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34 Abstract

35 Genomic traits reflect the evolutionary processes that have led to ecological variation among 

36 extant organisms, including variation in how they acquire and use resources. Soil fungi have 

37 diverse nutritional strategies and exhibit extensive variation in fitness along resource 

38 gradients. We tested for trade-offs in genomic traits with mycelial nutritional traits and 

39 hypothesize that such trade-offs differ among fungal guilds as they reflect contrasting 

40 resource exploitation and habitat preferences. We found species with large genomes 

41 exhibited nutrient-poor mycelium and low GC content. These patterns were observed across 

42 fungal guilds but with varying explanatory power. We then matched trait data to fungal 

43 species observed in 463 Australian grassland, woodland and forest soil samples. Fungi with 

44 large genomes and lower GC content dominated in nutrient-poor soils, associated with shifts 

45 in guild composition and with species turnover within guilds. These findings highlight 

46 fundamental mechanisms that underpin successful ecological strategies for soil fungi.
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47 Introduction

48 A pervasive challenge in ecology is to understand and predict how organisms adapt to 

49 their local environments and respond to environmental changes, with recent efforts 

50 attempting to address this challenge with microbial organisms (Widder et al. 2016; Fierer 

51 2017). There has been growing interest in using trait-based approaches to study microbial 

52 ecological strategies and their responses to local and global environmental factors due to the 

53 direct ecological implications of functional traits on organism’s fitness and tolerance to biotic 

54 and abiotic factors (Kraft et al. 2008; Martiny et al. 2015). This is particularly the case for 

55 fungi (Aguilar-Trigueros et al. 2014; Põlme et al. 2020; Zanne et al. 2020), which are 

56 ubiquitous organisms that control critical aspects of ecosystem functioning including plant 

57 nutrition, host health and fitness and nutrient cycling in terrestrial ecosystems (Tedersoo et al. 

58 2014; Naranjo‐Ortiz & Gabaldón 2019). Most trait-based studies of fungi have targeted 

59 phenotypic traits related to mycelium construction (e.g., hyphal extension and branching 

60 rates, hyphal chemistry; Camenzind et al. 2020; Camenzind et al. 2021), reproduction (e.g., 

61 spore size and sporulation behaviour; Aguilar-Trigueros et al. 2019; Chan et al. 2019, 2020) 

62 and resource uptake (gene expression of enzymatic pathways; Talbot et al. 2015). However, 

63 these traits have been studied largely (if not entirely) under highly controlled conditions, 

64 which limits our understanding of how fungal traits can shape species distributions in their 

65 natural environment.

66 All living organisms require nutrients to grow and reproduce. Genomic traits such as 

67 genome size (DNA content of the entire genome) and genomic DNA base composition of 

68 guanine-cytosine (GC) content in organisms are associated with their adaptation strategies to 

69 changes in nutrient availability in the environment (Giovannoni et al. 2014; Shenhav & Zeevi 

70 2020). Nucleic acids are among the most cellular nutrient-rich molecules, with carbon (C) : 

71 nitrogen (N) : phosphorus (P) stoichiometry being 12 : 4 : 1 (Sterner & Elser 2002). Thus, 

72 species with large genomes, which are more demanding and costly to build and maintain than 

73 small genomes, are expected to be less competitive when N and P (and in some cases other 

74 nutrients) are limited (Leitch & Leitch 2013). Evidence from plant studies suggests that 

75 species with large genomes are more likely to successfully compete and dominate in natural 

76 plant communities when levels of resources such as N and P are high in soil (Šmarda et al. 

77 2013; Guignard et al. 2016). The same patterns exist in bacteria: species with small genomes 

78 possess growth advantages in nutrient-depleted environments due to their reduced nutrient 

79 requirements than species with large genomes (Giovannoni et al. 2014). These studies 

80 highlight that mapping microbial species and their genomic traits along resource gradients 
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81 can provide insight into their eco-evolutionary adaptations to resource limitations (Gudelj et 

82 al. 2010; Barberán et al. 2014). 

83 Trait-trait correlations reflect fundamental constraints related to organisms’ ecological 

84 strategies (Westoby et al. 2002; Reich et al. 2003) because one must optimize their 

85 performance by strategically allocating limited resources to different features (Bazzaz & 

86 Grace 1997). These trait trade-offs can exist at the genome level. For example, nutrient 

87 limitation can select for genomes with low GC content due to the adenine-thymine (AT) base 

88 pair having a lower nitrogen-to-carbon ratio (N: C= 7: 10, =0.7) than the GC pair (N: C= 8: 9, 

89 ~0.9). Therefore, organisms with large genomes may adapt to higher N requirements by 

90 reducing the use of the relatively N-rich GC base pair (Kelly 2018). In addition, tissue 

91 nutrient concentration reflects an organism's nutrient demand and utilization (Aerts & Chapin 

92 III 1999) and determines organism’s growth efficiency (Sinsabaugh et al. 2013). A link 

93 between genomic traits and tissue nutrient concentrations can be expected if species with 

94 different genome sizes have different nutrient requirements, exploit nutrients with varying 

95 efficiency, or store or convert nutrients to biomass at different rates (Faizullah et al. 2021). 

