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Abstract
Quantum software engineering is advancing in the domain of quantum computing research and application, yet the

documentation is scattered. The slow transition from Von-Neumann based computation systems to quantum systems, and

conserving the fundamental computing principles in software development and software engineering helps in enrichment

of quantum software development. The evolution of quantum computing over the past years shows a shift in the domain of

classical computation to quantum computation in the years to come. Future applications such as, quantum AI and quantum

machine learning will benefit from quantum software engineering. This survey collects and explores the various docu-

mentations in the domain of quantum systems and quantum software engineering. The survey provides an in-depth

exploration of quantum programming languages, which is combined with explanations of quantum computing’s funda-

mentals. The review also goes in-depth about quantum software engineering and quantum software life cycle development,

outlining the quantum software reuse methodology that is introduced in the quantum software lifecycle development

domain.

Keywords Quantum software engineering � Quantum programming languages � Quantum life-cycle development �
Quantum hybrid systems � Quantum software analysis � Quantum software development

1 Introduction

A classical computer that exists today follows the Von-

Neumann computation model, also defined as Von-Neu-

mann Computers (VMC). Although VMC models have

advanced recently, computing has undergone another rev-

olution. In recent years, quantum computing has quickly

risen to the forefront of computing, achieving break-

throughs in both theory and applications. Quantum com-

puting systems are still under development; hence, full

access is not yet available [1, 2]. Since most quantum

computing systems combines VMC and quantum com-

puting, they are regarded as hybrid models. The recent

research subject is quantum software engineering, which

focuses on the ideas, guidelines, and procedures for setting

up, advancing, and preserving applications based on

quantum computing.

By methodically implementing quantum software engi-

neering in all the developmental phases in accordance with

the initial needs of the quantum software life cycle, the

emphasis on reusing quantum software is succinctly

described. The VMC principles, which are the documen-

tation of specific development phases that software shall

abide by, are the only ones that were taken into consider-

ation when designing the software development cycle

[2, 3]. However, the life cycles at this time only apply to

VMC models and quantum software and do not take into

account the difficulties in integrating a hybrid model. For

the best possible data transfer between the VMC and

quantum software, it is also necessary to address the

orchestration of VMC and quantum computers. [4–6]

The following are examples of current taxonomy-related

challenges in quantum computing [7] as demonstrated in

Fig. 1:
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• Environment: The environment pivots a vital role with

respect to quantum behavior, both with respect to

software and hardware taxonomy. This can further be

divided into Software infrastructure, Framework, Inte-

gration, and Execution. Software infrastructure chal-

lenges the framework that can be reused in the

execution environment. Framework are mostly created

for the API protocols. The rigorous changes in the API

protocols can make it difficult for the developers to

correlate the environments. It is also difficult to

understand the theoretical and practical implications

of quantum study due to the lack of standardization for

the same. Integration addresses the challenges to

integrate quantum systems with other technologies,

such as blockchain or AI, and bringing down the

computational costs with regards to QC. Execution

struggles with the set-up for environments and simula-

tors for interaction between VMC and quantum systems

conflicting with the same.

• Hardware infrastructure: The challenges related to it

require more specialized tools for the hardware, which

at this time is going through frequent changes. The

noise in these quantum systems also defines a degree of

expertise to tune them for accurate results. Perfor-

mance is another constraint due to the limitation of

resources in quantum systems in comparison to VMC

models. The greediness of computation with fewer

resources conflicts with the same.

• Comprehension: The macro-category consists of the

challenges faced by the developers. It emphasizes

documentation to the inadequacy of theoretical

grounds.

– Documentation: The most important thing to main-

tain the systems is documentation. Therefore, the

documentation comprehensibility and the quality of

the document shall be maintained and must be

understandable to future developers to maintain the

documentation.

– Coding: Inadequate Integrated development envi-

ronment (IDE) and compilation challenges fall

into this category. Different languages require

different IDEs, making it challenging for developers

to understand different quantum computation lan-

guages for the same task.

– Code Quality: Code quality poses a challenge as

well, as we aim to follow the re-usability and

understanding of the code. The main components of

code quality, are addressed as debugging, test-

ability, and readability. For debugging, it was found

to be hard to understand the error messages for

quantum Software development kits (SDKs). Also

includes that it was stressful to test the quantum

circuits once they are sent to the quantum computer

in real-time. Since readable code remains a persist-

ing challenge.

This survey introduces new techniques for evolving

quantum software engineering and quantum computing

languages. Section 2 digs into the fundamentals of quantum

computing i.e., qubits and quantum computing architec-

ture. A brief overview of the quantum software engineering

and technologies that currently exist in the market is pro-

vided in section 3, which also focuses on the various

quantum programming languages. We delve into the

understanding of the quantum software life-cycle in great

detail in section 4, and we include all of the work that has

been completed in the area of the quantum software life-

cycle. The future of quantum software engineering and the

quantum software lifecycle were also discussed, along with

a new paradigm of quantum software reuse, quantum cir-

cuit reuse, and quantum state reuse that offers more sus-

tainable solutions. The case studies in quantum software

engineering are discussed in section 5. The future of

quantum software engineering and research gaps are dis-

cussed in section 6. Conclusions are presented in section 7.

Fig. 1 Graphical representation of quantum computing challenges [7]
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2 Background

Quantum computing is built on the principles of quantum

mechanics, where the three main components are Super-

position, Entanglement and Interference [8]:

• Superposition: ‘‘It states that, much like waves in

classical physics, any two (or more) quantum states can

be added together (‘‘superposed’’), and the result will be

another valid quantum state; and conversely, that every

quantum state can be represented as a sum of two or

more other distinct states.’’

• Entanglement: ‘‘A physical phenomenon that occurs

when a group of particles is generated, interact, or share

spatial proximity in a way such that the quantum state

of each particle of the group cannot be described

independently of the state of the others, including when

the particles are separated by a large distance.’’

• Interference: ‘‘This phenomenon was already widely

known in the context of waves, but it came as a

shocking relation that matter sometimes also behaves

like a wave in addition to its particle behavior and

therefore also exhibits interference effects. Because the

matter-wave can spread in space, it can destructively

and constructively interfere at certain positions.’’

