI. Finally in Section VII, we conclude
the paper.

II. SYSTEM MODEL

A. System Model

The system model is shown in Fig. 1. We consider a Multi-
UAV MEC consisting of three layers: the UE layer, the UAV
layer and the HAP layer. The UE layer comprises devices with
limited power and computing capacity, which request spectrum
resources and computing resources from the UAV layer and
then offload the computing tasks to UAV. In the UAV layer,
UAVs are characterized by easy deployment, flexible mobility
and autonomous operation, which can bring them closer to
the users. Therefore, the UAVs are deployed as aerial base
stations, which allows them to provide spectrum resources and
computing resources to the user equipment clusters (UECs) at
the edge of the network. Meanwhile, the HAP layer acts as an
auctioneer to collect necessary data from both UAVs and users,
in order to determine the optimal matching strategy between
the user clusters and UAVs, and to ultimately complete the
auction. The main notations used in this paper are listed in
Table I.

Table I
NOTATIONS AND DEFINITIONS

Notations Definitions

M/ M Set of UEs/ number of UEs

N / N Set of UAVs/ number of UAVs

K/ K Set of UECs/ number of UECs

Bj The available spectrum resources of UAV

Fj The available computing resources of UAV

bij The spectrum resource sold form UAV j to UE i

fij The computing resource sold form UAV j to UE i

pj The spectrum resource price of UAV j

fij The computing resource price of UAV j

UUE
ij The utility of UE i from UAV j

UUAV
ij The utility of UAV j

Usw The social welfare of system

gij The channel power gain between UE i and UAV j

Pm The transmission power of UE

δ2 Noise power spectral density

T1 Maximum tolerated transmission delay

T2 Maximum tolerated execution delay

wi Task size in bits of UEs

vi CPU cycles needed to execute a bit of UE’s task

dki The distance from the UAV j to the UEC k

uj The speed of UAV j

B. System Assumption

In this model, we assume that multiple UAVs are randomly
distributed within the coverage area of the HAP. The set of
all UAVs is denote by N = [1, 2, ..., N ]. In addition, without
loss of generality, there are M UEs randomly deployed in the
service area of the HAP, where the set of all UEs is denote by
M = [1, 2, ...,M ]. UEs are clustered into K UECs according
to their respective locations. The set of all UECs is denote
by K = [1, 2, ...,K]. The HAP can be deployed in a fixed
position in the stratosphere [25] and its height to the ground
be fixed as Hh. The horizontal position of HAP is expressed as
lh = (xh, yh). In addition, for simplicity, it is assumed that all
UAVs are deployed above the HAP’s coverage area at a height
of Hj . The horizontal location of UAV j is represented by lj =
(xj , yj). Similarly, the horizontal location of the UE i ∈ N
is represented by li = (xi, yi). The horizontal location of the
center of UEC k is represented by lk(xk, yk). We define Bj

and Fj to be the available spectrum resources and computing
resources of UAV j, respectively.

To facilitate the implementation of computation offloading,
UEs are required to procure spectrum resources and computing
resources from the UAVs. Let Bj and Fj be the available spec-
trum resource and computing resource of UAV j, respectively.
We make the assumption that the unit price of spectrum for
UAV j is denoted as pj , while the quantity of spectrum sold
UAV j to UE i is bij . Similarly, we define the purchase strategy
of computing resource from UAV is fij , with qj denoting the
corresponding price set by the UAV. We assume that all UAVs
and UEs are rational and self-interested. For UE i, in order to
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Fig. 2. Framework of Blockchain-based Resource Trading Mechanism.

maximize its utility UUE
ij , it needs to choose the appropriate

UAV for connection and determine its own optimal purchase
strategy b∗ij and f∗

ij . At the same time, for UAV j, it needs to
propose the optimal pricing p∗j and q∗j to maximize its utility
UUAV
j .
In order to satisfy both parties in the trade, the resource

trading scheme should maximize the utilities of both UAVs and
UEs as much as possible. Therefore, we use social welfare to
denote the effect of resource trading, which can be expressed
as

maxUsw =

M∑
i=1

N∑
j=1

UUE
ij +

N∑
j=1

UUAV
j . (1)

C. Security Threats

There are also significant trust issues that could threaten the
security and privacy of the system due to the untrustworthy
broadcast nature and wireless transmission of the multi-UAV-
based network.

1) External attackers: External attackers are unautho-
rized entities with the capability to intercept communications
across public channels while actively manipulating the system
through the alteration or replay of messages. These entities
possess the potential to commandeer an UAV within the net-
work, consequently acquiring access to sensitive information
and assuming the identity of a participant for the execution of
a cloning attack.

2) Malicious UE: After the resource is allocated, a mali-
cious UE may pretend that it has not received resource and
refuses to pay, resulting in a loss for the system and other
legitimate users.

3) Malicious UAV: A malicious UAV may publish un-
true information about spectrum resources and computing
resources, thus enhancing its own effectiveness by deceiving
UEs.

III. BLOCKCHAIN-BASED RESOURCE TRADING
MECHANISM

In this section, we propose BRTM to solve the potential
security threats from malicious UEs and malicious UAVs
mentioned in the previous section. In addition, we provide a
detailed description of the framework and resource transaction
process of BRTM.

A. Blockchain and Mining

In this paper, we use blockchain technology to improve
system security. The framework of BRTM is shown in Fig. 2.
Specifically, we integrate UAVs into a blockchain network. In
order to ensure the authenticity and accuracy of transactions,
UAVs aggregate transaction records during a certain time, and
then encrypt and digitally sign these records. As shown in the
figure, we use a smart contract to represent the transaction,
which includes signature of UAV, signature of UE, service
frees, terms of service, etc. All transactions are packaged
into a block, which contains a block head, previous hash, a
transaction set and other information.

Similar to that in Bitcoin, the UAVs in the blockchain
engage in competition to generate a block by solving the Proof
of Work (PoW) problem. Each UAV calculates the hash value
of its block based on a random nonce value φ, timestamp,
current Block Data, previous block hash and so on, which can
be written as

Hash(φ+ PrevHash+Data+ Timestamp) ≤ Target,
(2)

where the Target is a number that can be adjusted by the
system term to control the speed of finding out the specific
nonce value φ. Each hash calculation to solve the puzzle can
be considered a separate binomial trial.

