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Introduction 

Let h 

denote the 
be a modulus of continuity and let 

space of functions f: D ➔ R which 
Liph(D)

have the 
modulus of continuity h. As regards the Holder classes 
h(x,y) = lx-yl a, F.W. Gehring and 0. Martio [GM2J showed 
that for certain domains D each function f: D ➔ R in a 
corresponding local space belongs to the space Liph(D).
These domains are called Liph-extension domains. In this
paper we study general moduli of continuity and extend the 
result of F.W. Gehring and 0. Martio to this situation. 

F.W. Gehring and 0. Martio applied their theory to 
quasiconformal mappings of Rn. These extension properties 
can also be applied to imbedding theorems in Sobolev spaces 
w 1 •Pcn) or even in Orlicz-Sobolev spaces (see [A, Theorem 
VIII.8.36]), because it can be proved by classical methods
that functions f in w 1 •P(D) are Holder-continuous with
exponent 
balls) of 

1 -n/p ( p > n ) in smooth parts (like cubes or
D (see [A, Section VJ). It then follows from

[GM2J and from the results of this paper that the functions
are actually Holder-continuous in D for a very large class
of domains D. However, it may happen that f does not
belong to the same Holder class in D as in the smooth
parts of D.

After some preliminaries we study Liph,g-extension
domains in Section 3. These are domains where locally 
Liph(D)-continuous functions are also Lipg(D)-continuous
functions. A Liph-extension domain is then simply a Liph,h
extension domain. We give an integral condition for Liph,g
extension domains (analogous to the one in [GM2J). Using 
the integral condition we show, in Sections 4 and 5, some 
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geometrical properties of Lip
h,g

-extension domains. We give 

a sufficient condition for the moduli of continuity h and 

g such that a Lip
h

-extension domain is also a Lip
g

-exten

sion domain. We also show that if for a given h there 

exist Lip
h

-extension domains, their class will be larger 

than the class of uniform domains. 

In Section 6 we examine the special case h(t) = t
a 

studied in [GM2J. We show 

domains is larger than the 

if O < a < �� 1. We also 

that the class of Lip�-extension 

class of Lip -extension domainsa 
define total extension domains. 

In the last section we consider certain theorems 

discussed in the papers [GMlJ, [JJ and [St]. We give an-

other equivalent condition for Lip
h,g

-extension 

based on the maximum derivative (see [GMl]). 

domains 

Most of the notation used in this paper is presented in 

Appendix A. In Appendix B and C there are some graphical 

illustrations relating to the examples in Section 6. 

1. Preliminaries

For the details of notation refer to Appendix A. 

1.1. Notation. We shall write y(x,y) c D for a rec

tifiable curve joining x to y in a domain D c R
n

.

£(y) denotes the arc length of y and 

y(s) its arc length representation with 

y(O) X 

y(£(y)) y 

and 

By analogy, J(x,y) denotes the line segment joining x to 

y. If g is a real valued function in D, we let
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Q ( 'Y) 
J g(z) ds . -

I g(')'(S)) ds 
')'(x,y) 0 

be the line integral 
exists). Note that 
curve 'Y· 

of g along 'Y (provided the integral 
the measure ds depends on the 

1.2. Definition. A domain D c Rn is said to be c-
quasiconvex if every x,y ED can be joined by a rec
tifiable curve 'Y in D with 

£(')') � clx-yl 

1.3. Definition.

oig(')',r) ( r-cigar 
set 

Let r > 0 
neighbourhood of 

and 
'Y ) 

')'(x,y) CD. 
we mean 

By 
the 

cig(')',r) .- U B(y(t),r·min(t,£(')')-t)) U {x,y}.
O<t<Q(')') 

The euclidean distance from ')'(t) 
oig(')',r) satisfies the inequality 

to the boundary of 

(1.4) d(')'(t),3cig(')',r)) � r·min(t,£(')')-t) 

1.5. Definition. Let o � l. A domain is 
called a-uniform if each x,y EU can be joined by a rec
tifiable curve 'Y in U such that 

(1.6) £( 'Y ) � c I x-y I 

(l. 7) cig(')',1/o) c u 

Using hyperbolic 
open ball in Rn is 
2.2 in [GM2J). 

geodesics it can be proved that an 

rr/2 -uniform (see the proof of Theorem 
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Remark. Uniform domains were defined by 0. Martio and 

J. Sarvas in [MS]. Definition 1.5 for uniform domains and 

the definition for cig(�.r) are from an unpublished paper 

of J. Vaisala's. For other characterizations of uniform 

domains see [GOJ and [MJ. 

2. Modulus of continuity and Lip
h

-classes

We can extend all theorems in [GM2J to general moduli 

of continuity. This is done in Sections 3 and 4. Here we 

present the definitions and basic properties of the moduli 

of continuity. 

2.1. Definition. A continuous function h: [0,oo[ ➔ IR 

is said to be a modulus of continuity if it satisfies the 

following conditions: 

(2.2) 

(2.3) 

(2.4) 

h(O) = 0, h(t) > 0, t > 0 

h is increasing and 

h' exists and is decreasing in JO,oo[. 

We begin with some results concerning the modulus of 

continuity. The next theorem is obtained by elementary 

calculus. 

2.5. Theorem. Let h be a modulus of continuity. 

Then the following conditions are true: 

(2.6) h' (t) t s h(t) t > 0

(2.7) h(ct) :<: c·h(t) for evP.ry 0 > l 
' 

t > 0

(2.8) 
h(t) 

is decreasing, t > 0
-t-

(2.9) h(x,y) ·- h( lx-y I) defines a metric in !Rn 
□
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Remark. For our purposes, the conditions (2.7) - (2.9) 

are enough for the modulus of continuity. However, for sim

plicity we use Definition 2.1 (see [JJ). 

2. 10. De:fini tj_on. Let D C IRn. A 
belongs to the Lipschitz class

constant M < 00 such that the 

(2.11) Jf(x)-f(y)I s Mh(x,y) 

holds in D. 

Liph(D)

inequality 

function f: D ➔ IRP 

if there exists a 

If h(t) = t°', 

stead of Liph(D).

we shall use the notation Lip (D) in°' 
The condition (2.11) is called the 

Lipschitz condition with the modulus of continuity h and 

a constant M. 

2.12. Definition. Let h and g be moduli of conti-
nuity and let D C IRn be a domain . We say that g domi-

nates h in D and write h -< g if there is a constant 
A < 00 such that for each x,y E D 

h(x,y) s A·g(x,y) . 

2.13. Le:mma. If h -< g in D c IR11
, then

□ 

2.14. Le:mma. If the domain D c IRn 
is bounded and if

0 < a. s 0 s 1, then

□ 

We shall use the abbreviation 
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for an open ball in D with the radius b·d(x,oD) and the 

centre at x E D. 

2.15. Definition. A function f: D ➔ RP belongs to

the local Lipschitz class loo Lip
h

(D) if there exist con-

stants b > 0 and such that for each x E D  and 

(2.16) 

Usually 

f E Lip
h

(D) 

which (2. 11) 

a Lipschitz (seroi)norro of the 

is defined to be the smallest constant

function 

M for 

holds. In the class loo Lip
h

(D) the constant

ro
b depends on the constant b and no smallest ro

b 
exists. 