2.1 Qubit and quantum gate

A qubit is a quantum mechanical analog that is similar to a

bit. With classical computing, the information is coded in a

bit, where every bit has a value of zero or one. In quantum

computing, the information is coded in qubits. A qubit is a

two-level quantum system where the two basis qubit states

are usually written as j0i0 and j1i1. A qubit is in a state

j0i; j1i or (unlike a classical bit) in a linear combination of

both states. The states of j0i0 and j1i1 can be represented

in the matrix state as Eq. 1:

j0i ¼
1

0

� �
j1i ¼

0

1

� �
ð1Þ

When the qubit harnesses the probability of being in j0i or
j1i, this makes quantum computers feasible and optimized

and helps in developing less complexity.

The qubit probability is calculated by the quantum gates.

The quantum gates are the matrices that have different

operations for particular qubits. Most common gates are

defined as the Pauli X (Eq. 2), Pauli Y (Eq. 3), Phase Shift

gate (Pauli Z) (Eq. 4), and Hadamard gate (Eq. 5) [3].

X ¼
0 1

1 0

� �
ð2Þ

Y ¼
0 � i

i 0

� �
ð3Þ

Z ¼
1 0

0 � 1

� �
ð4Þ

H ¼ 1ffiffiffi
2

p
1 1

1 � 1

� �
ð5Þ

These matrices formulate the mathematics of algorithms

into quantum circuits, which help in measuring the prob-

ability of the states and predicting the behavior of the

algorithm. This makes the foundation of quantum

mechanics also known as the ‘‘quantum state basis’’. For a

qubit jxi to exist in the state basis, follows the linear

combination to be represented by jxi ¼ aj0i þ bj1i, as a
and b represents the complex numbers with which the

normalization state shall be equal to 1 that is,

jaj2 þ jbj2 ¼ 1. It can also be referred to as the superpo-

sition of two basis states.

2.2 Quantum architecture

The architecture of the quantum computer is provided in

Fig. 2; there are various quantum circuits coded in lan-

guages such as Q# and Python-based frameworks such as

Qiskit and tensorflow 2.0. These are compiled by the

Quantum Error Correction compiler and sends the data to

the quantum compiler and lastly to the quantum processor

that decodes and computes the likelihood of maximum

correct answers [9].

Fig. 2 Quantum computer architecture [10]
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The Fig. 2, gives us a general understanding of the

architecture and the architectural layers that exist for

quantum software. The whole general architecture is

designed with respect to the classical VMC software

architecture, but extending the architecture gives us more

details for an existing system for the quantum software

architecture i.e., Classical-Quantum Hybrid Software.

With a top-down approach, the high-level quantum com-

puting language is to be connected with the network host to

access the quantum computing services (QaaS) or

quantum processing unit (QPU) shown in Fig. 3, which

converts the language to the desired quantum circuits

making it possible to pass through the quantum assembly

language. The next step is where the Quantum-classical

interface decodes the quantum logic gates and sends them

to the hardware. This introduces to the Classical-Quantum

Hybrid software (CQHs) which is discussed as Software

as a Service (SaaS) [11].

3 Related works

Quantum researchers are developing novel approaches for

interpreting and integrating software engineering with

current VMC models, which are progressing in the field. In

the past, models based on server requests were used in this

industry. As a result, user-friendly quantum computing

programming languages on the host languages of Python

and C# were created and incorporated into existing pro-

gramming languages [2]. Web APIs developed were

facilitating the development of new web-based quantum

applications for machine learning and AI [6, 12].

3.1 Quantum software engineering

In today’s development of quantum computing, it is

majorly owned by the big tech industries promoting their

developed quantum software development kits (QSDKs)

and programming languages can be shown in Fig. 4 [13].

The Fig. 4 can be further elaborated concerning every

technological partner that can be associated as follows:

• DWave: After designing adiabatic quantum computers,

it explores the performance in optimization and

machine learning-based applications, with their pro-

gramming language called as QMASM that uses

decoupling of QUBO optimization problems [15, 16].

• Google: They designed what is called Quantum AI,

while designing algorithms for near-term quantum

computers. Most of the Google-based quantum appli-

cations can be developed using Cirq or Tensorflow

Quantum [15, 17].

• Honeywell: uses the Trapped-ion technology, providing

dynamic qubits which rearranges for better quantum

algorithms and applies them in various industries as use

cases. [7, 15].

• IBM: provides a cloud based Quantum Computing as

a Service (QCaaS). It runs the QISKIT, an open-

QMASM-based quantum computing programming lan-

guage, and Qiskit Terra as a platform providing service

[15, 16].

• Xanadu: develops hardware based on photon technol-

ogy with pennylane full-stack libraries, making it

scalable and robust in room temperatures. It also

provides the quantum programming language that can

train quantum computers very similar to neural net-

works [15, 18].

Because of the accessible quantum resources and the

rigorous innovation in the field of quantum software

engineering, we now can foresee second-generation

Quantum-VMC architecture based models. At the same

time, the diverse development of these machines via vari-

ous technical collaborations has resulted in extremely dis-

tinct solutions, architectures, and use cases as applications

produced using their compilation abilities and quantum

programming languages.

In addition to QaaS and API-based quantum applica-

tions, various organizations and institutes are focusing on

the development of different quantum-based software

development environments. For each setting, the quantum

software for the various simulations and tools are unique.

Some are as follows :

• Entanglement as a Service is optimizing and securing

the quantum-secure networks and communications

Fig. 3 Working of quantum

algorithms, [14]
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while simultaneously creating the quantum networks,

designed by Aliro [19].

• Platform as a Service is also in design phase by Amazon

creating a QSDK cloud-based platform that can access

any hardware in the existing markets, also integrating

classical servers and quantum platforms.

• Hybrid systems that exists are based on the hardware-

agnostic platform that captures optimization for the in-

traceable industry problems provided by 1QBit [19].

• Machine Independent algorithms can compose and

compute the translation to executable circuits, optimiz-

ing minimum required operations in a quantum envi-

ronment developed by Cambridge Quantum Computing

[19].

A critical problem in the field of quantum software engi-

neering is the development of a mature discipline for

quantum software engineering, with the goal of fully har-

nessing the potential of commercial quantum computer

technology. They argue that the entire classical software

engineering needs to be reinvented and extended to the

quantum domain, and they define this challenge from dif-

ferent angles of quantum software engineering, spanning

quantum computing models, languages, quantum compil-

ers, methodologies, and tools [20].

