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Introduction 

F. W. Gehring and 0. Martio [GM2] introduced the class of quasiextremal 
distance domains in connection with the theory of quasiconformal mappings. We 
generalize their definition from the conformally invariant case p = n to arbitrary 
l<p<oo. 

A domain D C Rn is called a p-quasiextremal distance (p-QED) domain if 
there is a constant C such that for any pair Ko, K1 C D of disjoint continua 

(1) 

where cap
p 

is the variational p-capacity. 
Together with the class of p-QED domains we study the related class of 

Sobolev p-capacity (p-SC) domains defined by replacing cap
P 

in the inequality 
(1) by the capacity S

p 
associated with the Sobolev spaces WJ; see section 5.

We show that, even though n-QED domains appear to be more regular than
p-QED domains for p =I- n, these classes still enjoy some of the properties of n­

QED domains established in [GM2]. Our primary interest is in the case p > n - l,
since for 1 < p::; n - I it is possible that cap

p
(K0 ,K1 ,Rn) = 0 for a pair of

disjoint, non-degenerate continua Ko, K1 C Rn .
We mention the following results as examples of properties of p-QED and 

p-SC domains.
(a) For p � n: p-QED domains are quasiconvex and p-SC domains are

locally quasiconvex (1.3, 3.1, 5.8).
(b) For p > n - I: A p-QED domain or a p-SC domain cannot be too thin

near its boundary, i.e., it satisfies a uniform measure density condition
(4.1, 5.15).

( c) Uniform domains are p-QED and p-SC domains for all 1 < p < oo (1.3,
2.3, 5. 7).

(d) For each p =I- 2 there is a simply connected, planar, non-uniform p­

QED domain while a simply connected, planar 2 -QED domain is always
uniform (1.3, 2.5, 2.6, 3.7, [GM2, 2.23]).

We show ( 1.3, 2.2, 2.4, 5. 7) that L1-extension and bounded WJ­
extension domains are p-QED domains, and WJ-extension domains are
p-SC domains; see 1.3 for definitions. Thus our results for p-QED and
p-SC domains contribute to the study of the following problem raised
by F. W.  Gehring in [G3]: Characterize the domains D C Rn with a
Sobolev extension property.
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As another result in this direction we have: 
( e) Let D C Rn be a domain quasiconformally equivalent to a uniform do­

main D' C Rn . Then D is an L� -extension domain if and only if it is
uniform. If also either D or Rn \D is bounded, then D is a W�-extension
domain if and only if it is uniform (6.3).

In the case p > n we introduce a weak version of p-QED (p-SC)
domains. We call D a weak p-QED (p-SC) domain if inequality (1)
((1) with cap

p 
replaced by S

p
) holds for all pairs of distinct singletons

Ko = { x}, I<1 = {y} in D. We show (1.3, 7.5):
(f) Let D C Rn be a bounded domain, and let p > n. Then the following

four conditions are equivalent.
(i) D is a weak p-QED domain.
(ii) D is a weak p-SC domain.
(iii) D is a Wj-imbedding domain.
(iv) D is an L�-imbedding domain.

We also study Wj-approximation domains, i.e., domains D C Rn 

for which Ccj'°(Rn) is dense in Wj ( D). We establish a sufficient condition 
for a domain to be a Wj-a.pproximation domain. In particular, for a 
bounded domain DC Rn we have: 

(g) If there is a compact set I( C fJD such that cap
p

(K, B, D) = 0 for
some closed ball B C D, and if DU V is uniform for arbitrarily small
neighborhoods V of I{, then D is a WJ-approximation domain for all
1 < q :S p (8.1, 8.8). 

Section 1 contains the definitions used and some estimates for the variational 
p-capacity. We study p-QED, p-SC, L!-ext�nsion and Wj-extension domains
in sections 1-6. In section 7 we study weak p-QED and weak p-SC domains to­
gether with L!- and Wj -imbedding domains. Section 8 is devoted to the study of 
Wj-approximation domains and finally in section 9 we establish two applications 
connected with quasiconformal mappings. 

1. Preliminaries

1.1. Notation. Our notation is standard and usually as in [Val). Through­
out this paper D is a domain in Rn , n 2:: 2, and p E (1, oo). 

The n-dimensional Lebesgue measure is denoted by mn or m ,  and we employ 
the abbreviations Qn = mn(Bn(l)) and wn -t = mn-i(sn-1 (1)), where Bn(l) =
Bn(o, 1) = {x E Rn : /x/ < 1} and sn-1(1) = sn-1(0, 1) = aBn(l). By LP(D) 
we denote the Banach space of all measurable functions u: D ---t RU {-oo, oo} 
for which the norm llullLP(D) = (f D /u/P dm)1 IP is finite. Moreover, L!(D) is the
space of measurable functions u: D ---t A U { -oo, oo} whose first distributional 
derivatives lie in LP(D), and we equip Wj(D) = L!(D) n LP(D) with the norm 
llu// WJ(D) = IIVu//LP(D) + //ullLP(D), where Vu is the distributional gradient of u. 
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The letters b and C stand for various constants, and if C depends only on
a, /3, ... we write C=C(a,/3, ... ).

If 'Y is a curve, the locus of 'Y is denoted by I'll. A rectifiable curve 'Y is
always parametrized by arc length.

For any pair of disjoint, compact sets Ko , K1 C D we define the p-modulus
of Ko and K1 relative to D by

where 6.(1(0, K1 , D) is the family r of curves joining Ko and K1 in D, and
M

p
(r) is the p-modulus of r; see [Val, 6.1]. Further, the variational p-capacity

of Ko and K1 relative to D is

cap
p

(Ko,K1 ,D)= inf / IVuJP dm,
uEL(Ko,K1 ,D)} D 

where L(Ko ,K1 ,D) = {u E L1(D) n C(D U Ko U K1 ): u = 0 on Ko and u = l
on Ki}. We write cap

P
(I(,D) for cap

p
(8D,I<,D), cap

p
(x,D) for cap

p
({x},D),

and cap
p
(x,y,D) for cap

p
({x}, {y},D).

1.2. Remark. By [H, 5.5] 

for any pair of disjoint, compact sets Ko , K1 C D. This result will be tacitly
used in what follows. Note that is not known if the above equality holds for I{0, 

K1 C 8D.
1.3. Definitions. 

(i) D is (finitely) locally connected at x E 8D if there are arbitrarily small
neighborhoods U of x such that Un D is (finitely) connected. A set is
finitely connected if it has a finite number of components. Further, D
is (finitely) locally connected on the boundary if D is (finitely) locally
connected at each boundary point.

(ii) D is locally quasiconvex if there are constants O < 8 :::; oo and b � l
such that any x, y E D with Ix - YI :::; 8 can be joined in D by a
curve whose length does not exceed b Ix - YI. When 8 = oo, we call D
b-quasiconvex or quasiconvex. 

(iii) D is a (b, 8)-domain [J], 0 < 8 :::; oo, 1 :::; b,  if for all x, y E D with 
lx-yl < 8 there is a curve 'j: [O,l'('Y)]-+ D with 'f(O) = x, 'Y(l'('Y)) = y,
l'('Y):::; bjx-yl, and Bn('Y(t),½min{t,C('Y)-t}) CD for t E (O,l'('Y)). 
A (b,oo)-domain is called b-uniform; see [GO], [J], [Ml], and [MS].

(iv) D is a John domain [MS] if there are constants a � b > 0 and a
point Xo E D such that each x E D can be joined to x0 by a curve
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--y: [0,£(,)]-+ D with 1(0) = x; £(,)'.Sa, and Bn (,(t),b t/R(1)) c D 
for 0 < t '.S £(,) ;  see [M2] and [NV] for various characterizations of John 
domains. 

( v) D is an L1-extension domain if there is a bounded linear operator
E

p
: L}(D)-+ L}(Rn) with E

p
ulv = u for all u E L}(D). Boundedness 

of E
p 

means boundedness with respect to the seminorms IIVullLP(D) and 
IIV Ep

ullLP(Rn). 
( vi) D is a WJ-extension domain if there is a bounded linear operator E

p
:

Wf (D)-+ WJ(Rn) with E
p
ulv = u for all u E WJ(D).

(vii) D is an L}-imbedding domain, p > n, if

lu(x) -u(y)I SC IIVullLP(D) Ix - Yll -(n/p)

for all u E L}(D) and x,  y E D, vvhere u is identified with its contin­
uous refinement and C is independent of u. For the existence of such a 
refinement we refer the reader to [Mz, 1.1.2] and [A, 5.4]. 

(viii) D is n, WJ-imbcdding domain, p > n, if

lu(x) -u(y)I SC llullwJ(D) Ix -yl l

-
(
n/p

)

for all u E WJ (D) and x,  y E D, where u is identified with its continu­
ous refinement and C is independent of u. 

(ix) D is a WJ -approximation domain if C0(Rn) is dense in WJ ( D).

1.4. Remarks.
(i) We always have WJ (D) C L}(D), but it may happen that L}(D) (/__

Wt(D) even if D is bounded; see [Mz, 1.1.4].
(ii) There are TVJ -extension domains which fail to be L1-extension domains;

c;ee Example 6. 7. The converse seems to be an open problem.
(iii) A hrnmrll"d (b,8)-domain is C-uniform, where C = C(n,b,8,diu(D)). 

To see this, observe first that a bounded (h, h)-rlnm:iin is c-quasirnn­
vex, where c = c(n,b,8,dia(D)). Thus, given x, y E D, there is a 
curve ')' joining x and y in D with R(,) S c Ix - YI. Pick points 
x = z1,z2, .. ,,Zk = y E 11'1 such that 8/2b < lzi+1 - z;I < 8/b, i = 

1,  ... , k - l. Connect these points by curves 'r'i as in Definition 1.3.(iii). 
Now Bn(w;, 8/4 b2 ) C D and lwi+l - w;I < 8 ,  i = 1 ,  ... , k - l, where 
w; = ')';(R(1;)/2). Finally, join w; to w;+1 as above, i = 1,  ... , k - l. 

This process yields a curve 'f joining x and y in D with £('f) s
c b2 Ix - YI , and it is easy to see that 

Bn ('f(t),amin{t,£(::Y)- t}) CD,
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t E (O,C(r)), where a= a(b,c,8,dia(D)); hence D 1s C-uniform with 
C = C(n,b,8,dia(D)). 

