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Abstract We revisit our argument that shows that parton
distribution functions (PDFs) in the MS scheme are non-
negative in the perturbative region, with the dual goals of
clarifying its theoretical underpinnings and elucidating its
domain of validity. We specifically discuss recent results
proving that PDFs can turn negative at sufficiently low scale,
we clarify quantitatively various aspects of our derivation
of positivity in the perturbative region, and we provide an
estimate for the scale above which PDF positivity holds.

1 PDF positivity

The issue of positivity of parton distributions raises interest-
ing questions both from a theoretical and a phenomenologi-
cal point of view. Leading-order (LO) parton distributions are
necessarily positive because they are proportional to physi-
cally observable cross-sections, while beyond LO positivity
depends on the choice of factorization scheme.1 Hence, PDF
positivity goes to the heart of factorization; furthermore, PDF
positivity in the commonly used MS factorization scheme is
phenomenologically relevant for PDF determination.

In Ref. [1] we have provided arguments for perturbative
positivity of PDFs in the MS factorization scheme. Pertur-
bative here means that these arguments apply in the domain
in which leading-twist perturbative factorization holds, and
moreover the perturbative expansion is well-behaved, mean-
ing that the size of perturbative corrections decreases with
increasing perturbative order. They are based on starting
with a scheme in which PDFs are positive, and then showing
that positivity is preserved when transforming to MS, if the

a e-mail: stefano.forte@mi.infn.it (corresponding author)
1 Note that here and henceforth we use the words “positive” and “pos-
itivity” to mean more precisely “non-negative”

scheme change is perturbative, namely in a region in which
next-to-leading order (NLO) corrections are smaller than LO
terms. Specifically, as candidate starting positive schemes
we considered two possibilities: a scheme in which partonic
cross-sections are positive beyond LO, and a physical scheme
in which PDFs are identified with physical observables. In the
former scheme, positivity holds provided the d-dimensional
PDF is positive before collinear subtraction. In the latter
scheme positivity is guaranteed at all scales by that of the
physical observable.

These two arguments were argued in Ref. [1] to be equiv-
alent. However, while positivity of the physical observable is
guaranteed at all scales, it has been recently shown in Ref. [2]
that positivity of the d-dimensional collinear-unsubtracted
(called “bare” PDF in Ref. [1]) cannot hold at all scales, and
must necessarily fail at a low-enough scale. This then raises
the issue of the relation between the two routes to positivity
of Ref. [1], and more in general, the question of whether the
argument of Ref. [2] invalidates the positivity argument of
Ref. [1], or perhaps it restricts its domain of validity. This,
in turn, raises the question of the precise domain of validity
of positivity: as mentioned, in Ref. [1] it was shown to hold
in the perturbative region, but no precise assessment of this
region was given.

It is the purpose of this note to address all these questions
in turn. The argument of Ref. [1] is based on two steps, first
the construction or choice of a positive factorization scheme,
and then the transformation from this scheme to MS, and
consequently a general assessment requires revisiting both
steps. Specifically, in Sect. 2 we address the more conceptual
issue of understanding if and where positivity of the PDF
holds, also in light of the implications of the argument of
Ref. [2] for the construction of a scheme with positive par-
tonic cross-sections of Ref. [1]. In Sect. 3 we instead address
the pragmatic issue of determining whether PDFs in the MS

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-12681-1&domain=pdf
http://orcid.org/0000-0002-5848-5907
http://orcid.org/0000-0001-8752-8008
mailto:stefano.forte@mi.infn.it


  335 Page 2 of 12 Eur. Phys. J. C           (2024) 84:335 

scheme are positive or not, by studying the transformation to
this scheme from a scheme in which PDFs are surely posi-
tive, namely, a physical factorization scheme, and assessing
phenomenologically the domain of applicability of positiv-
ity conditions. The implications of our results, specifically
to the concrete issue of PDF determination, are discussed in
Sect. 4.

2 Factorization: bare and renormalized PDFs

The first route to proving positivity in the MS scheme con-
sidered in Ref. [1] is to construct a factorization scheme in
which partonic cross-sections are positive, by a suitable mod-
ification of the MS collinear subtraction. This construction
is rooted in the MS factorization of collinear singularities,
most easily formulated for deep-inelastic scattering in which
case it can be derived from the Wilson expansion.

We now summarize this factorization argument; in par-
ticular we make explicit and general the dependence on the
various scales, for which in Ref. [1] implicit choices were
made. The factorization consists of writing deep-inelastic
scattering (DIS) structure functions as

1

x
F(x, Q2, ε)

=
∑

j

e2
jC j

(
αs(μr ),

Q2

μ2
r

)
⊗ f j (μ

2
r ) + O

(
�2

Q2

)
(1)

=
∑

j

e2
jC

R
j

(
αs(μr ),

μ2
r

μ2
f

,
Q2

μ2
f

)
⊗ f Rj (μ2

f ) + O

(
�2

Q2

)
,

(2)

where the coefficient functionsC (or partonic cross-sections)
are the partonic structure functions computed on external
on-shell partons, with all parton masses set to zero, fi is
the PDF for the i th parton and ⊗ denotes convolution, i.e.
[ f ⊗ g](x) = ∫ 1

x
dy
y f (x/y)g(y), and for simplicity we are

considering the case of photon-induced DIS. Equations (1
and 2) are written in d = 4 − 2ε dimensions in order to
regulate singularities, to be discussed shortly, but in the final
factorized formula Eq. (2) the ε → 0 limit can be taken and
the coefficient functions and PDFs remain finite.

We stress that, as mentioned in the introduction, all argu-
ments presented in this paper hold in the domain in which
leading-twist perturbative factorization holds. So for DIS
Equations (1 and 2) are just the leading order of a Wilson

expansion, and thus they only hold up to O
(

�2

Q2

)
higher twist

corrections, that would involve multiparton operators. Hence,
all equations written in this section should be understood to

hold up to O
(

�2

Q2

)
terms, even though we stop repeating this

each time.

In Eq. (1) μr is a renormalization point at which ultravi-
olet singularities (UV) are subtracted and the PDF f j (μ2

r ) is
defined by a suitable UV renormalization condition, while
the coefficient functions C j are affected by collinear singu-
larities. These coefficient functions and PDF were referred
to as “bare” in Ref. [1] in order to indicate that factorization
of collinear singularities has not been performed yet. How-
ever, as stressed in Ref. [2], the composite operator whose
matrix element defines the PDF has already undergone UV
renormalization, so f j (μ2

r ) is a UV-renormalized quantity:
indeed, the dependence of μr arises as a consequence of this
UV renormalization. In Eq. (2) instead, μ f is a factorization
scale and the collinear singularities that arise in the massless
coefficient functions have been factored in the PDF f Rj , such
that the coefficient function and PDF are separately finite.