However, the constant b is superfluous: 

class 

m < oo 

2.17. Theorem. A function f: D ➔ RP belongs to the

loo Liph(D)

suc.h t.ha.t 

if and only if there exists 

(2.16) holds for each 

a constant 

x E D  and 

Proof. The sufficiency is immediate. For the necessity 

let f E loo Lip
h

(D) with constants b < ½ and ro
b

. Fix 

an open ball B½(x) c D and a point y E B½(x). Set 

r = d(x,oD)/2 > lx-yl and choose the open balls B(z
i

,br), 

with i = 0, ... ,k s 1/b < k+l and z. = y + ib·(x-y).

Since d(z
i

,oD) > r , zi-l
E B

b
(z

i
)' and f E loo Lip

h
(D), 

(2.18) lf(y)-f(x)I s L I f(z. )-f(z. 
1

) I I I f(z
k

)-f(x) I 
i=l 

J. J.-

roh(x,y). □
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2.19. Theorem. A function f: D ➔ RP belongs to the

class loo Liph(D) if and only if there exists a constant

m < oo such that for each x,y E B½(z) c D

(2.20) lf(x)-f(y)I s mh(x,y) . 

Proof. The sufficiency is immediate. For the necess
ity let f E loo Liph(D) with constants m and b = ½
Fix points x,y E B

1 
(z). Set r = d(z,aD)/2. As in the 

proof of Theorem 2.17, we can choose the open balls 
B(zi,r/2), where zi = x + i·(y-x)/4, i = 0, ... ,4. So by
repeating (2.18) we obtain 

Jf(x)-f(y)I s 4mh(x,y). □ 

We shall employ both Theorem 2.17 and Theorem 2.19 to 
characterize the class loo Liph(D).

Now we can define the loo Liph(D) seminorm to be the
smallest constant m for which (2.20) holds. 

Remark. Our definition for the class loo Liph(D) is
not the same as the following definition: For every Z E D 
there is a neighbourhood vz and a constant m z such that

(2.21) lf(x)-f(y)I s mzh(x,y) whenever X,y E vz

In general the definition is not the same even if we replace 
the constant mz by a uniform constant mD . For instance,
functions h(t) = t� 0 <a <� < 1 and f: J0,l[ ➔ R,
f(x) := x

0 give a counterexample of this: If we take 
y = ax , a <  1, then the quotient 

lf(x)-f(y)I 
h(x,y) 

xa(l_aa) 
x�(l-a)� 

tends to infinity if x tends to 0. But (2.21) holds if y 
is close to a fixed x > 0. 
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We gave the definition for locally Lipschitz-continuous 
functions by means of the distance from the boundary of D. 
The following theorem is trivially true. 

2.22. Theorem. If there exists a constant m < oo such

that 

(2.23) lf(x)-f(y)I s m·h(x,y) 

whenever x and y belong to a ball contained in D, then

f belongs to the class loo Liph(D) D 

In Section 4 we shall show that 
implies (2.23) in some oases and hence Theorem 2.22 has a 
converse. Next, we shall construct a counterexample of a 
function belonging to the class loo Liph(D) for which
(2.23) does not hold. We start with the following defini
tion. 

2 .. 24D Theorem .. The rnnr/111u.c: o.P rnntin11ity h 
in D the metric

(2.25) hD(x,y) := inf
]'(x,y) 

and the �emimetric

(2.26) h1/x,y) := inf
]'(x,y) 

I h(d(z,clD)) dsd(z,clD) 
"f 

J h'(d(z,clD)) ds 

"f 

de.fines 

Proof. It is obvious that hD is both positive and
symmetric, and that hD(x,y) = 0 if and only if x = y.
The infimum over all ]'(x,y) takes care of the triangle in
equality. Deoause h'(t) can be zero oven if t T 0, h0
is not necessarily a metric. D 

Proof. The inequality follows from (2.6). □
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2.28. Theorem. Let D c Rn 
be a domain and x0 ED.

Then the following functions 

loo Liph(D) with a 

uh(x) . -

uh, (x) . -

Proof. 
inequality 

Let 

(2.29) 

Let r I x-y 112 

constant m s 

hD(x0,x)

hD(x0,x)

Now 

belong to the class 

2 : 

By the triangle 

d(z,oD) 2 r whenever z E J(x,y) . 

Then, using (2.8), we obtain 

(2.30) I h(d(z,oD))_dshD(x,y) s d(z,oD) 
J(x,y) 

f 
h(

�
) ds

J 

2r·h(r) 
r 2·h(x,y) ,

and hence by combining (2.29) and 
uh E loo Liph(D). The same is true for 
2.27. 

(2.30) we obtain 

uh' due to Theorem
□

2.31. LeJll111a. Thexe exists a modulus of continuity h 
such that fox evexy a> O thexe is a point ta with

(2.32) h' (t) < a,h(t)
t 

Now 

Proof. Set 

h(t) 

if O < t s t 

t < l
e

t 0 

a 
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h' (t) 2: 0 ' lim h(t) 
t➔o

0 ' 

and h(t) > 0 if t > 0 . Hence h is a modulus of conti
nuity if we define it in such a way that the conditions of 
Definition 2.1 hold also when t 2: 1/e. 

On the other hand, 

h' (t) 
h(t)/t 

1 
ln t 

and hence (2.32) holds. 

h(t) s a 

□ 

2.33. Counterexample. Let h be a modulus of conti-
nuity satisfying the conditions of Lemma 2.31. We show that 
there is a function uh E loo Liph(B(x0,r)) which does not
belong to the class Liph(B(x0,r)) :

Set B := B(x0,r) and uh(x) ·- h
B

(x0,x). Suppose
that uh belongs to the class Liph(B) with a constant M.

Choose tM < r such that h'(t) < (l/2M)·h(t)/t when
t s tM, and let E > 0 be such that

Let x be a point in B with d(x,aB) = E and y a point 
in J(x,x0) with d(y,aB) = tM Obviously the line seg
ments J(x,x0), J(x0,y) and J(x,y) arc the best possible
curves to join the corresponding points, and so 

f h(d(z, oB)) dsJ d(z,aB ) 
J(x,y) 

tM
> 2M J h'(t) dt

E 

M·h(x,y) 
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Hence uh is not Liph-oontinuous in B with any con
stant M. 

2.34. Remark. The above counterexample leads to the 
following observation : Let h be as in Lemma 2.31 and let 
D be an arbitrary domain in Rn, D * Rn. Then 

f E loo Liph(D) does not imply the condition (2.23). We
can see that if we replace the ball B in the proof of 
Counterexample 2.33 with the complement of a point G and 
use the trivial inequality 

(2.35) whenever x,y ED c G . 

2.36. Theorem. Let Uc Rn 
be a a-uniform domain and

x
0 

E u. The function
l 

is in the class Liph(U) with a constant 20.