Upon discovery of a valid proof of work, the fastest UAV
assumes the role of a leader and disseminates the block along
with the corresponding nonce value to other UAVs for scrutiny
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Algorithm 1 Consensus Algorithm
1: The Leader UAV broadcast the block data to other UAVs.
2: for each UAV do
3: Audit the data received;
4: if the data received is verified to be correct then
5: Broadcast a True result to other UAVs for mutual

supervision and verification;
6: else
7: Broadcast a False result to other UAVs for mutual

supervision and verification;
8: end if
9: Compare its result with others and send a reply back

to the leader UAV;
10: end for
11: The leader UAV receives all replies;
12: if all UAVs agree with the new block then
13: The leader UAV sends records containing block data

and digital signatures to other UAVs for storage.;
14: else
15: The leader UAV sends block data to UAVs who

disagree once again for audit;
16: end if
17: Discard the block that is not successfully verified.

and validation. If the other UAVs reach a consensus on the
legitimacy of the block, the informational content within this
new block is systematically appended to the blockchain in a
sequential and chronological manner. Subsequently, the fastest
UAV receives returns in the form of virtual coins.

B. Blockchain Consensus
In order to ensure agreement among UAVs on the validity of

transactions and the order in which transactions are added to
the blockchain, we consider a distributed consensus algorithm,
which is presented in Algorithm 1. The consensus process is
shown is Fig. 3.

The leader UAV first broadcasts the block data to other
UAVs for audit. The block data contains information such
as timestamps and nonce value φ, etc. For each UAV, it
first audits the received block data. If the received data is
verified to be correct, the UAV will send a True result to the
other UAVs. Otherwise, the UAV will send a False result to
other UAVs. It then compares its results with those of other
UAVs and generates a response consisting of the received audit
results, the audit results, the comparison results, and the UAV
signature. Finally, each UAV sends a reply to the leader UAV.

For the leader UAV, it collects and checks replies from
all other UAVs. If all UAVs agree with the new block, the
leader UAV will send records containing block data and digital
signatures to other UAVs for storage. Otherwise, the leader
UAV will send block data to UAVs who disagree once again
for audit. Eventually, unsuccessfully verified blocks will be
discarded.

C. Overview of BRTM
The main entities in the model are introduced in detail as

follows:

Fig. 3. Consensus process.

1) UAV: UAVs are the providers of spectrum and comput-
ing resources, as well as important edge computing nodes. The
UAVs provide computing and spectrum resources to UEs with
optimal resource trading strategies. At the same time, they act
as miners and maintain the blockchain network by solving
PoW problems.

2) UE: UEs are the purchasers of resources, and they form
multiple UECs. Each UE sends their information to the HAP
and the double auction method is then used to match suitable
UAVs and UECs.

3) HAP: HAP is the trusted authority of the system and ex-
ists as the auctioneer of the auction mechanism. HAP collects
information from UAVs and UEs and completes the auction
operation. The HAP collects information about the UAVs and
UEs and then gets the allocation scheme for UAVs and UEs
through a double auction. HAP periodically broadcasts a smart
contract that contains the results of the allocation as well as
HAP’s digital signature.

In the phase of BRTM, the participating UE first sends the
maximum transmission delay T off

i and maximum calculation
delay T com

i to the HAP. At the same time, the UAVs upload
their private resource information to HAP. Subsequently, the
computation server in HAP calculate the optimal purchase
strategy (p∗j , q

∗
j ) for each UAV and the optimal purchase strat-

egy (b∗ij , f
∗
ij) for each UE. This proactive measure safeguards

against self-interested individuals manipulating information
to augment their individual revenue at the expense of the
collective interest.

When each UE receives the optimal purchase policy, it will
send some auction requests to the UAVs. The auction request
of UE i can be expressed as follows:

ReqUEi
= EPBi

((b∗ij , f
∗
ij)||Certi||SigUEi

||TsUEi
), (3)

where EPBi
(·) is the encryption function, (b∗ij , f

∗
ij) is the set

of best bids of UE i, certificate Certi is used to check the
validity of the identity, TsUEi is the timestamp for request
generation.

After receiving broadcast information, UAV j initially ver-
ifies identity through the scrutiny of digital signatures and
certificates. Subsequently, it selects the UEC that provides
it with the greatest utility to make an auction request. The
auction request of UAV j can be expressed as follows:

ReqUAVj
= EPBi

((p∗j , q
∗
j )||Certj ||SigUAVj

||TsUAVj
), (4)

where (p∗j , q
∗
j ) is the auction bid selected by UAV j, certificate

Certj is used to check the validity of the identity, SigUAVj
is
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the signature of UAV and TsUAVj
is the timestamp for request

generation.
Subsequently, a double auction method is employed to

resolve the allocation quandary between the UAV and the
UEC. Once the UAVs have received bids from the UEs, they
construct their preference lists in a descending order based
on utility. They evaluate their performance lists and identify
the top-ranked UEC as a prospective candidate, subsequently
initiating a trade request with the users associated with that
particular UEC. Similarly, each UEC formulates its own
preference list in a descending order, considering the utility
as the key criterion.

After the auction is completed, the HAP will respond to
UAVs and UEs with matching results Aij . The response can
be expressed as follows:

RspHAPi = EPBHAPi
(O∗||CertHAP ||SigHAP ||TsHAP ||Aij),

O∗ = (b∗ij , f
∗
ij , p

∗
j , q

∗
j ). (5)

where CertHAP is the certificate of HAP, SigHAP is the
signature of HAP and TsHAP is timestamp.

When the transaction is completed, the UAV j uploads the
transaction record to the blockchain network, which can be
expressed as follows:

RUAVi
= EPBUAVi

(O∗||Certj ||SigUAVj
||TsUAVj

||Aij).
(6)

After all those operation, the auction coins will be trans-
ferred from the wallet address ADUEi

of UE i to the wallet
address ADUAVj

of UAV j.