In order to understand better the singularity structure of
the factorization formulae, Eqs. (1 and 2), we discuss the
scale dependence in somewhat greater detail. If factorization
is derived from the Wilson expansion, the coefficient func-
tions in Eq. (1) are the inverse Mellin transform of Wilson
coefficients. Because of their universality, these can be eval-
uated by replacing the proton target with a target in which
operator matrix elements are known. If one specifically picks
a massless, on-shell quark or gluon target, then the coefficient
function simply coincides with the structure function for a
free on-shell quark or gluon in the massless case. As stressed
in Ref. [2], this way of defining the coefficient function (or
Wilson coefficient) entails the choice of a specific renormal-
ization condition for the PDF, namely the condition

f j/ i (z, μ
2
r ) = δi jδ(1 − z) , (3)

where f j/ i (z, μ2
r ) is the PDF for a j-parton in a i-parton tar-

get, evaluated on-shell and with massless partons. This con-
dition implies that indeed the coefficient function Eq. (1) is
just the structure function of a free on-shell massless quark, as
computed in Ref. [1], and it corresponds to a specific choice
of renormalization scheme, referred to as BPHZ’ in Ref. [2].
The renormalization condition, Eq. (3), makes the factoriza-
tion, Eqs. (1)-(2), on which Ref. [1] is based on and denoted
as track-B in Ref. [2], consistent with the treatment of factor-
ization given in Refs. [3,4], denoted as track-A in Ref. [2].

Because the coefficient function C j in Eq. (1) is evaluated
for massless, on-shell quarks, it is affected by collinear sin-
gularities. On the other hand, if the structure function is com-
puted in a hadron target it must be finite. This then implies
that the PDF f j (μ2

r ) in Eq. (1) must also be divergent in
four dimensions in the BPHZ’ scheme when evaluated for
a hadron target so as to cancel the divergence of the coef-
ficient function. Clearly this is a generic property whenever
one chooses a target such that the structure function is finite.

In order to understand the divergence of the PDF, and the
way it determines its positivity properties, thereby making
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contact with the argument of Ref. [2], we compute the PDF
of a quark in a free off-shell quark target at NLO in the mass-
less case. Combined with the (universal) coefficient function,
this amounts to the perturbative computation of the structure
function of an off-shell quark, which is finite because of the
off-shellness of the target. The computation is thus akin to
that of an operator matrix element in a free quark state, but
now with the off-shellness taking care of the collinear singu-
larity.

This PDF can be thought of as the “perturbative compo-
nent” of the proton PDF, by interpreting the off-shell target
as the internal line of a diagram that contributes to the struc-
ture function in a hadron target. The computation is closely
related to that of Sec. 8 of Ref. [2], also presented in Ref. [5],
which is however performed in scalar Yukawa theory, while
here we wish to illustrate the point raised in [2] while remain-
ing in the context of QCD.

We thus consider

1

x
FMq (x, Q2) = e2

qCq

(
αs(μr ),

Q2

μ2
r

)

⊗ f Mq/q

(
μ2
r

)
+ O(α2

s ) (4)

where p2 = M2 is the target quark virtuality and f Mq/q is
the PDF for a quark in a quark target with electric charge
eq , and henceforth all quantities are determined up to NLO,
i.e. neglecting terms that lead to O(α2

s ) contributions to the
structure function. The notation FMq indicates that this is
the structure function of a free off-shell quark. Note that up
to O(α2

s ) only diagonal contributions, i.e. such as the struck
quark is the same flavor as the target quark, are present, but
starting at O(α2

s ) the PDF f Mqi /q j
for any quark of flavor i in

a target j-quark is nonvanishing so the structure function has
again the form of Eq. (4) with a sum over quark flavors j .

The coefficient function Cq was given in Ref. [1],
Eq. (2.24): it is universal, hence the same regardless of
whether the target is a quark or indeed a hadron. Because
the target is off-shell the PDF f Mq/q can only satisfy the con-
dition Eq. (3) at LO: indeed, as already mentioned, beyond
LO f Mq/q must necessarily contain a collinear singular contri-
butions that cancels against that of the coefficient function,
leading to a finite structure function. In order to compute it
at NLO, and check the cancellation of the collinear singu-
larity, we start with a “fully bare” PDF f M, 0

q/q , and perform
UV renormalization in the BPHZ’ scheme. This then gives
the PDF f Mq/q of Eq. (4), corresponding to f j (μ2

r ) of Eq. (1):
UV renormalized, but not yet collinear factorized, and called
“bare” in Ref. [1]. From this PDF the “fully renormalized”
PDF f M, R

q/q , to be defined precisely below, and corresponding

to f Rj (μ2
f ) of Eq. (2), is derived through collinear factoriza-

tion. We henceforth stick to the terminology “fully bare” and
“fully renormalized” in order to refer to f M, 0

q/q and f M, R
q/q

respectively. The singularity structure that we expect, and
that we verify explicitly, is the following: the fully bare PDF
f M, 0
q/q , is UV divergent and IR finite; after UV renormaliza-

tion, the PDF f Mq/q is UV finite but collinear divergent; the

fully renormalized PDF f M, R
q/q is finite. The real emission

contribution to the coefficient function Cq is of course UV
finite at NLO, it is IR finite after addition of the virtual correc-
tion but it remains collinear singular; its collinear singularity
cancels against that of the PDF f Mq/q in Eq. (4).

The NLO correction to the PDF f Mq/q involves [4] an inte-
gration over the momentum of the gluon radiated from the
quark line, in which the longitudinal and transverse momen-
tum integrations are treated asymmetrically, because the off-
shell quark whose PDFs is being determined has a well-
defined value of the longitudinal momentum, which corre-
sponds to that specified by the renormalization condition
Eq. (3) that enforces it to all orders. The integral over the
transverse momentum kT of the emitted quark then leads to
the result

f M, 0
q/q

(
x, μ2, ε

)
= δ (1 − x)

+ αs (μ)

2π
CF

{[
� (ε)

(
�2 (x)

4πμ2

)−ε

pqq (x)

]

+
+ f f (x)

}
.