(iv) For the readers convenience we chart the known relations between the
various classes of domains introduced in Definition 1.3. For simplicity we
abbreviate local connectedness on the boundary to LC and finite local
connectedness on the boundary to FLC.

LC ==? FLC 
* 

locally quasiconvex W)-approximation 
1)- l 

quasi convex � * 

* 

uniform ==? (b, 8) 
(b) W)-extension ==? 

-

(a) l -1J, p>n 
John W)-imbedding 

* 

L}-extension p>n ==? L}-imbedding

The implications denoted by -t hold only for bounded domains. 
For the implications denoted by (a) and (b) the reader is referred to 
[GMl, 2.18] and [J, Theorem 1], respectively, whereas all the remaining 
implications are more or less immediate. 

We establish the following additions to the implications mentioned 
above. 

W)-extension locally quasi con vex 

1)' (7 .10) 

W)-imbedding 
l 

L}-imbedding (7.10) 
==} quasiconvex 

1)- p?_n (6.1)

£}-extension 

The reader is also referred to Examples 2.5, 6.7, 8.10, Theorems 6.3, 
6.4, Corollary 8.14, and Remark 6.6 for related results. 

1.5. Preliminary lemmas. The purpose of the remainder of this section is 
to establish estimates for the variational p-capacity cap

p
( 1{0 , 1{1 , D) that will be 

used frequently in what follows. 
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1.6. Lemma. Let p > n - 1. Suppose tliat Ko' K1 C s = sn -1 (x, r) are

disjoint, non-empty, compact sets. Then 

wl1erc C = C(p,n) and Mp(K0 ,K1 ,S) is defined as in [Val, 10.1}. 

Proof. The proof of [Val, 10.2] for the case p = n applies with minor modifi­
cations to our case and yields the desired inequality with constant C(p, n), where

and 

( r
= 

)
1 -p 

C(p, n) = 
Wn

2
-2 

lo 
c(n-2)/(p -1)(1 + t2 )-(p-n+1)/(p -1) di '

Exactly as in [Val, 10.12] the preceding lemma implies 

n > 2. 

1.7. Lemma. Let O <a< b. If Bn(x,b)\B
n

(x,a) CD and if Ko, K1 CD 
are disjoint, compact sets such that every sphere sn -1 (x,t), a:::; t:::; b, meets 
both Ko and I<1 , then 

T T 
{ C ( n) log( b /a), p = n 

capP(J\.o,11- 1,D) 2: C(p,n) lbn -p - an -p i, n -1 < p <n or p > n. 

Replacing n by p in the proof of [N2, 3.1], see also [MRV, 3.11], we obtain

1.8. Lemma. Let Ko, K1, 1(2 C D be disjoint, non-empty, compact sets. 
Then 

cap
p

(I<o,I<1 ,D) 

2 3-Pmin{cap
p

(Ko,K2,D),cap
p

(K1,K2,D), inf cap
p

(Fo,F'i,D)},
Fo,F1 

1:v.l1ere the inB.mum is taJ:en ov·cr all pairs of continua .t
l?

0, 11'1 C D joining� J(0 lu 
I<2 and I<1 to K2, respectively. 

1.9. Corollary. Let I{ C B"(x, r) be a conUrnmm with dia(K) > br, 
0 < b, and let n - 1 < p :::; n. Then 

where C = C(p, n, b). 

Proof. For p = n the claim follows from [GM2, 2.6]. Assume that n - l <

p < n. 
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Let x1, x2 EI< satisfy lx1 -x21 = dia(K), and let x3 be a point of 5n-1(x, r)
on the line through x1 and x2. By symmetry we may assume that lx1 - X3 I ::;
lx2-x3I. Then 5n-1(x3,t) intersects both I< and 5n-1(x,r) for each lx1-x3I::;
t ::; lx1 - X3 I + dia( I<). Hence Lemma 1. 7 and elementary calculus imply 

cap
p 

(I<,sn-1(x,r),Rn) 2 Co (2n-p - (2- bt-p) rn-p,

where Co = Co(p,n). Since cap
p 

(Ic,sn-1(x,r),Rn) = cap
p 

(I<,Bn(x,r))' the
desired inequality follows. 

1.10. Lemma. 

(i) Let n - l < p::; n, and let I<o , I<1 be two continua with

�nin dia(J(;) 2 Ad(Ko,I<1), 
i=O,l 

where A > 0. Then 

cap
p
(I<0,K1,Rn) 2 C( min dia(K;)r-p, 

i=O,l 

where C = C(p, n, A). 
(ii) Let p > n .  Then for any pair x, y of distinct points

c-1 Ix - Yln-p::; cap
p
(x, Y, Fr)::; C Ix - Yln-p, 

where C = C(p, n). 

Proof First we prove (i). By symmetry we may assume that r = dia(Ko)::; 
dia(I<1 ) .  Pick a point x E I<o ; set a= (2 + 1/A)r and b = 2a. Then I<o C 
B

n

(x, a), and I<1 n B
n

(x, a) contains a continuum I< with dia(I<) 2 r .  Now 
min{dia(I<o),dia(K)} = r = b/(2(2 + 1/A)), and hence by Corollary 1.9 

min{cap
p 

(I<o, Bn(x, b)), cap
p 

(I<, Bn(x, b))} 2: C rn-p, 

where C = C(p, n, A) . Thus the claim follows by Lemmas 1. 7 and 1.8. 
Now we establish (ii). Let x, y E Rn be two distinct points. Define u(z) =

min{l, lz - xl/lx -yl} for z E Rn . Then u E L(x,y,Rn), and hence 

cap
p
(x, Y, Rn)::; r lv'ulP dm::; Ix - Yl-pmn (Bn(x, Ix -y[)) 

}Rn 
= nn Ix - Yln-p_ 

To verify the reverse inequality, let u E L(x, y, Rn). VVe may assume that 
0 ::; u ::; 1.  Now u E Wz} (Bn(x, 2 Ix - YI)), and hence the Holder continuity 
estimate [BI, 1. 7] implies 
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where C = C(p,n). Thus

and the claim follows.

I IVulP dm � c-p Ix - Yln-p,
}Rn

In addition to the preceding estimates we frequently use the following well
known results; see for example [Mz, 2.2.4]. 

1.11. Proposition. Let 0 < r < R, and let x E Rn . Then 

Moreover, for p > n

n (
p-n

)
p-1 

cap
p 

(x,B (x,r)) = Wn-1 
p- l 

,n-p _

2. p-QED domains

p=n 

In this section we define the class of p-QED domains. Using a result of P. W.
Jones, F. W. Gehring and 0. Martio showed that uniform domains are n-QED
domains, and established that a simply connected planar 2-QED domain is always
uniform [GM2, 2.18, 2.23]; see also [GV]. We show that uniform domains are p­
QED domains for all 1 < p < oo and we produce examples of non-uniform simply 
connected planar p-QED domains for each p =/- 2. 

2.1. Definition. A domain D is called a (C,p)-quasiextremal distance
(QED) domain if for each pair 1(0 , 1(1 C D of disjoint continua 

cap
p
(Ko, K1, Rn )� C cap

JJ
(Ko, K1, D),

or equivalently,
Mp

(Ko,K1Jr)::; C Mp
(Ko,K1,D).

Finally, Dis a p-QED domain if Dis a (C,p) -QED domain for some constant C.

2.2. Theorem. An Lt-extension domain is a (CP,p)-QED domain, where
C is the norm of the extension operator. 

Proof. Let Ko, K1 C D be two disjoint continua, and let c > 0. Take a
u E L1(D) n C(D) such that u = 0 on Uo, u = 1 on U1, and 

l IVulPdm::; capr(J<o,K1 ,D) +s,
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where U; is a neighborhood of K;, i = 0, 1.  Choose a smooth convolution ap­
proximation v of Epu such that v = u on U and 

r lv'vlP dm s / Iv' Ep ·ulP dm + c, 
}Rn }Rn 

where U C U0 U U1 is a neighborhood of Ko U 1(1 . Then v E L( Ko, K1 , Rn ), and 
hence 

cap
p
(Ko,K1 ,Rn )s r lv'vjPdm sCP r lv'u[Pdm+c:

}Rn jD 
S GP ( cap

p
(Ko,K1 ,D) + c:) + c. 

Since c > 0 was arbitrary, the claim follows. 

2.3. Theorem. A b-uniform domain is a (C,p)-QED domain, C = 

C (p, n, b) , for all 1 < p < oo .

Proof. By [J, Theorem 2) a b-uniform domain is an £�-extension domain 
with the norm of the extension operator not exceeding C0 = C0 (p, n, b). The proof 
given in [J) applies to all 1 < p < oo provided that D is unbounded. Hence, for 
unbounded domains, our claim follows from Theorem 2.2. Suppose now that D is 
bounded, and let I(o , K1 CD be a pair of disjoint continua. Applying an auxiliary 
stretching if necessary we may assume that dia(D) = 1; see [Val, 8.2) and [Ml, 
6.2). Let u E L(Ko,K1,D). We may assume that u E C 1 (D) n W;(D). Arguing 
as in the proof of Theorem 2.2 it suffices to show that there is a w E L}(Rn ) with 
wlD = u and f

Rn jv'w[Pdm SC J
D 

jv'u[Pdm, where C is independent of u. 
Set v(x) = u(x)- J

D 
u dm/mn(D) for x ED. Then jv'vl = jv'uj, v E W;(D) 

and by [J, Theorem 1) there is an extension Ep
v E W;(Rn ) satisfying 

llv'(Epv)[ILP(Rn) s IIEpv[lwJ(Rn) s Co [[v[lw;(D), 

where Co = Co(p,n,b). By [GMl, 2.18), a bounded b-uniform domain D is a 
John domain with constants a1 = a1 (b, dia(D)) and a2 = a2 (b, dia(D)). Thus we 
may apply the Poincare type inequality [M2, 3.1) 

l lu - l u dm/mn(D)I
P 

dm S C1 l jv'ujP dm,

where C1 = C1(a1,a2,p,n ), to conclude that 

f lv'(Ep
v )IP dm S 2P cg f (lv'vlP + Iv IP ) dm

}Rn JD 

= 2P cg l (iv'ujP + lu - l u dm/mn(D)I
P

) dm 

s 2P cg (1 + C1 ) l lv'ujP dm. 
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Since u(x) = (Ep
v)(x) + J

D
udm/mn (D) for x ED, the proof is complete. 