D. Security Analysis

The security of the BRTM is analyzed as follows.
1) Avoiding the risks from intermediary: Unlike traditional

transaction mechanisms that must rely on a trusted intermedi-
ary, our proposed BRTM uses a blockchain-based distributed
storage solution. This allows BRTM to avoid the risks from
intermediary, such as denial of service attacks, privacy leakage
and a single point of failure.

2) Transaction traceability: In our proposed BRTM, trans-
actions are traceable. After a transaction is completed, the
transaction record and the traders’ information are perma-
nently stored in the blockchain. The real identity of the illegal
operator can be found by checking the public ledger from
anonymous certificate Cert and registered ID.

3) Secure transactions: In BRTM, before transactions are
stored in the blockchain, they must be publicly audited and
authenticated. After the data is stored in the blockchain, the
packed data is formed into a chained structure by a hashing
algorithm. The latter block includes the hash value of the
preceding block. Due to the one-way and tamper-proof nature
of the hashing algorithm, it is impossible for attackers to forge
or tamper transactions.

IV. DESIGN OF THE PRICING-BASED INCENTIVE
MECHANISM

In this section, we design the pricing-based incentive mech-
anism for the system. We first establish the utility function

of the UAV and the UE, and then consider the interaction
process between the UAV and UEs as two-stage Stackelberg
game problem.

A. The utility of UE

In our system, there are multiple UAVs and UEs, and all
UAVs and UEs have similar utility function. For simplicity, we
consider the relationship between the UAV j and the UEC k
with K UEs. In the phase of BRTM, UE i engages primarily in
two processes: the acquisition of spectrum resources and the
procurement of computing resources. Then the utility function
of UE i with respect to UAV j as follows:

UUE
ij (bij , fij , pj , qj) = Sij(bij , fij)− Cij(bij , fij , pj , qj),

(7)
where Sij(bij , fij) denotes the satisfaction about spectrum
resources and computing resources, and Cij(bij , fij , pj , qj)
denotes the cost of purchasing spectrum resources and com-
puting resources.

The channel power gain can be determined by the distance
between the UE and the UAV. Then, the channel power gain
between UE i and the UAV j can be expressed as

gij = ρ0d
−2
i =

ρ0

(H2
j + ||li − lj ||2)

−2 , (8)

where ρ0 is the channel power gain at the reference distance
of d0 = 1 m and Hj is the altitude of the UAV j. Then the
transmission rate of UE i and the UAV can be expressed as

rij = bij log2(1 +
pmgij
δ2

), (9)

where pm is the transmission power of UE i, and δ2 is the
noise power spectrum density. Therefore, the transmission
delay of UE i to offload its task to UAV j can be computed
as

toffij =
wi

rij
=

wi

bij log2(1 +
pmgij
δ2 )

, (10)

where wi is the task data bits. Then, the UAV uses computing
resources f to execute the task data bits from UE i. Let vi
be the CPU cycles needed to execute a bit of UE’s task. The
task execution delay for UAV j can be denoted by tcomij , can
be obtained as

tcomij =
wivi
fij

. (11)

The resource satisfaction Sij should be increasing functions
of bij and fij . In addition, the satisfactions need to take into
account its own real demands. To represent the transmission
delay demands and computation delay demands of UE, we
employ the notation T off

i and T com
i , where T off

i ∈ [0, T1] and
T com
i ∈ [0, T2]. Here, T1 represents the maximum tolerated

transmission delay, while T2 represents the maximum tolerated
execution delay. Similar to [15], we use the logarithmic
function to model satisfactions, and it can be expressed as

Sij(bij , fij) = αi log2(1 +
T off
i

toffij

) + βi log2(1 +
T com
i

tcomij

),

(12)
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where αi and βi are satisfaction parameters.
In general, the cost is proportional to the purchase quantity

of UE. Note that pj and qj are the prices of spectrum resources
and computing resources for UAV j, respectively. Then Cij

can be modeled as

Cij(bij , fij , pj , qj) = pjbij + qjfij . (13)

Therefore, the utility of UE i from UAV j can be given by

UUE
ij (bij , fij , pj , qj)

= αi log2(1 +
T off
i bij log2(1 +

pmgij
δ2 )

wi
)− pjbij

+ βi log2(1 +
T com
i fij
wivi

)− qjfij . (14)

B. The utility of UAV

For UAV j, there are three processes it is mainly involved
in, namely, moving to the center of the UEC k to provide
spectrum resources to the UEs, calculating tasks offloaded by
the UEs, and mining as a miner to generate blocks.

Let B denote the bandwidth vector of UEC with B =
[b1, b2, ......, bK ]T , and F denote the computing resource vec-
tor of UEC with F = [f1, f2, ......, fK ]T . Then, the utility
function of UAV j from UEC k can be defined as

UUAV
kj (B,F , pj , qj)
= Rkj(B,F , pj , qj) + Πb

j − CUAV
kj , (15)

where Rkj is the revenue from the sale of spectrum resources
and computing resources, Πkj is the mining revenue and
CUAV

kj is the cost of UAV j.
The revenue Rij from the sale of resources by UAV j is

the sum of the costs of all UEs in UEC k. Mathematically,
Rkj can be expressed as

Rkj(B,F , pj , qj) =
K∑
i=1

(pjbij + qjfij). (16)

Let f ′
j denote the computing resource of UAV j for mining.

Then the hash computing force occupied by UAV j in the
whole network is θj , which can be expressed as

θj =
f ′
j∑

n∈Nf ′
n

. (17)

The probability of UAV j in solving the PoW problem is
denoted by ρj . It is assumed that the miner’s solution to the
PoW problem follows a Poisson distribution with a compliance
parameter λ. Thus, ρj can be expressed as ρj = θje

−λtj ,
where tj represents the computing delay, which is related to
the block size π.

During the blockchain network maintenance process, the
mining revenue Πb

j of UAV j is composed of three distinct
components: the fixed reward Rf , the performance reward Rp,
and the participant reward Rε [26].