(5)

which holds in d dimensions and is UV divergent as ε → 0
(see Appendix A for the details of the calculation). In Eq. (5)
μ is the standard dimensional regularization scale; pqq(x)
is implicitly defined in terms of the quark-quark splitting
function Pqq(x) as Pqq(x) = CF

[
pqq(x)

]
+; �2 (x) is given

by

�2 (x) = −x (1 − x) M2; (6)

and f f (x) is a UV finite and thus scale-independent contri-
bution, whose explicit form is given in Appendix A, Eq. (54).

The UV divergence of the fully bare PDF, Eq. (5), is a
consequence of the fact that the PDF is defined as the matrix
element of a composite operator [6]. The divergence can be
removed by a subtraction

f Mq/q

(
x, μ2

r , ε
)

= f M, 0
q/q

(
x, μ2

r , ε
)

− δUV
(
x, μ2

r , ε
)

, (7)

thereby leading to the UV renormalized, but still collinear
divergent PDF f Mq/q . The UV counterterm in Eq. (7) is fixed
by the renormalization condition Eq. (3), i.e. by considering
Eq. (5) in the on-shell, massless case and subtracting every-
thing but the δ(1 − x) contribution to its r.h.s., with μ = μr .
The explicit expression of δUV is found performing the com-
putation leading to Eq. (5) in the on-shell, massless case,
i.e. starting from the expression of the bare PDF in terms of
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transverse momentum integrals (see Appendix A, Eq. (51))
and setting M2 = 0. This leads to

δUV
(
x, μ2

r , ε
)

= αs (μr )

2π
Pqq (x) 4πμ2ε

r

∫
d2−2εkT

(2π)2−2ε

1

k2
T

.

(8)

It is useful to separate the UV and IR regions of inte-
gration over kT in Eq. (8); this can be done by introducing
an auxiliary mass parameter on which nothing depends, and
which we may well take equal to the virtuality M , through
the identity

4πμ2ε
r

∫
d2−2εkT

(2π)2−2ε

1

k2
T

= 4πμ2ε
r

∫
d2−2εkT

(2π)2−2ε

1

k2
T + M2

+ 4πμ2ε
r

∫
d2−2εkT

(2π)2−2ε

M2

k2
T

(
k2

T + M2
)

=
(

M2

4πμ2
r

)−ε

� (ε) −
(

M2

4πμ2
r

)−ε

� (ε) . (9)

Note that the first integral (UV divergent) converges in the
ε > 0 region, while the second one (IR divergent) converges
when ε < 0.

We thus get that the PDF at scale μr is given by

f Mq/q

(
x, μ2

r , ε
)

= δ (1 − x) + αs (μr )

2π
CF

⎧
⎨

⎩

⎡

⎣� (ε)

(
�2 (x)

4πμ2
r

)−ε

pqq (x)

⎤

⎦

+
+ f f (x)

⎫
⎬

⎭

= δ (1 − x) + αs (μr )

2π
Pqq (x)

(
1

ε
− γE + ln 4π

)

+ CF

{[
ln

μ2
r

|�2 (x) | pqq (x)

]

+
+ f̄ f (x)

}
, (10)

where f̄ f (x) = f f (x)+ i arg(−M2) now includes an imag-
inary contribution when M2 > 0 so the off-shell quark can
decay into a quark-gluon pair. Note the different nature of
the poles appearing in Eqs. (5) and (10): the UV divergence
in Eq. (5) has been canceled by the UV divergent integral of
Eq. (9), but the PDF has now acquired a collinear divergence,
which is the pole appearing in Eq. (10).

We can finally determine the fully renormalized PDF. In
Ref. [1] the collinear counterterm that removes the singularity
from both the coefficient function and PDF was determined
by performing an MS subtraction of the coefficient function.

Here we can easily determine it from the expression of the
PDF, Eq. (10), by writing the fully renormalized PDF as

f M, R
q/q

(
x, μ2

f

)
= lim

ε→0

[
f Mq/q

(
x, μ2

r , ε
)

+ δMS
q

(
x,

μ2
f

μ2
r

, ε

)]
,

(11)

where we have adopted the same sign convention for the
counterterm as in Ref. [1]. It immediately follows that the
MS counterterm is

δMS
q

(
x,

μ2
f

μ2
r

, ε

)
= αs (μr )

2π

(
μ2

f

4πμ2
r

)−ε (
−1

ε
+ γE

)
Pqq (x) ,

(12)

and the fully renormalized PDF is

f M, R
q/q

(
x, μ2

f

)
= δ (1 − x)

+ αs (μr )

2π
CF

{[
ln

μ2
f

|�2 (x) | pqq (x)

]

+
+ f̄ f (x)

}
. (13)

Using the expression of the NLO coefficient function from
Ref. [1] it is easy to check that the counterterm also removes
the collinear divergence from the coefficient function. The
renormalized coefficient function is

CR
q

(
x,

Q2

μ2
f

)
= lim

ε→0
Cq

(
x,

(
Q2

μ2
r

)
, ε

)
− δMS

q

(
x,

μ2
f

μ2
r
, ε

)

= δ(1 − x) + αs (μr )

2π

{
Pqq(x) ln

Q2

μ2
f

+
[
CF pqq(x) ln

(
1 − x

x

)]

+
+ D(x)

}
,

(14)

with

D(x) = CF

[
−3

2

(
1

1 − x

)

+
+ 3 + 2x − 4δ(1 − x)

]
.

(15)

The expression of the renormalized coefficient function of
Ref. [1] coincides with Eq. (14) with the choice μ2

f = μ2
r =

Q2.
The dependence of the PDF, Eq. (10), on the scale μr ,

and consequently of the fully renormalized PDF, Eq. (13),
on the scale μ f , is driven by the splitting function Pqq as
it should: the collinear singularity in the coefficient function
exactly matches the UV anomalous dimension of the operator
matrix element, i.e. of the PDF, in such a way that the singu-
larities in the coefficient function and PDF in Eq. (1) cancel
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each other. Indeed, up to the finite terms, we could have
obtained Eq. (10) by simply noting that (a) the dependence
of the PDF f Mq/q

(
x, μ2

r , ε
)

on the scale μr must satisfy the
QCD evolution equation, i.e. a Callan–Symanzik equation
with anomalous dimension Pqq (more precisely, its Mellin
transform); (b) the dependence on μr must cancel between
the coefficient function and the PDF; (c) the dependence on
scale of the coefficient function is due to its collinear singu-
larity; (d) the PDF depends (on top of the renormalization
scale) on a scale �2 that cuts off the collinear singularity.
The computation that we presented amounts to an explicit
check of all this.

