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Abstract

This thesis studies the Hausdorff dimension of variants of Kakeya sets in R™. It consists
of an introduction and three papers.

In paper [A], we define Kakeya sets in the n-th Heisenberg group and show the sharp
lower bound is 3 for the Heisenberg Hausdorff dimension of Kakeya sets in the first Heisen-
berg group.

In papers [B] and [C], we define circular (s, t)-Furstenberg sets F' in R%. We prove that
the Hausdorff dimension dimgy(F) > % +sif0<s<1land 0 <t <3 and dimg(F) >
(2s—1t+sif1/2 <s<1and 0 <t < 1in [B]. Moreover, we show the sharp lower bound
dimp(F) >s+tif 0 <t <s<1in [C].



Tiivistelma

Tamaéa vaitoskirja tarkastelee Kakeya-joukkojen muunnelmien Hausdorff-dimensiota.
Viitoskirja koostuu johdannosta ja kolmesta paperista.

Paperissa [A] maarittelemme Kakeya-joukot m:nnessd Heisenbergin ryhméssd ja
naytdmme ensimmaisen Heisenberg-ryhméan Kakeya-joukkojen Heisenberg-Hausdorft-
dimension tarkan alarajan olevan 3.

Papereissa [B] ja [C] méarittelemme ympyriiset (s, t)-Furstenberg-joukot F C R2
Paperissa [B] osoitamme, ettéd Hausdorffin dimensio dimg(F) > £+ s, jos 0 < s < 1 ja
0 <t<3jadimp(F) > (2s—1)t+s,jos 1/2 < s < 1ja0 <t < 1. Paperissa [C]
nidytamme tarkan alarajan dimyg(F) > s+, jos 0 <t < s < 1.

vi



INTRODUCTION

Estimating the dimension of various fractal sets is one of the major topics in geometric
measure theory. This thesis focuses on studying the dimension of fractal sets of certain
types, which originate from Kakeya sets. To be precise, the first part of the thesis con-
centrates on Kakeya sets in the first Heisenberg group. The second part is devoted to the
study of circular Furstenberg sets.

1. KAKEYA SET AND ITS GENERALIZATIONS
We begin with the definition of Kakeya sets in R™.

Definition 1.1 (Kakeya Set). A set E C R" is a Kakeya set if for every e € S"! there
exists a unit line segment I, parallel to e such that I, C E.

Kakeya sets are also known as Besicovitch sets. Directly from the definition, we know
that the unit ball B(0,1) C R™ is a Kakeya set which reaches the full dimension n. So it
is natural to investigate the dimension lower bound for Kakeya sets. Here the dimension
we consider is Hausdorff dimension.

Definition 1.2 (Hausdorff dimension). Let X be a metric space. For a € [0,00) and
E C X, define the a-Hausdorff measure of E by

HYE) = lim H§(F)
6—0
where

H(E) = inf {Z( diam U;)* : | JU; D E, diamU; < 5}
=1 j
where the infimum is taken over all countable covers U = {U;} of E.

The Hausdorff dimension of E is

dimyg(E) := sup{a : HY(E) = oo} = inf{a : H*(E) = 0}.
The following conjecture is known as the Kakeya conjecture.
Conjecture 1.3. Fvery Kakeya set in R™ has Hausdorff dimension n.

Among those who were devoted to resolving this conjecture, the first successful attempt
was by Davies [4] in 1971. He confirmed this conjecture for the case n = 2. For n > 3, the
conjecture is still open and many mathematicians have made partial progress: Bourgain
used two different methods to provide lower bounds [1, 2], which were further improved
by Wolff [31] and Katz-Tao [14] respectively. Recently, Katz-Zahl [18] and Guth-Zahl [9]
enhanced the results of [31] in R® and R* respectively, which show that the best known
lower bound is 5/2 + ¢y in R3 with €y an absolute constant and 3 +1/40 in R%. In R" with

n = 5, the best known lower bound is given by a combination of the results obtained in [16]
7



8 INTRODUCTION

by Katz-Tao and in [13] by Hickman-Rogers-Zhang. In addition, Wang-Zahl in [30] verified
Conjecture 1.3 for the special class of sticky Kakeya sets in R®. For another special class
of SLy Kakeya sets in R3, Féssler-Orponen [6] and Katz-Wu-Zahl [17] verified Conjecture
1.3 using two different approaches.

Since this thesis does not aim to study Kakeya sets in R", we will move on to its
generalizations. And for a comprehensive study of Kakeya sets and its role in geometric
measure theory, we refer to two books [21, 22] by Mattila and references therein.

1.1. Linear Furstenberg Sets. From the definition of Kakeya sets, one can also extend
this notion to similar types of sets. First, one can generalize this notion to a broader class
of sets that contain Kakeya Sets as a special class. We name these sets linear Furstenberg
sets in this thesis. We first need the following concept.

Definition 1.4 (A(n, k) and G(n, k)). The space of all affine k-dimensional hyperplanes
in R™ is denoted A(n, k). The space of k-dimensional subspaces of R™ is denoted G(n, k).
Every plane W € A(n, k) can be expressed uniquely as W = a + V', where V' € G(n, k),
and a = a(W) € V4. This observation allows us to metrize A(n, k) by setting

AW, W') = [lmy = 7y |lop + |a — a,
where W =V 4+a, W =V'+d/, and || - ||op refers to the operator norm.

Definition 1.5 (Linear Furstenberg sets). Let 1 < k < n, 0 < s < kand 0 < ¢t <
dimA(n, k). A set FF C R" is called a linear (s,t,k)-Furstenberg set if there exists a
parameter set K C A(n, k) with
dimg K >t
such that for every W € K,
dimg(FNW) > s.

From Definition 1.5, we see that Kakeya sets in R™ are special linear (1,n — 1,1)-
Furstenberg sets with the parameter set K satisfying dim K = dim §(n,1) =n — 1.

Since most studies of linear Furstenberg sets are concentrated on linear (s, t, 1)-Furstenberg
sets in R? in the literature, we write linear (s,t)-Furstenberg sets for simplicity if k = 1
and n = 2.

In 1999, Wolff [33] initiated the study and showed that linear (s,1)-Furstenberg sets
with parameter set K containing lines in every direction have Hausdorff dimension at least

1
max{§ + 5,25} forall 0 < s < 1. (1.1)

After Wolff, general linear (s,t)-Furstenberg sets have been constantly studied. Noting
that n = 2,k = 1 implies that dim A(2, 1) = 2, this shows all possible values of s and ¢ are
s € (0,1] and t € (0,2]. It is conjectured that the sharp lower bounds for the Hausdorff
dimension of linear (s,t)-Furstenberg sets is

3s+t

' t
min{s + ¢, 5

;s + 1} (1.2)
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If 0 < s <t <1, the sharp lower bound is s + t, which was shown by Héra-Shmerkin-
Yavicoli [12] and Lutz-Stull [20] using two very different proofs. Besides, if s +¢ > 2, the
sharp lower bound is s+ 1, which was obtained by Fu-Ren [8]. For other values of s and ¢,
the sharp lower bound is 2 is verified by Ren-Wang [25]. We also refer to [3, 8, 10, 24, 27]
and references therein for partial progress.

In terms of linear (s, t, k)-Furstenberg sets in R", we refer to [3, 10, 11] and references
therein.

1.2. Circular Furstenberg Sets. In this subsection, we restrict ourselves to R2. For the
second variant of Kakeya sets, we substitute “lines” by “circles” in the definition.

Definition 1.6 (Circular Kakeya Sets). A set F C R? is called a circular Kakeya set if it
contains circles of every radius.

Wolff in [32] showed that circular Kakeya sets in R? have full dimension 2 employing
techniques from harmonic analysis.

After paper [32], more general families of circles have been studied. Noting that a circle
S(x,7) in R? is uniquely determined by its center z € R? and its radius r € R, = (0, +-00),
we can identify a circle in R? by a point (z,r) € R} := R? x R;. This is a one-to-one
correspondence. In the following, we say 8 = {S(x,r)} is a t-dimensional family of circles
in R? if {(z,7)}s(z,nes forms a t-dimensional set in R?.

In [34], Wolff proved that a subset in R? consisting of circles with 1-dimensional family
of radii has Hausdorff dimension at least 2. Also, in [19], motivated by a paper [26] of
Schlag, Kaenmaéki-Orponen-Venieri were able to show that the sharp lower bound 1+t in
[32] holds true for any analytic ¢-dimensional family of circles.

Continuing the study in [19], in papers [B] and [C], we extend the above study to more
general circular Furstenberg sets and study their dimension.

Definition 1.7 (Circular Furstenberg sets). Let 0 < s < 1 and 0 <t < 3. A set F' C R?
is called a circular (s,)-Furstenberg set if there exists a parameter set K C R% with

such that for every (z,r) € K,
dimg(FNS(x,r)) > s.

In papers [B] and [C], we proved the following dimension lower bounds for circular
Furstenberg sets.

Theorem 1.8 (Main result of [B]). For any 0 < s < 1 and 0 < t < 3, the Hausdorff
dimension of a circular (s,t)-Furstenberg set F' in R* is at least £ + s.

Theorem 1.9 (Main result of [B]). For any 1/2 < s < 1 and 0 < t < 1, the Hausdorff
dimension of a circular (s,t)-Furstenberg set F in R? is at least (25 — 1)t + s.

Theorem 1.10 (Main result of [C]). For 0 < t < s < 1, the Hausdorff dimension of a
circular (s,t)-Furstenberg set F in R? is at least s + t.
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We remark that in paper [B], the range of ¢ in Theorem 1.8 is stated for ¢t € (0,1].
However, the proof works for all ¢ € (0, 3].

Recently, after paper [C], Zahl [35] extends Theorem 1.10 to more general Furstenberg
set of curves.

1.3. Kakeya Sets in Heisenberg Groups. For the third generalization of Kakeya sets,
we change the ambient space in Definition 1.1 from Euclidean spaces to Heisenberg groups.
We denote by H" the n-th Heisenberg group. When n = 1, we write H instead of H!' for
simplicity.

Definition 1.11 (Heisenberg Kakeya Sets). A set £ C H" is a Heisenberg Kakeya set if
for every unit line segment I C R** x {0} centred at the origin, there exists ¢ € H" such
that ¢/ C F.

For an introduction to Heisenberg groups, we refer the readers to Section 2. Compared
with the study in the Euclidean case, the study of Heisenberg Kakeya sets has relatively
limited results in the literature. Indeed, in [28], Venieri studied the Heisenberg Hausdorff
dimension dimj; E of Euclidean Kakeya sets E in H* = R***! and showed that dim}; E >
2”2—+5 if n <3 and dimE E > 8”—#4 if n > 4. In [29], Venieri further studied Kakeya sets for
general metric spaces in an axiomatic sense.

In paper [A], we proved the sharp lower bound for Heisenberg Kakeya sets in the first
Heisenberg group.

Theorem 1.12 (Main result of [A]). In the first Heisenberg group H equipped with the
Koranyi metric, every Heisenberg Kakeya set has Heisenberg Hausdorff dimension at least
3 and this lower bound is sharp.

The sharpness of the bound in Theorem 1.12 can be easily seen, since the {xoy}-plane
in H, which has Heisenberg Hausdorff dimension 3, is a Heisenberg Kakeya set.

After paper [A], Féssler-Pinamonti-Wald reproved Theorem 1.12 as a corollary of their
Heisenberg Kakeya maximal function inequality established in [7]. For 0 < ¢t < 3 and a
general set E consisting of a t-dimensional family of horizontal lines in H, Fassler-Orponen
showed that the Euclidean Hausdorff dimension of E is min{¢ + 1,3} in [6].

Below in Section 2, we review the contents of paper [A] and in Section 3, we review the
contents of papers [B] and [C].

Notation. The notation |A| refers to the cardinality of set A C R? if A is a finite set and
refers to the d-dim Lebesgue measure of A C R? if A is an infinite set. For r € 27N =
{27% . k € N}, the notation |E|, refers to the r-covering number of E.

The notation A < B means that there exists an absolute constant C' > 1 such that A <
CB. Since this introduction aims to provide heuristical ideas of the proof, for ¢ € (0, 1],
we will abuse the notation A < B to also denote

azc-(1+10g (1)) B
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And below (3.12), when the auxiliary constant e is chosen, we keep using A < B to denote
A < §79B for some absolute constant C' > 1. The two-sided inequality A < B < A is
abbreviated to A ~ B. If the constant C' is allowed to depend on a parameter “0”, we
indicate this by writing A <y B.

2. DIMENSION OF KAKEYA SETS IN HEISENBERG GROUPS

In this section, we review the contents of paper [A]. We aim to explain the idea of
showing Theorem 1.12. We begin with the introduction of the first Heisenberg group H.

The first Heisenberg group H is R? equipped with the group multiplication, for any
w = (x,y,t) and w' = (2,7, '), as follows

1
w-w = (x+x’,y+y’,t+t’+§[xy’—x'y]). (2.1)

We introduce the Koranyi metric on the first Heisenberg group. This is the left invariant
metric given by
d(w,w') = [|(w) ™ wle (2.2)

where || - || is defined as
(2,9, 1)l = ((@® +y*)? + 16%) V%,

Since we will need the Hausdorff measure and dimension induced by both the Euclidean
metric and dy, we denote by Hy; (resp. H3) the s-dimensional Hausdorff measure induced
by the Kordnyi metric (resp. Euclidean metric) and by dimj; (resp. dimy;) the Hausdorff
dimension of sets induced by Kordnyi metric (resp. Euclidean metric).

We define horizontal lines in the first Heisenberg group H as lines which can be obtained
by a left translation of some line passing through the origin and lying in the {xoy}-plane,
the 2-dimensional subspace spanned by the first two coordinates.

By the definition of horizontal lines, we know that for any b € R and ¢q € H, ¢I, and ¢q.J,
are a horizontal line and a horizontal line segment respectively where

I(r) = (7,b7,0), TER (2.3)

and
1 1

, : 2.4
2v/b2 + 1 2\/b2+1) (2.4)
Th; domain (—ﬁ, QJW) of 7 in (2.4) guarantees that Jj, has unit length with respect
to H-

In fact, (2.3) characterizes all the horizontal lines passing through the origin except the
y-axis. Thus, L(H) := {¢ly}serqen is the family of all the horizontal lines that are not
parallel to the {yot}-plane since the Heisenberg multiplication restricted to the first two
coordinates coincides with the addition in R?. Furthermore, the horizontal lines in L(H)
have the following parametrization,

L(H) = {{(apa) == (5,b5 +a, —§ +d), seR:a,bdeR}. (2.5)

Jy(1) = (1,07,0), T € (—
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Similarly, all the horizontal line segments {q.J, }per qem have following parametrization,

as 1
Fovay =3 (s,bs+a,——+d)eH:s e (e,e+ )
(a,b,d) {( 9 ) ( \/m)}

A merit of the above parametrization is that, for a Kakeya set £ C H, we know for each
Jy, b € R, there exists a copy of J, under left translation that is contained in F. This
implies that for each b € R, there exists a = a(b), d = d(b), € = €(b) such that [, , , C E.