The fixed reward is a predetermined amount of cryptocur-
rency that is paid out to the miner for every successfully mined
block. The fixed reward Rf of a blockchain can be viewed as

a decay function with a half-life of T, which can be expressed
as

Rf = Rmax
f (

1

2
)

t
T . (18)

The performance reward Rp is positively correlated with the
size of the generated block, which can be expressed as

Rp = rπ, (19)

where r is an evaluation factor. The participant reward Rε

depends on the degree of participation in the computing
process, which can be expressed as

Rε = εθj , (20)

where ε is an evaluation factor.
Similar to [26], the rewards Πb

j in the process of block
generation can be expressed as follows

Πb
j = ρj(Rf +Rp) +Rε

=
(
Rmax

f (
1

2
)

t
T + rπ

) e−λtjf ′
j∑

n∈Nf ′
n

+
εf ′

j∑
n∈Nf ′

n

. (21)

According to [27] and [28], let the energy consumption
coefficient of UAV j denoted by δi, and it depends on the
UAV’s chip. The computing power of UAV for computing
task of all UEs and PoW problem can be defined as

P loc
ij = δiF

3
j . (22)

When UAV j is linked to user cluster k, it needs to fly to
the center of the user cluster. The flight distance of the UAV
can be expressed as

dkj =

√
Hj

2 + ||lj − lk||2. (23)

Let tflykj denote the delay of the UAV flying, which depends
on the distance between the UAV j and the UE and the speed
of the UAV uj . tflykj can be expressed as

tflykj =
dkj
uj

. (24)

With reference to [27], the energy consumed by the UAV
flight is Efly

kj = 1
2φjmjt

fly
kj uj

2, where φj is the flight energy
consumption parameter and mj is the weight of UAV j.
Therefore, the energy consumed by the UAV flight can be
computed as

Efly
kj =

1

2
φjmjujdkj . (25)

Since the output data is very small, the communication-
related energy consumption of the UAV is much smaller than
the computational and flight energy consumption, and thus can
be ignored [29], [30]. We consider that the energy consumption
of UAV mainly consists of computational and flight energy
consumption in this paper. For the sake of simplicity, we use
computing power to capture the computing cost. Therefore,
the total cost for computing and flying can be defined as

CUAV
kj = σjδiF

3
j +

1

2
τjφjmjujdkj , (26)

where 0 < σj < 1 and 0 < τj < 1 are the normalized weights
of computing and flying costs.
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Therefore, the utility function of UAV j from UEC k can
be written as follow

UUAV
kj (B,F , pj , qj)

=

K∑
i=1

(pjbij + qjfij)− σjδiF
3
j −

1

2
τjφjmjujdkj

+
(
Rmax

f (
1

2
)

t
T + rπ

) e−λtjf ′
j∑

n∈Nf ′
n

+
εf ′

j∑
n∈Nf ′

n

.

(27)

C. Stackelberg Game

When UAV j sells spectrum and and computing resources
to UEC k, the goal of the UEC is to maximize the total UE
utility, and the goal of UAV j is to maximize its utility UUAV

kj .
We formulate the interaction between UAV j and UEC k as
an two-stage Stackelberg game problem. The optimal solution
of this resource allocation problem is expressed as Q∗

kj =
(B∗,F∗, p∗j , q

∗
j ), where B∗ is the optimal bandwidth vector

with B∗ = [b∗1j , b
∗
2j , ..., b

∗
Kj] and F∗ is the optimal computing

resource vector with F∗ = [f∗
1j , f

∗
2j , ..., f

∗
Kj]. We define UAV

j as the leader and UEs as followers in the game model. In the
first stage, the UAV j sets the resource price pj and qj . In the
second stage, each UE determines its spectrum and computing
resource quantity b∗ij and f∗

ij according to the price of UAV’s
resources. The optimization problems in each stage can be
described as follows.

In the first stage, the game of the UAV aims at addressing
problem P1:

P1 : max
pj ,qj

UUAV
kj (B,F , pj , qj) (28)

s.t. pj ≥ 0, qj ≥ 0, (29)
K∑
i=1

fij + f ′
j = Fj , (30)

K∑
i=1

bij ≤ Bj . (31)

In the second stage, the game of the UE i aims at addressing
problem P2:

P2 : max
bij ,fij

UUE
ij (bij , fij , pj , qj) (32)

s.t. bij ≥ 0, (33)
fij ≥ 0. (34)

Definition 1. Let p∗j and q∗j be a solution for Problem 1 and
B∗ and F∗ denotes a solution for Problem 2. The point (B∗,
F∗, p∗j , q∗j ) is an Stackelberg equilibrium (SE) for the two-
stage Stackelberg game if for any (B, F , pj , qj), the following
conditions are satisfied:

UUAV
kj (B∗,F∗, p∗j , q

∗
j ) ≥ UUAV

kj (B,F , pj , qj), (35)

UUE
ij (b∗, f∗, p∗j , q

∗
j ) ≥ UUE

ij (b, f, pj , qj). (36)

From the definition, we can see that a two-stage iterative is
required to reach an SE. First, UAV j releases its own price of

spectrum and computing resources. Then each UE calculate its
optimal bandwidth b∗ij and computing resource f∗

ij by solving
the problem 2. Finally, the UAV j resets its own price to p∗j
and q∗j by solving the problem 1. In the following, the optimal
bandwidth and computing resource strategy of the UE i is first
analyzed, and then the optimal price strategy of the UAV to
the UE i is calculated.

V. SOLUTION FOR OPTIMAL RESOURCES TRADING

In this section, we first give the detailed solution of proposed
two-stage Stackelberg game problem. Then a double auction
based resource trading algorithm is proposed to solve the
allocation problems between UAVs and UECs.

A. Optimal resource purchase strategy
When an UAV j sells spectrum and computing resources to

an UEC k, the target of UE i is to maximize its utility. It is
important to note that if UE i is unable to purchase spectrum
resources, it will not be able to offload tasks and therefore will
not need to purchase computing resources. Consequently, we
introduce a parameter χij ∈ {0, 1}, where χij = 1 if b∗ij > 0,
and χij = 0 otherwise. Then the optimal computing resource
f∗
ij is replaced with f∗

ij = χijf
∗
ij .