2.4. Theorem. A bounded WJ-extension domain is a p-QED domain.

Proof. By the proof of Theorem 2.3 it suffices to show that the Poincare type 
inequality 

l lu -l u dm/mn (D)I P dm::; Cl J'vuJP dm

holds for all u E C1 (D) n WJ(D) with some co11sta11t C independent of ·u. It is 
well known, see e.g. [SS, Theorem 12], that this inequality follows if the imbedding 
WJ(D) ---+ LP (D) is compact. 

Let B be an open ball containing D. Since the imbedding WJ(B)---+ LP (B) 
is compact, see [A, 6.2], and D C B is a WJ-extension domain, the imbedding 
WJ(D) ---+ LP (D) is also compact, and our claim follows. 

We close this section by establishing examples of non-uniform planar p-QED
domains, p i- 2.  

2.5. Example. Let D be the shaded region in our 
picture. Then D is a p-QED domain for all 1 < p <
2 but clearly fails to be uniform. By Theorem 2.4 it (1, 0) 
suffices to show that D is a iVJ-extension domain for (0, 0) 
all l<p<2 . 

Indeed, the argument in [Mz, 1.5.2] shows that D is a WJ-extension domain 
for all 1 < p < 2. To be mon� pn�c:ise, let 11.

+ = 11.JD+ for a given 11. E WJ ( D), 
1 < p < 2, where n+ is the upper half of D. Denote the upper half of the larger 
square Q by G, and let F = {(x,O): 0 < x < 1}. Since n+ is a (b,8)-domain,
there is a bounded extension operator Ep

: WJ ( n+ ) ---+ WJ (R2). Define 

tp((x,y)) 
= { (4/1r)arctan(y/x),

(4/1r) arctan(y/(l - x)),

0 < X::; 1/2 
1/2 S x < l

for ( x, y) E G \ n+ , and set tp to be 1 in n+ and O in F. The estimates in [Mz, 
1.5.2] imply that 

JJtpEp
u+ JlwJ(G) ::; C1 IJEp

u+ Jlwt(G)· 
By symmetry we obtain an extension v of u with vJD = u and v = 0 on F. It 
follows that v E WJ ( Q) and 

Since Q is a (b, 8)-domain, we conclude that D is a WJ-extension domain for all 
1 < p < 2. 
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2.6. Example. Let D = {(x,y): IYI > lxl -l}.
Then D is a p-QED domain for all p > 2 and clearly
not uniform.

Notice first that
D1 = {(x,y) ED: y > -4}

and
Dz = { ( x, y) E D : y < 4}

are uniform. By the proof of Theorem 2.3

15 

whenever !{0 , !{1 C D;, i = l, 2, are two disjoint, compact sets. Note that
any continuum I( C D may be written as the union of three compact sets E1 ,
Ez, E3 with E1 C {(x,y) E D: y 2: 3}, E2 C {(x,y) E D: IYI:::; 3}, and
E3 C {(x,y) ED: y:::; -3}. Since the variational p-capacity is subadditive [Val,
6.2], we conclude that D is a p-QED domain provided that

whenever
Ko C {(x,y) ED: y 2: 3}

and
K1 C {(x,y) ED: y:::; -3}

are two compact sets.
Let Ko, K1 CD be as above, and let u E L(Ko,K1 ,D). If u(0) > 1/2,

then the function v = min { 1, 2 u} is in L( J( 0, { 0} , D) . 0 therwise the function
w = max{O,2(u -1/2)} is in L({O},K1 ,D). Thus

2P cap
p

(J(0, 1(1 , D) 2: min{ cap
p

(O, 1(1, D), cap
p

(Ko, 0, D)}

2: min{ cap
p

(O, K1, D2), cap
p

(Ko, 0, D1 )}
2: � min{ cap

p
(O, K1, R2), cap

p
(Ko, 0, R2)}.

By Lemma 1.1O.(ii)
min{cap

p
(O,K1 ,R2 ),cap

p
(Ko,O,R2 )} 2: Co (maxd(Ki,0)) 2-p,

z=O,l 

where Co = C0(p). Therefore, it suffices to show that
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for some constant C2 independent of 1{0 and K1. Note that for p > 2 there is a 
C3 = C3(p) such that cap

p
(Fo, Fi, R2 )::; C3 whenever 

Fo C {(x, y) ED: y > 0 and x2 
+ y2 2 4} 

and 
F1 C { ( X' y) E D : y ::; 0 }

are two compact sets. Indeed, u = min{l,max{O,v}} E L(P0,F1 ,R2 ), where 

v( (x, y)) = { 
1 -y/(lxl - 1),

1- 2y, 

and integration in polar coordinates yields 

Now symmetry and [Val, 8.2] yield 

and our reasoning is complete. 

2. 7. Remarks.

lxl 2 3/2 

lxl < 3/2' 

(i) The given bounds for p in Example 2.5 and Example 2.6 are essential;
see Remarks 3.7.(i) and (iii). 

(ii) There are bounded, non-uniform planar p-QED domains for all p > 2 as
seen by modifying the unbounded WJ-extension domain in [Mz, 1.5.2];
these appear more complicated than the domain in Example 2.6. 

(iii) An unbounded WJ-extension domain may fail to be a p-QED domain;
see Example 6.7. 

(iv) The proof of Theorem 2.4 does not yield any est.imate for the p-QED 
constant of a bounded WJ-extension domain. We refer the reader to
Remarks 6.9.(ii) for some results in this direction. 

3. Geometric properties of p-QED domains

A uniform domain is a p-QED domain for all 1 < p < oo, but a p-QED
domain may fail to be uniform. Indeed, R2 \ {(O,i): Iii= 0,1, 2, ... } is clearly 
p-QED for all 1 < p < oo but not uniform. In this section we establish that p­
QED domaim, uevertlieless enjoy some of the same geometric properties posessed 
by uniform domains. 
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3.1. Theorem. Let DC Rn be a (C,p)-QED domain with p 2 n. Then
D is b-quasiconvex, where b = b(p, n, C).

Proof. For p = n the claim is proved in [GM2, 2.7]. 
Suppose that p > n. Let x1 , x2 be two distinct points in D and let r

lx1 - x2I. By Lemma 1.10.(ii) 

where Co =C0 (p,n). Hence 

Let S = C1r,  where 

Then 

( D) > 
Co n-p cap

p 
x1, x2, _ C r . 

( Bn ( S)) _ Co n-p cap
p 

x1, x1, -
2 C r .

Since cap
p

(x1,x2,D) 2 c:Jrn-p, it follows by [Val, 6.2, 6.4] that x1 and x2 

belong to a component V of Bn(x1, S) n D and that 

( V) Co n-p cap
P 

x1, x2, 2 
2 C r . 

Suppose that £( -y) 2 £ > 0 for every curve -y joining x1 and x2 m V. Then 
by [Val, 7.1] 

and hence 
,e � (2 C �: 

C{'r!P 
r.

Consequently, x1 and x2 can be joined in D by a curve whose length does not 
exceed b lx1 - x2 I, where 

Therefore D is b-quasiconvex. 

3.2. Definition. F. W. Gehring has introduced the notion of linear local 
connectivity; see [ G 1] and the references therein. A domain D C Rn is b-linearly 
locally connected if for each x0 E Rn and each r > 0 
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LLC(l) points in D n E
n

(x 0 , r) can be joined in D n B
n

(x 0 , b r), 

and 

LLC(2) points in D \ En(x0, r) can be joined in D \ En (x0, r/b). 

Further, D is linearly locally connected, or LLC, if D is b-linearly locally con­
nected for some constant b .  

Gehring and Martio established [GM2, 2.11] that n-QED domains are LLC. 
Examples 2.5 and 2.6 show that for 1 < p < n a p-QED domain may fail to satisfy 
LLC(l), and for p > n a p-QED domain may fail to satisfy LLC(2). 

We have the following corollary to Theorem 3.1. 

3.3. Corollary. Let D be a (C,p)-QED domain witb p 2 n. Tben D 
satisfies LLC(l) witb a constant b = b(p, n, C).

3.4. Theorem. Let D be a (C,p)-QED domain witb n -l < p:::; n. Tben 
D satisfies LLC(2) witb a constant b = b(p, n, C).

Proof The case p = n is proved in [GM2, 2.11]. 
Assume that n -l < p < n. Let X1 , Xz E sn-l ( Xo , r) n D and choose a curve 

'Y joining x 1 and x2 in D .  Denote by F; the x;-component of 1,1 \ En(x0,r/2), 
i = 1,2. 

Suppose that x 1 and x 2 cannot be joined in D\En(x o ,sr) for some s < 1/2. 
Then F1 , F2 C D are continua, 

and F1 , F2 cannot be joined in D \ Bn(xo, s r). Thus, by Lemma 1.10.(i), 

cap
p
(F1 ,F2 ,D) 2 � rn-p, 

where Co = C0(p,n); on the other hand, by [Val, 6.4] 

cap
p
(F1 ,F2 ,D)::; cap

p 
(E

n

(xo ,sr),En(xo,r/2)) 

= Wn -1 (
n -P)

p- 1 

(s
(p-n)/(p-1) - (1/2/p -n)/(p - 1 )) 

1 

p-l 
n -p r .

U"n"" e '>I,(� "" ,'_ ,'\ ��,-1 i-1--.���+'�-- ~ "",-1 ~ ----1-- =-=·---1 • __ nl Dnf,-, b,., .l...L'-'.l..L'-.,'-' <J :::_ V\J:', It,' vu'\../)' u.u.u 1.J.UVJ.C::J.VJ.C:: .L,l a,uu ,1_,z \..,d.,ll ue: JUlllt::U 111 LJ \ D \ xo' 2 7). 

Finally, let Y1 , yz E D \ En( Xo , r). Since D is a domain, either En( x0, r) n
D = 0' or we can join Yi to a point x; E 5n -1(xo, r)nD in D\En(x o , r), i = 1, 2.
This together with the first part of our proof implies that y1 and y2 can be joined 
in D \ En (x 0, %r), and the claim follows. 