The above observation motivates us to define the following set

L(E) == {(a,b,d,e) R x (—V3,V3) x Rx R :1{,,, C E}. (2.6)

The reason why we restrict b € (—\/5, \/§) is that the range (—\/3, \/5) guarantees the Eu-
clidean orthogonal projection of lfa@ o) to @-axis has length larger than 1/2. This property,
combined with some fundamental measure theory, enables us to further find an interval
[co,co + 1/4] and a Borel set B C R? with dimj(B) > 1 such that

BX{C}CL(E), CcEc [Co,Co+1/4]

and
lapay N {z =} #0, (a,b,d) € B, ¢ € [co,co+ 1/4].
We have found a 1-dimensional family of parallel planes {# = c}cefcy,co+1/4) Such that
Ee =1, N{z =c} #0. Inparticular, E. C EN{z = ¢} C E. Thus, if we can show,
for almost every ¢ € [cg, co + 1/4],

dimp(E.) = 2, (2.7)

then, noting that the map f : (H,dy) — R, (z,y,t) — (x,0,0) is 1-Lipschitz and letting
F=En{(z,y,t) e H| x € [co,co + 1/4]}, for any 0 < a < 2, using a co-area inequality
from [5], that is,

*

I (F) > / 363 (F N () dy = oo, (2.8)

[Co,co+l/4]
we derive
dimp(E) = 3. (2.9)
This concludes the proof.
Here we remark that in (2.8), [; gdy is the upper integral of g : R — [0, +00). That is

/ "9y dy = inf [

where the infimum is taken over all measurable functions h : R — [0,400) satisfying
0 < g(y) < h(y) for a.e. y € R,

Indeed, (2.7) is established with the help of the following Marstrand-type projection
theorem in R* by Kéenméki-Orponen-Venieri in [19, Theorem 1.2].



INTRODUCTION 13

Theorem 2.1. Suppose that y : [0,27) — S2,0 — () = \/Li(cos 0,sinf,1). If K C R?

is a Borel set, then dimpy Py (K) = min{dim{; K, 1} for almost every 6 € [0,27) where
for any x € S?, p, : R — Span(z) denotes the Euclidean orthogonal projection to the line
passing through the origin and x.

We explain how to obtain (2.7) from Theorem 2.1. The idea is that using Heisenberg
left translation to translate E. to {yot}-plane for each ¢ € [cg, co + 1/4], we get a new set
E! satisfying

dimfj(E}) = dimfj(E,) ¢ € [co,co + 1/4]. (2.10)

Then we find that the third coordinate of E! (i.e. the Euclidean orthogonal projection of E}
to t-axis) is precisely the Euclidean projection of B to Span(—c, —%, 1), ie. Pl e 1)(B),
k) 2 b

which implies
dimpj(E}) > dimH(p(iciﬁ y(B)) € leo,co+1/4]. (2.11)
T 9

Now B)}ecieo.cor1/41 18 a family of orthogonal projections of B to the one pa-
Pe - [co,co+1/4]

2 1)
=5
rameter family of lines {Span(—c, —%, 1)}eeleo,co+1/4) in R, Using some basic geometry,
one can find that this one parameter family of lines happens to be the one in Theorem 2.1.
Applying this theorem, we arrive at

. 1.
1 = dimg(p(_1,c.2)(B)) = 3 d1mHHﬂ(p(_c’_§,1)(B)) a.e. ¢ € [co, co+ 1/4] (2.12)

where in the second equality we use the property that the Heisenberg Hausdorff dimension
for any subset in t-axis is twice as its Euclidean Hausdorff dimension.

Combining (2.10), (2.11) and (2.12), we arrive at (2.7). This completes the sketch of the
main ideas in the proof of Theorem 1.12.

3. DIMENSION OF CIRCULAR FURSTENBERG SETS

In this section, we review the contents in papers [B] and [C]. We aim to sketch the proofs
of Theorem 1.8, Theorem 1.9 and Theorem 1.10.

One common point of the above three theorems is that these theorems are all proved
using a d-discretized version of circular Furstenberg sets for arbitrary small § > 0. However,
in Theorem 1.8 and Theorem 1.9, the J-discretized version of circular Furstenberg sets we
used is defined using the so called Katz-Tao (4, s)-sets introduced by Katz-Tao in [15] while
in Theorem 1.10, we use another type of (4, s)-sets introduced by Orponen-Shmerkin in
[23]. We give the definitions.

Definition 3.1 (Katz-Tao (9,s,C)-set). Let s > 0, C > 0, and 6 > 0. A bounded
d-separated set A C R™ is called a Katz-Tao (9, s, C')-set if for all r € [9, 1] and x € R™,

|AN Bz, )| < C (g)
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Definition 3.2 ((4,s,C)-set). Let s > 0, C' > 0, and § > 0. A bounded J-separated set
A C R" is called a (d, s, C)-set if for all r € [§,1] and z € R",

|AN B(z,7)| < CrlA|.

Here | - | denotes the cardinality of a set and we note that the constant C' in the above
two definitions can depend on ¢ and when C' is absolute we also write Katz-Tao (J, s)-set
or (0, s)-set instead.

Remark 3.3. Note that if a Katz-Tao (, s)-set A has cardinality |A| = C0~* for some
absolute constant C' > 0, then A is also a (9, s)-set and vice versa. Indeed, in the proof
of the three theorems, we finally need to assume a (J, s)-set A has cardinality |A| = C6~*
though in many middle steps we only need properties of A being Katz-Tao (0, s)-set or
(0, s)-set. Thus, in this introduction, we always assume both types of (4, s)-set A satisfy
|A| = C'6~* and there is no need to distinguish two concepts of (J, s)-set.

For p = (z,7) € R? x (0,00) (typically p € D where D is defined in (3.1)), we write
S(p) = S(z,r) for the circle centred at x and radius » > 0. The notation S°(p) refers to
the §-annulus around S(p), thus S°(p) = {w € R? : dist (w, S(p)) < §}.

Definition 3.4. Let s,t € (0,1], C > 0, and § € 278 := {27% : k € N}. A (§,s,t,C)-
configuration is a set Q@ C R® such that

Q= J @, E()).

peP
Here,
(i) P := mgs(Q) is a non-empty (0, ¢, C')-subset of
D :={(z,r) e R*x [0,00) : |z| < 1 and r € [}, 1]}, (3.1)
where mgs(x1, ..., x5) = (1, 2, T3);

(ii) E(p) :={v € R*: (p,v) € N} is a non-empty (4, s, C')-subset of S(p) for all p € P.
Additionally, we require that the sets E(p) have constant cardinality: there exists M > 1
such that |E(p)| = M for all p € P.

Remark 3.5. The reduction to only considering the parameter set P in the domain D in
(3.1) is standard (see, for example, Remark 2.1 in [B] for an explanation). This reduction
already appeared in [33] by Wolff.

The following theorem reveals why we can estimate the Hausdorff dimension of a circular
Furstenberg set by discretizing the set at a fixed scale 4.

Theorem 3.6. Let s € (0,1], t € (0,3] and a € (0,2]. If for every k > 0, there exist
e(k),00(k) € (0, 3] such that for all § € (0,8y] and all (6,s,t,6°)-configurations <

|[Fls = 677,

where

F:=J Ew),

peEP
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and we recall |F |5 refers to the d-covering number of F, then every circular (s, t)-Furstenberg
set F' has Hausdorff dimension at least c.

Note that in paper [C], the symbol |F|s refers to the number of dyadic d-cubes intersecting
F, which is comparable to the d-covering number of F. The choice of using dyadic d-cubes
instead of d-balls will make it easier to formulate several proofs in paper [C].

Thanks to Theorem 3.6, we will focus on providing a lower bound of |F|s associated with
an arbitrary configuration 2. Indeed, the proof of Theorem 3.6 is standard (see the proof
Theorem 1.2 in [C]) and this argument has already been employed to study the Hausdorff
dimension of linear Furstenberg sets, for example, in [12].

Specifically, in Theorem 1.8, we need to show |F|; > §~+/3) To this end, we adapt
the approach for showing the lower bound for the Hausdorff dimension of linear (s, 1)-
Furstenberg sets used by Wolff in [33] together with some geometric observations from
planar geometry. However, the proofs of |F|; > 6*~[2*+Ds=t in Theorem 1.9 and |F|s >
8"+ in Theorem 1.10 differ from the above method significantly but share some similar
ideas with each other. In fact, we will further transfer the proofs of these two theorems
to control the upper bound of a multiplicity function. This idea was first used by Schlag
[26]. In Theorem 1.9, we will directly apply a result involving upper bounds of multiplicity
functions for whole circles by Kédenméki-Orponen-Venieri in [19], which is further based on
the ideas of Schlag [26]. In Theorem 1.10, we deeply investigate the intersections and other
properties of circles and obtain a better upper bound for the multiplicity function, which
leads to the sharp lower bound for circular (s, t)-Furstenberg sets when 0 < ¢ < s < 1.

3.1. Outline of Theorem 1.8. Our goal is to show |F|; = 6~/3) where F = U,epE(p)
is induced by an arbitrary (9, s, t)-configuration €. This is slightly inaccurate compared
with Theorem 3.6 since we omit the parameters x and €. However, it is enough to illustrate
the ideas behind the proof. Let J be the family of d-balls covering F and |I| = |F|;. We
recall that Q being a (0, s, t)-configuration implies that |P| = |mgs(Q)| ~ 6~ and E(p) is
contained in the circle S(p) with |E(p)| ~ 6* for all p € P.

We begin by recalling the fact that three non-collinear points determine a unique circle in
R?. Inspired by this fact, we could deduce that three well-separated d-balls (B;, B;, By) € J
“determine a unique circle” S(p) with p € P. Here the meaning of “determine a unique
circle” is understood in the way that there are < 1 many p € P such that

or equivalently, those points p € P such that the circles S(p) enjoying (3.2) belong to a
Cé-ball Bos N P for an absolute constant C' > 1. Furthermore, this fact can be utilised to
identify the circle S(p) with the triple (B;, B;, By). Indeed, the above operations are stim-
ulated by Wolff’s argument [33] to show that the lower bound for the Hausdorff dimension
of linear (s, 1)-Furstenberg sets is 1/2 4+ s in (1.1) where 1/2 arises from the fact that two
points determine a unique line in the plane. For circular (s, 1)-Furstenberg sets, we merely
obtain the lower bound 1/3 + s due to the fact that three points determine a circle.

In the meantime, since |E(p)| ~ §=° for all p € P, we need, roughly speaking, ~ §~*
many d-balls in J to cover E(p). Hence we could use the triples (B;, Bj, By) € I x I x J
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to represent each E(p) where E(p) N B; # (0 for | = 4,j,k. Then each F(p) leads to
675675 =1)(67*—2) ~ §* many distinct triples (B;, B;, By) € Ix I x J on behalf of three
distinct §-balls in J and as a result we get a total number of |P| x 673 = §73*7! many

distinct triples. Consequently, since all these triples belong to J x J x J, we can infer that
9 2 673", which gives |F|s = || 2 §*7/% as desired.

3.2. Outline of Theorem 1.9 and Theorem 1.10. As mentioned above, the proofs of
these two theorems are based on some good control of the upper bound of the multiplicity
function associated with a configuration €.

Definition 3.7 (Total multiplicity function). Fix an arbitrary (4, s, t)-configuration €2. For
w € R?, define

ms(w | Q) :== [{(p,v) € Q:w € B(v,d)}. (3.3)

We briefly explain the meaning of (3.3). By the definition of €2, we know for each p € P,
E(p) is a (0, s)-set. In particular, E(p) C S(p) is d-separated. Thus for each p, there are
at most < 1 many v € F(p) such that w € B(v,d). This observation gives

{veEp) :we Bv,0)} <1 p € P.

As a result,

ma(w | Q) < S v € E(p) i w e B,6)} S [P S 67

peP

Hence mgs(w | 2) can be interpreted as, up to an absolute constant, the number of circles
S(p) with p € P such that the associated set E(p) C S(p) is  close to w.

Again, let J be the family of d-balls covering F and |J| = |F|s. In fact, since one needs
at least ~ d~° d-balls in J to cover E(p) for each p € P, if each é-ball in J only intersects
one E(p) for some p € P, then J consists of at least 6~ *| P| ~ 657" many d-balls. However,
this may not be the case. In general, if each 4-ball in J intersects no more than 6="
(0 < k < t) many sets from the family {E(p)},ep, then we can deduce that J consists of

at least 6;'5' ~ 6~ (=) many §-balls.
The above discussion reveals that a smaller x will lead to a larger cardinality of |J|, which
further gives a better lower bound for the Hausdorff dimension of the circular Furstenberg

sets. Indeed, if we can show

ms(w | Q) S67F w € R?, (3.4)

then letting w be the center in each d-ball of J, we deduce that each §-ball in J intersects
no more than §=* many sets from the family {E(p)},cp and the bound |J| > §=(+=r),
This is the idea of transferring the estimate to the multiplicity function. However, it is
not necessary for (3.4) to be true for all w € R% In reality, instead of (3.4), in the proof
of Theorem 1.9 and Theorem 1.10, we will show two weaker versions of (3.4), which could
guarantee the desired lower bound for |J|.
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3.2.1. Outline of Theorem 1.9. Recall from Theorem 3.6 that the desired bound for |J]| is
o@D — 515(_2:2) . This indicates that the correct choice of k is k = (2 —2s) > 0 where
we recall the range of s in this theorem is 1/2 < s < 1. And the weaker version of (3.4) in

this proof is the following: for each (4, s, t)-configuration €2, there is a (4, s, t)-configuration
G C Q such that |G| > |Q]/4 and for each v € R? with (p,v) € G, we have that

ms(v | Q) < ot = §H22)-nt (3.5)

holds for any 0 < n < 1. Moreover, writing G = U,cp{p} x E(p) where E(p) C E(p) for
each p € P := 7ps(G), we have

— 1 _ 1 _
P> S|P and |B(p)| > 5|E()|  peP. (36)

Let J be the subfamily of J which covers U, E(p). We have |J| < |J|. On the other hand,

(3.5) will imply |J] > % = 612+ D=4 Hence we obtain the desired lower bound for
|9].