We now turn to the positivity properties of the PDF. As a
preliminary observation we note that the PDF of a quark is
actually a distribution, so we only discuss its positivity prop-
erties in the x < 1 region. Also, if M2 > 0 the PDF develops
an absorptive part, in which case when discussing positivity
we refer to the positivity of the real part of the PDF. Also, we
recall that our whole argument starts with the leading-twist
factorization Eqs. (1 and 2), hence at low enough scale any
conclusion is not only subject to large higher order perturba-
tive corrections, but also to sizable higher-twist corrections.

All this said, we note that before collinear subtraction the
PDF f Mq/q , Eq. (10), contains a singular contribution propor-

tional to Pqq (x)
ε

, and associate logarithmic contribution pro-

portional to Pqq ln μ2
r

|�2(x)| . But for x < 1, Pqq(x) > 0, so the

logarithmic term is negative at low enough scale μ2
r < |�2|,

and the PDF becomes negative at low enough μ2
r for any fixed

value of ε < 0, in the region of convergence of the transverse
momentum integral. Correspondingly for any fixed value of
μ2
r the PDF becomes negative for sufficiently small ε. The

interplay of ε and μ2
r in the positivity condition is of course

due to the fact that in dimensional regularization with MS
subtraction μ = μr plays the role of a cutoff. The fact that
the PDF f Mq/q is negative at low scale is the main observation
of Ref. [2].

Turning now to the fully renormalized PDF f M, R
q/q

(
x, μ2

f

)
,

Eq. (13), it is clear that, since the logarithmic contribution
is the same as before collinear subtraction, but with now μr

replaced by μ f , by the same argument this contribution will
be dominant and the PDF will always be positive for large

enough μ f . Conversely, f M, R
q/q

(
x, μ2

f

)
will always be neg-

ative for small enough μ f , though of course at low scale both
the NLO perturbative approximation, and in fact the whole
leading-twist approach on which the computation is based
fail. The transition between these two regions depends on
the finite terms, as also emphasized in Sec. 8 of Ref. [2] (see
in particular Fig. 2), where this result is discussed in the case
of a Yukawa theory.

Hence, positivity of the fully renormalized PDF will surely
hold only at high enough scale, such that μ f is an UV scale, as

it should be. In a hadronic target the PDF cannot be computed
explicitly, however the same calculation leading to Eq. (13)
can be used to obtain the perturbative dependence of the PDF
on the factorization scale. It is the clear that the same argu-
ments apply, but now with �2 (x) replaced by a characteris-
tic scale �2

h of the hadronic target. Namely, the renormalized
quark PDF in a hadron target f Rq contains a logarithmic con-
tribution of the form of Eq. (13), i.e. it is given by

f Rq
(
x, μ2

f

)
= δ(1 − x) + αs (μr )

2π
ln

μ2
f

�2
h

Pqq + fh(x) (16)

where fh(x) is a scale-independent contribution determined
by non-perturbative physics, and the scale dependence is
fully determined by the QCD evolution equation.

We can now examine the positivity argument of Ref. [1]
within the context of this model computation. We start with
the observation that combining Eqs. (14) and (13), the struc-
ture function FMq (x, Q2), Eq. (4), when ε = 0 and x < 1,
is given by

1

x
FMq (x, Q2)

= e2
q
αs (μr )

2π

[
Pqq (x) ln

Q2(1 − x)/x

|�2 (x) | + D(x) + CF f̄ f (x)

]

(17)

= e2
q
αs (μr )

2π
CF

[(
(1 + x2) ln

Q2

|M2|x2 − 3

2

)
1

1 − x
+ 3x + 1

]
.

(18)

The structure function is positive for all x provided Q2 is

large enough (the exact condition is Q2

|M2| > exp 3
4 ≈ 2). This

follows from the fact that in this simple model the argument

of the log is Q2(1−x)/x
|�2(x)| = Q2

|M|2x2 .
The argument of Ref. [1] then consists of noting that in

standard MS factorization, in which the coefficient function
is given by Eq. (14) with μ2

f = κQ2 (or, more in general,

μ2
f is taken to be x-independent), the coefficient function

acquires a spurious logarithmic dependence on 1−x because
subtraction of the collinear singularity is performed at a fixed
x-independent scale Q2, rather than at the physical scale of
the process. This is obvious in the model computation: in MS
factorization the logarithm is split according to

ln
Q2(1 − x)/x

|�2 (x) | = ln
1 − x

x
+ ln

Q2

|M2|x(1 − x)
, (19)

the first log is included in the coefficient function, and the
second in the PDF. This amounts to splitting a positive log
into the sum of a negative contribution, included in the coef-
ficient function, and a compensating contribution included in
the PDF. Consequently, the NLO contribution to the coeffi-
cient function may turn negative. Note that in a perturbative
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approach, the logarithm would be split in an additive way, i.e.
as 1+αs(ln A+ ln B) = (1+αs ln A)(1+αs ln B)+O(α2

s ).
If ln A is negative the compensating ln B term is positive, so if
the second factor is included in the PDF this remains positive.
However, if the negative logarithmic contribution is large
enough so 1+αs ln A turns negative, the perturbative approxi-
mation is not justified and the split must be treated multiplica-
tively, i.e. 1+αs(ln A+ ln B) = (1+αs ln A)

1+αs (ln A+ln B)
1+αs ln A .

The second factor is now negative and if included in the PDF
the latter turns negative. This happens both as a matter of
principle if the PDF is computed non-perturbatively (e.g. on
the lattice), and also in practice, if the PDF is extracted from
the data, by comparing the MS prediction with a negative
coefficient function to the measured positive structure func-
tion.

In Ref. [1] it was consequently suggested to perform fac-
torization through subtraction at the physical scale, in such
a way that the coefficient function remains positive. In such
a scheme, the logarithmic contributions that are associated
to collinear divergences are split between coefficient func-
tion and PDF in a way that preserves the positivity of both.
The extra caveat, and main point of Ref. [2], is that this
ensures positivity of the PDF only provided the scale is high
enough, because otherwise the d-dimensional PDF and the
four-dimensional fully renormalized PDF are not positive to
begin with, so positivity is violated however one splits the
log.