3.2 Quantum programming language (QPGL)

Since the development of quantum computing, the Quan-

tum Programming Language has been under constant

development. A summary of different Quantum Program-

ming Languages is provided in Table 1. QPGL also

emphasized the integration of VMC models with quantum

physics. QPGL and quantum mechanics have been com-

bined to incorporate quantum mechanics principles such as

superposition, entanglement, and interference. Shor and

Grover has also demonstrated the applicability of quantum

computing benefits with a quantum speed boost [21, 22].

With the understanding of computing, the Noisy

Intermediate-Scale Quantum Computers (NISQ) have

been designed as low-qubit level quantum computers with

batch processing-based cloud network architecture con-

straining the communication between existing VMC

models and Quantum computers. The restriction between

VMC and quantum computers prohibits the development of

high-level QPGL, which exists in the market for VMC-

based models [22–24].

The first Quantum language was based on the Quantum

Turing Machine but fails to provide insights for the

practical QPGL. The heterogeneity of different program-

ming paradigms has also made it difficult for a universal

programming paradigm, unlike VMC-based programming

paradigms.

Quantum computing industries such as IBM, Google,

and Microsoft provide various quantum computational-

based solutions via PaaS (Platform as a Service), which

also enables high qubits environments. This may seem like

a different environment, but one of the fascinating is that

there is a relation between classical-quantum architecture

yet remains stagnant across any of the platforms to be

there.

Following the development of NISQ, batch run-time

architecture is developed, which addresses the hindrance

that persists in the present, such as decoherence, gate

fidelity, and restricting the quantum run-time execution

complexity. A different point of view can be discussed as

various quantum computing libraries such as Criq,

OpenGL, ProjectQ, Pyquill, and Qiskit [19] precisely

appending to the quantum circuits and executing to their

respective quantum architecture [22, 25]. This paves the

way for developing high-level quantum computing, such as

Ket programming language, which abstracts the QPGLs

and compilations from the developers. QFC, Q, Lambda q

and Quipper are the most cited QPGLs for being published

as main paper et al. [26]. The CQHs puts a constraint on

executing parallel codes for the classical and quantum

environments. Due to heavy noise and fault-tolerant

quantum computers at present, more emphasis is being

Fig. 4 Main quantum full-stack

platforms [19]
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provided on the quantum simulation on respective quantum

algorithms.
4 Quantum software development lifecycle

(QSDL)

Quantum software engineering cannot be successful with-

out complete software architecture which describes the

quantum software lifecycle. For high-quality software, a

Table 1 Historical Summary of

Quantum Programming

Languages [7, 19]

Language Semantics Host Paradigm

Lambda Calculi Denotational Lambda Calculus Functional

QCL Denotational C Imperative

QGCL Operational Pascal Imperative

Lambda q Operational Lambda Calculus Functional

Q Operational C?? Imperative

QFC Denotational Flowchart Syntax Functional

QPALg Operational Process Pascal Other

QML Denotational Syntax (Haskell) Functional

CQP Operational Process Calculus Other

cQPL Denotational Syntax Similar Functional

LanQ Operational C Imperative

NDQJava Operational Java Imperative

Cove Operational C# Imperative

QuECT Denotational/Operational Java Circuit

Scaffold Operational C/C?? Imperative

QuaFL Operational Haskell Functional

Quipper Operational Haskell Functional

Chisel-Q Operational Scala Imperative, Functional

LIQUi
��[ Denotational F# Functional

Proto-Quipper Operational Haskell Functional

QASM Denotational Assembly Language Imperative

FJQuantum Operational Feather-weight Java Imperative

ProjectQ Operational Python Imperative, Functional

pyQuil Operational Python Imperative

Forrest Operational Python Declarative

Open QASM Operational Assembly Language Imperative

qPCF Operational Lambda Calculus Functional

QWIRE Denotational Coq proof Assistant Circuit

cQASM Operational Assembly Language Imperative

Qiskit Operational Python Imperative, Functional

IQu Denotational Idealized Algol Imperative

Strawberry Fields Operational Python Imperative, Functional

Blackbird Operational Python Imperative, Functional

Cirq Operational Python Imperative, Functional

Q# Operational C# Imperative

Q
��SI[ Operational .Net Imperative

Silq Operational QRAM ? C# Imperative, Functional

Language: The name of the language.

� Semantics: The type(s) of semantics for the language.

� Host language: The classical language on (or to) which the language is based (or extended).

� item Paradigm: Each language belongs to one of the paradigms: imperative language, functional lan-

guage, and circuit design language
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reference model that supports the development and design

of future software is required. There also exist various

models in the software development lifecycle such as the

waterfall model, evolutionary model, and spiral model

[27, 28]. A quantum software lifecycle can be a lifecycle

where corresponding sequential and systematic software

lifecycle models at present can be initiated at a system

level and develops through requirement analysis, design,

testing, implementation, and maintenance.

Helping in the organization of quantum software engi-

neering, better insights into the quantum software devel-

opment phases are explored in the following hierarchy:

• Quantum software requirement analysis

• Quantum software design

• Quantum software implementation

• Quantum software testing

• Quantum software maintenance

• Quantum software reuse

The following relationship can be explored in Fig. 5. The

quantum software requirements activity is intended to

determine the requirements and limits of quantum soft-

ware. The quantum software design activity intends to use

appropriate modelling approaches and tools to define the

architecture of quantum software. The quantum software

implementation activity seeks to convert architectural

designs into executable code using QPGLs and relevant

architectures. The goal of quantum software testing is to

ensure that quantum software is correct, reliable, and per-

forms well. The architectural deployment operation

involves deploying quantum software into the intended

environment. The process includes supporting tasks such as

architectural assessment, evolution, and management. The

quantum software maintenance aims to maintain the

Quantum system scalability, maintainability, reusability,

performance, and security. The quantum software reuse

helps in defining crucial quantum qubits and circuits that

can be implemented for different quantum softwares [29].

As quantum software engineering paces with recent

trends and requirements concerning the high-level quan-

tum-based software architecture desired, the classical

approach of software engineering methods can be induced

and reused for the same. The Quantum software develop-

ment phase follows the problem of the defined requirement

analysis and design constraints, which shall be the focus.

The hierarchy described above is divided into the following

sections.