We are left to show the existence of (9, s, t)-configuration G C € satisfying the above
conditions. Indeed, this is an application of [19, Lemma 5.1], which is a variant of Schlag’s
weak type inequality [26, Lemma 8] and the main lemma in [32] by Wolff. Since in this
introductory part we aim to avoid some technical parts of the proof, we will formulate [19,
Lemma 5.1] in a simplified and discretized version as below.

Lemma 3.8. Fizt € (0,1, 6 > 0,7 > 0, and P C D be a (0,t)-set. The for any
(0, 1,t)-configuration 2 with mgs(Q) = P and X\ € (0,1], there is a set P = P(n,6,\) C P
with
[P\ P(n,8,2)] < 6" |P|
such that the following holds for all p € P(n,d, \):
15°(p) N {w = ms(w | Q) = 67N < AIS°(p)]. (3.7)

Here we remark that Lemma 3.8 is also used to prove Theorem 2.1 in the previous
section. Hence it is ultimately involved in the proof of Theorem 1.12.

Lemma 3.8 states that if we choose n < 1, then for a (d,t)-set P C D representing a
family of circles in R2?, we could always find a subfamily P consisting almost all the circles
in P such that for all the circles S(p) in this subfamily, the points w in the §-neighbourhood
of S(p) (i.e. w € S°(p)) with the property that ms(w | Q) > § "\~ has X\ proportion in
S%(p) in the sense of 2-dimensional Lebesgue measure.

However, there is no direct information involving E(p). Since for a (4, s, t)-configuration
Q, E(p) is a (6, 5)-set for all p € P with E(p) ~ §~*, we know the d-neighbourhood E°(p)
of E(p) has measure |E°(p)| > ¢,6%7°. Moreover, since |S°(p)| < cod for all p € P, by
choosing A = ¢16'7%/(2¢y), (3.7) becomes

[5°(p) N {w s ms(w | Q) Z 6715} S AS°(p)] < Aeod < e1d?7°/2 < |E(p)] /2.
Here ¢y and ¢; are two absolute constants. This further gives
|1E°(p) N {w = ms(w | Q) 2 675 219} < |E°(p)]/2
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and hence

|E°(p) N {w s ms(w | Q) S 67150} > B (p)]/2.
Now, form a (4, s,t)-configuration G from Q by letting 7ps(G) = P = P(n,d,\) with
A= ¢10"%/(2¢o) and E(p) is a (8, 5)-set in E%(p) N {w : ms(w | Q) < 6 "6~ 20-9)} with
E(p) ~ §* for each p € P. We arrive at the desired configuration G' and conclude the
sketch of the proof of Theorem 1.9.

3.2.2. Outline of Theorem 1.10. In this theorem we need to show |J| ~ 6=+, Indeed,
similar to the reasoning in the proof of Theorem 1.9, the following weaker estimate will
be enough to conclude that [J| > §=¢+9): for any k > 0, 0 < § < do(x) and each (4, s, t)-
configuration €, there is a (0, s, t)-configuration G C € such that |G| 2, |€?] and for each
v € R? with (p,v) € G, we have

ms(v | G) S 7" (3.8)
Since we only study the range in 0 < ¢ < s < 1, it turns out that if we can show the
above statement for all (9, s, s)-configurations €2, then the above statement holds for all
(0, s,t)-configuration €2. Thus in the following, we only consider a (4, s, s)-configurations
Q2 and write (0, s)-configurations instead.

Note that we need to show (3.8) for any x > 0 arbitrarily small. This is much stronger
than the previous theorem where we choose k = £(2—2s) > 0 as a fixed number. Therefore,
we have to investigate more deeply the factors that influence the value of the multiplicity
function. Recall that the multiplicity function ms(w | G) counts the number of circles S(p)
such that the associated set E(p) C S(p) is ¢ close to w. This motivates us to study the
intersection of d-neighbourhoods of circles in the plane, which has already been done by
Wolff when studying circular Kakeya sets.

In fact, the shape of the intersection S%(p) N S°(q), p = (x,7),q = (2/,7') € D C
R? x (0, 00) is determined by the following two quantities.

Alp.q) = llz =2 =lr =] and [p—q|:=lz—2'|+[r =] (3.9)

Here A(p, q) is called the tangency parameter and |p — ¢| is called the distance parameter.
Intuitively, if A(p, ¢) = 0, then the circles S(p), S(q) are internally tangent, and if A(p, ¢) ~
1, the circles S(p), S(q) intersect transversally. We recall the following definition and lemma
by Wollff.

Definition 3.9 ((4,0)-rectangle). Given p € D and v € S(p), we call RS (p,v) a (6, 0)-
rectangle that is the intersection of the d-annulus S°(p) with the disc B(v, o) of radius o,
that is,
R} (p,v) = S°(p) N B(v,0).

For any C' > 0, we define

CRy(p,v) == Reo(p,v) = S (p) N B(v, Co).
We also write R(p,v) instead of RS (p,v) if we do not aim to emphasis the parameter § and
0.

In [33, Lemma 3.1], Wolff showed that
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Lemma 3.10. For p,q € D, S%(p) N S°(q) consists of at most two connected components
and 1S°(p) N S%(q)] < 82/\/(6+ Ap,q))(0+|p—gql). Moreover, S°(p) N S°(q) can be
covered by boundedly many (5,5/~/(0 + A(p, q)) (6 + [p — q|))-rectangles.

In the following, we will define the partial multiplicity functions m; . We first give some
motivations for defining them. Heuristically, given p € P, let P, := {qg € P : A(p,q) =
0 and |p — q| ~ 1}. Then by Lemma 3.10, for any ¢ € P}, we know |S%(p) N S%(q)| ~ 6*/2.
Thus if E(p) C S°(p) N S%(q) is a (6, 1)-set, then there exists < §7/2 many v € E(p) such
that ¢ € P, may make one contribution to the total multiplicity function ms(v | G), which
means that there exists some w € E(q) such that v € B(w, ) (recalling (3.3)).

However, if we consider the set P, := {qg € P : A(p,q) ~ 1 and |[p — ¢ ~ 1}, then
|S%(p) N S%(q)| ~ 6%. In this case, there exists < 1 many v € E(p) such that ¢ € P, may
make a contribution to the total multiplicity function ms(v | G).

This observation motivates us to count the total multiplicity function ms(v | G) sepa-
rately by using the following partial multiplicity functions (this is a vague version and a
more detailed version will be given later). For (p,v) € G, we write

mexe((p,v) | G) == {(p' V') € G: Alp,p') ~ A, [p = p'| ~ t and Jo —v'| < 25}].

Here and in the following ¢ € (d,1] always denotes the value of the distance parameter
instead of the ¢ in the (0, s,t)-configuration and there will be no ambiguity since we only
discuss (0, s)-configurations now.

Usually, for example, in the proof of (3.7) in Lemma 3.8, one may choose the series of
partial multiplicity functions ms + dyadically, where A\t € [5 24, - -+ ,1]. Here, by showing

mspe((pyv) | G) S67°

for each pair (A, 1), it also seems possible to conclude

(| @) me p.v) | G) < (log(1/6))%67" < 686" =52

provided that § < 1 such that (log(1/§))* < §—*.

However, this is not the series of partial multiplicity functions we adopt in reality. We
explain the reason below (in a heuristic way). Note that we need to prove that ms  +((p, v) |
G) < 07" simultaneously holds for all pairs (A, ¢) and (p,v) in some configuration G with
|G| ~, |9]. In reality, we will first show msy, + ((p,v) | G1) S 67 holds for a fixed
pair (Ai,¢1) and for all (p,v) in some configuration G; with |G1| ~ |©|/2. And then
show ms,1,((p,v) | G2) < 07" holds for the second pair (Mg, ) and for all (p,v) in
some configuration Gy with |Gy| ~ |Gy]/2. Since there are ~ N := (1/logd)? many
pairs, after repeating this process for all pairs (A, t), we will obtain a configuration Gy
with |G| ~ (1/2)V[Q] ~ (1/2)/1089*|Q] < 1 for § < 1. Thus by this choice of partial
multiplicity functions the final configuration Gy would have cardinality too small compared
with €.

Instead, we choose the partial multiplicity functions as follows. Let 0 < ¢ < k be suffi-
ciently small. Let A C [d, 1] be a finite set of cardinality |A| ~ 1/e which is multiplicatively
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d~¢-dense in the following sense: if A € [§, 1] is arbitrary, then there exists A € A with
A < XA <60\ Next, for every A € A fixed, we associate a finite set T(\) C [\, 1] of car-
dinality |T(A)| ~ 1/e which is multiplicatively é~°-dense on the interval [\, 1] in the same
sense as above: if t € [\, 1] is arbitrary, then there exists t € T(\) such that t <t < §“t.
For each A € A and t € T := UyeaT(\) and (p,v) € G, define the partial multiplicity
function

mg () | G) = [{(p.v)) € G: Alp,p/) € [N\, N, [p— /| € [6, 8], Jv— /| <6
(3.10)

Thus there are ~ (1/€)® many partial multiplicity functions. And in the following we will
find a configuration G with |G| ~ (1/2)/9°|Q| > §¢|Q| > §%|Q| by choosing § < dy(€) so
small such that

mi(w|G) <™,  weGANEANLET. (3.11)

And ultimately, we have

ms(w| G)< > miy((pv) | G) S (L)€ <56 =05

AEALET

with §72¢ instead of 6~ in (3.8), which does no harm to conclude the proof.

We remark that the partial multiplicity function in (3.10) is still not the one used in
the actual proof in [C]. The precise one is in Definition 5.29 in [C] and would need extra
notions. However, (3.10) is enough to give the rough idea for the following proof.

Our final goal is to show (3.11). Since the final configuration G has cardinality |G| ~, €],
we will not distinguish G' and €2 in the following and keep using 2. Also, since k > 0 can
be arbitrarily small in (3.11), we will show m3,,(w | ) <1 to simplify the presentation.
From now on, we fix € > 0 and choose § < Jdy such that

1/e < 6;°. (3.12)

We remark that the actual choice of parameters is more complicated than this and we refer
to Section 7.1 in [C]. Since € > 0 is fixed, in the following, for 6 € (0, 1], we remind the
reader that the notation A < B means

A< 6B,

for some absolute constant C' > 1 and change A 2 B and A ~ B correspondingly.

The two main ingredients of the proof will be an application of Wolft’s famous tangency
bound of circles in [34] and an induction process in an increasing order on A € A for each
t € T fixed. Since for different t € T, the proof will be independent, we will concentrate
on the case t = 1 in the following and write m§," instead of mj; for simplicity.

Step 1. We show the base case A = 4, that is
mis (w]Q) <1 (3.13)

(corresponding to Section 5 in [C]). This will be an application of Wolft’s tangency bound,
which, roughly speaking, provides an upper bound of total tangencies of a given family
of circles. To introduce this bound, we need several notions. Recall that the intersection
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of two annuli S°(p) and S°(q) with A(p,q) = X and |p — q| ~ 1 can be localized to a
(8, 0)-rectangle RS with o = §/+/\. Thus it is possible to transfer counting the total (X, 1)-
tangencies of a given family of circles to counting the total number of (8,5/v/A)-rectangles
associated to this family of circles. However, to properly count the (d,8/v/\)-rectangles,
we need the following two notions of rectangles introduced by Wolff.

To introduce the definitions, we make a further reduction that in the remaining part of
this subsection, the parameter set P C D is P = W U B where

W = PN B(py,d*) and B = PN [B(po,1) \ B(po, 5] (3.14)

for some py € D. We note that W and B are ¢¢ separated, that is, dist (W, B) ~ 6. This
property will be needed in the following proof. The set W U B is a special kind of almost
1-bipartite sets (see Definition 4.51 in [C]) and for general P, one can always construct a
proper bipartite set W U B inside P.

To simplify to computation in this introduction, we also assume

Bl S (W]~ 0o (3.15)
Definition 3.11 (Type). Let0 <60 <o <1,e¢ > 0. Let P=WUB C D. Form,n > 1, we

say that a (3, 0)-rectangle R C R? has type (> m, > n). relative to (W, B) if R C 5% “(p)
for at least m points p € W, and R C S‘Sl*e(q) at least n points q € B.

Definition 3.12 (Comparability). Given a constant C' > 1, we say that two (0,0)-
rectangles R;, Ry are C-comparable if there exists a third (8, 0)-rectangle R = RS (p,v)
such that Ry, Ro C CR. If no such rectangle R exists, we say that R; and R, are C-
mcomparable.

We give an example to heuristically explain the meaning of the above definitions.

a R34 58(p4) 56(p3)

Ry N
()
5°(p2)
58(pa) 5w2)
¢ 5°(p1)
(a) (b)

FIGURE 1. Rectangles.
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Example 3.13. In Figure 1 (a), the family of four circles S(p;), i = 1,2, 3,4 are tangent at
one point, so there is only one tangency caused by these four circles. We have A(pi,pj) =0
for all pairs 7,7 = 1,2,3,4. By Lemma 3.10 (strictly speaking, Lemma 3.1 in [33]), the
intersection of four annuli S?(p;) can be covered by a (Cd, Cv/d)-rectangle Ry. We find that
any (0, ﬂ)—rectangle R contained in R, can represent this tangency formed by these four
annuli. By Definition 3.12, any two (6, v/d)-rectangles contained in Ry are C-comparable.
Thus there is only one C-incomparable (8, v/d)-rectangle, which coincides with the number
of tangency caused by these four circles. Moreover, if we assume py,p3 € W and po, py € B,
the situation in Figure 1 (a) can be described as one C-incomparable rectangle of type
(= 2,> 2) relative to W and B.

In Figure 1 (b), at the tangent point, the circles S(p;) and S(p2) are tangent and the
circles S(ps) and S(p,) are tangent, i.e. A(py,p2) =0 and A(ps, ps) = 0. But for all other
pairs 1 < i < j < 4, Alp;,pj) ~ 1. We can naturally associate a (0, v/d)-rectangle Rjo
and a (6, v/9)-rectangle Rsy to represent S%(py) N .S%(py) and S°(ps) N S%(py) respectively.
However, for an absolute constant C' > 1 it is not possible that one can use one (C'§, C/9)-
rectangle R to represent S°(p;) N S%(pa) and S°(p3) N S°(ps) simultaneously. This shows
that there are two tangencies caused by the pairs (p1,p2) and (ps, ps) respectively. Also,
the (9, ﬁ)—rectangles R1> and R34 are C-incomparable for some absolute constant C. Thus
there are two C-incomparable (0, \/S)—rectangles equal to the number of tangencies caused
by the four circles. Moreover, if we assume p,p3 € W and py,py € B, the situation in
Figure 1 (b) can be described as two incomparable rectangles of type (= 1,> 1) relative
to W and B.