This is manifest in the model computation: for Q2 < |M2|
the logarithmic contribution is negative, for small enough Q2

it will overwhelm any positive finite term, and the structure
function Eq. (18) may turn negative. Hence even in factoriza-
tion schemes such as those considered in Ref. [1] positivity of
the PDF (and of the perturbative, leading-twist structure func-
tion) only holds at high enough scale: physically, at scales
which are significantly larger than the hadronic target mass
scale �2

h that regulates the collinear singularity.
In summary, the import of the argument of Ref. [2] is that

the construction of a scheme in which coefficient functions
are positive of Ref. [1] only leads to positive PDFs and posi-
tive physical cross-sections at high enough scale. The value
of this scale is determined by non-perturbative physics, and
this hampers a purely perturbative determination of the range
of validity of PDF positivity. We address the issue of the range
of validity of positivity in the last section.

3 From a physical scheme to MS

The issue of PDF positivity in the MS scheme can be cast in
purely perturbative terms by expressing the PDFs in terms of
physical observables, through a suitable choice of factoriza-
tion scheme. This effectively amounts to inverting Eq. (2) at
leading twist.

In order to understand this schematically, we start by writ-
ing the factorized expression Eq. (2) for the nonsinglet struc-
ture function FNS

2 in the MS scheme with μ2
r = Q2:

1

x
FNS

2 (x, Q2) = 〈e2
i 〉CNS, MS

(
αs(Q

2),
Q2

μ2
f

)

⊗ f NS, MS(μ2
F ) + O

(
�2

Q2

)
, (20)

where f NS is a difference of two quark or antiquark PDFs,

〈e2
i 〉 = 1

2

(
e2
i + e2

j

)
is the average of their electric charges,

and FNS
2 is the corresponding combination of photon-

induced DIS structure functions. We then consider a so–
called physical factorization scheme [7–11], whose proto-
type is the DIS scheme of Ref. [7]. This is defined by impos-
ing the condition

CNS, DIS

(
αs(Q

2),
Q2

μ2
f

) ∣∣∣∣
μ2

f =Q2

= 1 (21)

to all perturbative orders .2

The DIS and MS schemes are related by a finite change
of scheme

CNS, DIS

(
αs(Q

2),
Q2

μ2
f

) ∣∣∣∣
μ2

f =Q2

= ZNS, DIS(αs(Q
2)) ⊗ CNS, MS

(
αs(Q

2),
Q2

μ2
f

) ∣∣∣∣
μ2

f =Q2

,(22)

and the renormalization condition, Eq. (21), immediately
implies that

ZNS, DIS(αs(Q
2)) =

[
CNS, MS

]−1 (
αs(Q

2)
)

, (23)

where
[
CNS, MS

]−1
denotes the functional inverse of the

coefficient function upon convolution, i.e., the distribution
(in general) such that

[
CNS, MS ⊗

[
CNS, MS

]−1
]

(x) = δ(1 − x) . (24)

Substituting the expression of the DIS-scheme coefficient
function, Eq. (21), in the leading-twist factorization, Eq. (20),

2 This is analogous to a renormalization condition in an on-shell
scheme, such as that commonly adopted to renormalize the electric
charge in QED, in which it is required that the full vertex function
�μ(q2) at zero momentum transfer coincides to all perturbative orders
with its leading-order expression: �μ(0) = γ μ.
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we immediately get

1

x
FNS

2 (x, Q2) = 1

x
FNS, LT

2 (x, Q2) + O

(
�2

Q2

)
, (25)

1

x
FNS, LT

2 (x, Q2) = 〈e2
i 〉 f NS, DIS(x, Q2). (26)

This means that the DIS-scheme PDF provides, up to the
constant prefactor 〈e2

i 〉, the leading twist expression of the
structure function, hence its positivity properties are deter-
mined by those of the leading twist expression of the structure
function, FNS, LT

2 (x, Q2). Furthermore, the relation between
the DIS and MS schemes, Eq. (22), implies that the respective
PDFs are related by

f NS, MS(x, Q2) =
[
CNS, MS

]−1 (
αs(Q

2)
)

⊗ f NS, DIS(x, Q2) .

(27)

Hence, the positivity properties of the MS PDF are in
turn determined by those of the structure function and the
inverse of the perturbatively computable coefficient function
CNS, MS without any reference to non-perturbative informa-
tion.

Now, of course the nonsinglet structure function is not
positive, however, one can choose a set of physical observ-
ables that fully determines the complete set of PDFs, and
specifically choose [1,10] a set of physical observables that
are linear in the PDF, such as deep-inelastic structure func-
tions which at leading order define the quark and a Higgs
production process which defines the gluon. Equation (20)
then generalizes to

σ(x, Q2) = σ0C
MS

(
αs(Q

2),
Q2

μ2
f

)
⊗ f MS(μ2

f ) + O

(
�2

Q2

)
,

(28)

where σ(x, Q2) is now a vector of physical observables,
f MS(x, Q2) is a vector of PDFs, CMS is a matrix of coef-
ficient functions and σ0 is a diagonal matrix of coefficients
(analogous to the coefficient 〈e2

i 〉 in Eq. (28)) chosen in such

a way that to leading order CMS = I, the identity matrix.
Equations (25 and 26) then become

σ(x, Q2) = σLT(x, Q2) + O

(
�2

Q2

)
(29)

σLT(x, Q2) = σ0 f
PHYS(x, Q2), (30)

and the MS PDFs are then given by the matrix generalization
of Eq. (27), namely

f MS
i (x, Q2) =

[
CMS

]−1

i j

(
αs(Q

2)
)

⊗ f PHYS
j (Q2). (31)

But, because of Eq. (30), f PHYS
j (Q2) is now a set of physical

observables computed at leading twist, so, unless the leading-
twist approximation breaks down, the physical scheme PDFs
are positive, and whether the MS PDFs are also positive, and
where, can be determined by studying the properties of the

matrix of perturbative coefficients
[
CMS

]

i j
and its inverse.

Note that Eq. (31) is true regardless of the accuracy of
the leading-twist approximation. The PDFs are defined as
the matrix elements of leading-twist operators [12] (see
e.g. Eq. (2.2) of Ref. [1]), and indeed, their moments are
matrix elements of leading-twist operators. Equation (30)
then means that the matrix element of these leading twist
operators, in the physical scheme, provides the result of the
leading-twist computation of a set of physical observables.
Equation (31) relates these matrix elements to those of the
same operators, but now in the MS scheme. Whether the lead-
ing twist expression Eq. (29) of the full set of cross-sections
σ(x, Q2) is accurate, i.e. whether it does or does not provide
a good approximation to an exact computation (that would
also include higher twist corrections), is a separate issue. We
will discuss this issue, which clearly has phenomenological
implications, in the last section.