4.1 Quantum software requirement analysis

For quantum software requirement analysis (QSRA), the

classical methods are proposed to be reused, but the new

architecture emphasizes more on the management aspect of

this phase. QSRA demands the structuring of the new

modeling methods and specifications that can be done for a

quantum software architecture.

The QSRA has to capture the requirements from the

stakeholders and establish that every scope of work is

understood and the nature of completing every requirement

is defined. The requirements for the QSDC, such as char-

acteristics, attributes, functional and performance require-

ments quantum software architecture, are required. [29].

This proposes the research community to address the

extension of the classical use cases, more defined user

stories, as use cases [13]. The functional and non-func-

tional quantum software are requirements are presented in

Table 2. The functional QSRA depicts feature definitions,

user requirements, use cases, and security. The non-func-

tional QSRA focuses on the properties, expectations, and

quality attributes.

4.2 Quantum software design

Quantum software design has two important aspects to look

into: quantum software architecture and quantum soft-

ware design details are defined for the new models of

quantum architecture-based data structures, quantum

algorithms, and module interaction. The quantum software

architecture defines the abstract level of the assembled

components and designs their interactions [7, 16].

The principles of quantum computing create difficulty in

designing the quantum architecture compared to classical

software architectural design [31]. This is due to the

intrinsic features of quantum computing, such as superpo-

sition and entanglement. The high-level and low-level

quantum software designs are referred to in Table 3. The
Fig. 5 Relationship between quantum software development and

software engineering
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patterns that are required for the quantum software and

algorithm designs are referred to in Table 4. Some of the

following proposed methodologies are:

UML-based Soft-

ware Designing

: Unified Model Language(UML) is

defined as the language for general,

understandable language-based

modeling in the domain of classical

software designing [32]. The UML

can be extended with quantum

specifications, which are Class dia-

grams and Sequential diagrams

[16]. The nature of quantum com-

puting, internal implementation, and

its virtue of information handling

are some of the observation that

serves as the foundation for Quan-

tum Universal Modelling Lan-

guage (Q-UML) [16, 32, 33].

Generic Model

Languages

: A model-based engineering lan-

guage is proposed to cater to

important concepts of quantum

software design like quantum -

variables, states, and operations,

which are designed to be indepen-

dent of any existing modeling lan-

guage, as well as quantum platforms

and programming languages. Thus,

this paves the way to design a new

quantum-based modeling language,

also described as Domain Specific

Language (DSL) [34, 35].

Instead of UML and GDLs, there exists various quantum

software modeling tools, i.e., Petri Nets, temporal logics,

quantum4BPMN, and SysML, providing distinctive

insights and advantages [29].

Table 2 Quantum software

requirement analysis
Functional Non-Functional

Defining quantum features Defining quantum properties

Emphasis on user requirements with quantum Emphasis on user expectations with quantum

Figuring the quantum mechanism in the use case Figuring quantum as a quality attribute

Authentication and security levels Usability, reliability, scalability, performance

Table 3 Quantum software

design
High-level design Low-level design

Quantum abstract particulars Quantum data structure design

Develop Quantum Modules Quantum Circuit and Algorithm design

Describing the functionality of each module Quantum interface design

Understanding of quantum gates Modules communication

Table 4 Patterns of quantum algorithm designs

Pattern Description

State preparation Initializing the input of a quantum register

Systematic superposition Creating an equally weighted superposition of all possible states of the qubits of a quantum register

Designing entanglement Creating an entanglement state

Function table Designing a function table for finite Boolean function

Black box Reusing the computation from previous quantum algorithm

Un-compute Removing entanglement

Phase shift Defining important aspects of a state

Amplification Increasing the probability of the solution

Speedup (verifying) Achieving a speedup after verifying a solution

Quantum-classic split Splitting the solution between a quantum and classical parts
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4.3 Quantum software implementation

The initial understanding of quantum software engineering

and quantum software life-cycle has emphasized the focus

on quantum computing languages. It is important to

understand the importance of the programming language

and its suitability while considering it for a quantum-based

application since the language must support at least one

base quantum programming language [36, 37]. Languages

available can be referred to in Table 1.

Abstraction as a quantum software requirement was

necessary for quantum software. Also defined as Abstract

Data Types (ADTs), they are designed for data structures

that can be modeled along with the quantum circuit

instructions, which can be manipulated. ADTs provide a

generic approach for developers designing instruction-

based data structures, providing semantic variations that

make it difficult to reuse. The entanglement can be seen in

the functionality of the code, which confuses with the

codes designed for data structures.

All of the aforementioned abstractions are bits of soft-

ware functionality consisting of a series of instructions that

eventually alter data and communicate with one another

through a control-transfer protocol. Again, this is because

VMC, upon which traditional computers are founded,

requires instructions to be executed in a specific order, and

on which our models must reflect reality [38]. Even while

the basic computer paradigm remained the same, it was

exceedingly difficult for programmers back then to change

the way they conceptualized software systems [6, 39].

Since the underlying VMC model paradigm is fundamen-

tally different, our current transformation is anticipated to

be significantly more difficult. Considering that the prob-

lems that will be addressed with quantum computing

belong to the Bounded-error Quantum Polynomial time

class while thinking about these abstractions is intriguing.

Domain-specific modeling languages may be created for

these issues if their typology can be characterized [39].

4.4 Quantum software testing

Even when powerful quantum computers exist, program-

mers may make mistakes more frequently while creating

programs for quantum computers as opposed to their

classical counterparts since human intuition is far more

suited to the classical world than the quantum one. Quan-

tum software has challenging behavior. Therefore, novel

quantum software testing and debugging methods must be

developed. Recent years have seen an increase in studies

on finding defects in quantum software as well as testing

and debugging it. Designing test plans is a crucial part of

test planning. Some of the test plans can be seen in Table 5.

Bug patterns are erroneous code idioms or improper

coding techniques that have been repeatedly proven to fail,

frequently due to an inaccurate understanding of a pro-

gramming language’s capabilities, the usage of erroneous

design patterns, or simple blunders sharing similar behav-

ior. Understanding the behavior of faults in quantum pro-

grams is crucial for debugging and testing quantum

software. Two things that needed to be seen were bug types

and patterns as well as bug benchmarks. These following

bug types and their defenses are provided in Table 6.