We are ready to state the “€”-variant of Wolff’s tangency bound for (4, ﬂ)—rectangles,
which is a simplified version of Lemma 4.53 in [C].

Lemma 3.14. For every € > 0, there exists &g > 0 such that the following holds for all
d € (0,00]. Let fRf/g be a family of pairwise 100-incomparable (5,/9)-rectangles of type
(> m, > n). relative to (W, B), where 1 < m < |W| and 1 <n < |B|. Then,

B
\fR IS (m:n‘#) + less important terms. (3.16)

This lemma is the same as [33, Lemma 1.4] by Wolff, except that it allows for constants
of form “07¢” in Definition 3.11.

Now, in an informal way, we show mg ;" (w | ) < 1 using Lemma 3.14 by contradiction.
We assume there exists kg > € such that for all w = (p,v) € Q,

miy (@] Q) = {(,0) € Q: Alp,p)) € [0,3], [p—p/| € [0°,1], Jv— /] < 6} = 57,
(3.17)

The idea is to construct a 100-incomparable family of (8, v/8)-rectangles of type (> m, > n).
relative to (W, B) with m < n = §~"° that violates (3.16).

Recalling that € is a (9, s)-configuration with P = 7gs(€2), from Definition 3.4, we know
that for each p € P, E(p) is a (J,s)-set with |E(p)| ~ 0=°. Since a (J,V/d)-rectangle
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can contain at most ~ (v/6/6)® = 1/6%2 many points in E(p), we can associate at least
~ 67°/(1/8%?) = 6=/ many 100-incomparable (6, /9)-rectangles {R(p, i) }izt ... 5-s/2 ON
each S(p), p € W. See Figure 2 for an illustration.

aE NN
4
.0
& “
L2 *
L .
R(p,2) Rp.i) %
a
8§
" S°(p)
. L/
* L2
R(p,1) Py E(p)
‘0

FIGURE 2. The incomparable family {R(p,7)},—; ... 5-s/2.

For each R(p,i), we investigate its type relative to W and B. First, we show R(p, ) has
type n = 6" relative to B. To this end, fix R(p,?) and choose a point v € E(p) N R(p, 7).
Recalling the definition of type in Definition 3.11, it suffices to find the number of points
q € B such that R(p,i) € S% “(p) N S® “(¢). Applying (3.17) to (p,v), we know that for
the pair (p,v), there are =" many points (p’,v’) € € such that |[v — v'| < §'7¢. Since
v' € E(p') and E(p') is d-separated, we know for each p/, there are < 1 many points in
E(p') such that (p/,v’) satisfies (3.17). This further implies there are 6~"° many points
p’ € P such that

Alp,p') €[0,6], [p — p'| € [5,1]. (3.18)
Recalling the choice of the sets W and B in (3.14) and noting p € W, we deduce that the
points p’ satisfying (3.18) are contained in B. Denote the set of points p’ satisfying (3.18)
by Brp,)- Thus (3.18) together with Lemma 3.10 implies that R(p,i) C ST (p)N ST (g)
for all ¢ € Bpp,i). As a result, R(p,7) has type

} n = |BR(p,i)| = 5_'% (319)

relative to B. For an illustration, see Figure 3 where we recall from (3.14) that, W is
contained in the ball B(pg, §*¢) colored yellow and B is contained in the annulus B(pg, 1)\
B(po, 6¢) colored grey in Figure 3.

Next, we show R(p, i) has type m < §~"° relative to W. Similarly as before, it suffices to
find the number of points u € W such that R(p,:) C 55176(u). From the above paragraph,
we can find ¢ € B, such that R(p,i) C 59" (q) and w € E(q) such that w € 8~ R(p,1)
(since v € R(p,4) and by (3.17), |[v — w| < §'7¢). Hence it suffices to find the number of
points in w € W such that

R(p,i) € 8% “(u) N S* (q). (3.20)
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v € E(p) R(p, D)

+ Pointsin W and B
D *+ Pointsin Brpiy € B

B(po, 6%%)
S8  S°(a).q € Brepy 0
B(po, 1) \ B(po, 5°)

In R? In R3

FIGURE 3. The type of R(p,1) relative to B.

Also if u satisfies (3.20), then |S® ()N S* “(¢)| = |R(p,i)| ~ 6*% By u e W and g € B
implying |u — g| ~ 1 and Lemma 3.10, we know a neccessary condition for u satisfying
(3.20) is that A(u,q) < 6. Applying (3.17) to (¢, w) and by a similar reasoning as (3.18),
we obtain that there are " many points u € P such that

A(g,u) € [0,6], |¢ — u| € [5,1]. (3.21)
Hence u € W satisfying (3.20) implies u enjoying (3.21). See Figure 4 for an illustration.

w € E(q) R(p, i)

9
L]
- - + - Pointsin W and B
p * Pointsu e W
2
S%m S°(q) S uew B(po, 6°%)

B(po, 1) \ B(po, %)

In R? In R3

FIGURE 4. The type of R(p,i) relative to W.

By the upper bound in (3.17), we can conclude that there are < §~"° many u € W such
that R(p,i) C S% “(u) N S? “(¢). Thus R(p,i) has type m < " relative to W. Here,
for simplicity, we assume that m is independent of the choice among R(p, ).

To summarize, we have constructed a family Ry of ~ [W|6~*/% many (6, v/§)-rectangles

{R(p,7)}pew,i=1.... 5-s/> and for each rectangle, there are at most m circles S(u) with u € W
such that

R(p,i) C 8% “(u) N S (p).
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For each u, if there exists R(u,i(u)) € Ry such that
R(u,i(u)) C 8 ()N S " (p), (3.22)

then R(p,i) and R(u,i(u)) may be 100-comparable. On the other hand, for each u, since
by our construction, {R(u,7)},— ... s-s/2 is a 100-incomparable family and diamR(u,i) ~
diam(S%"“ (u) N S *(p)), we know there are at most ~ 1 rectangles R(u,i(u)) satisfying
(3.22). Therefore, for each R(p,i), there are at most m rectangles in Ry that are 100-
comparable to it. Thus we can find a subfamily R C Ry of 100-incomparable rectangles
with
|W|6—s/2
|R| ~ ——r.
Recalling (3.15), we have |B| < |W/| ~ 67%. Also, we recall that each R(p,i) has type
>n = § " relative to B by (3.19). Thanks to m < n = 6" and Lemma 3.14, we deduce

Wlo— _ (rW\|B|>3/4

— (3.23)

mn
which implies

1< gmo/2,
We get a contradiction and this completes the heuristic proof of showing (3.13), that is,
miy (@] Q) S 1.

Step 2. Recall A = {6 = A\, Ao, -+, A} is the multiplicatively 6~ “-dense set defined
above (3.10). We show mj, (w | Q) <1 for all A, € A (corresponding to Section 7.6 in
[C]). By induction, assuming

miy(w| Q)< I=1,- k-1, (3.24)

we show mgj\k (w| Q) < 1. From Step 1, one can expect that a good upper bound for the

cardinality of incomparable (6,6/v/\)-rectangles would be useful to conclude the proof.
Actually, we obtain the following bound (a simplified unrigorous version of Theorem 6.5
in [C]). Recall W and B are (J, s)-sets defined in (3.14) and {2 is the (9, s)-configuration
with parameter set P =W U B.

Theorem 3.15. For every € > 0, there exists 69 > 0 such that the following holds for all
0 € (0,00]. Ford < A< 1, assume

my s (w| Q) <1, w e Q. (3.25)
where & C Q is a properly chosen (A, s)-configuration. Let Rg/\[\ be a family of pairwise

100-incomparable (6,6 /v/X)-rectangles of type (> m,> n). relative to (W, B), where 1 <
m < |W| and 1 <n <|B|. Then,

W||B| 3/4 A s/2 '
% <! - ! tant terms. 3.26
RS0l S ( - ) 5 + less important terms (3.26)
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Here the (A, s)-configuration @ C Q can be roughly considered as the maximal -
separated set in €. In the following the proof, we will sketch the construction of €2 from
2. We also remark that the assumption (3.25) is not unrealistic, since by Step 1 (letting
A =0 in (3.13)), one can always find (), s)-configurations €2 satisfies (3.25). In addition,
we substitute the weaker assumption (6.7) made in Theorem 6.5 in [C] by the assumption
(3.25) in Theorem 3.15 to simplify many technical steps in this introduction.

Before giving an outline of the proof, we provide some evidence why Theorem 3.15 is
true. First, letting A = 0 in Theorem 3.15, then (3.26) becomes

WBN 34
|fRf/g| S (w) + less important terms,
mn

which coincides with Wolff’s tangency bound (3.16) in Lemma 3.14. Another evidence is
that, if we assume |W| = |B| ~ d°, m =n =1 and let A ~ 1 in Theorem 3.15, then (3.26)
becomes |R3| < 672, This bound is also sharp, which can be reached by the case that
every circle in W intersects all circles in B transversely. See Figure 5 for an illustration.

(6, 6)-rectangle

— Circlesin W
Circlesin B

FIGURE 5. Sharp bound for |R}|.

The brief idea of the proof of Theorem 3.15 is as follows. Here we will only show the
case m = n = 1. One can use a random sampling argument to show the other cases
m,n > 1 (see page 42-44 in paper [C]). We also remark that in reality, the notion of type
of rectangles in Theorem 6.5 in [C] is more delicate and takes the sets { E(p)} into account.

Let m = n = 1. Omitting the “less important terms”, we need to show

R, 5] < (WB)Y (%)/ - (2 (A‘Z')S)M () e

Inequality (3.27) will be established with the help of the known upper bound of incom-
parable (A, v/A)-rectangles with type (> 1,> 1) relative to some bipartite set. To this
end, consider p € W and ¢ € B such that there exists a (8,6/v/A)-rectangle R(p,q) C
S (p) N S (q) of type (= 1,> 1) for some absolute constant C' > 1. By Lemma 3.10, we
know

0/V/Ap, @) +0 2 157 () N S a)] = |R(p, )] ~ 6%/V
This implies that A(p, ¢) < A and thus S (p)N.S°*(q) can be covered by boundedly many
(A, V/A)-rectangles (where the boundedness is guaranteed by Lemma 4.3 in [C]). As a result,



INTRODUCTION 27

R(p,q) R(,q)
%) S%() A(p,q) <A S'®  SMa)

FIGURE 6. The construction of R(p, q).

we can associate a (), v/\)-rectangle R (p, ¢) such that R(p, ¢) C R(p,q) C S (p)NS(q).
See Figure 6 for an illustration.
Next, from the original (9, s)-configuration (2, we construct the (A, s)-configuration £ C
Q. Let mrs(£2) = W U B. Using pigeonholing, we can assume
A

|WOB(w,)\)]~]BﬂB(x,)\)]§<g) . VzeR?

and again by pigeonholing, we may choose W and B satisfying

W] ~ (%) 'W| and |B| ~ @) IB|. (3.28)

Roughly speaking, for each R(p, q), in the parameter set, there exists a “unique” pair (“< 1
many pairs”) p € W and q € B such that p € B(p,\) N W and ¢ € B(q,\) N B. See
Figure 7 for an illustration.

\ ..7\\/ N /7
SO 7 — <
(el - Points in W and B
(/ ?'\\.\/‘_"-/\ q . .
e + Pointsin W and B
/7—’\§. ..‘// q =
[ eeu =7 / N
(e () 2-bal
N A p \\ //
p
2¢
B(po, 6°%)

B(po, 1) \ B(po, 6°)
FIGURE 7. p € W and q € B.

Moreover, a direct computation shows that A(p,q) < A if A(p,q) < A and we associate
a (A, vV A)-rectangle R(p,q) C S°(p) N S®(q). Then an observation is that R(p,q)
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and R(p, q) are comparable and hence R(p,q) C CR(p,q). Thus for each of the (X, v/))-
rectangles R(p, q), there are

S IB(p, A) NW([B(p, ) N B| ~ (A/6)* (3.29)
many of the (8,8 /v/\)-rectangles R(p, q) C CR(p,q). See Figure 8 for an illustration.

R(», q)
R ’
@0 RP.9 | - g

p € B(p,A)
S*p)  SM@  S°(p) S%(q) q € B(q,2)

In R? In R3

FIGURE 8. The construction of R(p, q).

Writing
Ry = {R(p,q) : there exists R(p,q) such that R(p,q) C R(p,q)},

we obtain a family R, consisting of (A, \/X)—rectangles. To apply the bound in Lemma
3.14, we need to deduce Ry consists of incomparable rectangles. This fact is guaranteed
by the assumption (3.25). Indeed, (3.25) implies that, generically, the above R(p, q) have
type (1, 1) relative to W and B and one can then deduce they are incomparable with each
other. Thus R, is a family of incomparable (X, v/A)-rectangles.

Applying Lemma 3.14 to W U B we know

3.28 i
Ra| < ((W[B]*Y* 2 (&V/Z’) | <A“/Ba‘>s) |

Combining the above inequality and (3.29), we arrive at the bound (3.27) for |R / vl (in

the case m =n = 1).

With Theorem 3.15 in hand, under the counter assumption mg , (w | ) = -, using a
similar argument as in Step 1, a similar computation as (3.23) will result in a contradiction.
We do not repeat the process again here but only highlight the point where we need the
induction hypothesis (3.24). Indeed, the induction is employed to show m < §~*°. Using
the same notation as in Step 1, recall that m is the type relative to W of a (4,6/v/\x)-
rectangle R(p,i) for some p € W, that is, the number of p’ € W such that

R(p,i) C 8% (). (3.30)
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To upper bound m, since R(p,i) has type > n = " relative to B, choose ¢ € B such
that R(p,i) C S%" “(q). Together with (3.30), it suffices to find the the number of p/ € W
such that

R(p,i) € S (p) N S°" “(q). (3.31)
As a consequence of (3.31), we have |S® “(p') N S® “(¢)| > |R(p,3)| = 62/v/X. Thus for
every p’ € W such that (3.31) holds, by Lemma 3.10, we know

1S°(0") N S°(q)] ~ 82 /AW a) Z 6%/ A,
which implies that A(p/, q) < A every p’ € W satisfying (3.31). We can conclude that
<SP eW AW, q) < A}l

Choosing w € E(q) N 6'"“R(p,i), we know for each p’ € W there exist < 1 many
v € E(p') N6 “R(p,i) such that |w —v'| < §17¢ since E(p') is d-separated. We have

k

<Y KW V) € Upew (@, EW)) - 00 < AW, @) < Ay [w — v/ < 6
=1

k k—1

Zma)\l q,w) = ng,)\l(qv ’LU) +m§,)\k(Qaw)

= =1

1+5m<5m

where in the second last inequality we recall {1, -+, A\¢} C A with |A]| ~ 1/e above (3.10)
and apply (3.24), and in the last inequality we use (3.12) and k¢ > €. This concludes Step
2 and finishes the rough outline of the proof of Theorem 1.10.
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JIAYIN LIU

(Communicated by Nageswari Shanmugalingam)

ABSTRACT. We define Kakeya sets in the Heisenberg group and show that the
Heisenberg Hausdorff dimension of Kakeya sets in the first Heisenberg group
is at least 3. This lower bound is sharp since, under our definition, the {zoy}-
plane is a Kakeya set with Heisenberg Hausdorff dimension 3.