Proof. Let x,y EU and let y(x,y) be a curve 
satisfying (1.6) and (1.7). Since h' is decreasing, we 
obtain, by using (1.4)-(1.7), 

luh,(x) - uh,(y)I s hu(x,y) s J h'(d(z,oU)) ds
y 

s J h'(d(z,ooig(y,1/o))) ds 
y 

Q(y) 
s J h'(½ min(s,£(y)-s)) ds 

0 

Q(y)/2 
2 J h' (s/o) ds 

0 

2o·(h(£(y)/2o) - h(O)) s 2o·h(lx-yl/2) 

s 2o·h(x,y) . □
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3. Liph,g-extension domains

3.1. Definition. Let h and g be moduli of conti-
nuity and D c !Rn a domain. Let h � g in D. D is said 
to be a Liph,g-extension domain if there is a constant
E = E(D,h,g) < oo satisfying the following condition : 

If f: D ➔ lR belongs to the class loo Liph(D) with a
constant m (see 2.20), then f belongs to the class 
Lipg(D) with a constant M = Em.

The name 'extension domain' is motivated by the next 
theorem. 

3.2. Theorem. If D C !Rn 
is a Lip, _-extension

domain, then every f: D ➔ 

stant m has an extension

(3.3) 

!RP 
f' : 

in loo 
!Rn 

➔ !RP

-u, g
Liph(D) with a con-

such that 

Proof. (See [GM2, Section 2] and [Mos, Theorem lJ.) 
Let f: D ➔ lR f c loo Liph(D) with a constant m . By
definition f E Lipg(D) with a constant M = Em . Set

inf f(z) + Mg(x,z) z F D } 

Let E > 0. We shall prove that 

(3.4) If* (x) - f* (y) I :,; Mg(x,y) + e 

and then by letting € ➔ 0 we obtain (3.3).

Let X,y E !Rn . Take z E D such that 

f(zy) + Mg(y,zy) :'s f* (y) + € 

Using the triangle inequality for the metric g, we obtain 
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f* (x) 

,,; 

,,; 

f(zy) + Mg(x,zy)

f(zy) + Mg(y,zy) + Mg(x,y)

� (y) + E + Mg(x,y) 

Then by exchanging the roles of x 

(3.4). 

and y, 

17 

we obtain 

If f 

components, 

vp. 

is vector valued, we can repeat the proof for 

which increases the constant only by a factor 

□ 

Remark. In [S, Theorem VI.3] it is proved that there 

is a linear extension operator from Lipg(D) to Lipg(Rn) 

if D is bounded. 

In this section we shall derive other characterizations 

of the Liph,g-extension domains, and study some of their

properties. 

There are domains which are not extension domains: 

3.5. Example. 

Liph,g-extension 

f: D ➔ R, 

f(r,'f') 

Let 

domain. 

<pr/ 2TT 

D := B(O,l), R+ c R2. D

To show this define a 

is not a 

function 

(in polar coordinates), 

which is locally Liph(D)-continuous. This follows from h 

being concave and so (2.23) holds. Clearly f is not in 

the class Lipg(D), since there is no continuous extension of

f to R2.

Remark. 

breaks down. 

The quasiconvexity of the domain D also 

Now by using the metric hD given in (2 . 25) we show an 

integral inequality condition for Liph,g-extension domains.

The idea is taken from [GM2, Theorem 2. 2 ]. 
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3.6. Theorem. A domain D c Rn 
is a Liph,g-extension

domain if and only if there is a constant 1 s K(D,h,g) < oo 
such that 

holds in D. 

First, we prove the following lemma. 

3.8. Lemma. If hD(x,y) s K·g(x,y) 
h -< g in D (with a constant A < 4K ). 

Proof. Let X,y E D. We may assume 
generality 
such that 

(3.9) 

Now 

that d(x,aD) < lx-yl. Choose 

I h(d(z,aD)) ds < 2K·g(x,y) d(z,clD) 
'i 

Q( 'Y ) 2 I x-y I and 

in D, then 

without loss of 
a curve ,y(x,y) 

d(y(s).aD) < d(x,aD) + £(,y) < 2£(,y) , 

and so by using (2.8) and (3.9) we obtain 

4K·g(x,y) > 2 J h(d(z,aD)) dsd(z,aD) 
,y(x,y) 

� h(2lx-yl) � h(x,y) 

2£( )·h(2£(y))
'Y 2£(•1) 

n 

Proof of Theorem 3.6. To prove that a Liph,g-extension 

domain satisfies (3.7) take a point y ED. The function 
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Lip
h

-continuous in D with a constantis 

(see 

locally 

2. 28). So by the definition of Lip
h,g

-extension

m !, 2 

do-

mains we obtain (3.7) 

!, 2E·g(x,y) . 

To prove the sufficiency of (3.7), 

domain D satisfies (3.7) and let f E loo 

constant 

satisfy 

m as in (2.20). Let x,y E D 

(3.9). Set £
0 

:= O and choose 

as follows: 

suppose that a 

Lip
h

(D) with a

and let "((x,y)

balls B(z
i

,r
i)

and 

Because 

finite 

D is a domain and 

number k such that 

'Y c D is compact, 

£
k 

= £ ("() and 

there is a 

the process 

stops. Set zk+l := y. Set

i = 1, ... , k-1 . 

Now the linear measure of A
i 

satisfies

(3. 10) <! 

For s E Ai 
we have

(3.11) d("((S),oD) !, d(zi,oD) + d(zi,"((S)) !, d(zi,oD) + r
i

(4+l)·r
i 

Using (2.8), (3.11) and (3.10) we observe that 
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(3.12) I 
'( 

;:: 

Since f is 

h(d(z,oD)) dsd(z,oD) 

k-1
L 
i=l 

1 
5'

I 
h(5ri)

5r. 
A. 

l 

l 

k-1
L h(5r.)
i=l 1 

;:: 

ds 

;:: 

k-1
J 

h(d(y(s),oD)) 
L d(y(s),aD) ds
i=l 

A
i 

k-1 h(5ri) 
L m(A.) • 5r.i=l l 

l 

1 k-1
5 L h(ri)

i=l 

locally Liph-continuous and zi+l E B
y, 

( z. ) 
2 l 

k-1 

'

(3.13) lf(x)-f(y)I s �1
if(zi)-f(zi+l)I + lf(zk)-f(y)I

k-1

� m L h ( z . , z . + 1 ) + m • h ( zk. , y)
:l.=l l l 

k-1
m 2__ h(r.) + m·h(lzk-yl)

i=l l 

Now if lzk-yl s lx-yl,
(3.13) and Lemma 3.10 as 

we can combine (3.9), (3.12), 

(3.14) if(x)-f(y)I s 5m J 
h(d(z,oD)) dsd(z,aD) 

s 5m·2K·g(x,y) + mA·g(x,y) Em·g(x,y) , 

where E . - lOK+A < 14K ( A is from h -< g ) . 

If lzk-yl > lx-yl, then X,y E B½(zk) ' and (3.14) 
holds since f E loo Liph(D) and h -< g in D. This corn-
pletes the proof. □

From the proof of Theorem 3.6 we obtain the following 
theorem: 
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3.15. Theorem. A Liph,g-extension domain D has the

following property: 

If X is any metric space and f: D ➔ X belongs to 

loo Liph(D) with a constant m, then f belongs to 

Liph(D) with a constant E'm (where E' < 28E). □ 

The next theorem shows why domains such as those in 

Example 3.5 are not extension domains. 