96 Besides the potential linkage between GC content and N economy, others have found a direct 

97 connection of GC content with recombination of homologous chromosomes in organisms, 

98 along with other factors such as mutation rates, natural selection, and genetic drift can 

99 influence GC content of genomes. But how nutrient availability is involved in the GC content 

100 of soil fungi is less investigated.

101 A striking property of fungi is their diversity of lifestyles reflected by different guilds 

102 (e.g. mycorrhizal, pathogenic, saprotrophic guilds). Each guild exhibits specific trophic 

103 behaviours, i.e., resource exploitation and habitat or host preferences (Johnson et al. 2013; 

104 Naranjo‐Ortiz & Gabaldón 2019), which might affect their sensitivity to changes in resource 

105 availability (Maaroufi et al. 2019; Lekberg et al. 2021). The fitness of free-living (e.g., 

106 saprotrophic) fungi is expected to be directly linked to abiotic resource conditions, while the 

107 fitness of symbiotic (e.g., mycorrhizal and pathogenic) fungi is linked to nutrients and carbon 

108 source-sink dynamics during interactions with the host (and, for mycorrhizal guilds, 

109 competition of soil resources with saprotrophs). In addition, recent studies suggested that 

110 genome size varies among fungi with different lifestyles (Spanu 2012; Miyauchi et al. 2020). 

111 Spanu (2012) suggested that the acquisition of biotrophy in plant pathogens was associated 

112 with an expanded genome. Genome size variation during plant-host interactions or specific 

113 sources in nutrient acquisition among different fungal guilds might determine the strength of 

114 the correlation between genome size and nutrient demand for growth. Thus, considering 
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115 fungal guilds help to understand how trophic behaviour shapes an organism’s genome traits 

116 and nutrient adaptation (Bahram & Netherway 2021).

117 Here we compiled species-level data on two genomic traits (genome size from 2,437 

118 and GC content from 1,276 fungal species) and estimated their inter-correlations and 

119 relationships with fungal nutrient concentrations to assess their ecological trade-offs and 

120 adaptative strategies among and within fungal guilds. We also investigated the distribution of 

121 these genomic traits in relation to nutrient availability in 463 soil samples taken from 

122 grassland, woodland and forest ecosystems over natural soil nutrient gradients across 

123 Australia. We hypothesized that nutrient-depleted environments favour fungi with smaller 

124 genomes and lower GC content. We also hypothesised that such environmental selection 

125 would be stronger on genomic traits for plant symbiotic fungi than saprotrophs given that 

126 plant symbiotic fungi will respond to changes in resource availability as well as to how their 

127 plant hosts respond to those changes (eg., greater resource-sharing or stronger competition 

128 for limited resources). 

129

130 Material and Methods

131 Fungal genomic and nutritional traits

132 We retrieved fungal genome size (Mbp, 1C-values) and GC content (%) data from the 

133 National Center for Biotechnology Information (NCBI) genome database 

134 (https://www.ncbi.nlm.nih.gov/genome/), Mycocosm (Grigoriev et al. 2014) 

135 (https://mycocosm.jgi.doe.gov/mycocosm/home) and Fungal Genome Size Database 

136 (http://www.zbi.ee/fungal-genomesize) (Kullman et al. 2005). We assigned the most recently 

137 accepted taxonomic names from Catalogue of Life (https://www.catalogueoflife.org/) to our 

138 database by comparing accepted and synonym names using the cp_nu_suggest function from 

139 the rcol R package (Chamberlain 2021). After checking synonymic names, the genomic traits 

140 were averaged for the same species from the three resources. We kept the genomic trait data 

141 for species that could be aligned with fungal guild information derived from the FUNGuild 

142 database with a confidence level of “probable” or “highly probable” (Nguyen et al. 2016). 