1. INTRODUCTION

The study of Kakeya sets in Euclidean space is one of the central topics in
geometric measure theory. A set E C R” is a Kakeya set if for every e € S7~!
there exists a unit line segment I, parallel to e such that I, C F.

A natural question is to determine the least Hausdorff dimension of Kakeya sets.

The answer is known in 2-dimensional Euclidean space. Indeed, Kakeya sets in
R? turn out to be of Hausdorff dimension equal to 2 which can be shown by multiple
ways. See [7,9,15]. However, for Kakeya sets in higher dimensional Euclidean space,
the sharp lower bound is not known. We would like to remark some progress:
Bourgain used two different methods to provide lower bounds [3, 4], which were
further improved by Wolff [18] and Katz-Tao [11] respectively. Recently, Katz-Zahl
[13] and Guth-Zahl [10] enhanced the results of [18] in R3 and R* respectively,
which show that the best known lower bound is 5/2 + ¢ in R? with €y an absolute
constant and 3 + 1/40 in R*. In R™ with n > 5, the best known lower bound
34 (2 — v/2)(n — 4) was established in [12] by Katz-Tao.

As an analogy to Euclidean Kakeya sets, we can define Kakeya sets in the Heisen-
berg group. In this paper, we denote by H" the n-th Heisenberg group. When
n =1, we write H instead of H' for simplicity.

Definition 1.1. A set £ C H" is a Kakeya set if for every unit line segment
I C R?" x {0} centred at the origin, there exists ¢ € H" such that qI C E.

Here and in what follows, by a unit line segment we mean an isometric copy
of the unit open interval (0,1). Moreover, by Heisenberg Hausdorff measure we
mean the one induced by the Kordnyi metric on the first Heisenberg group. For
the definition of the Koranyi metric, we refer the readers to Section 2.
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Remark 1.2. The Kakeya sets we consider here are often also called Besicovitch sets
in some other literature. And some authors use Kakeya sets to denote those inside
of which a unit line segment can be continuously rotated through all directions.
However it is not clear how to well define the latter concept on sub-Riemannian
setting. Hence it is quite interesting to consider the latter concept as a further
study.

The Heisenberg Hausdorff dimension of Euclidean Kakeya sets has been studied
in [16] where the author showed a lower bound on the dimension of Kakeya sets. In
[17], the author studied Kakeya sets for general metric spaces in axiomatic sense.

According to Definition 1.1, it is not hard to show that the Euclidean Hausdorff
dimension of Kakeya sets in H is at least 2. This can be done as follows. Under
orthogonal projection to the {zoy}-plane, every Kakeya set F in H becomes a
Kakeya set £’ in R?. Hence the known lower bound of the Euclidean Hausdorff
dimension of E’ is also the one of E since orthogonal projection in R? is Lipschitz.
Moreover, 2 is sharp since the {zoy}-plane is a Kakeya set in H with Euclidean
Hausdorff dimension 2. However, the Heisenberg Hausdorff dimension of the {zxoy}-
plane is 3 and the orthogonal projection from H to the {xoy}-plane is no longer
Lipschitz with respect to the Kordnyi metric. Hence to calculate a lower bound of
Heisenberg Hausdorff dimension of Kakeya sets seems to be a nontrivial problem.

In this note, we will show the following

Theorem 1.3. In the first Heisenberg group H equipped with the Kordnyi metric,
every Kakeya set has Heisenberg Hausdorff dimension at least 3 and this lower
bound is sharp.

In the following, E will denote a Kakeya set in the first Heisenberg group.

Our method to show Theorem 1.3 is based on the idea of [2,9]. We first encode
each horizontal line segment in E by a quadruple in R* forming a subset L(E) C R*.
Then we transfer the computation for dimensions of each intersection of £ and a
plane belonging to a one parameter family to that of a subset in R3 obtained by
certain projections acting on L(FE). This can be seen as a duality principle. Finally
we use a recent Marstrand-type projection theorem in R3 by Kienmiki-Orponen-
Venieri [14] and a co-area inequality by Eilenberg-Harrold, Jr. [8] to conclude the
proof.

Since every Kakeya set in the first Heisenberg group has Heisenberg Hausdorff
dimension at least 3, a further question that may be asked is to find a lower bound
of 3-dimensional Heisenberg Hausdorff measure among all Kakeya sets in the first
Heisenberg group. Unlike the Euclidean Kakeya set, which may have n-dimensional
Lebesque measure zero in every R™ (for example, see [1]), it is not easy to show a
counterpart for Kakeya sets in the Heisenberg group. Hence we would like to ask
the following question:

Problem 1.4. Does there exist a Kakeya set in the first Heisenberg group with
zero 3-dimensional Heisenberg Hausdorff measure?

The paper is organised as follows. In section 2, we recall some background in
Heisenberg groups, the Marstrand-type projection theorem in R? and the co-area
inequality. In section 3, we prove Theorem 1.3.
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2. PRELIMINARIES

The first part of this section is dedicated to a brief introduction to the first
Heisenberg group H. For a detailed one, we refer the readers to [5].

The first Heisenberg group H is R3, equipped with the group multiplication, for
any w = (z,y,t) and w’ = (2/,y/,t'), as follows

1
(2.1) ww' = (m—l—x',y-l—y',t—i—t’—l— i[ary/—m'y])

We introduce the Koranyi metric on the first Heisenberg group. This is the left
invariant metric given by

22 (. 0) = (@) -l
where || - || is defined as
H(xayﬂf)HH = ((.I‘Q + y2)2 + 16t2)1/4_

We define horizontal lines in the first Heisenberg group H as lines which can be
obtained by a left translation of some line passing through the origin and lying in
the {xoy}-plane.

By the definition of horizontal lines, we know that for any b € R and ¢ € H, ¢I,
and qJ, are horizontal line and horizontal line segment respectively where

(2.3) Iy(t) = (7,b7,0), T€R

and
1 1 )
2vhZ -1 2v2 + 17

The following observation is needed in the proof of Theorem 1.3.

Jo(1) = (1,b7,0), T € (—

Lemma 2.1. For any b€ R and ¢ = (q1,q2,q3) € H,

(1) qly and qJy can be parameterised as

2.4 qly(s) = s,bs—i—a,—g-l-d, seR
2
and
as 1
2.5 Jp(s) = (s,bs +a,—— +d), s € (6,6 + ——
( ) Qb() ( 92 ) (66 \/m)

where a = g9 — bqq, d:q3+%aq1 and € = q — 2\/#.
(2) If we denote

(2.6) Loy = {(s,bs + a, —% +d)eH|seR)
and
as 1
If =< (s,bs+a,——+d)eH|se (e + ——) ¢ .
s = { S eH|se (et )

Then lfa b.d) has length 1 with respect to dy for every a,b,d,e.
(3) Ifb € (—V/3,V/3), then the orthogonal projection 0f Uy p.ay to the z-azis has

Euclidean length greater than %
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Proof. (1) Let I be parameterised as in (2.3). Then by the Heisenberg multi-
plication law (2.1), we have

1
quZ{(Q1+77QQ~|—b7',Q3~I—§(q1br—q27)) |TeR}.

Letting s =q1 +7,a = ¢ — bq; and d = q3 + %aql, we arrive at (2.4). In
addition, letting e = ¢; — ﬁ/g—ﬂ, we verify that (2.5) holds.

(2) Using the definition of dy and the fact that left translation is an isometry
with respect to dy, we deduce the result.

(3) From (2.5), the orthogonal projection of I, , ; to the z-axis is the interval

(e, + \/bgﬁ) C m-axis. Hence when b € (—/3,/3), the length of the
1

interval is greater than 5.

O

Remark 2.2. In the sense of sub-Riemannian geometry, there exist more general
horizontal curves in H besides horizontal lines. Indeed, associated to the group
operation (2.1), we can define the left invariant vector fields

0 w0 0 a0
or 20t oy 20t
A Lipschitz curve v = (y1,72,73) : [a,b] — H is said to be horizontal if 4(s) €
Span{X (v(s)), Y (7(s))}, L.e. §(s) = a(s)X(7(s)) + b(s)Y (7(s)), for almost every
s € [a,b]. One can check that horizontal lines are indeed horizontal curves under

this definition. For more information from the sub-Riemannian point of view, we
refer readers to [5, Chapter 2].

In this paper, we denote by Hj (resp. H) the s-dimensional Hausdorff measure
induced by the Kordnyi metric (resp. Euclidean metric) and by dim3, (resp. dim5,)
the Hausdorff dimension of sets induced by Kordnyi metric (resp. Euclidean metric).
In addition, given any set A C H, we denote

(2.7) L(A) == {(a,b,d,e) e R x (—V3,V3) x Rx R | If, , o C A}
and
(2.8) L(A,c) == {(a,b,d,e) € L(A) [ I{, o N {z = c} # 0}.

Next, we recall a version of a Marstrand-type projection theorem [14, Theorem
1.2):
Theorem 2.3. Suppose that v : [0,27) — R3,0 — v(0) = %(cos 6,sin6,1). If
K C[ ]R3)z's Borel set, then dim}, Py (K) = min{dim}, K,1} for almost every
0 € |0,2m).

Here, and in what follows, for any = € R3\ {0}, p, : R®> — Span(z) denotes the
Euclidean orthogonal projection to the straight line passing through the origin and
T.

We also need the following co-area inequality [8, Theorem 1]:

Theorem 2.4. Let X be an arbitrary metric space, 0 < a < oo be real numbers
and F' C X be any subset. Then, for any 1-Lipschitz map f: X — R we have

(2.9) / MG (PO £ () dy < HSTU(P).
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Here, f]g g dy is the upper integral of g : R — [0,4+00). That is

[ sway =it [ nw)ay

where the infimum is taken over all measurable functions h : R — [0, +00) satisfying
0 <g(y) < h(y) for a.e. y € R.

3. PROOF OF THEOREM 1.2

Proof of Theorem 1.3. Since every set is contained in a Gs-set of the same dimen-
sion, we may assume F to be Gs.

Step 1 (Properties of L(E,c)). First, we need
Claim 1. For every ¢ € R, L(E,c) is a G4 set in R%.
Proof of Claim 1. Recalling (2.7),
L(E,c) = {(a,b,d,¢e) € L(E) | l{, .0 N{z = c} # 0}

Since F is a G set, we can find a sequence of open sets { F; };cn such that E; D F;1q
for each 7 € N and

(3.1) E=()E:.

ieN
Consider the sets
L(Ei,c) = {(a,b,d,e) € L(E;) | (I{4pq N {z=c}) # 0}
By (3.1) it is not hard to see

L(E,c) = (| L(Ei,c).
We just need to show that L(E;,c) is open for any ¢ € R and i € N.
Consider an arbitrary quadruple (a,b,d, €) € L(E;,c), i.e.

Thanks to the openness of E; and the interval (e, e + ﬁ), we deduce that for

(a',b',d' €) close enough to (a,b,d,€), we have
oy {z=ct#0 and 1§, 4 CE;
and hence (a/,b',d’,€') € L(FE;, c), which implies L(F};, ¢) is open. O
Furthermore, we have the following
Claim II. There exists at least one ¢y € R satisfying
(3.3) Hiy (m123(L(E, c0))) > 0

where 7123 is the orthogonal projection from R* to the subspace spanned by the
first three coordinates.
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Proof of Claim 1I. Since E is a Kakeya set in H, by Definition 1.1 and recalling
(2.7), we have

mo(L(E)) D (—V3,V3)
where 7 is the orthogonal projection from R* to the subspace spanned by the
second coordinate, which implies

(3.4) Hi (m2(L(E))) > 0.
By observing that

L(E) = | J L(E,c)

ceQ
and using (3.4), we infer that there exists ¢o such that
(3.5) Hi (mo(L(E, cp))) > 0.

Noting that
%]%g(ﬂlgg(L(E, C))) Z HI%&(WQ(L(E,C))), Ve S ]R,

we conclude the proof. O
We end Step 1 with the following:

Claim III. We can find a Borel set B C m193(L(E, ¢p)) with

(3.6) HL(B) >0

and at least one of the following holds:

1
(3.7) B C ma3(L(E,c)), Ycé€ [co— Z’CO]
or
1
(38) B C 7T123(L(E, C))7 Ve € [Co, co + Z]

Proof of Claim 11I. Using Lemma 2.1(3), we observe that if W N {z =1co} #0,
then either )

(ap.ay N {z =co— Z} # 0,
or )

Hence we have

L(E, o) C [L(E, o) N L(E, co — i)] U L(E, eo) N L(E, co + i)}.

We conclude

(3.9) mas(L(E; co)) C 7T123(L(E7CO)QL(EaCo—i))UﬁQ:a(L(E,Co)ﬂL(E,co—Fi))-

From the above inclusion, we can assume, without loss of generality, that
1 1
i (rsa(L(Bc) N LB+ 1)) 2 HA(L(E o)) > 0

where the last inequality results from Claim II.
On the other hand, if (a,b,d,e) € L(FE,co) N L(E,co + %), then for any ¢ €
[co, co + i], we have (a,b,d,€) € L(E, c), which indicates

1 1
L(E,co) N L(E, co + Z) C L(E,¢) for any ¢ € [co,co + Z]
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Aline segment I¢, ,, ;) C E
that intersects both
{x = co} and {x = Co +%}

FIGURE 1. A line segment that intersects both {x = ¢p} and {z =
Co —|— %}

By I, for any ¢ € R, we know that L(FE,c) is a Gs set and hence my23(L(E, o)
NL(E,co + %)) is an analytic set. Hence we can apply Corollary 2 in [6] to choose
B to be a closed subset of 7123(L(E, co) NL(E, co+ %)) with Hj (B) > 0. Therefore
B satisfies the assumption of the claim. O

Claim III enables us to choose ¢y € R such that, without loss of generality, there
exists a Borel set B C m93(L(E, ¢p)) satisfying (3.6), i.e.

Hz(B) > 0.
and (3.8). Therefore, we infer that
(3.10) dim}, (B) > 1.