Bug Types and

Patterns

: The issue kinds for specialized quan-

tum programs to provide quantum soft-

ware debugging. Based on their

experiences putting various quantum

algorithms into practice, they identified

numerous bug categories that are unique

to quantum software and suggested

protection tactics for each type of

defect. These bug categories include

incorrect quantum initial values, inac-

curate operations and transformations,

incorrect compositions of operations

using iteration, recursion, and mirroring,

incorrect classical input parameters, and

incorrect deallocation of qubits [21, 32].

To provide researchers and program-

mers with a clear understanding of what

kinds of flaws may occur in quantum

programs and how to detect them, var-

ious bug patterns in the quantum pro-

gramming language, such as Qiskit,

have been found and categorized, and

an illustration is found of the pattern’s

symptoms for each bug pattern with

QuSBT [40]. By identifying these sim-

ilarities in a quantum programming

language, programmers may uncover

flaws more quickly and spend less

money on software maintenance.

Table 5 Quantum software

testing
Designing Test Plans

Test Design Descriptions

Test Case Description

Test Report and logs

Qubits Measurements
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Bug

Benchmarks

: QBugs is a database of reproducible flaws

in quantum algorithms that supports con-

trolled experiments for the debugging and

testing of quantum software [41, 42]. To

help the evaluation and comparison of new

research as well as the repeatability of

existing research findings on quantum

software engineering, QBugs offers some

preliminary suggestions for developing a

benchmark as the test scenarios for simu-

lating glitchy behavior [43]. Bugs4Q facil-

itates downloading and running test cases

for quantum software testing and gathers

repeatable problems in Qiskit applications.

Every genuine problem and the corre-

sponding patches are available for investi-

gation in the public domain. Almost all of

the Qiskit bugs that are currently active are

gathered and updated in real-time by

Bugs4Q [44].

Code review is one example of an established software

engineering method that is easily adaptable to the quantum

computing field. Some are challenging to translate, like

interactive debugging [2, 42]. The remainder must be

included (such as the location of a validation program

based on its complexity). They attempted to outline the

software engineering techniques for quantum software

rather than suggesting a specific testing method [38, 45].

With this description at their disposal, experts in software

engineering from academia and business may begin

investigating this intriguing area of quantum computing

and then broaden their research to include more testing

areas as well as the remaining stages of the life cycle of

quantum software.

Defensive tactics in software programming help to stop

various bugs and issues from re-occurring during pro-

gramming to create bug-free quantum programs. However,

statistical claims for quantum programs were observed

based on statistical testing on VMC models [35]. With the

aid of these, programmers may determine if a quantum

program state corresponds to its predicted value in a clas-

sical, superposition, or entangled kind of state. Using this

information, potential claims in quantum software were

divided into three categories: classical assertion, superpo-

sition assertion, and entanglement assertion. They expan-

ded Scaffold, a currently used quantum programming

language. The fundamental drawback of Huang and Mar-

tonosi’s assertion-based methodology is that each mea-

surement made while debugging requires stopping the

program, and the assertions demand averages of runs when

measuring the real computation results et al. [46]. Moti-

vated by nondestructive discrimination (NDD) and quan-

tum error correction, this constraint must be addressed

[35, 41, 47].

Robustness analysis: Robustness is defined as the

quantum program that limits the difference between the

output of a noisy program and that of its equivalent ideal

program on the same input [2]. A semantics is defined for

quantum computing with faults computed error limits for

noisy versions, which also provides instances of utilizing

error correction is advantageous and when there are trade-

offs between the efficiency of error corrections and asso-

ciated costs, demonstrating how the technique may be used

to determine the error boundaries for tiny circuits with and

without error correction [44, 48].

Entanglement analysis: Entanglement analysis, which

can conservatively pinpoint every potential pair of entan-

gled qubits in the system. A programmer can use this

tangled knowledge to build and troubleshoot algorithms

[15, 17, 49].

A coverage criteria can be assessed with a set of rules

that can be included to be satisfied by any test-case exe-

cuted, which is the coverage criterion =

GatesTotal � GatesInfeasible, assuming the gates are reach-

able, feasible and software is optimal [50]. Kumar et al.

[51], discusses a Modified approach for mutation testing is

developed on the principle of the Coupling effect and

component programmer hypothesis, identifying the

Table 6 Bug types and defenses

Bug Types Solving Strategy

False Quantum initial values Assertion checks for classical and superposition preconditions

Flawed operations and transformations Assertion checks for unit testing

Flawed composition of operations using iteration Assertion checks for classical intermediate states

Flawed composition of operations using recursion Assertion checks for entangled intermediate states

Flawed composition of operations using mirroring Assertion checks for product state postconditions

Flawed classical input parameters Assertion checks for classical postconditions

Flawed deallocation of qubits Assertions on algorithm postconditions
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equivalent mutant to ensure the quality of the future

quantum software.

4.5 Quantum software maintenance

In the creation of VMC model software, maintenance

support is of utmost importance. This is motivated by the

well-known statistic that the maintenance phase of soft-

ware development accounts for 60 to 80 percent of the cost

of the software [45]. The major goal of quantum software

maintenance is to maintain and alter software programs

once they are delivered to fix bugs and boost performance

[3, 49]. Recent studies in this field are primarily concerned

with re-engineering current conventional software systems

to interface with new quantum algorithms. The quantum

software maintenance can be more explained by re-engi-

neering, which will be implemented by re-processing the

classical information system to a quantum information

system [2, 48]. Some of the quantum software maintenance

requirements can be seen in table 7.

Re-engineering from classical to quantum informa-

tion systems

The examination and alteration of the intended software

system through several processes like design recovery, re-

documentation, reverse engineering, and forward engi-

neering. To create software that is of higher quality and

easier to maintain, the old system will be rebuilt into a new

form. By placing particular calls from VMC models to

distant quantum computers in the cloud, it will be normal

practice to employ quantum computers to tackle some

significant issues [37, 52]. In this situation, the majority of

businesses need to move and integrate their initial quantum

algorithm or subsequent quantum algorithm with their

current classical information systems. To address the issues

posed by the migration of quantum computing and the

ensuing cohabitation of classical and quantum software, re-

engineering must be explored.