3.16. Theorem. Let the domain 

extension domain and a constant

D C IR.n 
be

K as in

a Liph,g
(3.7). If 

h: [0,oo[ ➔ [O,oo[ is a 
x,y E B(x0,r) n D can

homeomorphism, 

be joined 

then 

by 

the 

a 
points 

curve 

y(x,y) c B(x0,b) n D with

(3.17) I h(d(z,oD)) ds d(z,aD) � K' ·g(x,y) '

y 

where b = max(2r,h-1(16K'g(r))) and K' < 4K .

Proof. (See [GM2, Theorem 2.15].) Let 
r > o. Choose points X,y E B(x0,r) n D.
that B(x0,2r) CD. Then we can choose
and, as in the proof of Theorem 2.28, we 
(3.17) holds with a constant A< 4K. 

If there is a point z0 in B(x0,2r)
choose y(x,y) c D for which (3.17) holds. 
y is not contained in B(x0,b). Then 

(3.18) £(y) � 2(b-r) 

XO E IR.n and
First, assume 

y(x,y) = J(x,y) 
can show 

n aD, we 
Suppose 

that 

can 
that 

For every s E [O,£(y)J, z = y(s), the following estimates 
hold: 

(3.19) 
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and 

(3.20) 

By combining the inequalities (3.19) and (3.20) we obtain 

(3.21) d(y(s),oD) � s + 3r � £(y) + 3r < 4£(y). 

Now by using (2.8), (3.18) and (3.21) we obtain 

which 

j' h(d(z, oD)) dsd(z,aD) 
y 

£(y) 
J h(Q (y )+3r) ds£(y)+3r 

£ (y) 

I h(d(y(s),aD)) dsd(y(s),aD) 

h(£(y)+3r),£( )> 4£(y) y 

.,_ I',,....,_ . -- '\ -,_ /' 'l_ -1 I' -, r,•u• J .1> /' __ '\ '\ '\ 

lll._;G.LJ-t-.L') lll._ll I._.LO� Kl..�))) 

2 2K'g(2r) 2 2K'g(x,y) 

contradicts (3.17). So y

4K'g(r) 

is contained in 
□ 

In Section 5 we shall show that, in a sense, Theorem 
3.16 is the best possible. 

4. Liph-extension domains

In this section we study the special case g = h. 

4.1. Definition. A domain D c Rn is a Liph-extension
domain if it is a Liph,h-extension domain.
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4.2. Theorem. A 

domain if and only if 

such that 

domain D c Rn 
is a 

there is a constant

Liph-extension
1 :$; K(D,h) < oo 

(4.3) 

holds in D. □ 

We start with another version of 3.16, where the con
stant b depends linearly on the radius r. 

4.4. Theorem. Let the domain DC Rn 

sion domain and a constant K as in (4.3).

be a Liph-exten
Then there is

a constant b :$; (3/2)e2K 

x,y E B(x0,r) n D can be 

such 

joined 

y(x,y) c B(x
0

,br) n D with

(4.5) 
I h(d(z,clD)) dsd(z, clD) :$; 

y 

2K·h(x,y) 

that 

by 

the 

a 

points 

curve 

Proof. The proof of Theorem 3.16 is valid up to the 
inequality (3.21) (replace b by br ). Let us recall that 

(3.21') d(y(s),clD) :$; s + 3r . 

Now by using (2.8), (3.18) and (3.21') we obtain 

£(y) 
I h(d(z,clD)) dsd(z,clD) 

£(y) 
I h(s+3r) dss+3r 
0 

2(b-l)r 
h(3r) J 

0 

1

s+3r ds

I h(d(y(s),clD)) dsd(y(s),clD) 

£(y) 
J 1 h(3r) s+3r ds
0 

h(3r)·ln 
2br+r

3r 
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> h(2r)·ln ;b 2 h(x,y)·2K,

which contradicts (4.5). So 'Y is contained in 
□ 

Now we can show a sufficient condition for the inclu
sion of the classes of Liph-extension domains.

4.6. Theorem. Let n c Rn 
be a Liph-extension domain

and g a modulus of continuity such that the function

h/g is decxeasing.

Then D is also a Lipg-extension domain.

Proof. Fix x,y En, and choose ,y(x,y) c n 

If 
modulus 

4.4 with XO : (x+y)/2
B(x0,br) nan - �

of continuity wj_th 

and 

(4.5) 
a 

,::,,.. • = I V-'7 I 
f/1"'.J..,_, " I"'� J I • 

holds for 
constant 

as in 

every 
2K,; 2 

( x,y E B(x0,r) c B½(x0) see the proof of Theorem 2.28 ).

If B(x0,br) nan*�. we have the estimate

and hence 

d(z,an),; 2br , for every z E ,y(x,y) c B(x0,br),

h(d(z,an)) 
g(d(z,an)) 

h(2br)2 g(2br)

Now by using (�.5) we obtain 

2K·h(2r) 2K·h(x,y) 2 I 
h(d(z,an)) dsd(z,oD) 

I 
g(d(z,an)),h(d(z,an)) dsd(z,an) g(d(z,an)) 
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Therefore, 

h(2br) 
g(2br) I g(d(z,aD)) dsd(z,aD) 

h(2r) 
2K ·h(2br)·g(2br)

which completes the proof. 

25 

h(2br) 
g(2br) gD(x,y)

2Kb·g(2r) , 

□ 

4.7. Corollary. A Liph-extension domain is quasiconvex.

Proof. 
if and only if 

A domain D c Rn is a Lip1-extension 

D is quasiconvex (use Theorem 4.2). 
The function h(t)/t 

domain 

Let 
is 

D 
de-be a Liph-extension domain .

creasing by (2.8), and so D 
Theorem 4.6. 
c ,;; 3e

2K
K ) . 

Therefore D 
is a Lip1-extension domain by

is quasiconvex (with a constant 
□ 

4.8. Corollary. Let D c Rn 
be a Lip

a.
-extension do

main. If h is a modulus of continuity satisfying the

inequality 

(4.9) h'(t)·t � o.h(�) , t > 0 ,

then D is a Liph-extension domain.

Proof. The function 

is decreasing: 

h I (t) 
C( 

o.to.-lh(t) - to.h'(t)
h(t)2 

to.-1

h(t)2 (o.h(t)-th'(t)) ,;; 0 ' 

and hence by 4.6 D is a Liph-extension domain. □
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4.10. Corollary. Let D c R
n 

main and O < a ��� 1. Then D 

domain. 

be a Lip -extension do
a 

is also a Lip
�

-extension

Proof. The function 

is decreasing. □ 

Liph-extension domains do not exist for every modulus

of continuity h :

4.11. Lemma. Leth be a modulus of continuity sat

isfying the conditions of Lemma 2.31. Then there are no 

Lip
h 

-ex:iensloa domains.

Proof. Let D c Hn and x
0 

E D  and choose 

In Theorem 

continuous. 

2.28 

In 

we proved that u
h 

is locally 

2.33 and 2.34 we observed 

Liph
(D)

that the 

Lipschitz-condition does not hold in the balls B1(z) c D.

So u
h

(x) is not Lip
h

(D)-continuous and D cannot be a 

Liph
-extension domain. □ 

On the other hand, if the order of growth as in (4.9) 

holds in a weak sense, there is a large set of Lip
h

-exten 

sion domains. 