Step 2 (Establish a duality principle). Recall the definition of [(4 4 ) in (2.6). For
every ¢ € [co,co + 1/4], we consider E. C {z = ¢} N E C H defined by

E.:={lapan{zr=c}| (a,b,d) € B}
(3.11) = {(c,bc + a, —% +d) | (a,b,d) € BY.
Use left translation T(_ ¢ o) to translate E, to {yot}-plane, which means E} :=
T(—c,0,0)(Ee¢) lies in {yot}-plane and has the same dimension as E.. See the above

Figure 2.
Recalling (3.11) and the Heisenberg multiplication law (2.1), we deduce that

El =T 00 (Ee)
= {(~¢,0,0) - <c,bc+a,—% +d) | (a,b,d) € B}

2

b
(3.12) = {(0,bc + a, —ac — % +d) | (a,b,d) € B}.
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Left translation by
(=¢,0,0) - E, to
{yot}-plane

\ 4

/{x=c}
X

FIGURE 2. Translating E. to {yot}-plane
Notice that the third coordinate of points in E! expressed in (3.12) takes the form

bc? c?
— —_— = —c.—— .1
ac 5 +d <( C, 9’ )7(aabad)>

where (,) is the Euclidean inner product in R3.
By considering the t-axis as R and letting

(3.13) ¢ {yot} — H, (0,y,t) — (0,0,t),

we can write

o(EH = {<(—c,—§,1),(a,b, d)> | (a,b,d) € B}

2

(3.14) = (1 + %) Pl o2 1)(B)-

Equation (3.14) implies that p(E!) can be viewed as a Euclidean projection of
B to the one parameter family of lines I' = {7, : R — R3 | t > (—ct, —2§t,t), ce
[co, co+1/4]} up to scalings. Letting ¢t = 1, we observe that ¢+ (—c, —%,1) forms
a part of parabola Hi in R3. Hence this one parameter family of lines forms part
of a cone C; in R3, i.e.

Cr = {(z,y,2) € R® | 2* = —2yz}.
Moreover, the intersection of I' and the unit sphere in R3 is contained in a circle
and can be parameterised as
2

V() = {2562(—@—%,1) | ¢ € [co, co + 1/4]}.

We see the arc 4 and the parabola Hi are both conical curves, they can be included
in one same cone as Figure 3 depicts.
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Parabola y =
g2 Cone C; =
((-e-%5)een} T
y <O0.

FIGURE 3. Parabola X and Arc 7 can be included in one same cone.

Step 3 (Conclusion). In Theorem 2.3, the family of lines passing through the origin
and

~v(0) = %(cos 0,sinf, 1)

also spans a cone Cy = {(z,y,2) € R? | 22 + ¢y = 2%} in R3.
We observe that the cone Cy can be obtained by a rotation R : (x,y,z) —
(x, @(y + 2), @(z —y)) acting on Cy and 7 is mapped to an arc of v, i.e.

1(0(0) = RoA(e) = +2c2 <_c, ?(2 e, ?(2 + cz)>

1 (=22 2-¢2 )
IRV A ECAPET A

for ¢ € [co, co + §], where 6(c) is determined from

) —2v/2¢ 2 —¢?
(cos(0(c)), sin0(c)) = ( L +cz) .
This implies
(3'15) p(_c7_%’1)(($ay>z)) = p’y(@(c))(R(xayvz))a V(x,y,z) € Rg'

By Claim IIT and (3.10), we know B is Borel and dimj,(B) > 1. We use
(3.15) and apply Theorem 2.3 to the family of lines passing through the origin
and {7(0(c))}ce[co,co+1/4] to deduce that

(3.16) dim3, (oo 1y(B)] = dim3; [pya(ep (R(B))] =1 a.e. ¢ € [co,co + 1/4].
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Recalling the definition of ¢ in (3.13) and according to (2.2), we know ¢ is 1-
Lipschitz with respect to dy and for any set A C t-axis,

dim5; (A) = 2dim3, (A).

Hence for any ¢ € [co, co + 1/4] such that (3.16) holds, combining (3.11), (3.14),
(3.16) and the above equality, we conclude

dimy ({o = ¢} (1 E) > dimf} (E,) = dim§(E}) > dim}} (¢(E}))

= 2dimy(p(-1,5.2)(B))
=2

and for any 0 < a < 2, we deduce
Hi({z =c}NE) = .

By definition of dy, the map f : (H,dn) — R, (x,y,t) = (x,0,0) is 1-Lipschitz. Now
letting X =H, Y = [co,co+ 1/4] and F = EN{(z,y,t) e H | x € [co,co + 1/4]} in
Theorem 2.4, for any 0 < a < 2, we derive

HEH(F) > / HE(F N £ () dy = oo,
[Co,Co+1/4]

which implies
dim5y (E) > dim (E N {(z,y,t) € H | z € [co,co + 1/4]}) = dim%, (F) > 3.
We finish the proof. O
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Dimension estimates on
circular (s, t)-Furstenberg sets

JIAYIN Liu

Abstract. In this paper, we show that circular (s,t)-Furstenberg sets in R? have Hausdorff
dimension at least

max{% +s,(2t+1)s —t} forall 0 <s,t<1.

This result extends the previous dimension estimates on circular Kakeya sets by Wollff.

Furstenbergin (s, t)-ympyrijoukkojen ulottuvuuden arvioita

Tiivistelma. Tissd tyossi osoitetaan, ettii tason R? Furstenbergin (s,t)-ympyrijoukkojen
Hausdorffin ulottuvuus on véhintdan

max{% +s, (2t +1)s —t} kaikilla 0 < s, < 1.

Tamaé tulos yleistdd Wolffin aiemmin todistamia Kakeyan ympyréjoukkojen ulottuvuusarvioita.

1. Introduction

Let F be a circular (s, t)-Furstenberg set in R?. That is, there exists a parameter
set K C R with Hausdorff dimension

such that for every (z,7) € K,
(1.1) dimy(FNS(x,r)) > s

where RY := {(z,7) = (z1,22,7) | r > 0} and S(z,r) is the circle centered at z € R?
with radius r. A special class of circular (1,1)-Furstenberg sets is the family of
circular Kakeya sets, that is, Borel sets in R? that contain circles of every radius.

The study on the Hausdorff dimension of Furstenberg sets was initiated from
their linear version. In this paper, we call a set F' C R? a linear (s, t)-Furstenberg
set if there exists a parameter set K in A(2,1) with

such that for every L € K,
dimy(FNL)>s

where A(n, k) denotes the family of k-dimensional affine subspaces in R™.
In 1999, Wolff [16] showed that linear (s, 1)-Furstenberg sets with parameter set
K containing lines in every direction have Hausdorff dimension at least

(1.2) max{3 +s,2s} forall 0 <s<1.
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In the sequel, there is a series of works improving the above lower bound and providing
the one for linear (s, ¢)-Furstenberg sets with some of them only considering special
values of s, t. We refer the readers to |9, 1, 11, 10, 12, 7, 3, 2, 13] and references therein.
Moreover, in higher dimensions, one can similarly define linear (s, ¢t)-Furstenberg sets
with parameter set K in A(n, k). See |5, 6] for some recent progress.

It is not clear whether the above lower bound estimates on the Hausdorff di-
mension for linear (s,t)-Furstenberg sets in R? are sharp for any value of s and ¢
except s = 1. Hence determining the sharp lower bound remains open for Hausdorff
dimension of linear (s,t)-Furstenberg sets.

In terms of circular (s, t)-Furstenberg sets in R?, Wolff in [17, Corollary 3| showed
that circular Kakeya sets in R? have full dimension 2 employing techniques from
harmonic analysis. Also, in [15, Corollary 3], Wolff proved that Borel sets in R?
consisting of circles with ¢-dimensional set of centers have Hausdorff dimension at
least 1+ t. Later, in [8], as an application of their techniques to prove a Marstrand-
type restricted projection theorem, Kdenméaki-Orponen—Venieri were able to show
that the above lower bound 1+ ¢ in [15] holds true for analytic ¢-dimensional family
of circles. Hence they provide an alternative method showing the dimension of sets
containing full circles. Since the above results concern special cases of circular (1,)-
Furstenberg sets, these bounds are sharp. To the best of the author’s knowledge,
these works and earlier results on families of full circles are the only ones concerning
the Hausdorff dimension for circular Furstenberg sets.

In this paper, we extend the existing result to general 0 < s,¢ < 1. We show the
following;:

Theorem 1.1. For any 0 < s <1 and 0 < t < 1, the Hausdorff dimension of a
circular (s, t)-Furstenberg set F in R? is at least

(1.3) max{% + s, (2s — 1)t + s}.

We remark that for any 0 < ¢ < 1,if 0 < s < 2, then the maximum in (1.3)
is attained by £ 4 s. Otherwise, it is achieved by (2s — 1)t + s. Indeed, these two
bounds are obtained by different approaches. Hence Theorem 1.1 is a combination
of the following two theorems.

Theorem 1.2. For any 0 < s <1 and 0 < t < 1, the Hausdorff dimension of a
circular (s, t)-Furstenberg set F' in R? is at least

Ly
- S.
3

Theorem 1.3. For any % < s<1and0<t<1, the Hausdorff dimension of a
circular (s, t)-Furstenberg set F in R? is at least

(2s — 1)t + s.

Below, we briefly outline our ideas of the proof of Theorem 1.2 and Theorem 1.3,
which will imply Theorem 1.1. Here, we will focus on explaining some informal
ideas on obtaining the Minkowski dimension lower bounds for circular Furstenberg
sets. Then we can derive the Hausdorff dimension lower bounds from the Minkowski
dimension lower bounds in a standard way. To this end, in the proof, we will work
with a discretized version of the circular (s, t)-Furstenberg set F'in the following sense.
That is, instead of studying the ¢ dimensional parameter set K, we will concentrate
on a finite subset V' C K which is a (0,%)-set (See Definition 2.2). In brief, V is a
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d-separated set with cardinality d—¢ and satisfies a ¢t-dimensional non-concentration
condition.

With this discretized circular Furstenberg set (J, ., S(z) N F, we consider an
arbitrary cover U = {B(z;,1;)}icz,, of this set by balls of radii between 6/2 and §

where § = 2% (k; € N) is sufficiently small. We will give a lower bound of #Zj,
independent of the choice of the cover U. Recall that the desired lower bound is %—k 5
in Theorem 1.2 and (2t + 1)s — ¢ in Theorem 1.3, so we need to show that

1\3"°
(1.4) HIk, 2 <5> in Theorem 1.2
and
1 (2t4+1)s—t
(1.5) #HIk, 2 <5> if 1 <s<1in Theorem 1.3.

Indeed, this will imply

tis 1 %+S t
Z rd 2 (5) 637 >1 in Theorem 1.2

1€,

and

1 (2t+1)s—t
Z r§2t+1)87t > (5) S@HDs=t > 1 f % < s <1 in Theorem 1.3,

1€Lk,

which further imply that the £+ s (resp. (2t+1)s—t) dimensional Hausdorff measure
of F is positive and therefore the Hausdorff dimension of F is at least £ 4 s (resp.
(2t 4+ 1)s — ).

To show (1.4), we adapt the approach for showing the lower bound for the Haus-
dorff dimension of linear (s, 1)-Furstenberg sets used by Wolff in [16] together with
some geometric observations from planar geometry. The heuristic idea is that, since
three points determine a unique circle in the plane provided they are not collinear,
we can show that three well-separated 6-balls B;, B;, By determine a “unique” cir-
cle S(z) (not necessarily unique in reality, see the statement before (3.22)), z € V,
with the help of Lemma 2.5, which intuitively means that there exists a unique cir-
cle S(z) with z € V such that S(z) N B; # 0 for | = i,j,k. This further enables
us to identify the circle S(z) with the triple (¢,7, k). Indeed, the above manipu-
lations are motivated by Wolff [16] to show the lower bound 1/2 + s in (1.2) for
the Hausdorff dimension of linear (s, 1)-Furstenberg sets where 1/2 appears from
the fact that two points determine a unique line in the plane. For circular (s,1)-
Furstenberg sets, we can only get the lower bound 1/3 + s since we need three points
to determine a circle. On the other hand, since S(z) N F has Hausdorff dimen-
sion no less than s, we need, roughly speaking, at least ~ d=° §-balls in U to cover
S(z)NF. Hence we can identify each S(z) N F by the triples (i, j, k) € Zy, X Ty, X Iy,
(or equivalently, (B;, B;j,Bx) € U x U x U) where S(z) N B, # 0 for | = 4,5, k.
Then each S(z) N F gives rise to § *(67* — 1)(6~* — 2) ~ §~3* many distinct triples
(1,4, k) € Ty, X Iy, X Iy, representing three distinct d-balls in ¢ and therefore we ob-
tain a total number #V x §73¢ = 6735~ many distinct triples. Finally, since all these
triples are contained in Zy, X Ty, X Zy,, we deduce that (#Zy,)% = 637, which gives
(1.4). This is the rough idea behind the proof of the Minkowski dimesion version of
Theorem 1.2.
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On the other hand, inequality (1.5) is obtained by applying the result from
Kéenméki-Orponen—Venieri in [8] utilised to find the Hausdorff dimension of ¢-di-
mensional analytic sets of circles. Heuristically, as discussed above, since one needs
at least ~ d=* 0-balls in U to cover S(z) N F for each z € V, if each J-ball in U only
intersects one S(z) N F' for some z € V, then U consists of at least §S#V ~ §~5*
many J-balls. However, this may not be the case. In general, if each J-ball in U
intersects no more than §=¢ (0 < £ < t) many sets from the family {S(z) N F}.ev,
then we can deduce that U consists of at least 5:;3%‘/ ~ 5;: many J-balls. Actually,
by applying [8, Lemma 5.1|, we can show that for more than half of points z in V,
there exists S'(z) C S(z)NF with dimy S’(2) = dimy[S(2)NF] > s such that each 6-
ball in U intersects no more than §2*=2 many sets from the family {S(2)}.cy where
t(2s —2) arises from the choice of the parameter A when applying Lemma 5.1 in [8] to
guarantee (4.15) holds. We refer readers to the discussion around (4.17) in Section 4

for details. This fact will imply that there exist at least % ~ 0~1@H D=t many
S-balls in U, which is equivalent to say #Z, > 6~ [?**1)s= Hence (1.5) holds and
this concludes a heuristic discussion regarding Theorem 1.3.

Finally, we remark that we do not know if the bound max{% +s, (2s—1)t+s} in
Theorem 1.1 is sharp and we here make a conjecture that the sharp lower bound for
Hausdorff dimension of circular (s, 1)-Furstenberg sets is 34325 for 0 < s < 1. Indeed,
in the following example, based on the example in [16], we construct a circular (s, 1)-
Furstenberg set whose Hausdorff dimension does not exceed % + %s forall 0 < s <1.