The question that we wish to address now is whether,
within the realm of validity of the leading twist approxi-
mation, in which the physical scheme PDF is surely posi-
tive, the positivity is preserved upon transformation to the
MS scheme. This is tantamount to asking whether the pos-
itivity of f PHYS(Q2) is preserved upon convolution with[
CMS

]−1 (
αs(Q2)

)
. In the perturbative domain we have

f PHYS(x, Q2) =
[
1 + αs

2π
C(1),MS⊗

]
f MS(Q2) + O(α2

s ), (32)

and the perturbative inverse is just

f MS(x, Q2) =
[
1 − αs

2π
C(1),MS⊗

]
f PHYS(Q2) + O(α2

s ). (33)

Hence the positivity condition is

∣∣∣
αs

2π
C (1),MS ⊗ f PHYS

∣∣∣ ≤ | f PHYS|, (34)

which should be understood as a set of conditions for each
component of the vector of PDFs f PHYS.

The perturbativity condition, in turn, which ensures that
the manipulation from Eqs. (32) to (33) is justified, has the
same form as Eq. (34), but with f PHYS replaced by f MS.
It was already noted in Ref. [1] that these conditions are
manifestly violated as x → 1, because theO(αs) term on the
r.h.s. of Eq. (32) contains contributions that are not uniformly
small for all x , and are in fact unbounded as x → 1. We must
therefore deal with these contributions before we can discuss
the perturbative positivity condition Eq. (34).
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The issue was already addressed in Ref. [1], by perform-
ing an exact inversion of these terms in the x → 1 region.
We now revisit this argument, in particular, by explicitly dis-
cussing the treatment of distributional contributions. To this
purpose, we write the coefficient function up to O(αs) by
first, separating off, as in Ref. [1], the contribution propor-
tional to a Dirac δ so that the remainder only contains ordinary
functions and + distributions, and then further splitting this
remainder in a “finite” and a “divergent” contribution:

CMS(x) = δ(1 − x) + αs

2π

[
δ(1 − x)�(1)

+C (1), MS
F (x) + C (1), MS

D (x)
]

+ O(α2
s ) (35)

=
[
δ(1 − x) + αs

2π

[
δ(1 − x)�(1) + C (1), MS

F (x)
]]

⊗
[
δ(1 − x) + αs

2π
C (1), MS
D (x)

]
+ O(α2

s ).

(36)

In Eq. (35) �(1) is a diagonal matrix of constants whose

explicit expressions are given in Ref [1];C (1), MS
F (x) are con-

tributions such that limx→1 RF (x) is finite, where RF (x) is
defined as

RF (x) ≡ [C (1), MS
F ⊗ f ](x)

f (x)
, (37)

while C (1), MS
D (x) are contributions such that, defining

RD(x) ≡ [C (1), MS
D ⊗ f ](x)

f (x)
, (38)

then limx→1 RD(x) = ∞. Contributions C (1), MS
D (x) are

henceforth referred to as divergent contributions.
As well known, divergent contributions are present to all

perturbative orders in the MS scheme in the diagonal ele-
ments of the matrix of coefficient functions: they are pro-

portional to Sk(x) =
[

lnk (1−x)
1−x

]

+ and they are due to soft

gluon emission [13,14]. Note that in principle unbounded
contributions are also present when x → 0. These could be
handled in the same way, but we do not discuss them since
PDFs grow large and positive as x → 0 due to high-energy
logs [15], so positivity constraints are of no importance.

Clearly, there is some latitude in defining the separation of

Eq. (35) of the coefficient function into anC (1), MS
F term and a

C (1), MS
D term, since we can always subtract a finite contribu-

tion from C (1), MS
F and include it into C (1), MS

D : for example,[
1+x2

1−x

]

+ = 1+x
(1−x)+ + 3

2δ(1 − x). We define C (k), MS
D (x) as

the contribution that includes all and only the Sk(x) terms.

With this definition, up to O(αs) we have

[
C (1), MS
D

]

i j
(x) = ciδi j

(
2

[
ln(1 − x)

1 − x

]

+
− 3

2

[
1

1 − x

]

+

)

= ciδi j

[
ln(1 − x)

1 − x

]

+
+ NLL(1 − x), (39)

where i = q, g, cq = CA and cg = CF (see e.g. [1]).
Having written the coefficient function as in Eq. (36) its

inverse can be determined by performing the inversion per-

turbatively for all terms but C (1), MS
D (x): namely

[
CMS

]−1 =
[
δ(1 − x) − αs

2π

(
δ(1 − x)�(1) + C(1), MS

F (x)

)]

⊗
[
δ(1 − x) + αs

2π
C(1), MS
D (x)

]−1
+ O(α2

s ),

(40)

where now C (1), MS
D (x) must be computed by requiring it

to satisfy Eq. (24) exactly, i.e., not just up to higher order
perturbative corrections. We refer to this as the exact inverse:
note that this is of course only exact within the limitations of
leading-twist factorization.

The exact inverse of the divergent contribution was com-
puted already in Ref. [1] to leading logarithmic accuracy, and
it was shown to be finite in the x → 1 limit. This was argued
to be in agreement with the expectation that the inverse of a
divergent coefficient is actually finite, based on Mellin-space
considerations. Namely, the Mellin transform of a divergent
coefficient function diverges as the Mellin variable N → ∞,
but the Mellin-space inverse is just the reciprocal, so the
Mellin transform of the inverse vanishes as N → ∞, imply-
ing that the inverse is finite.

We wish now to make this argument more explicit by
fully working out distributional contributions and explicitly
proving their positivity. To leading logarithmic accuracy we
have [1]

[
δ(1 − x) + αs

2π
C(1), MS
D (x)

]−1

i j
= δi j δ (1 − x)

− 2δi j Ci
αs

2π

⎛

⎝ ln(1 − x)
(
1 + Ci

αs
2π

ln2(1 − x)
)2

1

1 − x

⎞

⎠

+
+ NLL(1 − x).

(41)

Note that the term in brackets has an integrable singularity
as x → 1, but it is nevertheless expressed as a + distribu-
tion because it is obtained by resummation of a series of
contributions each of which has a + distribution taming a
non-integrable singularity.