Model-driven reengineering is a method of software

modernization that restructures classical systems along

with existing or brand-new quantum algorithms to create

systems that incorporate both classical and quantum

information systems [12, 44]. It has been established that

the software modernization approach used in traditional

software engineering is an efficient mechanism for

achieving software migration and evolution while pre-

serving business knowledge [16, 33, 49]. Reducing the

creation of new quantum information systems could help

the answer. It would also be independent of any quantum

programming languages as it is built on international

standards to describe the knowledge in an agnostic manner.

To incorporate quantum computation primitives (for

example, quantum software components) into an existing

conventional software system is yet another challenge in

re-engineering (maintenance). Since a quantum computer

is fundamentally different from earlier technologies and

approaches, it must not only tackle this issue at the same

level as algorithm implementation but at many other sig-

nificant issues that have been extensively researched in

software engineering to be integrated into current software

systems. A case study demonstrates how to add a quantum

software component for the Boolean satisfibility problem

to an already installed software system. In this case study,

they examined the corresponding quality metrics for

quantum components and demonstrated how to change the

Boolean satisfibility problem into a quantum annealer,

which is structurally distinct but mathematically identical

[2, 52].

4.6 Quantum software reuse

Throughout the whole development life-cycle, including

requirement elaboration, design, and implementation,

VMC model software may be systematically reused. Even

in the stages of development after delivery, such as

ongoing quality assurance or software maintenance, it has a

place [16, 34, 53]. This section provides a current state-of-

the-art overview of quantum software reuse in many areas,

including quantum state, quantum circuit, and quantum

pattern reuse.

4.6.1 Quantum circuit reuse

From the standpoint of software reuse, a few quantum

patterns can aid in the development of quantum algorithms.

Additionally, a representation of these quantum patterns in

a pattern repository, a specialized database used to store

pattern documents and maintain linkages among them

[54, 55]. Such a quantum pattern repository supports

browsing the content of each pattern document and enables

pattern navigation based on links between patterns,

allowing a quantum software developer to query the data-

base to find appropriate quantum patterns (for example, to

identify the entry pattern corresponding to a problem). In

this fashion, a developer of quantum software may select

Table 7 Quantum software maintenance

Maintenance Requirements

Maintenance Scope

Quantum Architectural Design Maintenance

Quantum Modules Maintenance

Unit Testing

Classical to Quantum Re-engineering
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appropriate patterns from the repository, which might span

multiple distinct domains, and combine them to address a

challenging issue.

There are a few quantum circuit design approaches that

are now known; most of them are based on heuristic search

methods like genetic algorithms and simulated annealing

[45, 56]. These techniques, however, are restricted to a tiny

range of circuit sizes, and the results they produce are

frequently illogical. A fresh approach to designing quan-

tum circuits that are built precisely on the notion of

building new quantum circuits utilizing parts of old ones

[7, 2]. The design principle’s distinguishing feature is that

if we already have a useful collection of quantum circuits,

we may systematically build effective quantum circuits by

reusing and merging a collection of highly optimized

quantum circuits. This design method’s solid mathematical

underpinnings provide understandable and accurate

descriptions of the circuits that are produced. Authors in [2]

proposed that it could be worthwhile to create a database of

medium-sized matrix groups with functional quantum cir-

cuits from a practical standpoint. Linear algebra may then

search this database for a particular transformation, and

automatically generating quantum circuit implementations

in this way could be appealing [35]. Qubit-resue compi-

lation, a method achieved on ion-trapped models where

quantum circuits, using very few qubits were executed in

compilation of mid-circuit measurement and resets. Algo-

rithms such as local brickwork circuits, quantum convo-

lutional neural networks and Berstein-Vazirani were

implemented to preserve the total gates in the circuit

resulting in increase of circuit depths,as discussed by

DeCross et al. [57]

4.6.2 Quantum state reuse

The main idea is that in the future, manufacturers may

create a valuable quantum state and make several copies of

that quantum state using a particular device. These copies

can then be checked for quality and kept until they are

required [6, 9, 58, 59]. Customers may pay to download

that state, which they can then use to speed up their

quantum computer.

‘‘Some quantum states are hard to create and main-

tain but are a valuable resource for computing.

Twenty-first-century entrepreneurs could make a

fortune selling disposable quantum states’’ [13]

A fascinating concept known as plug-in quantum software

was proposed for perhaps reusing the quantum states that

make up a quantum software program. There are fault-

tolerant universal set quantum gates that are simple to

construct and others that are challenging for every known

quantum error correction system. Quantum software, which

may be created beforehand and then consumed while the

quantum gate is being operated, can effectively execute the

latter. Using software to implement the gate has the benefit

of allowing one to check that it is prepared per require-

ments before usage. Quantum software metrics are primar-

ily concerned with assessing the size and structure of

quantum software.

5 Case study

The case study provides better insights into the domain of

quantum software engineering. We will be looking at two

of the cases, Hybrid Quantum Applications and Quan-

tum Computing Service (QCS) [33, 43]. The integration

of new technology and conventional methodologies pro-

vides a breakthrough in developing these quantum-based

technologies that showcase necessary advancement.

5.1 Hybrid quantum application

A hybrid system is made up of a VMC model and a

quantum co-processor coupled by a feedback loop. Data

processing, error correction, and optimisation are all

examples of tasks that classical systems can accomplish

reliably, quickly, and scalably. A quantum co-processor

can do operations that are intractable for VMC model, such

as factoring big numbers and solving NP-hard problems.

The feedback loop allows the VMC model to regulate the

quantum co-processor based on the measurement findings.

The hybrid system can thus make use of both VMC model

and quantum systems while avoiding their drawbacks. [60].

The life cycles of various software artifacts must be inte-

grated to create hybrid quantum applications. Then, we go

over the many stages of the life cycle of developing

quantum software. The hybrid quantum application may

have many quantum algorithm implementations; for

example, clustering may be performed first, and then a

classifier may be trained using the clustering findings.

Thus, the pre-processing chores are carried out by con-

ventional programs and on conventional machines. When

running the quantum programs, pre-processing, for

instance, generates state preparation circuits depending on

input data to initialize the register of the quantum com-

puter, shown in Fig. 6. The major challenges exists in

hybrid quantum applications are developing and main-

taining large-scale quantum computers; designing opti-

mized, efficient and scalable quantum algorithms; and

identifying advantages and sustainablity over VMC models

over given set of use cases.