4.12. Theorem. Let h be a modulus of continuity. 

Then the following conditions are equivalent: 

(4.13) There are constants K < oo and tK > 0 such that
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( 4. 14) 

(4.15) 

(4.16) 

t 

I h(
s
s) ds ✓ K·h(t) h ld .f O t t � o s 1 < ,s; K .

0 

All bounded uniform domains axe Liph-extension
domains. 

The unit ball in �
n 

is a Liph-extension domain.

There exists at least one Liph-extension domain.

Proof. 
(4.13). Let 

First, we shall show that (4.14) follows from 
D c �n be a c-uniform domain with the diam-

eter dD
tion 1.5. 

Choose x,y ED and y(x,y) 
From (1.4) and (2.8) we obtain 

£(y) 

as in Defini-

I h(d(y(s),acig(y,1/c))) dsd(r(s),acig(r,110)) 

,s; 2 

0 

£(y)/2 

I h(s/c) dss/c 
0 

£(y)/2 

,s; 2c J h(:) ds
0 

because c;?: 1. 
constant 2c2K. 

If £(y)/2 ,s; tK, then (4.3) holds with a
If £(r)/2 > tK, then 

£Cr)12 tK £(y)/2 

2c J h(:) ds 2c J h(:) ds + 2c
0 0 

£(y)/2

,s; 2cK h(tK) + 2c h(£(y)) J d:
tK

,s; 2c ( K h(£(r)) + h(£(y)) ln .ti..'t..2)
2tK 

,s; 2c ( K + ln 
clx-yl ) h(clx-yl)

2tK

J h(:) ds
tK
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2 cdD 2c ( K + ln ) h(x,y)
2tK

and therefore (4.3) holds for the domain D. 
Next, we show that (4.16) implies (4.13). Let D be a 

Liph-extension domain. Take a point y0 
ED and choose a

point x0 E an such that J(x0,y0) c Du {x0}. Let G be 
the complement of x

0 and tK := ix0-y0 1. Let o < t s tK
and O < E < t. Choose points x,y E J(x0,y0) such that
d(x,x0) E and d(y,x0) = t. Now by (2.35) and (4.3) we 
obtain 

t 

J h(:) ds Kh(t-E). 

So (4.13) holds by letting E ➔ o.

This completes the proof, since (4,151 followR triv-
ially from (4.14) and (4.16) follows from (4.15). D 

Now, repeating the proof of Theorem 4.12, we have the 
following theorem: 

4.17. Theorem. Let h be a modulus of continuity.

(4.18) 

(4.19) 

(4.20) 

There is a constant K such that 

t 

J h(:) ds s K·h(t)
0 

holds if t > 0. 

All uniform domains are Liph-extension domains.

The complement of a point is a Liph-extension

domain. □
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So if there exists one Liph-extension domain, then at 
least all bounded uniform domains are extension domains. 
In fact, the class of Liph-extension domains is larger than 
the class of uniform domains. 

sion 

stant 

4.21. Theorem. Let D c �n be a union of Liph-exten
domains Dj fox which (4.3) holds with the same con

K. Suppose that k < oo and c � 1 axe fixed con

If fox each x,y ED thexe exist domains D. stants. 1. j
i = 1, ... ,k' and points such that 

and 

then D is a Liph-extension domain.

Proof. (See [GM2, Theorem 2.25].) For the given 
and y 

Choose 

Now 

choose the domains D. 
Ji 

and the points

the curves "(i(zi,Zi+l) C D. 
Ji 

such that 

j 
h(d(z, an. ) ) 

I h(d(z,aD)) ds Ji ds d(z,aD) :<;; d(z,aD. ) 
"( i Ji 

"( i 

:<;; 2Kh(zi,zi+l)

and 

k' 

I h(d(z,aD)) dsd(z,aD) ;.,; L 2Kh(lz.-z. 11) 
i=l 1. 1.+ 

"( 

:-;; 2Kk' ·h(clx-yl) :-;; 2Kkc·h(x,y) 

hence h0(x,y);.,; 2Kkc·h(x,y) in D. 

z. 1. 

X 

□



30 

4.22. Definition. Let D c Rn and x,y E D.

that if 

We say 

then 

y(x,y) LY· 
iEI 

1 

oigo(y,r) := U cig(yi,r)
iEI 

is an r-cigar chain neighbourhood of y(x,y). If 

we write 

y(x,y) L '(. 
i=l 1

k 
cigc(y,r,k) .- U cig(yi,r)

i=l 

4.23. Theorem. Let h be a modulus of r.ont_inuity :for 

which (4.18) holds. Let D c Rn 
be a domain. I:f there 

exists a constant c 2 1 such that every x,y E D  can be 

joined by a curve y(x,y) with 

(4. 24) cigc(y,1/c) c D and 

then D is a Lip
h

-extension domain.

Proof. Let x,y E D  and choose y(x,y) for which 

(4. 24) and (4. 25) hold. As in the proof of Theorem 4.12 we 

have 

� 2__ 2cK·h(£(yi)/�)
iEI 

� 2cK L h(£(y1)) � 2c
2

K·h(x,y).
iEI 

□
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4.26. Remark. If (4.24) is in the form 

cigc(y,1/o,k) c D, (4.25) can be replaced by 

£(y) � olx-yl, since then 

L h(£(y.))
i=l 

1. � L h(£(y)) � ok·h(x,y) . 
i=l 

4.27. Remark. If D is bounded, it is enough that 

(4.13) holds instead of (4.18) in Theorem 4.23. 

4.28. Lemma. 

are not uniform. 

There are Liph-extension domains which

Proof. 

2.26(0)]. 

IR
2 

and the

triangles 

of the 
-i

S
i 

:= 2 , 

centre and 

.1
i 

is 

See [GM2, Example 

Take the unit disk in 

interiors of equilateral 

.1
i 

such that the length 

sides of .1. is 
J. 

the polar angle for the 

the closest vertex of 

and the distance from the closest vertex of to the 

origin is Now let 
00 

D ·- B(O,l) U U .1. 
i=O 

1 

By Remark 4.27, D is a Lip
h

-extension domain for every h

(if there exist Lip
h

-extension domains). However, the gaps 

in D are too narrow for D to be uniform. □ 

We can now return to the question raised in Theorem 

2.22 . 

4.29. Theorem. Let D c !R
n 

be a domain and h a 

modulus of continuity such that (4.18) holds (ox (4.13) if 

D is bounded). Then f E loo Lip
h

(D) if and only if there 

exists a constant m < oo such that 
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(4.30) lf(x)-f(y)I � m·h(x,y) 

whenever x and y belong to a ball contained in D. 

Proof. Let f E loo Liph(D). If B:=B(z,r) c D, then,

as in the proof of 4.12, hB(x,y) � (2TT/ 2)·(TT/ 2)·K·h(x,y)

in B. Because f E loo Liph(B), f E Liph(B). Therefore

(4.30) holds with some constant m', which depends only on 

the constant K in (4.18) and the constant m in (2.20). 

The converse is trivial. □

4.31. Remark. 

the condition 

The condi.tion (4.30) can be replaced by 

(4.30') 

in a-uniform subdomains U c  D. 

To finish this section, we prove that the inclusion 

given in Theorem 4.6 is generally proper. Obviously if 

h(t) is constant on [t0,oo[ , then there is no unbounded

Liph-extension domain. And, as mentioned in 

[GM2, Example 2.26], the domain between two parallel planes 

is quasiconvex; so it is a Lip1-extension domain but not a

Lipa-extension domain for any 0 <a < 1 .