143 This resulted in our dataset containing 2,437 and 1,276 guild-annotated species with genome 

144 size and GC content data, respectively; we obtained genome size data for all 1,276 species 

145 with GC content data. For both genomic traits, the guilds included were 7 Arbuscular 

146 mycorrhizal (AM), 78 ectomycorrhizal (EcM), 317 plant pathogenic and 874 saprotrophic 

147 species. 
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148 We retrieved fungal trait data related to growth and nutrition from the Fungal 

149 Functional Trait database (FunFun) (Zanne et al. 2020), including N and P concentrations in 

150 fungal mycelial tissues obtained from the database but originally derived from Zhang and 

151 Elser (2017). There were 534 observations for 280 species in mycelium N and 654 

152 observations for 275 species in mycelium P. For species with multiple observations, we 

153 calculated a mean trait value. After cross-referencing each database, we found matching 

154 information for genome size with 70 and 85 species for mycelium N and P, respectively. For 

155 matches with GC content, we found 32 and 47 species with estimates of mycelium N and P, 

156 respectively. The numbers of observations at the guild-level for the overlap between genomic 

157 traits and fungal nutrients were supplied in Table 1. The majority of the observations with 

158 overlapping data were from ECM and saprotrophic fungi, followed by plant pathogenic 

159 fungi.

160 Study sites and soil sampling across Australia

161 In this study, we used data generated from soil samples collected across Australia 

162 during the period from 2005 to 2018 as part of the Australian Microbiome Initiative (AMI; 

163 formerly the Biomes of Soil Environments [BASE] project; Bissett et al. 2016). We obtained 

164 the sequencing data from https://www.australianmicrobiome.com/ on 27 August 2020. A 

165 total of 463 soil samples from 409 sites were included in this study, selected based on the 

166 criteria described below (see Appendix S1 for a list of sample numbers used here). The soil 

167 samples were collected according to the methods described in Bissett et al. (2016). Briefly, 

168 composite soil samples were generated from 9-25 soil cores collected to a depth of 10 cm 

169 within 25 × 25 m plots (details see Fig. S1). Each soil sample was separated into two 

170 subsamples. The first subsample was frozen and transported to the Adelaide node of the 

171 Australian Genome Research Facility (AGRF) laboratories for DNA extraction and 

172 sequencing. The second subsample was air-dried for soil available N and P measurements 

173 (Bissett et al. 2016). Note that we used soil available nutrients (inorganic form) as the proxy 

174 for indicating fungal nutrient limitation although some fungi, particularly saprotrophs but 

175 also EcM fungi, can also access organically bound soil nutrients in addition to those in 

176 inorganic forms. In addition, biotrophic pathogens can obtain essential nutrients from host 

177 tissues, which will vary to a certain extent but not entirely with soil nutrient availability. 

178 Thus, estimates of relationships may lack precision for these guilds, and further studies could 
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179 also benefit from estimating soil total N and P as well as autecological studies of how free-

180 living and symbiotic fungi acquire and allocate N and P from different source pools.

181 Fungal DNA extraction, sequencing and bioinformatics

182 Genomic DNA extraction and bioinformatic analysis were conducted according to 

183 methods described in Bissett et al. (2016). Briefly, soil gDNA was extracted in triplicate 

184 using MoBio PowerSoil extraction kits (MO BIO Laboratories Inc., USA) following the 

185 manufacturer’s instructions. DNA amplicons targeting the fungal ITS1-5.8S-ITS2 region 

186 were prepared and sequenced at the Australian Genome Research Facility (Melbourne, 

187 Australia) and Ramaciotti Centre for Genomics (Sydney, Australia). ITS amplicons were 

188 sequenced on the Illumina MiSEQ platform with MiSeq Reagent Kit v3 600 cycle chemistry, 

189 to produce 300 bp paired-end reads. The sequenced region (ITS1-5.8S-ITS2) is 550bp on 

190 average in fungi but can be much larger (Nilsson et al. 2015), thus for many reads there was 

191 not sufficient (or any) overlap between the forward and reverse pair of each template 

192 sequence to merge them into a single sequence read. To ensure that those long fungal ITS1-

193 5.8S-ITS2 sequences were not excluded from our analysis, the ITS1 and ITS2 regions were 

194 separately extracted from forward and reverse reads, respectively, using ITSx 

195 (Bengtsson‐Palme et al. 2013) and both regions were processed. Zero-radius operational 

196 taxonomic units (zOTUs) were generated from identified ITS regions and frequencies of 

197 zOTUs within each sample were determined. Taxonomic and guild identities of zOTUs were 

198 assigned and matched with fungal genomic traits (Appendix S2). Eventually, there were 225 

199 fungal species with genome size data occurring in 463 soil samples and 145 species with GC 

200 content data in 460 soil samples across Australia (Fig. S1-S2).