Example 1.4. Due to the construction in [16, Section 1| by Wolff, for all 0 < s <
1, there exists a linear (s, 1)-Furstenberg set /' C B(0,4) \ B(0,1) whose Hausdorff
dimension does not exceed % + %s. Now considering R? as the complex plane C,
using the map w: C — C, z — %, all lines in C are mapped to circles through (0, 0).
Also noticing that w|p(o4)\B(0,1) is a biLipschitz homeomorphism, we deduce that
F' := w(F) is a circular (s, 1)-Furstenberg set with same dimension as F. That is,
dimy (F') < § + 3s.

The paper is organised as follows. In Section 2, we clarify our notations and
symbols, as well as introduce definitions and results employed in the proof. Sections 3
and 4 are devoted to showing the proof of Theorem 1.2 and 1.3 respectively. In the
last section, Section 5, we complete the proof of some auxiliary lemmas needed in
the proof of Theorem 1.2 using planar geometry.

Acknowledgement. J.L. would like to thank K. Féssler and T. Orponen for
many motivating discussions and their constant support. J.L. would also like to
convey his gratitude to the anonymous referee for pointing out a mistake in the
proof of Theorem 1.2 and for providing many valuable suggestions which significantly
improved the final presentation of the paper.

2. Preliminaries
In this paper, we denote by S°(x,7) the 6-neighbourhood of S(z,7), i.e.
S°(x,7) := B(x,r + )\ B(z,r —9).

We also use the notation z = (z,r) € R?. Moreover, we use the notation f < g (resp.
f Sng) for f < kg (resp. f < k(h)g) where k is a constant that depends only on the
ambient space (resp. the parameter h), and may change from line to line. Likewise,
f 2 g and f ~ g are understood correspondingly.
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The notation H* stands for the s-dimensional Hausdorff measure, and H?_ stands
for s-dimensional Hausdorff content. The notation | - | and || - || will denote the
Lebesgue measure and the Euclidean distance respectively in R? or R3. We also use
dist(A, B) to denote Euclidean distance between A and B where A and B can be
either points or sets. #A will denote the cardinality of a set A.

We have the following observation which makes it possible to restrict ourselves
to circular Furstenberg sets with bounded parameter set.

Remark 2.1. (i) Since we are concerned with the Hausdorff dimension of the
circular Furstenberg set F', we claim that it is enough to consider the case that F
has parameter set K C By where

(2.1) By = {(z,r) € R* |2 € B(0,1) and L <r <2}.

To see this, consider the following covering of the parameter space ]Ri. For k,I,m €
Z, let

Dk‘,l,m = {(1"7«) c R?) | = B((22m—2k722m—2l)722m—2) and 22m—1 S r S 22m+1}.
Then

R = | J Diim
kl,m
and
By = Do,0-
Hence for each ¢ > 0 sufficiently small, there exists k., [, m. such that
(2.2) dimy (K) — dimy (K N Dy j.m.) < €.

Let F, be the circular Furstenberg set with parameter set K N Dy ;. .. Denote by
S,: R? =5 R? S, (x) :=x —y for any y € R? and by D,: R* = R? D,(x) := Az for
any A > 0.

Then, letting y = (22 2k, 22™<72].) and X\ = 272" we observe that

ﬁe = D2—2m5 o 8(22m€_2k6,22m6_2l5)(F€>

is a circular Furstenberg set the parameter set K. contained in B, and satisfying

(2.3) dimy (K.) = dimy (K N Dk_s.m.)-

If Fis a circular (s,t)-Furstenberg set, then by (2.2) and (2.3), for 0 < € < ¢, we
know F. is a circular (s,t — €)-Furstenberg set and

(2.4) dimy, F' > dimy F, for every 0 < e < t.

Now, assume Theorem 1.1 holds for circular Furstenberg sets with parameter set
contained in By, then

(2.5) dimy, F, > max{5¢ +5,(25s — 1)(t —€) + s} for every 0 < e <.
Combining (2.4) and (2.5), we deduce that

dimy F > E_I}I(l)maX{% +5,(25s = 1)(t —€) + s} = max{f + 5, (2s — 1)t + s}.
Hence to show Theorem 1.1, we only need to consider the case that [’ has parameter
set K C By.

(ii) Note that |S?(x, )| < ¢od for all (z,r) € By where ¢ is an absolute constant.

We introduce the following:
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Definition 2.2. ((9,q)-sets) Let 6 € (0,1),¢ > 0, and let P C R" be a finite
d-separated set. We say that P is a (d, ¢)-set, if it satisfies the estimate
r

(2.6 #HP B} S (5
We recall from [4, Lemma 3.13] the following

Lemma 2.3. Let §,q > 0, and let @ C R" be any set with HZ (Q) =: 8 > 0.
Then there exists a (0, q)-set P C () with cardinality #P 2 (-6~ 7.

Remark 2.4. If Q C By and HZ (Q) = 3, by Lemma 2.3, we know that for any
d > 0, there exists a (0, q)-set P C @ with cardinality #P 2 §6~9. Furthermore,
letting » = diam By in (2.6), we know #P < 679, if 6 < diam By. We conclude that

Bt < #P < 679,

To show Theorem 1.2, we need to establish the following result from planar
geometry. Since the proof relies on two more auxiliary lemmas, we postpone it to
the last section.

Lemma 2.5. Let A, B,C € R? such that min{||A— B||,||[A—C]||, ||B-C]|,2} >
2c¢. For a > 0 such that a < 2—1002, define

q
) , r€R" r>4

b—a<|z—A|<b+a,
(2.7) Wi=< (z,b) eR*x [1,2]:  b—a<|z—B|<b+a,
b—a<|lz—C| <b+a
Then
) a
(2.8) diam W < =
It is worth mentioning that Lemma 2.5 shares a very similar conclusion with the
one in [16, Lemma 3.2 (Mastrand’s 3-circle lemma)|. Indeed, if we let ¢ = § = a,
r=b,A=c t=1/2—aand r; = ry = r3 = a therein, then the set W in Lemma
2.5 will be contained in Q) defined in [16, Lemma 3.2|. And the conclusion of |16,
Lemma 3.2| says that €, is contained in the union of two ellipsoids in R? with
diam Qq\ < %. Since we only consider the case 1 = ry = r3 = a (that is, Cs(z;,7;)
become balls B(z;,2a) for i = 1,2,3 in [16, Lemma 3.2|), we can deduce that W lies
in one cuboid in R? based on an approach which differs completely from the one of
[16, Lemma 3.2].
Now, we start the preparation for the proof of Theorem 1.3. Let P C R? be a
(0,q)-set. For any p € P, let A, be the Dirac measure centered at p. Then

(2.9) php = #ZAP

peEP

is a probability measure satisfying the Frostman condition pup(B(z,7)) < r? for all
z € R3 and r > §. Indeed, for any ball B(z,r) with r > § we have

pp(B(z,1)) = # (Z Ap> (B(z,7)) = #Z%(B(Zﬂ“))

peEP peEP

1
= ﬁ#(P NB(z,1)) Sri.
Below in Section 3 and 4, thanks to Remark 2.1(i), we will assume the circular
(s,t)-Furstenberg set F' has parameter set K C By.
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3. Proof of Theorem 1.2

Proof of Theorem 1.2. Let F be a circular (s, t)-Furstenberg set with parameter
set K C Bg. It suffices to show, for any ¢ >0, 0 < s’ <sand 0 <t <t,

/

t
dimy (F) > 3+ s —e.
Hence in the following, we fix s',¢ and 0 < € < %/ + 5.
We notice that there exists a > 0 and K; C K such that H!_(K;) > «, where

(3.1) K, ={2€ K |H(FNS(2)) > a}.
Indeed, by the subadditivity of Hausdorff content, and the fact

K = U{z e K| HL(FNS(z)) > i1,
we deduce the existence of a such that H!_(K;) > « for K, defined as in (3.1).

Next, since € > 0, we can find §y = dg(€, ') > 0 sufficiently small such that for
any 0 < d < &y, we have

1 *(%JF%)
(3.2) 0 ¢ <log 3) > 1.
and
) 1 1/s 1 2/s'
) 4 = =71 | = — 1.
(3.3) 6400 <7 =71(0) = (16) <log%) <

Then we choose ky to be an integer larger than log(%) also satisfying

(3.4) a>> %

k=ko

Now, we outline the main steps of the proof. We start with an arbitrary cover
U = {B(z;,7;) }iez of F by balls of radius less than 27%0. In the sequel, we will derive

a lower bound
ng ze,t/,s’ 1
€T
with 0 = t//3 + s’ — € independent of the choice of the particular cover. This will
imply
H?(F) > 0.
To this end, we divide the proof into 4 steps. Let

Ik; = {Z cl | 2—(l€+1) <r; < Q_k}’ Fk = {U B(ZEZ',TZ') | 1€ Ik} .

First, in Step 1, we will deduce that there exists ky > ko and a (9, )-set V C K
with § = 27% such that for every circle z = (x,7) € V, we have

(3.5) HE(S(2) N Fy,) > k2

Then, in Step 2, we modify Wolff’s approach for linear (s, 1)-Furstenberg sets to
fit our circular case. For each circle S(z) with z € V, we will extract from S(z) three
T-separated arcs h, h,hX such that

z?r "z "z

(36) Hglo(h: N Fkl) Z kf27 Hg;(h; N Fkl) Z kfzv Hg/o(h: N Fkl) 2 kIQ

~Y
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These arcs enable us to define an index set 7 C Zy, X Zy, X Zy, x V whose
cardinality will be estimated in the following steps and will imply the lower bound
for #7y,.

Next, in Step 3, we will deduce that the cardinality of T is upper bounded by
the cardinality of Zj, with the help of Lemma 2.5. Indeed, we will show

#T /S (#Ikl )37‘76'

Finally, in Step 4, we will estimate the lower bound of #7 which also serves as the
one of #Zy,, hence #Z with the aid of (3.6). This will enable us to conclude the
proof.

Step 1. Let « be as in (3.4). Hence by pigeonhole principle we deduce that for
each S(z2) € K, there exists k(z) > ko such that H5 (S(z) N F N Fy)) > k(2)72

Moreover, by applying pigeonhole principle again we obtain that there exists
ki1 > ko such that

(3.7) HE(K,) > ki?

where Ky := {2z € Ki: k(z) = ki }.
We remark that for every circle z € K5, we have

(3.8) 0o > M (S(2) N Fr) > HE(S(2) N F N Fy) > k2.

By letting 6 = 27%1, ¢ = ¢’ and Q = K5 in Lemma 2.3, we know that there exists
a (0,t")-set V C K, with cardinality
(3.9) #V 2> H(Ky) - 67"

Hence for every z € V, (3.8) implies (3.5), which concludes Step 1.
Step 2. We start the procedure of extracting three disjoint arcs for any S(z), z =
(z,r) € V, which is illustrated in Figures 1, 2 and 3. Let
0= n(2) = Hi(S(2) N Fr,).

Also let v = (%)1/5/. Divide S(z) into N arcs I,--- , Iy such that

e the length of I1,--- , In_1 is 7,
e the length of Iy is at most 7,
e and Nvy > 2mr.

Since v = (1’7—6)1/5/ < 1z and z = (z,7) € By implies 7 > £, we know

NSLUSGETS
T 16
Note that if [ is an arc in S(z), then
(3.10) HE (1) < (diam I)* < (HY(I))*.
This implies for all l =1,--- | N,
(3.11) WL N Fy) <HL(L) <~ = 177—6.

See Figure 1 for N arcs.
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Figure 1. N arcs on S(z).

Since

n=HL(S(z) N Fy) = HL (UL, LN Fy)
<HLUNSP LN F) + 5N o HL (LN Fy)
<HL(ULPLNE,)+ 124

where in the last inequality we use (3.11), we obtain
HZ;( 11\512 LN Fk1> > 4117]-

This guarantees that there exists Ny € [2, N — 12] which is the smallest integer
satisfying

(3.12) ML (U LN Fy) > 4
and
(3.13) Ho (U LN Fy) < L.

Let ht := U, ;. By (3.12) and (3.13), we know

]. / ! — /
1< H(hD) < MU L0 F) + HE (D, 0 F)
1 1 3
3.14 < - —n = —n.
(3.14) <Nt 1" = 16"

See Figure 2 for the construction of h}.
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Figure 2. The construction of h}.

Hence the arc h} satisfies the first inequality in (3.6). We continue to construct
the other two arcs. Notice that

(315) LU TN F) < ML) + HL (T N Fi) < 30+ 4 = 1o

We remark that since Ny < N — 12, we know N; +1 < N — 11. Combining this,
(3.15) and (3.11), we have

n:Hi(U;V1]lka1)
<HL (U LN Fry) + 1o (Uien o LN Fry) + 0 v Ho (L N Fy)
1
Z +HS( 1= N+2]lﬂFk1)+8
which implies

HS( 1= N+2IlﬂFk1)2i7}-

Hence we can find Ny € [N] 4+ 3, N — 8] which is the smallest integer satisfying

(3'16) HS ( 1= N+2[lka1>Z%77
and
(3.17) H(Unlhe TN Fy) < L.

Let h; = J"y, o i By (3.16) and (3.17), we know

1 _ /
—n S HE(hD) < He (Upen o TN Fiy) + HE (In, N Fyy)

8

11 3
1 < nd—n= "p.
(3.18) =37 16" 16"

The construction of the third arc h} C S(z) is similar. See Figure 3 for an illustration.



Dimension estimates on circular (s,t)-Furstenberg sets 309

hz
In,+2 Iy,

Figure 3. The construction of A and h}.

That is, we can find A} = Uf\fNﬁQ I; for some integer N3 € [Ny + 3, N — 2] such
that

1 / 3
3.19 —n <H (h)) < —=n.
(319) 1< HL(R) <
We omit the details here. By the construction, it is clear that

dist(hf, h,) = diamly, 1, dist(h,, h)) = diamly, ., and dist(hF, h)) > diamIy, ;.

z1'%z z)' 7z z)' "z

Recall forany 1 <1 < N—1, HY(I;) = v. Hence diaml; > 7 'y forany 1 <1< N—1.
We conclude that

min{dist(h, k), dist(h;, hX),dist(h], h})} > 7 1.

zr'7z z) "z zr "z

Therefore, for each circle S(z), we have found three m~!v-separated arcs h}, h;

h} C S(z) with the property in (3.14), (3.18) and (3.19) respectively. Furthermore,
recalling v = ()V* and n > & = m, we deduce that hl,h;,h) are 7 =
1 og 5
7r_1(1—16)1/5'(@)2/Sl—separated. Hence by combining with (3.8), we have showed that
5
(3.6) holds.