With reference from (14), the problem 2 can be formulated
as follows

max
bij ,fij

αi log2(1 +
T off
i bij log2(1 +

pmgij
δ2 )

wi
)− pjbij

+ βi log2(1 +
T com
i fij
wivi

)− qjfij (37)

s.t. bij ≥ 0, (38)
fij ≥ 0. (39)

Theorem 1. For a certain UE whose utility function satisfies
(14), there exists a unique Nash equilibrium point.

Proof. The first partial derivatives of the utility function UUEi

about bij and fij are calculated.

∂UUE
ij (bij , fij , pj , qj)

∂bij

=
αiT

off
i log2(1 +

pmgij
δ2 )

ln 2
(
wi + T off

i bij log2(1 +
pmgij
δ2 )

) − pj , (40)

and
∂UUE

ij (bij , fij , pj , qj)

∂fij
=

βiT
com
i

ln 2 (wivi + T com
i fij)

− qj . (41)

Then the second partial derivatives of the UUE
ij are calcu-

lated as followed.

A =
∂2UUE

ij (bij , fij , pj , qj)

∂b2ij

= −
αi(T

off
i log2(1 +

pmgij
δ2 ))2

ln 2
(
wi + T off

i bij log2(1 +
pmgij
δ2 )

)2 < 0, (42)

B =
∂2UUE

ij (bij , fij , pj , qj)

∂bij∂fij
= 0, (43)
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and

C =
∂2UUEi

(bij , fij , pj , qj)

∂f2
ij

= − βi(T
com
i )2

ln 2 (wivi + T com
i fij)

2 < 0. (44)

Since AC − B2 > 0 and A < 0, both the maximum value
of utility function and Nash equilibrium exist.

From Theorem 1, The original P2 can be decoupled into
P2a and P2b.

P2a :

max
bij

αi log2(1 +
T off
i bij log2(1 +

pmgij
δ2 )

wi
)− pjbij (45)

s.t. bij ≥ 0. (46)

P2b :

max
fij

βi log2(1 +
T com
i fij
wivi

)− qjfij (47)

s.t. fij ≥ 0. (48)

From (40) and (42), it is observed that the function (45) is
a concave function over bij . In addition the constraint bij ≥ 0
is affine. Therefore, it can be solved by solving the Karush-
Kuhn-Tucher (KKT) conditions.

Theorem 2. For a given bandwidth price pj , the optimal b∗ij
for the bidding strategy for UE i can be given by

b∗ij =

{
αi

pj ln 2 −
wi

πi
, if pj < αiπi

wi ln 2 ,

0, if pj ≥ αiπi

wi ln 2 .
(49)

where πi = T off
i log2(1 +

pmgij
δ2 ).

Proof. Refer to Appendix A.

Since T off
i is the maximum transmission delay to meet

UE’s requirements, there is a minimum purchase quantity
when the UE i purchases spectrum resources. With simple
calculation we can derive the optimal bandwidth is wi

πi
in order

to ensure toffij > T off
i . Then we can get the final result of

optimal b∗ij

b∗ij =


αi

pj ln 2 −
wi

πi
, if pj < αiπi

wi2 ln 2 ,
wi

πi
, if αiπi

wi2 ln 2 ≤ pj <
αiπi

wi ln 2 ,

0, if pj ≥ αiπi

wi ln 2 .

(50)

where πi = T off
i log2(1 +

pmgij
δ2 ).

Similar to the solution for optimal bandwidth b∗ij , we can
easily observe that the function (47) is concave with respect
to the variable fij . In addition, the constraint fij ≥ 0 is affine.
The optimal computing resource problem can also be solved
by applying the KKT condition.

Theorem 3. For a given computing resource price qj , the
optimal f∗

ij for the bidding strategy for UE i can be given by

f∗
ij =

{
βi

qj ln 2 −
wivi
T com
i

, if qj <
βiT

com
i

wivi ln 2 ,

0, if qj ≥ βiT
com
i

wivi ln 2 .
(51)

Proof. Similar to the proof of Theorem 2. Due to space
limitations, we omit it here.

When UE i purchases computing resource, it should be
guaranteed that tcomi is less than T com

i . When tcomij = T com
i ,

we can derive that the minimum computing resource purchase
is WiVi

T com
i

. Considering the parameter χij , we can obtain the
expression for the final f∗

ij

f∗
ij =


βi

qj ln 2 −
wivi
T com
i

, if qj <
βiT

com
i

wivi2 ln 2 and b∗ij ̸= 0,
wivi
T com
i

, if βiT
com
i

wivi2 ln 2 ≤ qj <
βiT

com
i

wivi ln 2 ,

and b∗ij ̸= 0,

0, if qj ≥ βiT
com
i

wivi ln 2 or b∗ij = 0.
(52)

B. Optimal pricing strategy

In this subsection, we analyze the optimal pricing strategy
of UAV when associated with UEC k. By substituting (50)
and (52) into (27), the Problem 1 can be expressed as follows

max
pj ,qj

UUAV
kj (B,F , pj , qj)

=

K∑
i=1

(pjb
∗
ij + qjf

∗
ij)− σjδiF

3
j −

1

2
τjφjmjujdkj

+
(
Rmax

f (
1

2
)

t
T + rπ

) e−λtjf ′
j∑

n∈Nf ′
n

+
εf ′

j∑
n∈Nfn

(53)

s.t. pj ≥ 0, qj ≥ 0, (54)
K∑
i=1

fij + fj = Fj , (55)

K∑
i=1

bij ≤ Bj . (56)

Each UE in the system is associated with segmented func-
tion b∗ij and f∗

ij with respect to pj and qj , while also having
different T off

i and T com
i . Given these intricacies, resolving

(53) poses a formidable challenge. To address this issue
and reduce the algorithmic complexity, we propose a genetic
algorithm (GA) based resource pricing algorithm, which is
presented in Algorithm 2.