201

202 Statistical analyses 

203 To assess correlations among traits, we used the phylogenetic generalized least 

204 squares (PGLS) method to account for the shared evolutionary histories among fungal 

205 species. We constructed the fungal phylogenetic tree using the fungal mega-phylogeny 

206 published by Li et al. (2021) (time-calibrated tree) as the backbone. For those genera and 

207 species that were absent from the meta-phylogeny, we used V.PhyloMaker 

208 (https://github.com/jinyizju/) to add them to their respective families (in the case of genera) 

209 and genera (in the case of species) in the mega-phylogeny under Scenario 3 (Jin & Qian 

210 2019). The polytomies were resolved by multi2di function in the R package ape (Paradis & 

211 Schliep 2019). We estimated differences in genome size and GC content among fungal 

212 guilds, as a fixed effect, by fitting PGLS-based models using the phylolm R package (Tung 
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213 Ho & Ané 2014). In addition, we examined the relationships between (i) fungal genome size 

214 and GC content; and (ii) each of genome size and GC content versus each of mycelial N 

215 concentration and mycelial P concentration. To determine differences in resource acquisition 

216 strategies among guilds, we tested these relationships separately across four guilds: AM, 

217 EcM, pathogens and saprotrophic fungi. These PGLS-regressions were performed using the 

218 phylolm function. For the correlations in (ii), we also calculated the independent variation 

219 explained by each predictor (R2) using the R package rr2 (Ives & Li 2018).

220 We evaluated distributions of fungal genomic traits in soils and their correlations with 

221 soil available nutrients. We calculated the community-weighted mean genome size (CWM-

222 GS) and GC content (CWM-GC) using the fungal species-sample table generated after 

223 summing read counts associated with zOTUs assigned to the same species. To generate 

224 CWM, weighted averages of genomic traits were calculated for each soil sample using the 

225 relative abundance of each fungal species as weights. CWM was calculated across the entire 

226 fungal community and individually for subsets of species assigned to each of three major 

227 fungal guilds (AM fungi were represented by too few species for a robust analysis to be 

228 performed, thus were not included) and correlated with soil available nutrients. Note that 

229 when calculating CWM, values can be potentially affected by coverage in each sample, i.e., 

230 the proportion of zOTU counts that could be assigned to a species for which trait data were 

231 available and, therefore, were used to calculate CWM. To assess whether samples with very 

232 low species coverage may cause spurious correlations, we analysed the data twice using the 

233 following strategies: (i) using all soil samples for which trait data could be assigned to at least 

234 one zOTU, and (ii) excluding those soil samples for which the percentage of zOTU read 

235 counts that could be assigned trait data was lower than the median proportion across all 

236 samples.

237 Linear mixed-effects models were used to evaluate the effects of soil available 

238 nutrients within each vegetation category on (i) CWM-GS and CWM-GC at the community 

239 level, (ii) relative abundance of each fungal guild, and (iii) CWM-GS and CWM-GC at the 

240 fungal guild level (e.g., CWM was calculated for each of the four fungal guilds, separately). 

241 For all mixed-models, we included one of each soil nutrient (NH4
+, NO3

-, PO4
-) as fixed 

242 effects and the ITS fragment used to generate zOTUs (ITS1 and ITS2) as random effects, to 

243 account for potential biases between the two regions in their ability to detect fungal species 

244 and, thus, result in different members of the fungal community being detected (Bazzicalupo 

245 et al. 2013). Before the modelling using functions in the lme4 package (Bates et al. 2015), 

246 soil nutrients and CWM-GS values were log-transformed (natural logarithms). Dispersion 
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247 was checked using the DHARMa package (Hartig 2022). While determining statistical 

248 significance, Kenward-Roger degrees of freedom were calculated using the Anova function 

249 from the car package (Fox et al. 2012). Marginal R2 values (variance explained only by fixed 

250 effects) were calculated using the r.squaredGLMM function from the MuMIn package 

251 (Barton 2015). All the analyses were performed using R version 4.0 (R Core Team 2020).

252

253 Results

254 Genomic, growth and nutritional traits correlations across fungal guilds

255 Fungal genome size was negatively correlated with GC content across all four guilds 

256 (Fig. 1), with AM and ECM fungi having significantly larger genomes and lower GC 

257 contents on average than pathogenic and saprotrophic fungi (Table S1). Furthermore, this 

258 pattern was still observed even when we restricted the analysis to only the subset of species 

259 observed within the Australian Microbiome database (Fig. S3). When using all species for 

260 which we collected trait data, we observed relatively strong negative correlations for EcM (r2 

261 = 0.23, P < 0.001; slope 95% confidence interval (CI) was [-0.061, -0.025]; Fig. 1b) and 

262 plant pathogens (r2 = 0.32, P < 0.001; 95% CI [-0.021, -0.015]; Fig. 1c) and a much weaker 

263 negative correlation for saprotrophs (r2 = 0.03, P < 0.001; 95% CI [-0.007, -0.003]; Fig. 1d). 