We can now discuss the positivity of the various contribu-
tions by working out their action on a test PDF f (x). Note
that when substituting the inverse in Eq. (23) the PDF that
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is acted upon is guaranteed to be positive, because it is a
physical observable. We use the identity

[
f+ ⊗ g

]
(x) =

∫ 1

x

dz

z
f (z)+ g

(
x

z

)

=
∫ 1

x

dz

z
f (z)

[
g

(
x

z

)
− zg (x)

]

− g (x)
∫ x

0
dz f (z) (42)

We get

f̄i (x) ≡ [ZD ⊗ f ]i (x) (43)

=
∑

j

[
δ(1 − x) + αs

2π
C (1), MS
D (x)

]−1

i j
⊗ f j (x) (44)

= 2ci
αs

2π

∫ 1

x

dz

z

ln
(

1
1−z

)

(
1 + ci

αs
2π

ln2 (1 − z)
)2

fi (
x
z ) − z fi (x)

1 − z

+ fi (x)

[
1 + 2ci

αs

2π

∫ x

0

dz

1 − z

ln (1 − z)
(
1 + ci

αs
2π

ln2 (1 − z)
)2

]

(45)

= 2ci
αs

2π

∫ 1

x

dz

z

ln
(

1
1−z

)

(
1 + ci

αs
2π

ln2(1 − z)
)2

fi
( x
z

) − z fi (x)

1 − z

+ fi (x)
1

1 + ci
αs
2π

ln2(1 − x)
. (46)

In the first step we have viewed the exact inverse of the
divergent coefficient function as a finite renormalization ZD

that transforms the PDF f into a new PDF f̄ .
Now, it is clear that, as argued in Ref. [1], the r.h.s. of

Eq. (46) vanishes as x → 1, and in fact it behaves as 1
ln2(1−x)

as x → 1, as one might expect given that the convolution
of the MS coefficient function with the PDF has double log
ln2(1−x) behavior. Furthermore, both contributions are pos-
itive if fi is positive and is a decreasing function of x . Indeed,
expanding the PDF about z = 1 it is clear that the PDF dif-
ference is positive if fi (x) is a decreasing function of its
argument and all other terms in the integrand are positive,
while in the contribution proportional to f (x) the coefficient
is manifestly positive.

We can now get back to the positivity argument. We
substitute the expression for the inverse of the coefficient
function in which the divergent terms have been inverted
exactly, Eq. (40), in the expression of the MS PDFs, Eq. (31).
We then observe that f PHYS

j (Q2, x) are positive, monoton-
ically decreasing functions of x for all scales in the per-
turbative domain – e.g. structure functions are monotonic
in x for Q2 � 1 GeV2. It then follows that transforming
f PHYS
j (Q2, x) through the finite renormalization factor ZD

implicitly defined in Eq. (43) preserves its positivity, and

thus the condition for positivity of the MS PDF is given by
Eq. (34), with now f PHYS

j replaced by f̄ PHYS
j .

We can make the condition independent of the PDF by a
series of majorizations. First, we note that, because the PDF
is monotonically decreasing,

∣∣∣∣∣∣

∑

j

∫ 1

x

dy

y
C (1),MS
F,i j (y) f PHYS

j

(
x

y

)∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∑

j

f PHYS
j (x)

∫ 1

x

dy

y
C (1),MS
F,i j (y)

∣∣∣∣∣∣
(47)

≤ f PHYS, MAX(x)

∣∣∣∣∣∣

∑

j

∫ 1

x

dy

y
C (1),MS
F,i j (y)

∣∣∣∣∣∣
(48)

where we have denoted by f PHYS, MAX(x) the largest compo-
nent of the vector f PHYS(x). Using the majorization Eq. (47)
in the perturbativity condition Eq. (34), using the decompo-
sition Eq. (36) and neglecting the �(1) contribution, which
is a finite renormalization of f PHYS, whose positivity can be
assessed separately, we end up with the condition

αs

2π

∣∣∣∣∣∣

∑

j

Ci j (x)
∣∣∣∣∣∣

 f PHYS(x)i

f PHYS, MAX(x)
≤ 1, (49)

where we have defined cumulants

Ci j (x) =
∫ 1

x

dy

y
C (1),MS
F,i j (y). (50)

This is indeed independent of the PDF.
At NLO we only need two independent physical processes

in order to fix the factorization scheme [10], and we then
have a two-by-two quark-gluon matrix of coefficient func-

tions C (1),MS
i j and thus of finite terms C (1),MS

F,i j and cumulants
Ci j . Using in particular the same processes as in Ref. [10] in
order to define the physical scheme, namely deep-inelastic
scattering and Higgs production in gluon fusion we get the
matrix of cumulants that is shown in Fig. 1. It is easy to check
that for these processes the finite renormalization from the
�(1) contribution Eq. (36) is always positive for the gluon,
and for the quark positive for Q � 1 GeV.

We can now discuss the positivity region quantitatively.
First, we note that the region in which monotonic decrease
of physical observables sets in can be very conservatively
estimated to be Q2 � 5 GeV2. Indeed, as already observed,
deep-inelastic structure functions display monotonic behav-
ior with a characteristic small x rise for Q2 � 1 GeV2 [16].
In fact, for Q2 � 5 GeV2 MS quark and gluon PDFs are
monotonic, with a small x rise which is driven by leading-
order perturbative evolution, and thus essentially scheme-
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Fig. 1 The NLO cumulants Ci j (x) Eq. (50). The gluon-gluon, gluon-quark, quark-gluon and quark-quark entries are shown from left to right and
from top to bottom

independent. Indeed, already for Q2 � 10 GeV2 for all x �
0.1 [17] PDFs satisfy to good accuracy the double-scaling
behavior [18] which characterizes leading-order small-x per-
turbative evolution. This behavior of the PDFs also implies
that for Q2 � 5 GeV2 positivity issues only possibly arise at
large x .

We consequently focus on the behavior of the cumulants
of Fig. 1 and the condition Eq. (49) at large x . It is clear
that as x decreases, because of the rapid decrease of fi (x)
as x increases, the majorization Eq. (47) becomes increas-
ingly more conservative, leading to an artificially restric-
tive condition. A realistic condition must thus be imposed
at sufficiently large x . It is clear that in practice the condi-
tion is dominated by the gluon-gluon entry: imposing it at
x = 0.8 and requiring αs

2π
Cgg(x) < 1, we get αs(Q2) � 0.2,

corresponding again to Q2 � 5 GeV2. Imposing the con-
dition at a higher x value would lead to a lower scale,
because of the rapid decrease of the cumulant, but then
close to threshold the observables used to define the PDFs
become non-perturbative and partly ill-defined: for exam-
ple, for x � 0.9 structure functions are no longer given by
the continuum and enter the resonance region. Indeed, in
the NNPDF4.0 PDF determination positivity conditions are
imposed at Q2 = 5 GeV2. Clearly, this should be taken as a
conservative semi-quantitative estimate.
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4 The positivity domain

We can now collect the results of the previous two sections,
and discuss their implications for PDF positivity. In Sect. 2
we have shown that, in agreement with Ref. [2], PDFs always
turn positive at high enough scale thanks to logarithmically
enhanced contributions of perturbative origin, and, corre-
spondingly, turn negative at a low enough scale, as pointed
out in Ref. [2]. However, the value of this scale is set by non-
perturbative physics and thus difficult to determine precisely.