We now show that the inclusion is proper also for 

general bounded domains. 

4.32. Counterexample. Let D c ffin be as follows: 

D == { (x,y) c ffi2 I 0 

Choose the moduli of continuity 

and 

-2 
< X < e , lyl < x2 } 
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-t ln t O < t s: e-2 

g(t) ·-
t + e-2 t > e-2

Now h/g is a decreasing function and g(t) 2 t. First, we 
prove that D is 

-2 x E JO,e [ , then 
not 

d((x,O),oD) s: x2 

a Liph-extension domain. 

Thus ( J = J((t/2,0),(t,O)) ) 

(4.33) I h(d(z,oD)) ds d(z,oD) 

J d((x,O),oD)o:-l dx 2 
t/2 

2 J (t2)o:-l dx 
t/2 

t2(o:-l).!
2 

If 

Here the factor (2t)o:-l tends to infinity as t approaches 
zero. Hence (4.3) does not hold for any constant K < oo. 

Next, we shall prove that D is a Lipg-extension
main. By -4 using elementary calculus for x E JO,e [,
see that 

d((x,O),oD) 

Thus, for every
-4 0 < x1 < x

2 
< e 

(4.34) 

2 x2 12 

z1 = (x1,o) and z
2 

= (x
2

,o) 
the following estimate holds: 

s: I g(d(z,oD)) ds d(z,oD) 

J(z

l
,z

2
)

do
we 
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For other 
proved as 

x
2 

J -ln(x2 / 2) dx 
x

2 

2 J -ln x dx + (x
2

-x1)·ln 2 

x2 
2 I (-x·ln x + x) + Cx

2
-x1)·ln 2 

xl

points 
follows: 

z1 , z
2 

ED, the condition
The modulus of continuity 

(4.3) is 
g u.Lear.Ly 

satisfies (4.13). So (4.3) holds in every a-uniform subdo-
main of D r "  'suitable' oonstant C ) . 

T.f'!' 

now
.... ,. �

1..IOl' a .l.J. U.LJ.t::: 

points zl
= (x1,Y1) and z

2 
= Cx2,Y2

) are 'far enough' 
from each other, we can use the curve 

to prove that (4.3) holds. If the distance between the 
points z1 and z

2 
is 'small enough',

same a-uniform subdomain of D. So 
holds in D. 

they belong to the 
gD(x,y) � K·g(x,y) 

□

4. 35. Remark. The trick used in 4.32 is that any ta , 
0 < a < 

g (if 

niques 

C 0 < a. 

1, 
t 
as 

< 1 

increases faster than the modulus of continuity 
is small). It can be proved by the same tech

in (4.33) that a Lip -extension domain 
) cannot contain outward-directed cusps with the 

angle zero. So it 
domain which is 

is not very easy to find a Lip
(3
-extension 

not a Lip -extension domain for some 
a. 

O < a. <{3 < 1. We shall study this question in Section 6. 
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must 
hold 

5. Some geometrical properties of Lip
h,g

-ex:tension

domains

In Section 4 we found out that a Liph-extension domain 

be quasiconvex. This property does not necessarily 
in Liph,g-extension domains.

5.1. Theorem. Let h and g be moduli of continuity

such that h: [O,oo[ ➔ [0,oo[ is a homeomorphism and h sat
isfies the condition (4.18). Suppose that D is a domain

in Rn 
and c < oo a constant such that every x,y ED can 

be joined by a curve y(x,y) c D satisfying the properties

(5.2) d(y(t),aD) � min(t,£(y)-t)/c, 

and 

(5.3) 

Then D is a Liph,g-extension domain.

Proof. (See the proof of Theorem 4.23.) By (5.2) and 
(5.3) we obtain 

I h(d(z, oD)) ds � 2cK·h(l(y)) � 2KC·d(clx-yl)d(z, an) o 

□ 

We can prove a similar result for outward-directed 
cusps. 

5.4. Theorem. Let h and

such that h': JO,oo[ ➔ JO,oo[ 
g be moduli of continuity

is a homeomorphism and h 
Suppose that D is a domainsatisfies the condition (4.9). 

in Rn 
and C < oo 

be joined by a curve

a constant such that every x,y ED can 
y(x,y) c D satisfying the properties



36 

(5.5) d(y(t),aD) � (h')-1(g'(min(t,£(y)-t)/c)) ,

and 

(5.6) £( y ) s c • I x-y I 

Then D is a Liph,g-extension domain.

Proof. By (4.9), (5.5) and (5.6) we obtain 

J h(d(z,oD)) ds s -C(1•J h'(d(z,oD)) dsd(z,oD) 
y y 

£(y)/2 

s !· J g' (tic) dt 
0 

( 2c/a.)·g(£(y)/2c) 

s (2c/a.)·g(x,y) 

5.7. Example. By an 'order of cusp' 
that in R2 the boundary of the domain 
cally) the set 

f(t) 
D c R2 

we 
is 

□ 

mean 
(lo-

{ (t,f(t)) t � o } U { C t, -f C t)) I t � o } .

It is easy to see, in view of Theorems 5.1 and 5.4, that a 
Lip_ -extension domain can contain 'inward-directed cusps 

/3' C( 
of order'

c:Lnd 'ouLw,ud-directed cusps of order' 

if C( < (3 

Remark. The domain D in Example 4.32 is a 
extension domain (½<a. s l ). 

Lip -a.,2a.-l 
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6. Lip
a

-extension and total extension domains

In this section we shall study the special case of a 
modulus of continuity h(t) = ta with O < a s l (studied 
in [GM2J). 
special case. 

First, we employ the previous results for this 

6.1. Lemma. The condition (4.18) holds for 

Proof. The result follows from 

I a-1 s ds
0 

l 
a □ 

Lemma 6.1, Corollary 4.20, Theorem 4.2 and Theorem 4.29 
imply the following results: 

6.2. Theorem. Let

A function f: D ➔ RP 

be a domain and 0 <as l. 
belongs to the class loo Lip (D) if

and only if there exists a constant m < oo such that

lf(x)-f(y)I s m· lx-yla 

whenever x and y belong to a ball contained in D. □ 

Theorem 6.2 is the original definition for the local 
Lipschitz class loo Liph(D) in [GM2J. The next theorem is
[GM2, Theorem 2.2]. 

6.3. Theorem. A domain is a 
constant 

Lip
a

-ex.tension

K = K(D,a) < oo domain 

such 

if and only if there is a 
that for every x,y ED there exists a curve 

')'(x,y) C D with

(6.4) J d(z,oD)a-l ds s Klx-yla .

'Y 

□
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6.5. Definition. A domain D c Rn is said to be 

a total extension domain if it is a Lip -extension domain a 
for every O < a s  1 . 

6.6. Theorem. Uniform domains and the domains men-

tioned in Remark 4.26 are total extension domains. □ 

By Corollary 4.10, every Lipa-extension domain is also

a Lip
0

-extension domain if O < a s  0 s 1 . Are all Lipa

extension domains total extension domains? The answer is 

'no', which will be proved in the following example. To 

construct such a domain we must destroy the inequality 

(4.25). 