Firstly, we create an initial population of G UAVs. Inspired
by the principles of genetics, we postulate that each UAV
has two chromosomes, with each chromosome being encoded
using a ten-bit binary code. The coding values of chromosomes
are used to map the purchase price of two resources.

In each iteration, first, the fitness Fj of each UAV is
calculated, where the UAV’s fitness is equal to its utility. The
total fitness Fsum is then obtained by summing up the fitness
of all UAVs. Selection, crossover, and mutation operations are
then performed to obtain new populations. In the selection
operation, a total of G0 UAVs are selected from the primitive
population with the probability of selection being proportional
to its fitness. In the crossover operation, each UAV conducts
a single point crossing with a certain probability Pc, and the
offspring is generated by exchanging the code at a random
point in the coding string over the 1

2G
0 pairs of UAVs. In
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Algorithm 2 GA Based Resource Pricing Algorithm
1: Input hereditary algebras L, the GA related parameters {

G, Pc, Pmu }, B, F .
2: Create a Initial population of G UAVs, and each UAV is

represented by two chromosomes;
3: for i = 1:L do
4: Calculate the fitness of each UAV as Fj and total

fitness of the population as Fsum;
5: Select the parent chromosomes randomly with a prob-

ability proportional to their fitness Fj/Fsum;
6: Generate offspring by applying a single-point

crossover operation with a probability Pc and a simple
mutation operation with a probability Pmu;

7: Replace some of the low fitness chromosomes from
the original population to form a new generation of UAV
population;

8: end for
9: Find the individual in the population with the high-

est fitness value and record its corresponding fitness
value. Then the optimal pricing strategy can be obtained
(p∗j , q

∗
j ) = argmax

p,q
Fj(pj , qj);

10: Output the best pricing strategy p∗j and q∗j .

the mutation operation, each bit of the coding string of each
chromosome executes a mutation operation with probability
Pmu. After these operations, the fitness of each UAV is
recalculated, and low fitness UAVs are replaced by high fitness
ones. The program continues until the number of genetic
generations reaches L.

Finally, calculate the fitness of the last generation UAV, and
the optimal pricing strategy (p∗j , q

∗
j ) can be obtained from

the UAV with the highest fitness. Thus, the optimal pricing
strategy can be rewritten as

(p∗j , q
∗
j ) = argmax

p,q
Fj(pj , qj). (57)

In our proposed GA-Based resource Pricing Algorithm,
selection, crossover and mutation operations are performed in-
dependently and randomly. The new population is related only
to its parent population and the genetic operation operator, and
not to the generations preceding its parent population. Thus
we can describe our algorithm as a Markov chain with the
following theorem of global convergence:

Theorem 4. Genetic algorithm with optimal preservation
operation converges to the global optimal solution.

Proof. The theoretical proof of Theorem 4 is given in [31].

In our algorithm, we keep the optimal solution at any stage
of each population and place it in the next population, which
complies with Theorem 4. Therefore, our proposed GA-Based
resource Pricing Algorithm can eventually converge to the
optimal solution.

Algorithm 3 DARA Algorithm
Input: Set of UAVs N , set of UECs M, K;
Output: Matching matrix Zij

1: Initialize: Matching matrix Zij ← 0(i ∈ [1,M ], j ∈
[1, N ]), Allocation matrix of UAV Aj ← 0(j ∈ [1, N ]),
Allocation matrix of UE cluster Ei ← 0(i ∈ [1,K]),
Candidate matrix Cj ← 0(j ∈ [1, N ]);

2: Calculate the optimal resource trading strategy O∗
ij =

(B∗,F∗, p∗j , q
∗
j ) for all UAVs and UEs;

3: for j = 1:N do
4: Sort the utility of UAV j in descending order, and

obtain LUAV
j = Descending sort (UUAV

kj );
5: end for
6: for k = 1:L do
7: Sort the utility of UE cluster k in descending order,

and obtain LUEC
k = Descending sort (

∑K
i=1 U

UE
ij );

8: end for
9: while

N∑
j=1

Aj ̸= N do

10: for j = 1:N do
11: while Aj ̸= 0 and Cj == 0 do
12: Cj ← i = argFirstRank(LUAV j

j );
13: if ECj == 1 then
14: Cj ← 0, LUAV

j

′

→ Delete(UECi);
15: end if
16: end while
17: end for
18: for j = 1:N do
19: if Cj == Cj′(j

′ ̸= j) then
20: if Rank(LUEC

j ) > Rank(LUEC
k

′

) then
21: Cj′ ← 0, LUAV

j

′

→ Delete(UECk);
22: else
23: Cj ← 0, LUAV

j → Delete(UECk);
24: end if
25: end if
26: end for
27: for j = 1:N do
28: if Cj ̸= 0 then
29: Aj ← 1, ECj

← 1, ZCj ,j ← 1;
30: end if
31: end for
32: end while

C. Double Auction Based Resource Trading Algorithm

In order to solve the allocation issues between UAVs and
UECs, a double auction based resource trading algorithm
(DARA) is proposed, which is shown in Algorithm 3.

First, initialize the parameters associated with the DARA.
The auction matching results can be represented by matrix Zij ,
i.e., Zij = 1 purports that UAV j sells spectrum resources and
computing resources to UEC i, and Zij = 0 indicates that UAV
j cannot trade with UEC i. The allocation matrix of UAV and
UEC are expressed as Aj (j ∈ [1, N ]) and Ei (i ∈ [1,K]). In
addition, Cj is the candidate matrix of UAV, and represents
the best candidate for UAV in a certain period.