Coordination between the quantum algorithm instruc-

tion and classical programs of hybrid quantum applications

for the transfer of the necessary data shall be established
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between them. Workflow technology is an orchestration

strategy that has been shown to work in a variety of diverse

application domains throughout the years. Workflows

should thus be utilized to coordinate the programs that

make up a quantum application [49]. For this, so-called

workflow models are used to specify the necessary opera-

tions involving the execution of the quantum and classical

programs, their sequencing, and the data flow between

them.

As shown in Fig. 7 (i) the quantum workflow life-cycle,

(ii) the classical software life-cycle, and (iii) the quantum

circuit lifecycle, the quantum software development life

cycle contains many life cycles that are intertwined.

Additionally, it is necessary to manage the numerous

software artifacts that are prepared for and carried out

during the operation’s life cycle. To support quick and

frequent releases, developers and operations staff should be

closely connected using the widely accepted DevOps

concept [7, 27].

Distinct studies have proposed distinct business process

management life cycles and processes. Leymann and

Roller and Dumas et al. [31] life cycles were discussed as

the foundation for our life cycle for quantum processes.

The operation of each generated software artifact making

up a quantum application is required. This covers, for

instance, how the quantum application is packaged to be

sent to the target environment or how it is deployed. For

the quantum computing area, different concepts and tech-

niques are needed from traditional DevOps.

In comparison to the splitting of quantum applications

and quantum processes, the splitting in the quantum circuit

lifetime is splitting with the lowest level of granularity. It is

Fig. 6 Hybrid quantum

structure

Fig. 7 Quantum software

development life-cycle
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meant to determine if a pure quantum algorithm or a hybrid

quantum algorithm should be employed. It is entered with a

description of the issue to solve. Implementing the relevant

quantum circuit is necessary. Because of this, the imple-

mentation should be hardware-independent to allow for a

subsequent hardware choice depending on the present

properties of the many quantum computers that are now

available. The quantum circuit can thus be utilized to solve

many instances of the issue. Many different technologies

can be used to implement the quantum circuit.

To guarantee that the quantum circuit behaves as

intended, which is tested and confirmed [32, 38]. One

strategy is to include statistical claims in the quantum

circuit [28, 32]. When the quantum circuit is run up until

the assertion is defined, it is then confirmed that the stated

state is measured. As a result, programmers are guided in

detecting flaws by the assertions’ outcomes [61]. However,

this calls for running the circuit for every claim, which is

only practical for brief quantum circuits with a limited

number of assertions. First methods also make an effort to

runtime dynamically verify claims. But then more ancilla

qubits and gates are needed, which restricts the application

with the constrained quantum computers of today [62].

It is not necessary to solve a specific issue instance to

build the quantum circuit from the hardware-independent

implementation phase. As a result, it is enhanced with the

information needed to resolve a specific instance of the

problem during this stage. There are two phases to this

enrichment: state preparation and oracle expansion,

respectively. Based on the input data, a circuit initializing

the quantum computer’s register with the necessary state is

constructed for the state preparation stage. After then, the

original circuit is prepended with the state preparation

circuit that was created. As a result, other encoding, such as

the angle, amplitude, or basis encoding, exist.

For the existing base of business applications, classical

computing is currently demonstrating its ability to perform

across a wide range of solutions. However, some of the

computations they must perform can be accelerated using

quantum computing, analogous to how GPUs are utilised

today. As a result, quantum systems should not operate in

isolation, but rather coexist and interact with classical

systems. The aim of the proposed Quantum Algorithm card

is twofold, enacting firstly as it acts as a repository for

insights into the algorithm’s implementation, and secondly,

it transmits vital information to users who rely on the

implementation to meet the application’s specific require-

ments. [60]

5.2 Quantum computing services

Given the current state of quantum computing, the greatest

comparison for this access would be to the more

conventional Infrastructure as a Service model, which

allows customers to interact directly with the cloud’s

physical resources. Using a quantum programming lan-

guage supported by the hardware they use, users may

create and run quantum programs. The program is sent to a

scheduler for execution, which eventually sends the code to

the quantum computer whenever a time slot becomes

available. The Quantum Application as a Service idea is of

special importance in the unique realm of quantum services

[62, 66]. The primary obstacles arise from two areas:

technical combining VMC models and quantum compo-

nents, and process matching the technological solution with

user needs and requirements with respect to a full stack

quantum software development [63]. The authors in

[18, 64–66] advise using a conventional application pro-

gramming interface (API) to include all quantum applica-

tion and deployment functionality. Then, in quantum

computing as a service offering, this API may take care of

input data encoding and launching the quantum software,

easing the integration of the quantum program with con-

ventional applications. Quantum software development

life-cycle as an API [18, 31] is demonstrated in Fig. 8.

For certain quantum computing systems, a quantum

algorithm is executed using pulses generated by quantum

circuits. Today, we have numerous methods for deploying

programs to execution. Containers, merely delivering

instructions, and quantum circuits are all viable options.

The design of this deployment and execution middleware

requires no unique considerations related to quantum

computing, and regular software architecture will meet the

requirements. However, because the middleware interacts

directly with the quantum computer, it cannot be easily

shared with other quantum computers. The following pro-

vides the existing open-source quantum API’s at the

moment: �GoogleCirc� https : ==quantumai:google=cirq

�IBMQiskit� https : ==qiskit:org=

Some major constraints added to for quantum comput-

ing services are variability in design, deployment and in

interpretation [67].

A service composition paradigm called an API Gateway

was created to enable the development of end-user appli-

cations based on the combination of many micro-services.

The system’s entry point, the API Gateway, directs queries

to the proper micro-services. Additionally, it can modify

protocols, calls aggregate results, and apply common logic.

A Python and Flask implementation of the Quantum

API Gateway idea for the Amazon Bracket quantum

computing platform is presented. This platform was chosen

because it provides a comprehensive approach to running

quantum programs in various quantum processors. The API

Gateway enables programmers to select between gate-

based or annealing machines at run-time depending on the

type of code to be executed (presuming both quantum
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service implementations are accessible). For gate-based

computers, the necessary number of qubits is utilized to

identify those with sufficient processing capacity. Calculate

the cost per computer chosen. To that purpose, the number

of shots specified by the developer, the cost per shot, and

the intended maximum cost threshold are employed, with

‘‘shots’’ defined as the number of repetitions necessary to

identify the solution and, therefore, the service execution

outcomes in Eq. 6.