264 Fungal genome size negatively correlated with tissue N (r2 = 0.17, P = 0.002; slope 

265 95% CI was [-4.143, -1.175]; Fig. 2a) and P concentrations (r2 = 0.14, P = 0.01; slope 95% 

266 CI [-0.244, -0.043]; Fig. 2b). Furthermore, fungal GC content was negatively correlated with 

267 N (r2 = 0.14, P = 0.009; slope 95% CI [-1.278, -0.200]; Fig. 2c) and P concentrations (r2 = 

268 0.10, P = 0.028; slope 95% CI [-0.054, -0.004]; Fig. 2d) in fungal tissues. When comparing 

269 the relative importance of the genomic traits to explain variation in growth and nutritional 

270 traits, genome size explained greater variation than GC content in predicting concentrations 

271 of N and P (Table S2). 

272 However, the correlational patterns between genomic traits and nutritional traits were 

273 also dependent on specific fungal guilds: the negative correlation between genome size and 

274 fungal N was only observed for EcM and saprotrophic fungi; while the negative correlation 

275 of genome size and P was only observed among saprotrophs (Fig. 2ab). In contrast, the 

276 negative correlations between GC content and fungal nutrients were not significant within 

277 most guilds (Fig. 2cd), except for that with fungal P for saprotrophic fungi.

278

279 Biogeography of fungal traits at the community level 
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280 On average, 3% of sequence reads per sample could be assigned trait data (range: 

281 0.002% to 72%). This is equivalent to a range from 18 to 464220 sequence reads (mean: 

282 16970) being assigned trait data in each sample (Appendix S3). Contrary to our initial 

283 hypothesis, we found that nutrient-depleted soils favoured fungi with larger genomes. This 

284 pattern was explained, in part by variation in soil N and P availability, with the response 

285 being most consistent and with the largest effect sizes in forest samples. In general, CWM-

286 GS was negatively correlated with soil available NH4
+ and NO3

-, with correlations being 

287 strongest for forests (NH4
+: r2 = 0.22, P < 0.001; NO3

-: r2 = 0.22, P < 0.001), weak but 

288 significant for woodlands (NH4
+: r2 = 0.02, P < 0.001; NO3

-: r2 = 0.07, P < 0.001), and not 

289 observed for grasslands (Fig. 3abc). Similarly, CWM-GS was negatively correlated with soil 

290 available PO4
-, although this correlation was only significant and relatively weak for forests 

291 (r2 = 0.05, P < 0.001; Fig. 3d). In contrast, CWM-GC was positively correlated with soil 

292 available nutrients as we expected in our initial hypothesis, with most of these correlations 

293 being significant (Fig. 3e-g), except for correlations with soil available NH4
+ and NO3

- in 

294 grasslands (Fig. 3ef; Table S3). We also observed that these relationships between trait 

295 CWMs and soil available nutrients were generally consistent when we limited our analyses to 

296 samples in which trait data could be assigned to a relatively high proportion of community 

297 members (Table S3, which compares the analysis using all samples to one using only those 

298 for which a proportion of reads that could be assigned trait data was higher than the median 

299 value for all samples (1.2%)). 

300

301 Guild-specific biogeographical patterns of fungal traits 

302 The response patterns of genomic traits along the soil nutrient gradient at the 

303 community level can be explained by both shifts in the relative abundance among different 

304 fungal guilds and by species turnover within specific fungal guilds. For guild composition, 

305 EcM fungi exhibited generally negative responses (Fig. 4a), and plant-pathogenic (Fig. 4d) 

306 and saprotrophic fungi (Fig. 4g; Fig. S4; Table S4) both exhibited generally positive 

307 responses.

308 For CWM-GS responses to increased soil nutrients, most effect sizes were neutral for 

309 EcM, except for two negative responses (NO3
- in the woodland and PO4

- in the forest; Fig. 

310 4b). In contrast, associations with CWM-GS were positive for plant pathogens (Fig. 4e), 

311 while negative for saprotrophic fungi (Fig. 4h; Fig. S5; Table S5). For CWM-GC responses 

312 to increased soil nutrients, most effect sizes were neutral for ECM fungi, except for two 

313 positive responses (response to NO3
- in the woodland and PO4

- in the forest; Fig. 4c). Most 
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314 associations with CWM-GC were positive for plant pathogens (Fig. 4f), while both positive 

315 and negative responses existed for saprotrophic fungi (Fig. 4i; Fig S6; Table S6).