According to (50), (52) and Algorithm 2, we can calculate
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Table II
PARAMETER SETTING IN THE SIMULATION

Parameters Values
Number of UAVs N [3, 5, 7]

Number of UEs M [5, 50]

Transmission power of UE Pm 1 W

The available spectrum resources of UAV Bj [5, 25] MHz

The available computing resources of UAV Fj [5, 25] GHz

Noise power spectral density δ2 -110 dBm/Hz

Rayleigh fading parameter ρ0 1

The speed of UAV uj 5 m/s

Maximum tolerated transmission delay T1 [0.5, 1] s

Maximum tolerated execution delay T2 [0.5, 1] s

Task size in bits of UEs wi [1, 1.9] Mbits

CPU cycles needed to execute a bit of UE’s task vi [1000, 1300]

Fig. 4. Utility vs. number of iteration rounds

the optimal resource trading strategy Q∗
ij = (B∗,F∗, p∗j , q

∗
j )

of for all UAVs and UEs through a two-stage iteration process.
In the auction theory, the higher bidder is more likely to get the
auction item. The objective of UAV j is to maximize its utility,
while the UEC i aims to maximize its own utility as well.
Consequently, Then each UAV constructs a list LUAV based
on the descending order of utilities offered by different UECs,
while each UEC builds a list LUEC according the descending
order of utilities provided by different UAVs.

If any UAV has not been matched to an UEC, each
unmatched UAV browses its own list LUAV , and update the
highest ranked unmatched UEC as its new candidate (lines 10-
17). In the event that two UAVs share the same candidate UEC
k, the candidates of UAVs that rank higher in the UE cluster
list LUEC are preserved, while the remaining candidates are
rejected (lines 18-26). Subsequently, UAVs are paired with
their respective candidates, and the parameters Aj , Ei and
Zij are updated concurrently (lines 27-31). This process is
repeated until all UAVs have been successfully matched.

VI. NUMERICAL RESULTS AND ANALYSIS

In this section, we numerically evaluate the effectiveness
of the proposed scheme. We consider a network topology
encompassing a spatial dimension of 1000 meters by 1000

meters. The network architecture comprises a single HAP,
multiple UAVs, and multiple UEs, with UAVs and UEs being
randomly distributed across the network’s spatial expanse. The
simulations are conducted utilizing Python 3.8 on a server
equipped with an Intel Core i7-10700F CPU and an NVIDIA
GeForce RTX 3060 GPU. The pertinent system parameters are
detailed in Table II.

Initially, we validate the convergence of the resource pricing
algorithm. Then, we assess the influence of the total available
spectrum of UAV and the total available computing resources
of UAV, as well as the maximum tolerable transmission
delay of UE, the maximum tolerable computing delay of UE,
computational task size, and number of UEs on the system
performance. Finally, in order to evaluate the effectiveness
of our proposed DARA, we compare it with four baseline
algorithms, including random selection algorithm (RSA), fixed
price incentive scheme (RSFP), seller favorable algorithm
(SFA) and greedy allocation algorithm (GAA).

• RSA: Within the framework of the RSA, each UAV
randomly selects a UEC to provide the service. Then the
prices of spectrum and computing resources are computed
based on the Starkelberg game.

• RSFP: Within the framework of the RSFP, the price
of spectrum and computing resources is fixed for each
UAV, and these prices are based on the total number of
resources available to the UAV itself.

• SFA: Within the framework of the SFA, we prioritize
maximizing the sum of the utility of the UAVs. Each UAV
chooses the UEC that maximizes its benefit to provide
service. When multiple UAVs select a UEC at the same
time, the UAV with the larger benefit gets the right to
serve that UEC.

• GAA: Within the framework of the GAA, the UECs are
sorted in descending order according to their optimal
utilities. Then, the UECs are sequentially assigned a UAV
that minimizes their cost of purchasing resources.

We first explore the resource pricing process between a
UAV and a UEC containing 5 UEs. Fig. 4 shows the utility
of UEs, utility of UAV and average utility of UEs under
increasing iteration rounds. Evidently, there is an initial rapid
ascent in all three utilities, followed by a gradual stabilization
phase. This trend signifies that the UEs are successfully
aligning their actions with the instructions of the UAV leader.
Notably, convergence among the three utilities is achieved after
approximately 20 iterations, signifying an equilibrium state in
utility optimization for both the UAV leader and UE followers.
Our analysis demonstrates that our proposed GA based pricing
algorithm is effective and has good convergence.

In Fig. 5 we explore the effect of total available spectrum
resource of UAV and maximum tolerated transmission delay
T1 on the price of spectrum resource and utilities. It is notewor-
thy that we employ the term “total revenue” to represent the
aggregation of utilities extended to both the UAV and the UEs.
In general, as the total available spectrum resource of UAV
increase, the price of spectrum resources decreases while the
total revenue increases, as can be seen from Fig. 5(a) and Fig.
5(b). This is because as the total available spectrum resources
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(a) (b) (c)

Fig. 5. The impact of maximum tolerated transmission delay T1. (a) Impact of the total available spectrum resources on price of spectrum resources for
different value of T1 (T2 = 0.6). (b) Impact of the total available spectrum resources on total revenue for different value of T1(T2 = 0.6). (c) Impact of the
task size in bits of UEs an average utility for different value of T1 (T2 = 0.6).

(a) (b) (c)

Fig. 6. The impact of maximum tolerated execution delay T2. (a) Impact of the total available computing resources on price of computing resources for
different value of T2 (T1 = 0.5). (b) Impact of the total available computing resources on total revenue for different value of T2 (T1 = 0.5). (c) Impact of
the task size in bits of UEs an average utility for different value of T2 (T1 = 0.5).

increase, UEs can purchase more spectrum resources. When
the UAV reduces the price of spectrum resources relatively,
the UEs tend to buy more resources in order to increase their
benefits, and thus the benefits for both parties can increase.

Furthermore, it can also see from Fig. 5(a) and Fig. 5(b)
that the incremental of T1 leads to a increase in the price
of spectrum resource and total revenue. This is because that
a prolonged T1 engenders a reduced demand for spectrum
resources, thereby affording a surplus of adequately provi-
sioned spectrum resources. Appropriately increasing the price
of spectrum resources can satisfy users with higher delay
satisfaction while making the UAVs generate more revenue
from the sale of spectrum resources. In Fig. 5(c), the average
utility of UEs decreases as the Task size in bits of UES
increase. This is because the larger the size of the UE’s task,
the more spectrum resources the user needs to purchase to
meet the latency requirements, which results in less utility to
the UE.