CostService ¼
CostExecution
Execution

þ ðCostshots
Shot

� NshotsÞ ð6Þ

The estimated execution time for each machine is calcu-

lated based on the parameters of the execution, its context

(particularly the day of the week and the hour of execution

start), and the actual time taken by previous executions

done on that VMC model. In addition, a time variable

connected to the analysis of prior executions as a time

series is included [49]. As a consequence, the resultant time

includes both the time spent waiting in the machine’s

execution queue and the time necessary to perform the

quantum service. The following Quantum API Gateway

architecture is modular. Both of the static and dynamic

features, as well as those used to estimate execution time,

can be supplemented with variables from other vendor

suppliers [4, 62].

The Quantum API Gateway has two major endpoints:

one for obtaining suggestions regarding which quantum

machine to carry out the service on, and the second for

providing observations about the time it took for the ser-

vice to finish execution, which records and enhances the

execution time prediction model.

Execute/ ‘‘GET’’

method

: It performs the Quantum API Gate-

way optimization with the variables

and settings specified preceding and

delivers the most ideally suited

machine for execution of the code.

Feedback/

‘‘POST’’ method

: To enhance the execution time esti-

mation model, it allows reporting to

the Quantum API Gateway the amount

of time necessary to carry out the

service in a given VMC model, toge-

ther with the executed service’s

description; qubits and shots and

context factors day of the week and

time of it.

A query made on the Quantum API Gateway consumed

26.671 seconds on average. 26.668 seconds (99.98 percent

of the Quantum API Gateway time) consisted of inquiring

about the real-time status of the various machines acces-

sible via the Amazon Bracket API. The suggestion process

was executed in less than 0.01 seconds. Using a caching

technique to monitor the state of the quantum computer

might greatly cut querying time but at the expense of

precision. Another option is that the platform will provide a

real-time API to examine this data [62]. One such example

for QCS is QPath, which is an ecosystem that bridges the

gap between classical and quantum domains within a

Quantum Development and Application Lifecycle plat-

form, providing access to a broad range of potential

applications with cutting-edge quantum software and

quantum containerization as well as quantum continuous

development [68]. Some of the successful use cases are

presented as QaaS web services. The application of quan-

tum web services using amazon brackets, openAPI and

github extensions [69]. Another successful usecase is,

QFaaS (Quantum function as a Service) is first serverless

Fig. 8 Quantum software

development life-cycle as an

API [18, 31]
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based quantum framework, which tries to unify different

QC providers under a single framework. [70]

6 Discussion and future works

The introduction of quantum programming languages has

fueled the development of quantum software in its brief

existence. At the same time, quantum software develop-

ment has traditionally been associated with quantum pro-

gramming. While such languages have assisted in

popularising quantum programming, designing new lan-

guages is not a long-term solution. It is critical, especially

in this case, that a comprehensive software engineering

discipline be established for quantum software develop-

ment [27, 71]. A swift advancement is being achieved in

the domain of quantum software engineering as well as

quantum software lifecycle. However, claiming maturity in

the themes treated by the present piece would be incorrect;

certainly, while numerous strategies have arisen, further

expertise is needed to evaluate their relative strengths as

well as, to concentrate suggestions into a limited number of

key approaches.

The major advice for researchers is that they need to be

quick to update the review’s findings in the coming years

[36]. In this regard, the items below emphasize some sig-

nificant research recommendations to make quantum pro-

gramming more practical:

• QPLs: The original languages’ difficulty was the lack of

higher abstraction techniques. Furthermore, several

control structures and operations that are typical in

classical programming languages will almost certainly

be included. This is because most contemporary

quantum programming languages still have shortcom-

ings when compared to their conventional counterparts.

• Simulator and Environments: Several simulators are

already available to help users understand quantum

computing foundations and design quantum algorithms.

However, the next degree of abstraction is required for

design environments that concentrate more on software

design rather than quantum circuits. We are referring to

the high-level design of completely hybrid software

systems, which involve current modeling languages

such as Unified Modeling Language (UML) or other

domain-specific languages.

• Optimizers: Optimization is critical for quantum com-

puting success, especially as quantum computers pro-

gressively increase in the number of qubits. It is not,

however, a key topic of quantum software development

because it is more of a challenge of co-designing

quantum hardware and the firmware required for

optimizing programs for the specific architecture and

other shortcomings.

• Quantum Software Development kits: Integrated devel-

opment environments (IDEs) for creating, writing, and

executing quantum programs, like high-level tools for

designing, must be enhanced. Future Quantum IDEs

must add standard features that current IDEs for

classical software have, such as support for many

quantum programming languages and technology

agnosticism.

• Error Correction Tools: Error correction is an area

undergoing intense investigation since it is critical to

maximizing the full capacity of quantum computers

and, by extension, the software programs that are

executed on those machines.

The need for exceptional quantum solutions will skyrocket

in the next years. However, the creation of such applica-

tions is hard and requires the participation of professionals

from numerous sectors. Common knowledge of the

development procedure for quantum software is required to

enable their effective collaboration and to facilitate the

teaching of future quantum software developers

[32, 72].The meta-level development step is concerned

with software that transforms hybrid design specifications

into quantum source code. A rudimentary grasp of the

quantum mechanism and software engineering is required

for quantum programming. Because we are dealing with

circuits and quantum programming languages, we rarely

use approaches that are typical in programming. We are

still in the beginning phases of quantum software devel-

opment. More activities are required in terms of building

tools and technologies, quantum simulators, running pro-

grams on servers, constructing circuit diagrams, and cre-

ating an outline for quantum programming. Implementing

code quality standards decreases a wide range of issues and

the probability of failure of the project [16, 41, 47]

7 Conclusion

Quantum computation is, without a doubt, a technological

revolution that we are witnessing. This revolution is akin to

nineteenth-century industrialization, which gave the

beginning of the machine era or to the developments that

occurred during the twentieth-century information age. In

this paper, we focused on the recent trends that are found in

quantum software engineering and diving more deeply into

the quantum software life-cycle.

Quantum computing, in general, and quantum software

engineering, in particular, are highly engaged research

topics with novel theories and techniques being published

regularly. As a result, the quantum software development
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life-cycle is a live document that can be updated and

expanded in response to new advances. This includes, for

example, incorporating new concepts and tools or the

addition of an additional growth phase.
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