6.7. Counterexample. Let 0 s 1 and 0 < a < 0 

There is a Lip
0

-extension domain which is not a

extension domain. 

The construction. See the figures in Appendix B. Let 

0 < a <  0 < 1. First, we choose a set D' c R2 as follows: 

Let 

r ·- 1/20 

·-
1 

20 1_21-1/a

Jo 
. - { (x,y) E 

i 1, 2, ... 

R
2 

y 0 lxl < 20
/2 }

Now we carry out the following Cantor-type construction: 

Let D' :- J
0 

, L :- J
0 

and JO,l 
:= J

0 
. We proceed 

by induction. For i � O the set L is a union of line 

segments J. . 
J.' J 

z. . of every 
J.' J 

B1(z . .  ,r.) to
J.,J J. 

j 
i 

1, 2, ... ,2 . 

line segment 

the set D'. 

J . .
J.' J 

Then 

We choose the midpoint 

and join the boxes 

we take the sets 

J x . .  - r. 
J.,J J.

x. . + r. [
J.,J J. 

away from the set L.
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line 
The set 

segment 
D' contains the boxes 

(see Figure 1). 
B1(z .. ,r.)J.,J J. 

The set which 
and 
is 
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the 
con-

structed on the line segment 
1:2-i/a

J . .  is similar to the set J.' J 
D' ( on the scale ) . 

Set £. J. .-

that £ . 2£i+l

£(J. . ) .J.' J 
+ 2r. 

It 
and 

follows from the construction 
we haveJ. 

-i/a2 
1_21-1/a

The number of boxes joined to D' in step n is 
the number of boxes which meet the line segment J . in 

i-n n, J 
step i is 2 , i e'. n. The (Cantor-) set L . ofoo, n, J 
the points of the line segment J . that are not coveredn, J 
by any of the boxes has the linear measure 

£ oo,n 

£ 

00 • 

£ - L 21-n·2r.n . J. i=n 

-n/a2 
1_21-1/a 0 

Now there exists a constant K = K(a,�) such that each 
pair of points z1 , z2 ED' can be joined by a curve y 
in D' with the property 

(6.8) J d(z, oD' )�-l ds 

y 

First, we prove that 

K· I z -z I�1 2 

(6.8) holds if

endpoints of the line segment J .n, J 

zl and
Obviously 

curve to join zl to z2 is the line 
J(zl,z2) = J n, j By combining the results 
construction we obtain 

z2 are
the best 

segment 
from the 

(6.9) J d(z, oD' )�-l ds
J 

ri 
J d(J(s),oD')�-l ds)
0 
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r. 
00 

2i J. -n
L ( J cA)(3-1 ds )2·2 
i=n 

0 

r. 
2 · 2-n2 (1-(3) 12 ·

00 

2i .l 
I 

J. s(3 L ( ) 
i=n (3 

0 

2·2-n-2(1-(3)/2.l. f._ ( 2i ·(���/a) (3 )
(3 i=n 

Since 2l-(3/a < 1, the last sum converges, and we conclude

where the last equation follows from 

n 

K' I z -z I (31 2 

Next, we show that (6.8) holds if l z1-z21 = £n for
some n and z1 , z2 E J0 The minimizing curve is again 
the line segment J(z1,z2) and co

(6.10) 
J J .n, J 

If are arbitrary, there is a number n 

such that tn+l < i z 1-z2i s £n
(6.10) yields 

. �1/a, 
1 n 

= 
;::; 

xn+l

J d(z,tlD')(3-l ds 
J(zl, z2)

s J d(z,oD')(3-l ds
J . 

n, J

Hence 
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Finally, if the points z1 , z2 E D' are arbitrary, we

use the method described at the end of Example 4.32. 

In conclusion, it follows that (6.8) holds. However, 

(6.8) does not hold in the case (3 � a , since then the last 

sum in (6.9) diverges. 

To complete our example, we must 'open' the set D' so 

that it becomes a domain. We define a domain (see 

Figure 2). 

1 

D* ' - { ( X , y) E IR 2

If we now set D := D' u D' then D is a domain (see 

Figure 3) and (6.8) holds for the 

But if we come close enough to the 

then D is almost similar to 

if (3 � a . 

D' , 

exponent 

point z0
and (6.8) 

(3 > a in D . 

. - (£0/2,0) ,

does not hold 

6.11. Remark. For example, if D c IR2 is the upper 

half plane, it can be proved that curves minimizing the 

integral (2.25) are restrictions of the curve 

x(t) = 

(6.12) 

y(t) = 

for some constants 

If we let 

C 

C 

t 
1 

I 1-a 
0 

(sin 

C and 

1 

(sin s)l-a ds + XO

1 

t)l-a
0 � t � TT 

( 0 < a <  1 ). 

we obtain a quasi-hyperbolic 

geodesic, which is a circular arc meeting the x-axis at the 

angle rr/2. Also for a >  0 the curve (6.12) is perpen

dicular to the x-axis (see the graphs in Appendix C). 



42 

7. Liph,g
-extension domains and the Hardy-Littlewood

property

In this section we shall study some extensions of the 
results in [GMlJ, [JJ and [St]. Let lofl be the maximum 
derivative of a function f: D ➔ RP 

(7.1) l of(z)I ._ lim sup lf(z+y)-f(z)I
lyl➔o lyl 

In [GMlJ F.W. Gehring and O. Martio studied domains in 

which the condition 

(7.2) Jaf(z)I � m·d(z,aD)n-l 

implies that the function f belongs to the class Lip (D). 
We now show that these domains are exactly Lip

0
-extension 

domains. E. ,Johnston has also proved the same kinds of 
results in [JJ using different methods. 

7.3. Theorem. Let D c Rn be a domain and h and g 
moduli of continuity. Then the following two conditions are 
equivalent: 

(7.4) 

(7.5) 

(7.6) 

n is a Liph,g-extension domain.

If a function f: D ➔ RP satisfies

laf(z)I � h(d(z,oD))m· d(z, oD) whenever z E D, 

then f E Lipg(D) with a constant K·m, where

depends only on the domain D (and the moduli

continuity h and g).

K 

of 

Remark. We have two methods to prove that a Liph,g
extension domain satisfies (7.5). The first one is to 
prove that a function satisfying (7.6) is in the class 
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loo Liph(D) in the sense of Theorem 2.17. The second one
is to prove the theorem by using Theorem 3.6. We shall use 
the second method (which is used in [GMlJ), because we shall 
have use for the proof later. 

DC !Rn 

Suppose 
be a Liph,g-extension domain,

that a function f: D ➔ !RP 

and 
sat-

Proof. Let 
let x,y E D . 
isfies (7. 6). 
such that 

By Theorem 3.6 we can choose a curve y(x,y) 

(7.7) J h(d(z, oD)) ds s 2K·�(x,y)d(z,aD) 0 

We have an estimate for the maximum derivative of the func
tion f o y 

lo(f 0 y)(s)I lim sup l(f 0 y)(s+r)-(f 0 y)(s)I 
lrl➔O lrl 

slim sup lf(y(s+r))-f(y(s))l.1im sup ly(s+r)-y(s)I
lrl➔O ly(s+r)-y(s)I lrl➔O lrl 

s lof(y(s))l·l 

Choose z0 E y closest possible to an. By (7.6)

lo(f o ..,)(s)I s h(d(y(s), oD))' m· d(y(s),aD) 

and hence lo(f 0 y)(s)I is uniformly bounded in [0,£(y)J 
wherefore f 0 y is absolutely continuous in [0,£(y)J and 

(7.8) I f(x) - f(y) I l(f 0 y)(£(y)) - (f 0 y)(O)I 

£(y) 
s J I a C f O y) Cs) I ds

0 

£(y) 
J h(d(y(s),aD)) dss m· d(y(s),aD) 
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m • I 
h(d(z, oD)) dsd(z, oD) m2K•g(x,y) . 