316

317 Discussion

318 Our study demonstrates that genomic traits can be potentially used to explain 

319 variations in fungal functional traits and biogeographical patterns of fungi along large 

320 environmental gradients. First, fungi with large genomes produced nutrient-poor tissue and 

321 adjusted their nucleotide composition by reducing the frequency of the expensive GC base-

322 pair. Second, soils across Australia with low levels of nutrient availability favoured fungi 

323 with large genomes and low GC content. Such genomic patterns at the community level 

324 along nutrient gradients were generally consistent across different forms/types of nutrients 

325 and in different vegetations. Finally, partially supporting our hypothesis, the environmental 

326 selection on genomic traits along the nutrient gradient would be stronger in symbiotic fungi 

327 than saprotrophic fungi, but this was only true for pathogenic but not for mycorrhizal fungi. 

328 Together, our results reveal fundamental mechanisms that underpin genome size and 

329 nucleotide selection in soil fungal communities along soil nutrient gradients, although in 

330 some cases the explanatory power was weak. This is not surprising given that tissue nutrient 

331 concentration and soil mineral nutrient stocks only partially reflect the range of biological 

332 and environmental controls on fungal distributions in soils (Tedersoo et al. 2014).

333

334 Trade-offs among fungal genomic, growth and nutritional traits

335 The negative correlation between genome size and GC content in fungal genomes, 

336 especially for pathogenic fungi, supports the existence of a close relationship between the 

337 size and composition of fungal genomes. Previous studies found that community-averaged 

338 GC content and genome size in bacteria were negatively correlated in soil but, in the same 

339 study, these two genomic traits were positively correlated under marine conditions (Chuckran 

340 et al. 2021; Chuckran et al. 2022). Thus, their results support our findings and suggest similar 

341 selection pressures on genome size and GC content for soil bacteria and soil fungi. In bacteria 

342 and archaea, several environmental factors in addition to nutrient availability are known to 

343 drive the selection on genome size and genomic GC-content, mainly including environmental 

344 selection (such as growth temperature and the availability of oxygen; see Foerstner et al. 

345 (2005); Sabath et al. (2013)) or GC-biased gene conversion (which favours G/C nucleotides 

346 during DNA recombination; see Webster and Hurst (2012) and Lassalle et al. (2015)). In our 

347 study, we mainly focused on nutrients due to their importance for genome construction 
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348 during the growth of fungi, but acknowledge that further variation in these genomic traits 

349 could be predicted with additional environmental drivers. In fungi, we found fungal genome 

350 sizes were negatively correlated with fungal N and P concentrations, suggesting that species 

351 with small genomes produced nutrient-rich tissue. We propose that this fungal behaviour has 

352 a similar function as in plants, for which the plant leaf economic spectrum suggests that 

353 nutrient-rich tissue is associated with high nutrient demand during rapid growth, and that 

354 small genomes facilitate a faster cell division and therefore a higher growth rate (Rayburn et 

355 al. 1994; Knight et al. 2005). 

356 For bacterial and archaeal communities, inconsistent patterns have been described 

357 when linking genome size to copiotrophy/oligotrophy in previous studies, with both 

358 supporting (Liu et al. 2023) and non-supporting (Westoby et al. 2021) evidence being 

359 revealed. We previously found that bacterial genome sizes weakly but significantly correlated 

360 with soil carbon and P concentrations, in that bacteria with small genomes exhibited fewer 

361 negative responses to increasing soil carbon or more positive responses to increasing soil P, 

362 suggesting that higher soil fertility favours bacteria with smaller genomes (Liu et al. 2023). 

363 Fungi are generally considered to be more oligotrophic than bacteria, but it may be possible 

364 to assess these relationships in targeted studies of fungi exhibiting generally more 

365 copiotrophic strategies, such as those in the Zygomycota (Ho et al. 2017).

366

367 Nutrient-depleted soil environments favour fungi with large genomes and low GC content

368 CWM-GS significantly increased, and CWM-GC content decreased, in response to 

369 decreasing soil available nutrients, indicating that fungi with large genomes and low GC 

370 content dominated in nutrient-depleted sites. These patterns were generally found in each 

371 vegetation type (grassland, woodland and forest) or soil nutrient type (NH4
+, NO3- and PO4

-), 

372 but were more pronounced in forest ecosystems, possibly due to the high prevalence of EcM 

373 fungi in forests and presumably a tighter relationship with available N (Table S4). Additional 

374 analyses showed weak but significant correlations between the relative abundance of EcM 

375 fungi and their genomic traits at the community level, where CWM-GS was increased (r2 = 

376 0.02, P < 0.0001) and CWM-GC content decreased (r2 = 0.03, P < 0.0001) when the relative 

377 abundance of EcM fungi increased.