3.5. Corollary. Let DC r;in be a (C1 ,p1)-QED and a (C2 ,p2)-QED do­
majn witb n-l <p1 :::; n :::;pz. Tben Dis b-LLC, wbere b= b(p1 ,p2 ,n,C1 ,C2 ). 

Let D ,  D' be two domains in Rn . Recall that D and D' are quasiconformally 
equivalent if there is a quasiconformal mapping f of D onto D'. We refer the 
reader to [Val] for the definition and basic properties of quasiconformal mappings. 
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3.6. Corollary. Let D C Rn be a domain which is quasiconformally equiv-
alent to a uniform domain D' C Rn . Then the following conditions are equivalent: 

(i) D is n-QED.
(ii) D is p-QED for all l < p < oo.

(iii) D is p-QED and q-QED with n - l < p '.Sn '.Sq.
(iv) D is LLC.
( v) D is uniform.

Proof By (Va2, 5.6] conditions (i), (iv) and (v) are equivalent. By Theo­
rem 2.3.(v) implies (ii) which trivially yields (iii). Finally, (iii) implies (iv) by 
Corollary 3.5. 

The remainder of this section deals with the planar case. Recall that D C R2 

is said to be locally connected at infinity if there are arbitrarily large r > 0 such 
that for some open Ur containing the complement of some disk, Ur n B2 (r) = 0, 

and Ur n D is connected. Denote the one-point compactification of R2 by Fe. 

We call a domain D C R
2 

a quasidisk if it is the image of an open disk under a

quasiconformal self-mapping of Fi . 

3. 7. Remarks. Let D S 1Fil2 be simply connected.

(i) Suppose that D is a p-QED domain. If p 2'. 2, then D is locally con­
nected on the boundary by Theorem 3 .1. If 1 < p '.S 2 , then Theorem
3.4 and (NV, 2.18, 4.5) imply that D is finitely locally connected on the
boundary and locally connected at infinity. Note that by Examples 2.5
and 2.6 our assumptions on p are necessary.

(ii) If D is a bounded p-QED domain with 1 < p '.S 2, then D is a John
domain. Indeed, this follows from Theorem 3.4 and [NV, 4.5).

(iii) Set D* = 1Fil2 \D. Then the following conditions are equivalent:
(a) D is a 2-QED domain.
(b) D is a p-QED domain for all 1 < p < oo.
(c) Dis a p-QED and a q-QED domain with 1 < p '.S 2 :Sq.
( d) D is uniform.
( e) D is a quasidisk.
(f) D and D* are both p-QED domains for some p 2'. 2.
(g) D is locally connected on the boundary and both D and D* are
p-QED domains for some 1 < p '.S 2.

The equivalence of the conditions (a)-(d) follows from the Riemann 
mapping theorem and Corollary 3.6. Further, (d), (e), (f), and (g) are 
equivalent by (i), Theorems 2.3, 3.1 and 3.4, [NV, 4.5, 9.3), and (MS, 
2.33). 

We refer the reader to [G2] for a detailed study of quasidisks. 
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4. A measure property of p-QED dom.ains

We show that for p > n -1 each p-QED domain satisfies a uniform measure 
density condition. Our method of proof is similar to that in [GM2, 2.13]. 

4.1. Theorem. Let De Rn bea(C,p)-QEDdomainwithp>n-1. Then 
for any x0 ED and any O < r < dia(D) 

where Co = Co(P, n). 

Proof. Fix x0 E D and O < r < dia( D). Pick a point x2 E D such that 
[x2 -x0[ = r/2. Set S = r/10 and choose x1 ED such that [x1 -xo[ < S, and let 
1 be a curve joining x1 and :r2 in D. Denote the ,1:1 -component of [1[ n B( xo, 2 8) 
by K1 and the x2 -component of [,[ \ Bn (x0, 3 S) by K2 , respectively. Set u(x) =
rnin{l,d(x,B

n

(xo,2S))/S} for x ED. Then u E L(K1 ,IC2 ,D) and [v'u[ '.S 1/S; 
hence 

cap
p

(K1, K2, D) :S l [v'u[P din :S mn (D n Bn (x0, r)) / SP 

lOP nn rn-p mn (D n Bn (xo,r)) 
mn (Bn (xo, r)) 

Since mini=l,2 dia(J(;) � S � d(I<1,JC2)/4 , Lemma 1.10 together with the QED­
property of D yield 

where Co= Co(p,n). Hence 

and the proof is complete. 

4.2. Corollary. Let D C Rn be a p-QED domajn with p > n - l. Then 
mn (RD) = 0. 

Proof. It follows from Theorem 4.1 that 8D cannot contain points of n­
density, and hence mn ( 8D) = 0. 

4.3. Corollary. Let DC R2 be a p-QED domain. Then m2(8D) = 0. 
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5. p-SC domains

In this section we study the class of Sobolev p-capacity (SC) domains. We 
define this class by introducing an analogue of the p-QED condition replacing 
the variational p-capacity by the Sobolev p-capacity associated with the Sobolev 
spaces Wj(D). We show that a WJ-extension domain is a p-SC domain. We 
begin by introducing the Sobolev p-capacity S

p
(K0 ,I<1 ,D); see also [Me], [Mz] 

and [R] for various Sobolev capacities. 

5.1. Definition. Let Ko , K1 C D be disjoint, compact sets. We define the 
Sobolev p-capacity S

p
(Ko ,K1,D) of Ko and I<1 relative to D by 

where 

W(I<o , K1 , D) ={u E W;(D) n C(D U I<o U K1): u '.S Co on Ko , 

u 2': C1 on I<1 for some Co,C1 with C1 -Co = l}.

If KC D is compact, we let S
p
(I{,D) = S

p
(fJD,K,D). 

The following observations are immediate. 

5.2. Lemma. 

(i) cap
p

(I<o ,I<1,D) :S: S
p

(I<o,I<1 ,D).
(ii) S

p
(Ko,K1,D) = S

p
(I<1,Ko ,D). 

(iii) If Ko , K1 C D are disjoint, compact sets, D C D', and F; C K;,
i = 0, 1, are compact sets, then

5.3. Lemma. Let I<o , K1 C D be disjoint, compact sets, and let c: > 0 .  
Then there is an ro > 0 such that for all O < r :S: r0 

where K;(r) = {x ED: d(x, K;) :S: r}, i = 0, 1. 

Proof Let u E W(I<o ,K1 ,D), and let O < 8 < 1/2 . Set d = (l/2)d(K0 U 
K1, 8D) if 8D =/- 0 and d = l otherwise. Then 

Ko ,8 = {x E Ko(d): u(x) :S: Co + 8} 
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and 
K1,6 = {x E K1 (d): u(x) 2': C1 -8} 

are disjoint, compact subsets of D and for some O < r :::; d l(,(r) C I<;,8, i = 0, 1.  
Define U6 = u/(1- 28). Now U6 E W(Ko,6,K1,6,D), and hence 

Sp (l(o,6, 1(1,6, D):::; l (1Vu6IP + lu61P) dm 

:::; (1 - 2 8)-P J
D 

(I Vu IP+ lulP) dm.

Thus Sp
(I<o,6,Ki,6,D) :::; (1 - 28)-P Sp (Ko,K1 ,D), and the claim follows by 

Lemma 5.2.(iii) for 8 > 0 sufficiently small. 

5.4. Remark. Suppose that mn (D) < oo and that the Poincare type inequal­
ity J D lu - uv lP dm :::; C f

v 
IVulP dm holds for all u E WJ(D) n C(D), where

uv = f
v

udm/mn (D). Then 

cap
p
(Ko,K1 ,D):::; Sp

(Ko,K1 ,D):::; (C + 1) cap
p

(I<o,I<1 ,D) 

for any pair Ko , K1 CD of disjoint, compact sets. 
By Lemma 5.2.(i )  it suffices to verify the right hand side inequality. Let 

u E L(I<0 ,K1 ,D). We may assume that u E WJ(D). Now v = u - uv 
lies in W(K0 ,I<1,D), and f

v(IVvlP + lvlP )dm ::; (C + l)f
v 

IVulPdm, hence 
Sp

(I<o,I<1 ,D):::; (C + 1) cap
p

(I<o,I<1 ,D). 

Our next result estimates Sp (I<o, K1 , D) in terms of the variational p-capacity 
without any assumptions on D. 

5.5. Theorem. Let Ko , K1 C lJ be two disjoint, compact sets with K1 C 
Bn (xo ,r). Then

Sp
(I<o,I<1 , D) :::; 2P ( cap

p
(Ko, K1 , D) + (1 + rP) cap

p(I<1 , Bn (x0 , r))). 

Proof. Let u E L(Ko,K1 ,D) and let v E L(K1 ,Bn (x0 ,r)) . We may assume 
that O :::; u, v :::; 1 and v E CJ( En ( x0, r)) . 

Set w(x) = u(x)v(x) for x E (DU K1 ) n Bn (x0 ,r) and w = 0 on DU ]{0 \ 

Bn (xo ,r). Then w E W(Ko ,K1 ,D) and 

r (l"vwlP + lwlP) dm s r ((l"vul + l"vvl)P + Iv IP) dm 
} D } DnBn(x0,r) 

:S; 21' ( f IVulP dni + f (IVvlP + Iv IP) dm).
Jv }Bn(x 0,r) 

The desired inequality follows since, by the Poincare inequality [GT, 7.44], 

r Iv IP dm:::; rP r IVvl p dm. } Bn(xo,r) } Bn(xo,r) 

Next, we define Sobolev p-capacity domains by mimicing the definition for 
p-QED domains.
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5.6. Definition. A domain D is called a Sobolev p-capacity (SC) domain 
with constant C if for each pair ]{0 , K1 C D of disjoint continua 

Finally, D is a p-SC domain if D is a ( C, p )-SC domain for some constant C. 
It was shown in Theorem 2.2 that an L1-extension domain is a p-QED do­

main. Because of Lemma 5.3 we may mimic the argument used to prove Theorem 
2.2 thereby establishing 

5.7. Theorem. A Wj-extension domain is a (C,p)-SC domain, where C 
depends only on p and the norm of the extension operator. In particular, a (b, 8)­
domain is a (C,p)-SC domain for all l < p < oo, where C = C(p,n,b,8,d) and 
d = min{l, dia(D)}. 