In Sect. 3 we have then shown that by considering the
relation between the MS factorization scheme and a physi-
cal factorization scheme, we can show that positivity of the
physical-scheme PDFs is inherited by the MS PDFs, for a
scale that is large enough that perturbativity holds. The value
of this scale can be estimated on the basis of purely pertur-
bative considerations, in terms of the properties of the per-
turbative expansion of a set of MS coefficient functions used
to define the physical scheme.

It is important to understand what is nontrivial in this con-
clusion, and what are its implication. The nontrivial fact is
that within the perturbative domain the MS PDFs inherit the
positivity of physical-scheme PDFs. For instance, if the coef-
ficient of the O(αs) term on the r.h.s. of Eq. (41) had the
opposite sign, this would not be the case, and the MS PDFs
would always turn negative for large enough x in the per-
turbative domain: hence the scale at which the PDF turns
positive in such case would be x-dependent, and in fact it
would become arbitrarily large as x → 1. The physical ori-
gin of this sign was discussed in Ref. [1]: it is due to the
fact that the MS scheme amounts to an over-subtraction of
collinear singularities, but these in the diagonal channel have
a negative sign, corresponding to the well-known Sudakov
suppression of QCD processes in the soft limit [19].

The conclusion that the MS PDFs inherit the positivity of
physical-scheme PDFs has nontrivial implications for PDF
phenomenology. Assume that in a PDF determination, by
using Eq. (2), it is found that some of the fitted MS PDFs f fit

j
must turn negative, for some value of x , in order to guarantee
agreement with data. Note that this value of x could be outside
the region of x values that are probed at leading order: for
example, it could be some large x value that contributes upon
convolution to a structure function which instead is measured
for smaller values of the Bjorken variable. In that case, the
structure function could well remain positive even with some
of the MS PDFs turning negative, say at large x . Now, the
implication of the argument presented here is that, in such
a case, these fitted f fit

j cannot be identified with the true

MS PDFs f j . Indeed, our result, that if the physical scheme
PDFs are positive, then the MS PDF also are, implies that if
the MS PDFs are not positive, then the physical scheme PDF
also are not positive. But the physical scheme PDFs coincide

with positive physical observables up to higher twist terms,
hence if they are negative then this means that higher-twist
contributions must be present.

However, the PDF is a leading–twist quantity, while
higher-twist contributions correspond to multiparton corre-
lations. Hence, the measured f fit

j that have turned negative
differ from the true leading-twist PDFs f j , and do not enjoy
their properties. For instance, the second moment of f fit

j will
not provide the momentum fraction carried by the j th par-
ton, because the momentum fraction is the matrix element of
the twist-two energy momentum tensor. Or, to give another
example, f fit

j are not universal, and thus cannot be used to
predict, say, production of a heavy BSM gauge bosons, which
would probe the large x dependence of f fit

j . Our results there-
fore provide an effective criterion to detect the presence of
higher–twist corrections, even in regions that are inaccessible
by leading-order kinematics.

Our results are wholly within the domain of a leading-twist
perturbative approach. A more fundamental approach could
possibly start from an assessment of the non-perturbative
operator matrix element in terms of which the PDF is defined.
If this were known, perturbative computations along the lines
of Sect. 2 would enable a determination of the scale above
which positivity holds. Such a non-perturbative computation
would be a priori much more powerful, and might even lead to
insights on the region of validity of the leading-twist approx-
imation and of factorization based upon it. However, this is
beyond what can be achieved at present, and well beyond the
scope of this investigation.

A further limitation of this paper is that all of its results
apply to massless quarks. It would be interesting to extend
the discussion to the case of heavy quarks. This would be
particularly interesting in view of recent results providing
evidence for an intrinsic charm component of the proton [20],
and also in view of subtle issues related to the validity of
factorization for hadronic processes with heavy quarks in
the initial state [21]. This will be left to future investigations.
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Appendix A: Perturbative computation of the bare PDF

The explicit expression of the fully bare quark PDF of an off-
shell massless quark can be obtained by defining the PDF
as the matrix element of a Wilson line operator [12], see
Eq. (2.2) of Ref. [1], and evaluating this matrix element in a
free off-shell massless quark state. The matrix element can be
computed perturbatively using the Feynman rules for Wilson
lines (see Sect. 7.6 of Ref. [4]). The computation is then
similar to that presented in Sect. 9.4.3 of this reference, in the
case of a massless, off-shell quark. Working in dimensional
regularization we get, for a target quark with virtuality M2,

f M, 0
q/q

(
x, μ2, ε

)

= δ(1 − x) Z + 2π g2μ2εCF (1 − x)

×
∫

d2−2εkT

(2π)4−2ε

(1 − ε)
(
k2

T + x2M2
)

(
k2

T − x (1 − x) M2
)2

+ 4π g2μ2εCF

[
x

(1 − x)

∫
d2−2εkT

(2π)4−2ε

1

k2
T − x (1 − x) M2

− δ (1 − x)
∫ 1

0
dα

α

(1 − α)

∫
d2−2εkT

(2π)4−2ε

1

k2
T − α (1 − α) M2

]

(51)

where Z is the residue in the pole of the quark propagator,
given by

Z = 1 − g2μ2εCF (2 − 2ε)

∫ 1

0
dx (1 − x)

×
∫

d4−2εk

(2π)4−2ε

1
(−k2 − x (1 − x) M2

)2 . (52)

A direct computation of the different terms gives

f M, 0
q/q

(
x, μ2, ε

)

= δ (1 − x) + αs

2π
CF

⎧
⎨

⎩� (ε)

⎡

⎣
(

�2 (x)

4πμ2

)−ε

pqq (x)

⎤

⎦

+
+ f f (x)

⎫
⎬

⎭ ,

(53)

where pqq (x) is as in Eq. (5), �2 (x) is given by Eq. (6),

αs = g2

4π
, and f f (x) is a finite contribution given by

f f (x) = 1

2
δ (1 − x) + x − 2. (54)
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