378 The opposite responses between CWM-GS and CWM-GC content along these 

379 nutrient gradients may be explained by the trade-off between the two genomic traits: fungi 

380 with large genomes tended likely to reduce the cost of genome construction by lowering the 

381 GC content. Genome size increases in low-nutrient environments can reflect several potential 
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382 mechanisms to cope with these conditions. For example, undergoing gene duplication can 

383 facilitate production of the enzymes and proteins required to cope with nutrient stress 

384 (Konstantinidis & Tiedje 2004; Giovannoni et al. 2005), suggesting a mechanism for EcM 

385 and saprotrophic fungi that produce extracellular hydrolytic enzymes for nutrient 

386 mineralization. Such mechanism aligns with an active and fitness-enhancing response of an 

387 organism capable of enhanced resource acquisition. As at a certain point it may no longer be 

388 adaptive to have a large genome under nutrient-limiting conditions (given that it is 

389 accompanied by a high genome construction cost), reducing GC content to build large 

390 genomes can offset the cost because a reduction in GC content decreases the amount of 

391 nitrogen required for DNA synthesis. These findings suggest that shifts in size and 

392 composition of organisms’ genomes can be an important evolutionary and ecological strategy 

393 to adapt to their local nutritional environments. 

394 To our knowledge, our study provided the first link between fungal genomic traits and 

395 fungal distribution patterns across large nutrient gradients. Previous investigations on this 

396 topic have focused on genome size patterns in plants (Pellicer et al. 2018) and bacteria 

397 (Chuckran et al. 2021). For plants, positive associations between CWM-GS and soil nutrients 

398 were reported (Šmarda et al. 2013; Guignard et al. 2016). Plants with large genomes are 

399 more likely to dominate in communities where nutrient availability is high in soil, probably 

400 because plants with large genomes require more nutrients to build genomes (Pellicer et al. 

401 2018). For bacteria, inconsistent patterns have been described previously as both positive and 

402 negative correlations between genome size and nutrients were revealed. For example, 

403 bacteria with smaller genomes were associated with more harsh or nutrient-limited 

404 environments (Chuckran et al. 2022). In contrast, whole-genome shotgun sequencing data of 

405 Lactobacillus (phylum Firmicutes) suggested that deep, nutrient-depleted marine 

406 environments were dominated by bacteria with large genomes (Makarova et al. 2006). 

407

408 Guild-level responses along soil nutrient gradients

409 Correlations between genomic traits and soil nutrient availabilities at the whole fungal 

410 community level could be derived from two major processes: (i) shifts in fungal guild 

411 structure and (ii) species turnover within fungal guilds. For the first process, the relative 

412 abundance for fungi with relatively large genomes (i.e., EcM; Fig. 1) significantly decreased 

413 while the relative abundance of fungi with relatively small genomes (i.e., plant pathogenic 

414 and saprotrophic fungi) significantly increased when soil nutrients increased to high levels; 

415 such shifts in fungal guild structure resulted in a lower CWM-GS under nutrient-enriched 
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416 sites. For the second process, the strength of such negative correlations varied depending on 

417 vegetation type, nutrient form and fungal guild. For example, when observed to be 

418 statistically significant, genomic traits of saprotrophs tended to exhibit relatively weak 

419 correlations across many combinations of vegetation types and nutrient forms compared with 

420 EcM and pathogenic fungi. The latter two groups also exhibited noticeable variations, with 

421 EcM fungi showing significant correlations ranging from weak to strong in woodlands and 

422 forests, and pathogenic fungi generally showing stronger correlations in grasslands. The 

423 distinct responses among guilds highlight the importance of considering different fungal 

424 groups independently when investigating their genomic trait patterns along environmental 

425 gradients. 

426 Pathogens stood out because their CWM-GS and CWM-GC content was the only 

427 guild that mainly showed positive responses to soil fertility, i.e., supporting our original 

428 hypothesis that nutrient-depleted environments favour fungal species with smaller genomes 

429 and lower GC content. The nitrogen disease hypothesis states that plant growth at high N 

430 availability may result in increased plant susceptibility to pathogens because of increased 

431 foliar nitrogen concentrations (Mitchell et al. 2003). Our results expand this theory by 

432 showing that pathogens with large genomes and higher GC content could be particularly 

433 favoured in nutrient-enriched environments. Spanu and Kämper (2010) proposed that 

434 acquisition of biotrophy in plant fungal pathogens is associated with an expanded genome, 

435 with obligate pathogenic fungi such as powdery mildews and rust fungi having greater 

436 genome size than necrotrophic pathogens. However, in our study, the proportion of DNA 

437 reads that could be assigned to biotrophic fungi, including rust and mildew fungi, was low 

438 (0.2% on average) among all pathogens. Thus, the changes in genomic size along soil 

439 nutrients should be also driven by other pathogen types (e.g. necrotrophic pathogens). 