We proceed to establish some properties of p-SC domains. 

5.8. Theorem. Let DC r;in be a (C,p)-SC domain with p � n. Then D 
is locally quasiconvex with constants 8 = 8(p, n, C) and b = b(p, n, C). 

Proof. Assume first that p > n. Let 

_ 
( p+Z (P _ n

)
p-1

)
1/(n-p) 

8 - CCo2 Wn-1 -- ,p-l 

where Co= C0 (p,n) is the constant in Lemma 1.10.(ii). Let x1, x2 be distinct 
points in D with r = (lx1 - x2l)/8 � 1. Then Theorem 5.5 implies 

S
p

(x1,x2,D) � 2P ( cap
p

(x1,x2,D) +2 cap
p
(x2,Bn (x2,r))) 

( (
p-n

)
p-1 

)=2P cap
p
(x1,x2,D)+2wn-1 p-l rn-p 

=2P cap
p
(x1,x2,D)+lx1 -xzln-p /(2CCo). 

On the other hand, by Lemma 5.2.(i) and Lemma 1.10.(ii) 

Thus 
lx1 - Xz l n-p 

cap
p

(x1,x2,D) � -----,
2P+1 C Co 

and hence by the proof of Theorem 3.1 x1 and x2 can be joined in D by a curve 
whose length does not exceed b lx1 - x2 I, where b = b(p, n, C). 

Next, suppose that p = n. Let x1 , x2 be distinct points in D, and let I be a 
curve joining x1 and Xz in D. Denote the x;-component of l,lnB

n

(x;, lx1 -x2 l/4) 
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by I{;, i = 1,2 . Then min;= 1 ,2 dia(J(;) > d(K1 ,K2)/4, and hence by Lemma 
5.1.(i) and Lemma 1.10.(i) 

S,,(K1,K2 ,D) 2: �, 

where Co = C0(n). Further, assuming Ix, - x2I � 1 and using Theorem 5.5 

S,,(K1 , K2 , D) :::; 2"( cap
,,

(K1 , K2, D) + 2 cap
,,(K2, B"(x2, 1))) 

::::: 2" ( cap,,
(K1' K2 , D) + 2Wn-I ( log 

lx 1 � X2 I r-n). 
Now let O < 8 < 1 be so small that 

Then 

n+l 
( 

4
)l-n Co

2 Wn-1 log 
8 :::; 2 C

. 

S,,(1{1 ,1<2 ,D)::; 2" cap,,(K1 ,K2,D) + i�, 
provided that lx 1 - x2 I ::; 8, and consequently 

� � ( T,' i" _ n \ > C 0 ._,ap
,, -">I, -"1- i, .,_., ; - 2n+1c·

The argument in [GM2, 2.7] now implies that x1 and x2 can be joined in D by 
a curve whose length does not exceed b lx 1 - x2 I ,  where b = b( n, C). 

As an immediate consequence we have 

5.9. Corollary. Let D C R" be a (C,p)-SC domain with p 2'. n. If 

min{ dia(D), dia(R" \ D)} = d < oo, then D is b-quasiconvex and hence satisfies 
LLC(l) with a constant b, wl1ere b = b(p, n, C, d). 

5.10. Theorem. Let D C R" be a (C, n)-SC domain. Then for each 8 > 0 
fhArA i.c, a rnn.c,f:mf b = b( n, G, 5) such that whenever x0 E R" and O <:: r ::::: b, 
points in D \B"(x0,r) can be Joined in D \B"(x0 ,r/b). 

Proof. Let O < r::; 8, and let x1 , x2 ED n S"-1(x0,r). Arguing as in the 
proof of Theorem 3.4, it suffices to show that if X 1 and x2 cannot be joined in 
D \ B"(xo,(sr)/2), 0 < s < 1, then 1/s < b(n,C,8). 

Suppose that x 1 and x2 cannot be joined in D \ B"(x0, (s r)/2), 0 < s < 1. 
Let I be a curve joining x 1 and x2 in D , and denote the x; -component of 
(1,1 n B"(xo, r)) \ B"(xo, s r) by K;, i = 1, 2. Then I{; n S"-1(x0, t) I- 0, 
i = 1,2, for all t E (sr,r], and hence by Lemma 1.7 and Lemma 5.2.(i) 

Sn(K1,K2,D) 2 � log�, 
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where Co= C0(n). As in the proof of Theorem 5.9 

By [Val, 6.4] we have further 

Thus 

Sn(K1 , K2, D) =:; 2n ( capn
(B

n

(xo, (s r)/2), Bn (xo, s r)) 

+ (1 + (2rt) capn (B
n

(xo,r), Bn(xo,2r)))

= 2n+1 Wn-1 (log 2)1-n (1 + 2n-l rn ). 

�log� ::; 2n+l Wn-1(log 2)1 -n (1 + 2n-l 8n),

and consequently 1/s < b(n,C,8) as desired. 

5.11. Corollary. If DC Rn is a (C,n)-SC domain and if

min{ dia(D), dia(Fr \ D)} = d < CX), 

then D satisfies LLC(2) with a constant b ,  wl1ere b = b(n, C, d). 
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Proof. It suffices to consider the case dia(Rn \ D) = d < CX). Let xo E Rn , 
and let r > 0 .  Note that if 5n- 1 (x0,r) n (Rn \ D) = 0 then any two points in 
D \ Bn(x0, r) can be joined in D \ Bn(x0, r). 

Suppose that sn-1(x0,r) n (Rn \ D)-=/= 0. If O < r::; 2d, then by Theorem 
5.10 points in D \Bn(x0, r) can be joined in D \Bn(x0, r /b), where b = b(n, C, d). 
Otherwise B

n

(x0,r/2) n (Fr \ D) = 0, and hence points in D \ Bn(x0,r) can be 
joined in D \ Bn(x0, r/2) . The proof is complete. 

5.12. Corollary. If DC Rn is a (C,n)-SC domain and if

min{ dia(D), dia(Rn \ D)} = d < CX), 

then D is b-LLC, where b = b( n, C, d). 

5.13. Remarks. 

(i) Corollaries 5.9, 5.11, and 5.12 may fail to hold when both D and Rn \ D
are unbounded. Indeed, let D =Rn \ {(x1, . . .  , xn): 0::; Xn =:; 1 and O::; 
Xn-d and D' = (0, 1 )n-l X (0, oo). Then Ly Tl1eorem 5. 7 Loth D an<l 
D' are p-SC domains for all 1 < p < CX), but D is not quasiconvex and
does not satisfy LLC(l) while D' fails to satisfy LLC(2). 

(ii) Let D C Rn be a bounded WJ-extension domain. Then by Theorem
2.4 D is a p-QED domain. Hence the properties of p-QED domains 
imply that D is quasiconvex and satisfies LLC(l) for p 2: n while for 
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n - l < p ::; n D satisfies LLC(2); see Theorems 3.1 and 3.4, and 
Corollary 3.3. 

This approach does not yield estimates for the corresponding con­
stants, while Theorem 5.8 and Corollaries 5.9 and 5.11 provide upper 
bounds for each of these constants in terms of p, n, dia(D), and the 
norm of the extension operator. As Example 6.8 shows the LLC(2) con­
stant is not bounded in terms of this data for n - l < p < n.

(iii) Theorem 5.10 and Corollary 5.11 do not hold for n - l < p < n; see
Example 6.8.

The following result states that a bounded p-QED domain is a p -SC domain. 
We show in section 7, see Theorem 7.7, that the converse holds for p > n. The 
reader is referred to Remarks 6.9.(ii) for the case p < n.

5.14. Theorem. A bounded (C,p)-QED domain is a (C1ip)-SC domain, 
where C1 = C1(p,n,C,dia(D)). 

Proof. Let B be an open ball of radius dia(D) containing D. ThPn the 
Poincare type inequality of Remark 5.4 holds [GT, 7.45] for B with a constant 
Co - Co(p,n,dia(D)), and B is a (C2,p)-SC domain by Theorem 5.7, where 
C2 = C2(p,n,dia(D)). Hence 

Sp (Ko, K1, Rn) ::; C2 Sp (Ko , I<1 , B) ::; C2(Co + 1) cap
p(Ko, I<1, B) 

::; C2(Co + 1) cap
p(I<o,K1,Fr) 

::; C C2(Co + 1) cap
p

(Ko,K1,D) 

for any pair Ko , K1 C D of disjoint continua. Thus Lemma 5.2.(i) yields 

for any pair Ko, K1 CD of disjoint continua, where C1 = C(Co + 1) C2, and the 
proof is complete. 

We close this section with the following analogues of Theorem 4.1 and Corol­
lary 4.2. 

5.15. Theorem. Let DC Rn be a (C,p)-SC domain with p > n - l. Then 
for all x0 E D and O < r < b 

mn (D n Bn (xo , ,)) 2: �� mn (Bn (xo, ,)) ,

where b = b(p,n,C,dia(D)) ancl C0 = Co (p,n). 

Proof. Letxo ED, and let K1 C B
n

(xo,/
0

r), K2 C D\Bn (x0,1
3
0

r) be
two continua with min;=1,2 dia(Ki) 2: r/10 2: d(K1 , K2)/4 as in the proof of 
Theorem 4.1. 
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{ { 
3 r - 10 Ix - Xo I } } u(x) = min l,max 0, r 
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for x ED . Then u E W(J(2,K1,D), j'vui:::; 10/r on Bn(xo,r)nD, j'vui = u = 0
on D \ nn(x0, r) and O:::; u:::; 1. Thus 

Sp
(K2,](1,D):::; l(l'vujP+lulP)dm 

lQP m n (D n Bn(xo, r)) 
< --------� + D,n rn . 

rP 

On the other hand, by Lemma 1.10 and Lemma 5.2.(i), 

where Co= C0(p,n). Choose b > 0 small enough so that

whenever O < r � b. Then for O < r :::; b 

and the proof is complete. 

We have the following corollary to Theorem 5.15 

5.16. Corollary. Let D C Rn be a p-SC domain with p > n - 1.  Then 
mn(oD) = 0.

6. L!- and WJ -extension domains

An L!-extension domain and a bounded Wj -extension domain are both p­
QED domains, and a WJ-extension domain is a p-SC domain; see Theorems 2.2, 
2.4, and 5.8. Therefore the properties of p-QED and p-SC domains established 
in sections 3, 4, and 5 yield necessary conditions for a domain to be an extension 
domain. 