Thus f is Lipg(D)-continuous with a constant 2Km which 
depends only on the domain D (and the moduli of continuity 
h and g). 

Next, suppose that (7.5) holds. Let x0 E D and set

Now 

luh(x+y) - uh(x)I
lyl 

,.. _1_. J h(d(z, oD)) 
� lyl d(z,oD) ds '

J(x,x+y) 

where the last term tends to h(d(x,oD))
d(x, aD) 

h(d(x, oD)) l ouh(x)I s d(x,aD)

if lyl ➔ o. So 

and, by ('7. 5), uh E Lipg(D) with a constant K indepen-
dent of Lhe point x0 1Ienoe

and, by Theorem 3.6, D is a Liph,g-extension domain. □ 

7.9. Definition. A domain D c R2 is said to have the 
Hardy-Littlewood property if for some constant L and for 
all a E JO,lJ every analytic function f with 

(7.10) lf'(z)I s m·d(z, oD)a -l 

in D is in the class 
(see [GMl, Section 3]). 

Lip (D) a with a constant Ms Lm/a
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7.11. Corollary. The domains mentioned in Remark 4.26 
have the Hardy-Littlewood property. 

Proof. Let 
0 < a ,, 1. Then 

D be as in 4.26 

k Q("(.)/2 J J. a-1 L 20 s ds
i=l 0

2 20 k I 
1

a 
--a- x-y

and h(t) 

k 20 L H'Y
. )a 

a i=l 1 

holds in D. By the proof of Theorem 7.3 

f E Lip (D) a with a constant a m 

whenever (7.10) holds for f. So we can choose L 

By Corollary 7.11 the non-uniform domain in the proof 
of Lemma 4.28 has the Hardy-Littlewood property. 

7.12. Remark. Let K be the constant for which (4.3)a 
holds for the modulus of continuity h(t) = t°'. We can con-
struct a total extension domain D for which the quantity 

a a 

K
(3 

(3 

tends to infinity if a ➔ 0 . So it is not obvious whether 
every total extension domain has the Hardy-Littlewood prop
erty. 

7 .13. Remark. If D is a domain in �2 and f is 
harmonic in D 
loo Liph (D) if
(Modify the proof 

( or analytic in D ), then 
and only if (7.6) (or 
of [GMl, Theorem 1.1].) 

f belongs to 
(7. 10)) holds. 
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In [St] H. Stegbuchner has studied domains where 
h(t)/t is replaced by h'(t) in (7.6). Now we can give an 

equivalent condition for these domains. 

7.14. Corollary. Let D c Rn 
be a domain. Then the 

following two conditions are equivalent:

(7.15) 

(7.16) 

(7.17) 

There is a constant K(D,h,g) < oo such that 

hD(x,y) � Kg(x,y) , whenever x,y ED. 

If a function f: D ➔ RP satisfies

lof(z)I � m·h'(d(z,oD)) whenever z ED, 

then f E Lipg(D) with a constant Km, where 

depends only on the domain D (and the moduli

continuity h and g).

K 

of 

Proof. 
integral 

Repeat tho proof of Theorem 7.3 ucing the 

J h' (d(z, oD)) ds 

'Y 

□ 

7 .18. Remark. Unifo1·m domains always satisfy the prop
erty hD � Kh (see the proof of Theorem 2.36). The same is 
true also for domains in Remark 4.26. So the class of 
domains satisfying (7.16) is larger than the class of uni
form domains (if h � g ), and for some h and g also 
larger than the class of Liph,g-extension domains (which may
be empty). But if the modulus of continuity h satisfies 
the order of growth as in (4.9), then the metrics hD and 
hD are equivalent, and in this case the domains satisfying
(7.16) are Liph,g-extension domains.
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i,j,k 

n 

p 

Notation 

x,y,z,xi,yi,zi
lx-yl
D 

indices in IN 
dimension of IRn 
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dimension of the range space IRP, f: D ➔ IRP 

points in IRn (in examples z = (x,y) E JR2 ) 
euclidean distance between points x and y 
domain in IRn 

D * 0 , D * IRn 

a,r,s,t positive real numbers 
for y, y(x,y), y(s), £(y), J, J(x,y) see Definition 1.1 
cig(y,1/c) 
aD 

d(x, aD) 

C(, (3 

C 

B(x,r) 
Bb(x)
b 
h,g 
h(x,y) 
h-< g in D 
A 

uh(x)

Liph(D)
M 

loo Liph(D)
m,mb
f 

E 

K 

lie-cigar neighbourhood of y 
boundary of the domain D 

inf { I x-z I I z E aD } 
exponents in JO,lJ 

(1. 3) 

quasiconvexity (1.2) or uniformity (1.5) 
constant ( c � 1 ) 
open ball with centre at x and radius r 
{ y E IRn I lx-yl < b·d(x, aD) } 
constant, see above (see also Theorem 3.16) 
moduli of continuity (2.1) 
h(lx-yl), metric defined by h (2.9) 
h(x,y) � A·g(x,y) whenever x,y ED (2.12) 
constant< oo, see above 

inf J h(d(z,aD)) d 
y(x,y)cD 

Y
d(z, aD) s ,

inf J h'(d(z, aD)) ds , 
y(x,y)cD 

Y
h

D
(xo,x) XO E D (2.28) 

(2 . 24) 

(2.24) 

{f: D➔IRP I lf(x)-f(y)l�Mh(x,y) in D } (2.10)
constant for f E Liph(D) (2.10)
as above but in B½(z)cD (2.15, 2 .17, 2.20)
constants for loo Liph(D) (2.20, 2.15)
f: D ➔ IRP, Liph- or loo Liph- continuous
extension of f to IRn 

constant to extend f E loo Liph(D) (3.1)
h

D
(x,y) � K·h(x,y) (3.7) 



J / 1, 1 '--

Figure 1. The set D' in case a 0.5 
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Figure 2. The domain D* in case a =  0.5 . 

Figure 3. The domain D in case a = 0.5 . 
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Figure 4. The set D' and the domain D* in case a =  0.9. 

Figure 5. The set D' and the domain D" in case a = 0.2. 

Remark. The Figures 1-5 are not on the same scale. 



Figure 6. 

a = 0.0 
. . . . . . . . .

a = 0.1 

a = 0.2 

a = 0.3 

a = 0.4 

a = 0.5 

a = 0.6 

a = 0.7 

a = 0.8 

a = 0.9 

a = 1.0 

Graphs of curves minimizing the integral 

r 
a-1

J d(z,aD) ds in the upper half plane. 

f-'· 

C':l 

OJ 

f--' 
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