440 Variation in genome size can also be related to polyploidy, the amount of transposable 

441 elements and the potential function of predicted genes encoding secreted proteins and other 

442 effectors in pathogens (Lo Presti et al. 2015; Lorrain et al. 2019). We found that P 

443 availability had stronger explanatory power than N availability in explaining genome GC 

444 content for pathogens in grassland and woodland soils. This suggests that other, non-C/N-

445 related, mechanisms may have been involved. In addition, P availability does influence plant 

446 and fungal growth and ecophysiologies, and acquisition of limited P can indirectly affect 

447 organisms’ growing environments, modifying pH, redox state or availability of other 

448 nutrients availability, all of which could lead to environmental selection on GC content 
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449 (Foerstner et al. 2005). Determining which of these drivers is responsible for shaping genome 

450 GC content in pathogenic (and other) fungi warrants future research.
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646 Table 1 Guild-level sample sizes (number of species) for the overlap between genome size 
647 (GS) or genome GC content and other fungal traits, including fungal N and P concentration. 
648 Specific fungal guilds are arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant 
649 pathogenic and saprotrophic fungi.
650

Model AM EcM Pathogen Saprotroph
GS ~ fungal N 0 34 11 25
GS ~ fungal P 1 39 12 33
GC ~ fungal N 0 10 9 13
GC ~ fungal P 0 14 10 23
Total numbers 1 97 42 94

651
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652 Fig. 1

653
654

655 Fig. 1 Correlations between genome size (log-transformed) and GC content (%) for species 

656 within different fungal guilds. All trait estimates were averaged at the species level. Blue 

657 lines indicate correlations being significant (*** P < 0.001) and were fitted considering 

658 phylogenetic correlations among fungal species. Points with different colours indicate 

659 different fungal guilds: arbuscular mycorrhizal (AM, red, n = 7), ectomycorrhizal (EcM, 

660 green, n = 78), plant pathogen (blue, n = 317), and saprotrophic (purple, n = 874) fungi. The 

661 data in panel (d) represent both yeasts and filamentous fungi, which differ in both genome 

662 size and GC content, on average (Fig. S7).
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663 Fig. 2

664
665 Fig. 2 Correlations of genome size (log-transformed) or genome GC content (%) with fungal 

666 nutrient concentrations, including N (%, a, c) or P (%, b, d) concentration in fungal tissues. 

667 All trait estimates were averaged at the species level. Lines were added when correlations

668 were significant across all species (black lines) and within specific fungal guilds (coloured 

669 lines). Points with different colours indicate different fungal guilds: arbuscular mycorrhizal 

670 (AM, red), ectomycorrhizal (EcM, green), plant pathogen (blue), and saprotrophic (purple) 

671 fungi. Points are darker with more overlapping. Models were fitted considering the

672 phylogenetic correlations among fungi species, with both genome size and GC content as

673 predictors in explaining the variation of fungal tissue N and P. Statistical results and

674 explained variation for each predictor were provided in Table S3.
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675 Fig. 3 

676
677 Fig. 3 Correlations between community weighted mean genome size (CWM-GS, Mbp/1C, 

678 log-transformed) or GC content (CWM-GC, %) and soil available nutrients (NH4
+, NO3

-, 

679 PO4
-) for soils from grassland (black), woodland (red), and forest (blue) samples across 

680 Australia; 463 soil samples were collected from 409 locations. Correlations were fitted with a 

681 linear mixed model that included soil available nutrients as fixed effects and with DNA 

682 region sequenced (ITS1 or ITS2) as random effects. Points are darker with more overlapping. 

683 Solid lines indicate the correlations were significant (P < 0.05) while dashed lines indicate 

684 non-significant (model fitting results were supplied in Table S4).
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685 Fig. 4 

686
687 Fig. 4 Relative abundance of fungal guilds, guild-level community weighted mean genome 

688 size (CWM-GS) and GC (CWM-GC) content in relation to increasing soil nutrient

689 availability for ectomycorrhizal (EcM, green), plant pathogen (blue), and saprotrophic

690 (purple) fungi across Australia. Bars display the effect size of these responses, i.e., the

691 estimated slopes from models that were fitted with one of the soil nutrients (NH4
+, NO3

-, 

692 PO4
-) as the predictor for grassland, woodland and forest samples, respectively. Parameters 

693 were estimated with a linear mixed model that included the DNA region sequenced (ITS1 or 

694 ITS2) as random effects (detailed results were supplied in Fig. S4-6 and Table S4-6). In each 

695 panel, positive slopes indicate response variables increased with increasing soil nutrient 

696 availability while negative slopes indicate the opposite pattern. Solid bars indicate the 

697 responses were significant (P < 0.05) while faded bars indicate responses were not 

698 significant.
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