Theorems 3.1 and 5.8 and Corollaries 3.5, 3.6, and 5.12 imply 

6.1. Theorem. Let p � n. Then 
(i) An L!-extension domain is quasiconvex.

(ii) A WJ -extension domain D is loca.lly quasiconvex. Moreover, if either D
or Rn \ D is bounded, then D is quasiconvex.
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6.2. Theorem. 

(i) 
( 
.. \ 
11; 

An L� -extension domain is LLC. 
If D is a W,; -extension domain and if eitl1er D or Rn \ D is bounded, 
then D is LLC. 

6.3. Theorem. Let D C Rn be a domain which is quasiconformally equiv­
alent to a uniform domain D' C Rn . Then 

(i) D is an L� -extension domain if and only if it is uniform.
(ii) If either D or Rn \ D is bounded, then D is a W� -extension domain if

and only if it is uniform.

We also have 

6.4. Theorem. Let n - 1 < p :=; n. Then 

(i) An L1-exl,ension domain satisfies LLC(2).
(ii) Tf l) is a wi-extension domain and if either D or Rn \ D is bounded,

then D satisfies LLC(2).
(iii) A bounded, simply connected, planar L� - or WJ -extension domain is a

John domain.

Proof. By Theorem 3.4 and Remarks 3.7.(ii), 5.13.(ii) it suffices to show that 
a WJ-extension domain D, n - 1 < p :=; n, satisfies LLC(2) whenever Rn \ D is 
bounded. 

Let D be as above, and let B be an open ball in Rn containing Rn \ D.

It follows that D n B is a bounded WJ -extension domain, and hence satisfies 
LLC(2). This implies that D satisfies LLC(2) as desired. 

We have the following corollary to Theorems 4.1 and 5.15 and Corollaries 4.2 
and 5.16. 

6.5. Theorem. Let D C Rn be an L!-cxtcnsion or a l'VJ-extension domain 
with p > n - 1 . ThP.n fnr any .1:0 E D ann O < r < b

Here C depends only 011 p, n and tlie 11orrn ufthe extension operator, b = dia(D) 
for L!-extension domains, and b = b(p, n, C, dia(D)) for WJ -extension domains. 
Moreover, mn (oD) = 0. 

6. 6. Remarks.

(i) Theorems 6.1 and 6.5 have also been established by S. K. Vodop'yanov
[Vo] for WJ-extension domains, p > n. V. M. Gol'dstein [Go2] has
announced results similar to Theorem 6.1.
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(ii) The following analogue of Remarks 3.7.(iii) seems to be more or less
known; see [Goll, [Go2], [GR], [GV], [Vo], [J], and [VGL]. Since some
of the conclusions seem to be new and since we have not been able to
locate proofs for all known conclusions, we state this analogue for the
convenience of the reader.

Let D S R2 be a simply connected domain, and set D* = R2 \ D.

Then the following conditions are equivalent:
(a) D is an L!-extension domain.
(b) D is an L1-extension and an L!-extension domain, 1 < p ::S: 2 S q .
( c) D is an L1 -extension domain for all 1 < p < oo .
( d) D is uniform.
( e) D is a quasidisk. 
(f) Both D and D* are L1-extension domains for some p 2:: 2.
(g) D is locally connected on the boundary and both D and D* are
L1-extension domains for some 1 < p ::S: 2. Moreover, if either D or
R2 \ D is bounded then these conditions are equivalent with L1 replaced 
by W;. 

The equivalence of these conditions follows by reasoning as in Re­
marks 3.7.(iii) using Theorems 3.4, 6.4.(ii), Corollaries 3.3, 5.9, [J, The­
orem 1], and the fact that a simply connected, planar, uniform domain 
is an L1-extension domain for all 1 < p < oo by [ Gol, Theorem 1] and 
the proof of [J, Theorem 2]. 

Next we show that there are W;-extension domains in Rn which are neither 
L1 extension nor p-QED domains for any 1 < p < oo. Note that by Theorem 2.4 
such a domain has to be unbounded. 

6.7. Example. Let D = (-1,1r-1 x (-00,00). Then D is a (b,8)-domain
and thus a W; -extension domain for all 1 < p < oo. We claim that D is not 
a p-QED domain for any 1 < p < oo, and therefore fails to be an L1-extension 
domain for any 1 < p < oo . 

By Theorem 4.1 it suffices to show that D is not a p-QED domain for any 
l<pSn- 1. 

Let 1 < p ::S: n - 1, and define Kj = (-1/2,1/2J n-t x [-2i,-i] and Kf =

[-1/2,1/2t-1 x [i,2i] ,  i = 1,2, ... . Set u;(x) = min{l,max{O,xn/i}} for
x E D. Then u; E L( Kj, Kt, D), and hence 

Let 2 ::S: no ::S: n - l be an integer such that n0 - 1 < p S no, and let T be 
the no -dimensional plane parallel to the XH( n-no), . . .  , Xn -axes passing through 
a point x with -1/2 S X1, .. ,,Xn-no S 1/2. Now v;lr is in L(Kj

T
,I<{

T
,T), 
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where KjT = Kj n T, Kf T = Kf n T, whenever v; E L( Kt, Kf, T) satisfies 

fr l'vv;IP dmn0 
< oo, and hence Lemma 1.7 and Fubini's theorem imply that 

as i-; oo; 

a contradiction. 
We conclude that D is not a p-QED domain for any 1 < p < oo. 

6.8. Example. Let D; = (i, i + i:p-) x 
(-1,3) \ Q;, i = 2,3, . .. , where each Q; 
is a closed square with F; = {(x, 3/2): i :S 
x :S i + 1} as one of its diagonals, and let 
D = U2D2; U {(x,y): y < O}. Note that (i,3/2) (i + ;;1 ,3/2) 
for any positive constant b there is a D; 
whose LLC(2) constant exceeds b. Never-
theless D and all D; are W: -extension do- D; 

• 

I' 

mains for any 1 < p < 2 with the norms 
of the extension operators not exceeding 
C = C(p). 

Indeed, a look at Example 2.5 shows that each D; is a vVj -extension domain, 
1 < p < 2, with the norm of the extension operator not exceeding C = C(p). Since 
{(x, y): y < O} U ( U2 (2i, 2i + 2i

2

1 1 ) x (-1, 3)) is a (b, 8)-domain, we conclude 
that also D is a Wj -extension domain for all 1 < p < 2. 

6.9. Remarks. 

(i) The various constants in Theorems 6.1, 6.2, and 6.4.(i), (ii) depend
for Lt-extension domains only on p, n, and the norm of the exten­
sion operator, while for TVj-extension domains they depend also on
d = min{dia(D),dia(Rn \ D)}, and in Theorem 6.4.(ii) the LLC(2) con­
stant is not bounded in terms of this data for n - l < p < n; see Example
6.8.

(ii) Let D C R" be a bounded W z;-extension domain with the norm of the
extension operator not exc,eeJiug a constant C. Then D is a (C1 ,p)­
QED domain for some constant C1 . It follows from Theorem 3.4 and
Example 6.8 that C1 is not bounded in terms of p, n, C, and dia(D)
for p < n. We show in section 7, see Corollary 7.9, that for p > n

C1 = C1 (p,n,C,dia(D)). The case p = n is an open problem.

7. Lt- and Wj-imbedding domains

For p > n the variational p-capacity cap
p

( 1(0 , 1(1 , Rn ) and the Sobolev p­

capacity S
p
(Ko, K1, Rn ) are positive for singletons 1(0 = { x} and 1(1 = {y}; see 

Lemma 1.10.(ii) and Lemma 5.2.(i). This fact inspires the following definition. 
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7.1. Definition. A domain DC Rn is a weak (C,p)-QED domain, p > n, 
if 

cap
p

(x,y,Rn)::; C cap
p

(x,y,D) 

for any pair x, y E D of distinct points. Analogously, D is a weak (C,p)-SC 
domain if 

for any pair x, y E D of distinct points. 

Obviously, a p-QED or a p-SC domain is a weak p-QED or a weak p-SC 
domain, respectively, but we do not know whether or not the converse holds. 

In what follows we identify each u E W;(D) or u E L1(D), p > n, with its 
continuous refinement. 

We shall show that for bounded domains weak p-QED and p-SC conditions 
and £1- and WJ-imbeddings are equivalent. We begin with two results that do 
not require boundedness of the domain in question. 

7.2. Theorem. A domain is a weak p-QED domain if and only if it is an 
L1-imbedding domain. 

Proof. Assume first that D is an £1-imbedding domain with constant C.

Let x, y E D be two distinct points, and let u E L(x, y, D). Then 

1 = lu(x) - u(y)I::; C IIVullLP(D) Ix -yll -(n/p),

and hence 
GP fv 1vu1P dm 2". Ix -Yln-p .

Thus GP cap
p
(x, y, D) 2". Ix - Yl n-p , and consequently, by Lemma 1.10.(ii), D is 

a weak p-QED domain. 
For the converse, assume that D is a weak (C,p)-QED domain. Let u E 

L1(D), and let x, y ED be two distinct points. We may assume that u(x) > u(y). 
Now the function v , defined by 

v(z) 
= u(z) -u(y) 

u(x)-u(y) 
for z ED, 

belongs to L(x,y,D); hence by Lemma 1.10.(ii) 

C fv 1vvJP dm 2". Ccap
p

(x,y,D) 2 cap
p
(x,y,Fr)

2 Co Ix -Yl n -p, 
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where Co= C0(p,n). Since J
D IVvlPdm.::; l·u(x)-u(y)l-p J

D IVulP dm, we obtain 

(
C

)
l/p 

lu(x) - u(y)I::; 
Co 

IIVullLP(D) 
Ix -YII

-(
n/p)_

The proof is now complete. 

7.3. Theorem. 

(i) A weak p-SC domain is a W)-imbedding domain. 
(ii) If D is a vV; -imbedding domain, then for any 8 > 0 there is a constant

C such that
S

p(x, y, Rn)::; C S
p(x, y, D) 

whenever x, y E D are two distinct points witl1 Ix -YI ::; 8.