Fig. 6 shows the impact of the total available computing
resource and maximum tolerated execution delay T2 on the
price of computing resources and utilities. From Fig. 6, it
can be seen that as the total available computing resources
of UAV increase, the price of computing resources decreases

and the total revenue increases. In addition, as the maximum
tolerated execution delay T2 of the UEs increases, the price of
the computing resources decreases, and at the same time the
total revenue and the average utility of UEs increase.

In Fig. 7, we explore the impact of the number of UAVs
and the number of the UEs on the utilities. When the number
of UAVs increases, the resources in the system increase, and
therefore the social welfare, the total utility of UEs and the
average benefits of UEs increase. Note that with the number
of UAVs greater than the number of UEs, some of the UAVs
will be idle and not selling resources. As can be seen in
Fig. 7(a) and Fig. 7(b), as the number of users increases
social welfare and the total utility of the UEs rise rapidly and
then at a lower rate. Fig. 7(c) shows that as the number of
users increases the average utility of UEs keeps decreasing.
This is because when the number of UEs in the system is
small, the available resources can satisfy the demands of most
UEs, and as the number of users increases, the utilization
of the resources keeps increasing. When the number of UEs
is large and keeps increasing, spectrum and computational
resources become strained, resulting in the inability to satisfy
the needs of partial UEs and a decrease in the percentage of
UE participation.
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(a) (b) (c)

Fig. 7. The impact of the number of UAVs. (a) Impact of the number of UEs on social welfare for different numbers of UAVs. (b) Impact of the number of
UEs on total utility of UEs for different numbers of UAVs. (c) Impact of the number of UEs on average utility of UEs for different numbers of UAVs.

Fig. 8. Social welfare vs. number of UEs

Fig. 8 shows the social welfare of different methods with the
different numbers of UEs. We contemplate a system replete
with 5 UAVs. When the number of UEs is relatively small,
the social welfare of all methods increase rapidly. As the
number of UEs increases to a larger number, the spectrum
resources and computing resources become scarce. The system
load reaches an upper limit, resulting in a less significant
change in social welfare. From the Fig. 8, it is evident that
our proposed DARA method outperforms RSA by 131.5% to
141.3%, RSFP by 79.5% to 101.8%, SFA by 51.7% to 89.1%
and GAA by 30.2% to 35.8% in terms of social welfare.
This superiority arises from the fact that, in the RSA, the
UAV randomly selects a UEC to sell resources, resulting
in the worst social welfare. In RSFP, fixed prices paid by
UEs and fixed amounts of computing and spectrum resources
lead to a rigid resource distribution, not adaptable to UE
demand. Although the SFA maximizes UAV benefits, it does
not guarantee optimal matching of UECs to UAVs for their
best benefits. In addition, GAA only achieves maximizing
the utilities of each UEC while ignoring the impact of the
allocation strategy on the utilities of UAVs. Therefore, as the
number of UEs increases, our proposed DARA achieves the
highest social welfare when compared to other benchmarks.

VII. CONCLUSION

In this paper, we first propose the BRTM for Multi-UAV
edge computing system to address the possible security risks.

The framework of BRTM and the process of resource trading
are described in detail. Then, to motivate the UAV and UEs to
engage in resource trading and maximize social welfare, we
propose a pricing-based incentive mechanism. Additionally,
to solve the optimal resource purchase strategy, the DARA is
designed. We formulate the resource pricing between UAVs
and UEs as a two-stage Stackelberg game problem and match
the UAV and UE by auction theory. The impact of the number
of UEs and UAVs, the total available resources of UAV and
the computational task size are analyzed in the simulation.
Besides, Numerical results depicts that our proposed method
achieves higher social welfare than other benchmark methods.

APPENDIX A
PROOF OF THE THEOREM 2

The problem 2a is a convex optimization problem, it is
easy to construct the Lagrangian function. Then, we can
convert the original problem into solving the dual problem.
The Lagrangian function of this problem is given by

L (bij , η) =αi log2

(
1 +

T off
i bij log2(1 +

pmgij
δ2 )

wi

)
− pjbij + ηbij , (58)

where η is the negative dual variable associates with the
constraints bij ≥ 0.

The dual function is given as to find the maximum value
of the Lagrangian function, which is defined as V(η) =
maxL(bij , η) with bij ≥ 0. The dual optimization problem
is given as minV(η) with η ≥ 0. The optimal solution should
satisfy the following KKT conditions:

∂L (bij , η)
∂bij

=
αiT

off
i log2(1 +

pmgij
δ2 )

ln 2
(
wi + T off

i bij log2(1 +
pmgij
δ2 )

) − pj + η = 0 (59)

s.t. η ≥ 0, bij ≥ 0, (60)
ηbij = 0. (61)
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From (59), we can derive

bij =
αi

(pj − η) ln 2
− wi

T off
i log2(1 +

pmgij
δ2 )

. (62)

We adopt the counterfactual approach, assuming that
bij = 0 when pj < [αiπi/ (wi ln 2)], where πi =
T off
i log2(1 +

pmgij
δ2 ). Then, from (62), it follows pj =

[αiπi/(wi ln 2)] + η. Since η ≥ 0, it can be deduced that
pj ≥ [αiπi/(wi ln 2))], which contradicts the presumption.
Therefore, bij ̸= 0 when pj < [αiπi/ (wi ln 2)]. From (61),
it follows η = 0. Therefore, the optimal solution in this set of
pj can be defined as

bij =
αi

pj ln 2
− wi

πi
, if pj <

αiπi

wi ln 2
. (63)

Assume that bij > 0 when pj ≥ [αiπi/ (wi ln 2)]. Then
from (61), it can be derived that η = 0. Let bij > 0 and
η = 0, we can get pj < [αiπi/ (wi ln 2)] from (62), which
contradicts the presumption. The optimal solution in this set
of pj can be defined as

bij = 0, if pj ≥
αiπi

wi ln 2
. (64)
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