Proof. The proof of (i) is simiiar to that of Theorem 7.2 except that here we 
define v by v(.,) = tt(.,)/(u(x) -u(y))

. 
For (ii) let D be a Wj-imbedding domain. As in the proof of Theorem 7.2 

we obtain 
GP Sp

(x, y, D) 2:: Ix -Yln
-p 

whenever x, y E D are two distinct points. Then by Lemma 1.10.(ii) and Theo­
rem 5.5 

and thus 
S

p
(x, Y, Fr )::; Co CP(2 + 8P ) S

p(x, Y, D), 

where Co= Co(p,n). This completes the proof. 

7 .4. Theorem. A bounded domain is an L� -imbedding domain if and only
if it is a WJ-imbedding domain.

Proof It suffices to show that a bounded WJ-imbedding domain is an L}­
imbedding domain. 

Suppose that D is a bounded Wj-imbedding domain. Let u E L�(D), and 
let x , y E D be two points with u( x) -u(y) > 0. Define 

. { { 
u(z) - u(y)'

}v(z) = mm l, max 

O
,

u(x)-u(y)f 

for z ED. Then v E WJ(D) and 

1 = lv(x) - v(y)I::; C llvllw1cD) 
Ix -Yl l -(n/p)

:s C lu(x)-u(y)1-1 11vu[ILP(D) 
Ix -v1

1-(n/p) + Cmn(D)1 IP Ix -Yll-(n/p)_ 
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Thus, if Ix -yl :S (2Cmn(D)1 h'Y/(n-p), then 

lu(x)- u(y)I :S 2C IIVullLP(D) Ix -yl l-(n/p)_
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Let /j = (2 C m 11(D)1IPY/(n-p). Since D is bounded, there is an integer
k = k(n,5,dia(D))?: 2 such that for any two points x, y ED with Ix -yl > 8 
there are points x1, ... , xc ED, £ :S k, with x = x1, y = ye and lx;+1 -x;I :S /j 
for i = 1, ... ,£-1. Therefore, for x, y ED with Ix -yl > 8, 

l-1
lu(x) -u(y)I :S L 2 C IIVullLP(D) lx;+1 - x;l l-(n/p)

i=l 

:S 2 C(k -1) IIVullLP(D) 5 I-(n/p)

:S 2C(k -1) IIVullLP(D) Ix - Yl l -(n/p).

The claim follows. 
We group the preceding theorems together. 
7 .5. Corollary. Let D C R11 be a bounded domain, and let p > n. Then 

the following four conditions are equivalent. 
(i) D is an L1-imbedding domain.

(ii) D is a WJ-imbedding domain.
(iii) D is a weak p-QED domain.
(iv) D is a weak p-SC domain.

We need the following Poincare type inequality
7 .6. Lemma. If D is a bounded weak ( C, p )-SC domain, p > n, then 

l lu -uvlP dm :S C1 fv 1'vulP dm

for any u E WJ(D), where C1 = C1(P, n, C, dia(D)). 

Proof. Fix u E WJ(D). Then the proofs of Theorems 7.3 and 7.4 yield for 
any x, y ED 

lu(x) -u(y)I :S C2 Ix -yll -(n/p) IIVullLP(D)i
here C2 = C2(p,n,C,dia(D)). Pick x0 ED with u(x0) = uv; this is possible 
since u is continuous. Now 

l I'll -·uvlP drn = l lu(x) - u(xo)IP dm

::; C{ 1nn(D) dia(D)p-n fv 1vu1P dm

::; Dn C{ dia(D)P fv 1vu1P dm
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as desired. 

By Lemmas 5.2.(i) and 7.6 and Remark 5. 4 we obtain 

7.7. Theorem. A bounded (C,p)-SC domain, p > n, 1s a (C1 ,p)-QED 
domain, where C1 = C1 (p,n,C,dia(D)). 

Theorems 5.1 4 and 7.7 yield 

7.8. Corollary. Let D C Rn be a bounded domain, and let p > n. Then 
D is a (C1 ,p)-QED domain if and only if it is a (Cz,p)-SC domain. Here the 
constants C1 and C2 depend only on p, n, dia(D), and on each other. 

By Theorem 2.4 a bounded WJ -extension domain is a p-QED domain. When 
p > n we obtain an upper bound for the p-QED constant in terms of p, n, dia(D), 
and the norm of the extension operator. 

'7 Q f'.n.,...,.,.11 ,a ,....,r .1 7...,,....."nrl'°rl TiJTl c.....,..+r. ... --.r-:..-.'YI rl,.......,...,...";..,.. ,.,,, , ....... ;'"' ...., fr-, ,.,...\ np,n 
, ♦V'♦ ....__;'--'.1.'--'..l..l.'-4.A..J • ..(.l,. JJ.._,,UJ.J.1.AV1...l rr p -v.t\.t>VJ.J..:>.lVJ..l UV.LJ.J.U.LJ..1' }'_,,......ft,' .1,::1 a, \_V,J:'J-\ci(.L..!.L/ 

domain, where C depends only on p, n, dia( D), and the norm of the extension 
operator. 

Proof. The claim follows from Theorems 5.7 and 7.7. 

7.10. Remarks. 
(i) /1

• look at the proofs of Theorems 3.1, 4.1, 5.8, and 5.15 shows that these
results hold for weak p-QED domains and for domains satisfying the lo­
cal weak p-SC condition of Theorem 7.3.(ii). Hence an L1-imbedding 
domain is quasiconvex and a W; -imbedding domain is loeally quasicon­
vex. Moreover, both classes satisfy a uniform measure density condition 
as in Theorem 6.5. 

(ii) By [LL], or by combining [GMl] with [BI, 1.7], each Lip0-extension do­
main, 0 < a < 1 ,  is an L1-imbedding domain with p = n/(1 - a);
see [GMl], [L], and [LL] for the definition and basic properties of Lip

0
-

extern1ion dom11.in:c::. Thus Lipa-extension domains are examples of weak
p-QED domains for p = n/( 1- a).

(iii) Suppose that there exist constants C, k and m such that for any pair
x, y E D of distinct points
( 1) there are points x = x1, ... , xe = y in D, /!, :S k, with lx;+ 1 - Xi I :S
m Ix - y I for i = 1, ... , /!, - 1 and
( 2) weak (C,p)-QED subdomains D1 , ... , De-1 of D with x;, x;+1 ED;
for i = 1, .. . , /!, - 1 .
Then it follows easily that D is a weak p-QED domain.

B. vV; -approximation domains

Since Co"(Rn ) is dense in W; (Rn), it follows that W; -extension domains 
are WJ-approximation domains. Thus, in particular, a (b, 8)-domain is a W;-
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approximation domain. We introduce a class of domains with the WJ -approxima­
tion property which strictly contains the class of (b, 8)-domains. We also show 
that under a weak additional hypotheses, a WJ-approximation domain is locally 
connected on the boundary. 

8.1. Definition. A compact set J( C oD is of p-capacity zero relative to 
D if for some closed ball B C D 

cap
p

(B, K, D) = 0. 

Further, a closed set F C oD is of p-capacity zero relative to D if each compact 
subset of F is of p-capacity zero relative to D.

The following lemma was proved in [HM, 2.6] in the case p = n via a method
different from ours. 

8.2. Lemma. If D is bounded and if J( C oD is a compact set of p-capacity
zero relative to D, then 

cap
p

(F,I(, D) = 0 

for each compact set F C D \ J( .  

Proof. We first show that there is a sequence { u;}1 of functions in L(B, J(, D)
with llu;l/w,}(D) - 0 as i - oo, where BCD is a ball as in Definition 8.1. 

Since cap
p
(B,K,D) = 0 and mn(D) < oo, there is a sequence {vj}1 of

functions in L(B,J(, D) with llvillw,}(D) :S mn(D)1 IP + l and llv'villLP(D) - 0 
as i - oo. Because WJ ( D) is weakly compact, there is a subsequence of { v j} 1, 
which we still denote by { Vj }1, that converges weakly to some u E WJ(D). It 
follows that v' u - 0. Since v j - ·u weakly in WJ ( D), there is a sequence { u;} 1 
of convex combinations of vj's such that u; - u in WJ(D); see [Ru, 3.13]. As 
Vu = 0, u is a constant, and since u; = 0 on B for each i, we conclude that 
u = 0. Now u; E L(B,K,D) and llu;llw1(D) - 0 as i - oo.

p 

Now let F C D \ J( be a compact set. Take <p E C00(Rn) such that <p = l 
on Ug and <p = 0 on U F, where Ug is a neighborhood of J( and U F is a 
neighborhood of F ,  respectively. Define 

v;(x) = { <p(x)u;(x), x EDU J(
o, x E FnoD.

Then v; E L(F, K, D), and hence 

cap
p

(F,J(, D) '.S l lv'v;IP elm

'.S m�(l<p(x)IP + IV<p(x)IP)2P { (lv'u;IP 
+ lu;IP)clm. 

xED }D 
The claim follows by letting i - oo. 

From Holder's inequality we obtain 
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8.3. Lemma. Let DC Rn satisfy mn (D) < oo. Suppose that Ko, K1 CD 
are disjoint, compact sets. Then for any 1 < q S p < oo 

8.4. Lemma. If F C 8D is of p-capa.city zero relative to D, then for any 
1 < q S p and any two compact sets I( C F and E C D \ I( 

ca,p
q
(E,1(, D) = 0. 

In particular, F is of q-capacity zero relative to D. 

Proof. Fix two compact sets I( C F and E C D \I(. It suffices to show that 
cap

q
(E,K,D) = 0 .  Take a closed ball B c D with cap

p
(B,K,D) = 0, and pick a 

bounded subdomain D1 c D coniaining both B and ur-1D for some neighborhood 
U of K. Set d= d(J(,EU(D\D')), and define E' = {x E D':d(x,J() � 
d}. Observe that cap

p
(B,I<,D') < cap

p
(B,K,D) = 0 and cap

q
(E,J(,D) <

cap
q
(E',J(,D) = cap

q
(E',K,D'). Now cap

p
(E',K,D') = 0, by Lemma 8.2, and 

hence, by Lemma 8.3, 

cap
q
(E, K, D) S cap

q
(E' ,](, D') 

S mn (D')<p-q)/P[cap
p

(E',K,D')FIP = 0 

as desired. 

8.5. Definition. We say that a domain D is p-weakly (b, 15) if there is a 
closed set F C 8D of p-capacity zero relative to D with the following property. 
For any choice ofneighborhoods U; of F; = FnB

n

(i)\Bn (i-l), i = 1, 2, ... , there 
are constants b' ,  15' and neighborhoods v; of F; such that v; C U;, i = l, 2, ... , 
and DU (U1V;) is a (b', 15')-domain. 

Clearly, a (h, h)-clomain is p-weakly (h, h) for all l < p < oo. Note also 
that by Lemma 8.4 a domain which is p-weakly (b, 15) is q-weakly (b, 15) for all 
1 < q < p. 

8.6. Theorem. If D is p-weakly (b, 15), then D is a WJ-approximation 
domain. 

Proof. Let u E lVJ ( D) and let c: > 0. It suffices to show that there is a 
'Ip E WJ (Rn ) with II U - 'Ip II WJ (D) < c • 

We may assume that O S u S Jvf almost everywhere in D for some M < oo. 
Let F C 8D be as in Definition 8.5. For each positive integer i, let V; be a 
neighborhood of F; = F n (Bn (i) \ Bn (i - 1)) such that 

c 
1111.lliv;nl",nD) < 2,+2 
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and V; n Vj = 0 for j > i + 1. Since F is of p-capacity zero relative to D, Lemma 
8.4 implies that there exist functions 'Pi E L1(D) such that O S 'Pi S 1 ,  'Pi = 0
on V;' n D for some neighborhood V;' C V; of Fi , 'Pi = 1 on D \ V; , and

Set <.po = 0 on D. Define 

) { u(x)
v(x = ( U<f'i-1 <f'i <f'i+l )( X) 

Then v E WJ(D) and 

(X) 

for x E D \ U� 1 V; and
for x E v; n D. 

llv - ullw,;(D) SL llv - ullw,;(V;nD)i=l 
(X) (X) 

S L llvllw,;(VinD) + L llullw,;(V;nD)i=l i=l 
(X) 

SL (llullLP(V;nD) + llv'ullLP(V;nD) + 3M llv'<f'illLP(V;nD)) + 1 
i=l 

Since D is p-weakly ( b, li), Lhere are ueighLorlwo<li:; Ui of Fi, i = 1, 2 ,  ... , 
such that U i C V;' and DU(U1 Ui) is a (b', c'i')-domain. By extending v as zero to
U1Ui \D, we have v E WJ (DU(U1Ui)). Thus there is an extension '1/y E WJ(IRn)
of v, and the claim follows.

8. 7. Corollary. If D is p-weakly (b, li), then D is a WJ-approximation
domain for all 1 < q S p. 

8.8. Corollary. Let D be bounded, and let I( C 8D be of p-capacity zero 
relative to D. If D U  V is uniform for arbitrarily small neighborhoods V of I(,
then D is a W,J -approximation domain for all 1 < q S p. 

8.9. Remark. J. L. Lewis has recently shown [Lw, Theorem 1] that a planar
Jordan domain is a WJ -approximation domain for all 1 < p < oo.

For a 2:: 1 we denote the standard n-dimensional spire of order a ( defined 
by I:�=Z x; < Xi°' , X1 > 0, and I:�1 x; < 1) by Q °' . Define Q-;; by replacing
the requirement x 1 > 0 with x1 < 0. 

Finally, let Da = Q°' U Q-;; U (Bn(l) \ B
n

(l/2)) and D = Q U Q- U (Bn(l) \
B

n
(l/2)), where Q is an exponential spire.
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8.10. Example. Let D and Do: be as above. Then D is a WJ-approximation
domain for all 1 < p < CX) and Do: is a WJ-approximation domain for all 1 < p S
(n - 1) a +  l.

Indeed, D is p-weakly (b, 8) for all 1 < p < CX) and Do: is p-weakly (b, 8)
for all 1 < p S ( n -l) a + 1 as can easily be seen by taking I< = { 0} . Hence 
Corollary 8.7 impiies the desired approximation property. 

8. 11. Definition. A domain D is called a John domain of order a, 1 S a,
if Lhere is a constant L and a point x0 E D, called the John center of D, such 
that for any x E D there exists an L-bilipschitz mapping ,Px of the standard 
spire Q o: of order a into D with x E ,Px (Q o: ) and Xo = <px ((O, ... , 0, 1/2)). Here 
f: G -+ D is called L-bilipschitz if 

Ix - YI/LS lf(x) -f(y)I SL Ix -yl 

for all x , y E G. 

8.12. Remark. It follows from [M2, 2.2] that D is a Jol111 Juwaiu if and only 
if it is a John domain of order 1. 

We show that if D is a John domain of order a and a Wf-approximation 
domain with p > ( n - l) a+ 1, then D is locally connected on the boundary. Note
that as Example 8.10 shows D may fail to be locally connected on the boundary 
when 1 < p S ( n - l) a + 1. 

8.13. Theorem. Let D C Rn be a John domain of order a. If C(D) n
W; ( D) is dense in W; ( D) for some p > ( n -l) a+ 1 , then D is locally connected 
on the boundary. 

Proof. Suppose that D fails to be locally connected at a boundary point z

of D. Note that Definition 8.11 implies that D is finitely locally connected at z.

Now a simple limiting argument shows that there is a neighborhood U of z,

distinct components V0 and Vi of U n 1J and L-bilipschitz mappings <po and <pi 
such that x0, z E rp;(Q o: ) and ip;(Q o: )nU C v;, i = 0, 1. Let d = (l/2)d(z,8U), 
and define 

, ) ( max {O,min {1,2 d-1�-zl}} for x E Vi,u(x = < 
0 l elsewhere in D; 

then u E Wj(D). 

Let { "Pi }r' be a sequence of functions in WJ (D) n C(D) converging to u in 
Wj(D). We may assume that for each j there are points Xj, Yi 

E Bn(z, 1/j) n
cp;(Qo:), i = 0 or i = 1, with l"Pi (Yi ) -1Pi (x})I 2: 1/3. It follows from Holder 
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continuity estimates [A, 5.4, 5.37] that 

� < C(�)l-(((n-l)o+l)/p) 11•'•·11 1
3 - j 

'f'J W
P

(,p,(Q"')) 

< C(�)l-(((n-l)o+l)/p) 11•'•·11 
_ . 'f'J WJ(D), 

] 
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where C is independent of 1Pi· Hence ll1Pillw1(D)------, oo as j------, oo, which contra­
P 

diets our choice of the sequence { 'lpj }1. The claim follows. 

8.14. Corollary. Let D C Rn be a John domain of order et. If D is a W;­
approximation domain for some p > ( n - l) et + 1 , then D is locally connected on 
the boundary. 

9. Applications connected with quasiconformal mappings

Our first application considers the boundary behavior of quasiconformal map­
pings and the second deals with the uniform Holder continuity of quasiconformal 
mappings. 

Denote the one-point compactification of Rn by R
n

. We say that a domain 
D C Rn is locally connected on the boundary if D n Rn is locally connected both 
on the boundary and at the infinity. Further, we say that D is a p-QED domain 
if D n Rn is a p-QED domain. 

It is known [MV, 6.17] that a quasiconformal mapping of a domain D C 
ft which is locally connected on the boundary onto an n-QED domain has a
continuous extension to D. The following theorem extends this result. 

9.1. Theorem. Let D C R
n 

be locally connected on the boundary. If 
D' C Rn 

is a p-QED domain for some n - l < p::; n, mn(D') < oo, and if f is a 
quasiconformal mapping of D onto D', then f has a continuous extension to D. 

Proof. Let z be a finite boundary point of D. Suppose that there are se­
quences {x;}r' {y;}F of points in D converging to z with 

v = _lim J(xi)-/- _lim f(Yi) = w. 
Z-+(X) Z-+(X) 

Since D is locally connected at z, we can find continua I{;, i = l, 2, ... , 
joining x; to Yi in D such that dia(K;)------, 0 as i------, oo. Then for i large enough 

Since f is a quasiconformal mapping, this implies that 

capn (j(I{;), f(Ki), D') ------, 0 asz------,oo. 
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Now, since v i- w, for some 8 > 0 and some io 2 1, dia(f(Ki)) 2 8 whenever 
i 2 i0. Further, either v i- oo or w i- oo. Say v i- oo. We may assume that 
Iv - f(xi)I S Iv - f(x1 )I for each i � io. For i 2 io we have 

min { dia(J( K;) ), dia(J( 1(1 ))} 2 min { 8, dia(J( K1)} 

and 
d(f(K;), J(Ki)) S lf(x;) - vl + Iv - f(xi)I S 2 Iv - f(x1)I; 

hence by Lemma 1.9.(i) 

where C = C(p, n, 8, dia(J(Ki )), Iv - f(x1 )I). Since D is a p-QED domain and 
cap

n (f(K;),f(K1 ),D')---+ 0 as i---+ oo, Lemma 8.3 yields a contradiction. Thus 
f has a limit at z. 

If z = oo is a boundary point of D, we may assume that K; C Rn \ B 
n 

( x1, i) , 
where K;, i = 1, 2, . . .  , is a continuum as above. Thus 

Hence we may apply the reasoning above to show that f has a limit at z. 
Therefore f has a limit at each boundary point of D, and the proof is com­

plete. 

9.2. Remark. The Riemann mapping theorem, [Nl, 1.2], and Theorem 9.1 
yield another prooffor part ofRemarks 3.7.(i)for domains DC R2 with m7,(D) < 

00. 

9.3. Theorem. Let D be a bounded domain, and let f be a I{ -quasiconformal 
mapping of D onto Bn(l). If D is eitber n-QED or weakly p-QED for some 
p > n, tben f is uniformly Holder continuous in D witb exponent (2 K)1/(l-n).

Proof. By Theorem 3.1 and Remarks 7.9.(i) D is quasiconvex. Hence the 
Holder continuity follows from [NP, Theorem 7]. 

9.4. Remark. Let f: D ---+ B2(1) be a Riemann mapping function for the 
domain in Example 2.5. It follows from Theorem 9.1 that f cannot be uniformly 
Holder continuous in D. Hence the assumption p 2 n in Theorem 9.3 is necessary. 
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