We end Step 2 by defining

N F, 0B, #0,
T = <i+,i_,ix,2) eIkl kal X:Zkl xV: hz_ kal NB; 7é Q),
h N F, OB #0

where B;, = B(x;,,ri,), Bi_ = B(x;_,r;_), and B;, = B(x;,,r:,). In the following,
we will write x; instead of z;, for short and other lower indices will be abbreviated
correspondingly.

Step 3. We estimate #7 from above.

First we fix i, ,7_, 7« and estimate the upper bound of the number of z € V' such
that (i4,i_,ix,2) € T, where V is chosen as explained above (3.9).

To this end, we observe that a necessary condition for (iy,i_,ix,2) € T is that

(320) S(Z) N Bu # @, S(Z) N BL # @, S(Z) N Bix # Q)
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and

-
(3.21) min{||z; —z_||, [|z3 —ax]|, ||z —2x]||} > T =20 =7 — V46 > 3
since hi,h;,h} are T-separated and B;, = B(zy,ry), B, = B(z_,r_), B,

B(zy,ry) are balls of radius between 6/2 and 6. Moreover, in the last inequality of
(3.21) we recall (3.3).

Hence we will provide an upper bound of z satisfying (3.20) and (3.21) in the
following. Assume for some z = (x,r) € V, (3.20) holds. Then we know

r—0<|lx—zy| <r+d0 r—0<|lzr—z_||[<r+d r—0<|rv—a <r+4,

which implies

(z,r)el:=1¢ (y,d)eR*x[5,2]: d—06<|y—a_| <d+3,
d=0<|ly—axll<d+0

by the fact that z € By implies r € [3,2]. Also by (3.21) and by 6 < 75 ® from (3.3),

610
we can apply Lemma 2.5 with AABC Azyr_ry, a =0,b=rand c= 7 to

deduce that

diam " < %
T

Recall V is a d-separated set in By C R3. Then for any z,2/ € VNT,
B(=8) N B(+,3) =0,
which, together with diam(V NT) < 6772, implies

U B3| S

zevnl’

Hence #(V NT) < 775 We can deduce that there are at most only < 775 many
z € V satisfying (3.20) for fixed i, ,i_ and i.. As a consequence, we have

(322> #T f§ #Ikl X #Ilﬂ X #Ikl x 770 5 (#Ik1)3 NS’ (#Ikl) (10g )12/8
which completes the proof of Step 3.

Step 4. We estimate #7T from below. To this end, recall Fy, = Uiezle(xi, Ti)-
Hence for any z € V', we have

hfNnF, C U B(xi,ri), h; NFy, C U B(x;,ri), hlNEF, C U B(xz,1;).
’iEIkl iEIkl iGIkl
For each z € V|, define
I,jl(z) ={i €Iy, | h N B(xy,r;) # 0}, Tp (2) ={i € Ty, | h; N B(ai, i) # 0},

and

#(VNT)6* ~ #(V NT)|B(z3)| = [diam (V N T)]* < §377°.

Ty (2) :={i € Ty, | b2 0 B(wi,ri) # 0}
With the help of (3.6), we have

<log§>2 Se H (BN Fu) < 3 (diamB(ai, )" ~ ) 07 < #I(2)8

ieI,jl( 2) zEI*l( 2)
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for all z € V', which implies
1

(323 HIE() 20 5

(log3)™ forall z€ V.
Similarly, we have

1 1
(3.24)  #I.(2) 2« ﬁ(log 57 and #I)(2) 2o E(log b7 forallze V.

On the other hand, recalling the definition of 7 in thew end of Step 2, we know
T = JZ (2) x I, (2) x T} (2) x {z}.

zeV

Employing the lower bounds in (3.23) and (3.24), we arrive at
: : _ : X 1 _
#T > min {#I,1 (2) } x min {#T,] () } x min {#I} ()} x #V 2o =5 (log5)"#V.
Combining (3.7) and (3.9) we conclude
1 _
#T 2o Sauzw(l0g 575
Recalling (3.22) we obtain

1

1 O\ V3 o 1 s
HT, 2 (W(l()g%) 8) (lOg%) 12/s" _ T (log %) (5+57)
We deduce that

s'+t'/3—e s'+t'/3—¢ —k1 (s’ +t"/3—¢)
E :Ti > E Tz st 2

i€l €T,

2 (5_6(10g%)_(%+%) > 1.

(8,12
s (log )T

where in the third inequality we recall § = 27" and in the last inequality we recall
(3.2). This enables us to deduce
t/

dimH(F)Zs'+§—e

for any 0 < s’ < s, 0 <t <t and e > 0. Therefore,

t
dimy(F) > s + 3

We conclude the proof. O

4. Proof of Theorem 1.3

To show Theorem 1.3, we define the multiplicity function mj(w) : R* — [0, 1]
with respect to a finite measure p on R3:

(4.1) mh(w) == p({z € R® |w e S°(2)}).

We recall [8, Lemma 5.1], which is a variant of Schlag’s weak type inequaltiy [14,
Lemma 8| and the main lemma in [15] by Wolff:
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Lemma 4.1. Fix t € (0,1], 6 > 0,7 > 0,C > 1, and A > C, ¢, - 07", where
Cy,ct > 1 is a large constant depending only on n, C and t. Let p1 be a probability
measure on R? satisfying the Frostman condition p(B(z,7)) < Cr' for all = € R? and
r > 0, and with D := spt y C By where By is defined in (2.1). Then, for X € (0,1],
there is a set G(A,d,\) C D with

w(D\ G(A,5,)) < A3
such that the following holds for all z € G(A,§,\):
[5°(2) N {w | mf(w) > AN} < A|S°(2)].
Remark 4.2. We remark that the assumptions on p in Lemma 4.1 can be slightly

relaxed, which means we can apply Lemma 4.1 for measures u satisfying that

(i) w is a finite measure with total mass smaller or equal to 1 supported on By;
(ii) p enjoys Frostman condition

w(B(z,r)) < Cr* forall z€ R and r > 6.

Indeed, in the proof of |8, Lemma 5.1|, the fact that the total measure pu(D) =1
was only used at the beginning to reduce the proof to the case that ¢ is small. See
the first paragraph of the proof therein. Moreover, the Frostman condition was only
applied to balls in R?® with radius § < r € [C4, 1] where C' > 1 in their proof. See the
inequality above (5.4), the definition of B below (5.22) and inequality (5.24) therein.
Hence we can reduce the assumptions in Lemma 4.1 to (i) and (ii) above for the
measure .

Proof of Theorem 1.3. Let F be a circular (s, t)-Furstenberg set with parameter
set K C By. It suffices to show, for any ¢ > 0, % <s <sand 0 <t <t,

dimy(F) > (28’ — 1)t + s —e.

Hence in the following, we fix €, s',t'.

Let @« > 0 and K; be as in (3.1). Now we clarify the choices of parameters
appeared in the ensuing proof and we remind that all parameters are unrelated to
those in the proof of Theorem 1.2. First, we choose

(4.2) n =min{e/2t', (2" — 1)/2}.

Then there exists 6y = dp(€, s', ') > 0 such that for any 0 < 0 < Jp, we have
(4.3) 5 (log 1)+ < 55 (log 1)0H < 1,

(4.4) 5% (log 1)? < 111

and

(4.5) Choms = (Cpow) (2c04% )%,

where C and C;, cy > 1 are the constants appeared in Lemma 4.1 and ¢y is as in
Remark 2.1(ii), i.e. |S°(x,7)| < cd for all (z,7) € By.
Let ko be the smallest integer larger than (log %) also satisfying

(4.6) o> o

k=ko
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Now, we outline the main steps of the proof. We start with an arbitrary cover
U = {B(x;, ;) }iez of F by balls of radius less than 27%. In the sequel, we will derive
a lower bound
Z 7’ 6 s 1

1€
with 0 = (2t + 1)s’ — t' — € independent of the choice of the particular cover. This
will imply
H(F) > 0.
To this end, we divide the proof into 3 steps. Let
Ik = {Z erl ‘ 27(k+1) <7 < 27’6}, Fk = {U B(.Z'“T'i) ‘ 1€ Ik}

First, in Step 1, we will deduce that there exists ky > ko and a (9, )-set V C K
with 6 = 27" such that

(4.7) F TS HV S5,
and for every circle z = (z,7) € V, we have
(4.8) HE(S(2) N Fy,) > k2

Next, in Step 2, we associate a finite measure p supported on V' using (2.9).
Then we apply Lemma 4.1 to obtain that there exists G C V and S9(z) contained in
the d-neighbourhood of S(z) N F},, such that for every z € G and w € S3(2),

(4.9) #{7 eGlwe 55( N} <v Cn,c,t',s/(st/@s/*%”)(log %)4t’+2.

Finally, in Step 3, we will provide a lower bound of the cardinality #Zy, by
combining the upper bound in Step 2 as well as the lower bounds on the cardinality
#G and the Lebesgue measure |S9(z)|. Explicitly, we have

1 1
#Ikl Ze,t’,s/ 5(2t’+1)s’ —t/(14n) (10g )6+4t"

This will enable us to conclude the proof.

Step 1. Employing the same arguments as in Step 1 in the proof of Theorem 1.2,
we can deduce the existence of k; and V C K, C K satisfying (4.8) and the first
inequality in (4.7). The second inequality in (4.7) is derived from Remark 2.4. Here,
we omit the details.

Step 2. Define py asin (2.9) applied to P = V. Then we know py is a probability
measure satisfying the Frostman condition

v (B(z, 1)) < CHY(Ko) 7! < Ok = C(log 1)
for all z € R? and r > §. Hence by setting
Ky

>

(log 3
we know that 4 has total measure (log $)™2 < 1, sptu = V' C By and
w(B(z,r) < Cr' = Cr"

W=

for all z € R? and r > 4.
Let mi be the corresponding multiplicity function with respect to u defined as
n (4.1).
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Applying Lemma 4.1 with ¢t =#, § = 27%1 p as in (4.2), u = (log %)_2/“/, D=V
and

(4.10) A= (2004 k)15,

we obtain that for A = C, ¢y - 677, there is a set G = G(ky,s',t',¢) C V with
(4.11) w(V\G) < A3

such that the following holds for all z € G:

(4.12) 1S%(2) N {w | mi(w) > AYAT260 Y < M[S%(2)].

Because |S°(2)| < ¢od for all z € By, (4.12) becomes

(4.13) 1S%(2) N {w | mi(w) > AYAT2 61} < o).

Moreover, recalling that 6 = 27% and k; > kg, we know that 0 < § < &,. Hence by
Ch.cy > 1, (4.4) and the choice of 7 in (4.2) we deduce

A5 < 6% <

Hence (4.11) becomes
(4.19) H(V\G) < (V).

For z € G, let Si(2) := S(z) N F}, and S¢(z) be the §-neighbourhood of S;(2).
Our next goal is to substitute the right hand side term \|S°(2)| in (4.12) by the term
$159(z)| with the help of the proper choice of A as in (4.10). This means, in the sense
of 2-dimensional Lebesgue measure, more than half of the points in S?(z) have low
multiplicity. To this end, we claim that

(4.15) 1S2(2)| > 52

45’ k:2
To see (4.15), let P(z) be a maximal 20-separated set in S;(z). Then UpeP B(p,20)
forms a cover of S;(z). Hence

M3 (S1(2) < #P(2)(49)".

which, combined with (4.8), implies
/ 1 1 1

P(z) > H: — 2 5=
# (2) el Hoo(sl(z))(45)5/ - 45/1{3% 55
On the other hand, we have |, p(.) B(p,0) C S9(z). Hence by {B(p,d)}pep(») being
mutually disjoint, we deduce

’Sf(z)‘ 2 |Up€P(z) B(p75)’ = #P527T > 45’ k252 ¢ > 45’ k,‘252 s

which gives (4.15).
Noticing that |S°(2)| < ¢od, Si(2) C S(2) and combining (4.13) as well as (4.15),
we arrive at

(4.16) 1S3(2) N {w | mb(w) > AYNT261 Y] < Aepd < Aepd® k26% 1S9 (2)).

Now recall A = Cycp - 67" and A = (2¢04"k}) 716175 = (2¢p4*) ' (log )26
Then (4.16) becomes

1(2g! —1— ’ 1
1S9 (2) N {w | mi(w) = Cyop,wd” @1 (log 5)*} < §|Sf(2)|
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where we recall C, ¢y ¢ defined in (4.5).
For each z € (G, define the low-multiplicity set

S3(2) == {w € 8(2) | mf(w) < Cpowsd" 17 (log 1)}
Then we have
1
(4.17) 1S8(2)] = 184

See Figure 4 for an illustration of Si(z), S2(z) and S3(2).

s%(2)

59(2)

SNS5)
5.(2) = S(2) N Fy,

S(2)

5°(2)

Figure 4. An illustration of S;(2), S{(z) and S9(z).

Notice that mf(w) < Cycp,s0" 717" (log 1)* is equivalent to
u({z e R3 lw e 55(2/)}) < Cn,C,t’,s’(St/(QSI_l_n)<1og %)41#,
which, combined with (4.7), indicates that for w € S3(z), it holds
#{Z’ c 174 | w e Sé(zl)} S #V . C’I’],C,t/,slét/(ZS/ilin)(]'Og %)4t’+2
S Co g8 @727 (log 1)4+2,

Furthermore, by the inclusions G C V and S3(2) C S%(z), we conclude (4.9), which
finishes Step 2.

Step 3. We will lower bound #Z, in the following. First notice that if {S°(2)}.cq
were mutually disjoint, we could lower bound #Z;, by summing up the number of
balls B; (i € Zy,) needed to cover each S3(z) since no ball could simultaneously
intersect two of these sets. However, in general, {S°(2)}.c¢ may not be mutually

disjoint, which needs a bit more efforts to get the lower bound of #Zj,.
Let

ﬁkl = U B(.TZ,47’1)

1€7L,
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We deduce that
(4.18) U Si(2) € F,.

zeG
Indeed, for any w € S9(z), there exists w’ € S(z) N Fy, such that
|lw—w'|| <.
On the other hand, we know that w’ € B(x;,r;) for some z; € 7, and r; > 2~ 1+l =
d/2, which implies
[ — ]| <7y
and hence
|lw— ;|| <+ < 3r,.
In addition, by (4.7) and (4.14), we can infer that
1 1
4.19 G2 .
(419 #OZHY 2 g T
Moreover by recalling (4.9) we obtain that for every w € |, S3(2),
N(”LU) — #{Z, cq ’ = S(S( )} <y Cn,C,t’,s’(st,(QS/_z_n)(log %)4t’+2

and hence combining (4.19), we can estimate

USS Z/Xs5 )dw

zeG

Nt’ (C Ct'.s 52&’ (2s'—2— n) lOg 4t’+2 Z ‘Sé

zeG
1 1 1 1

> / ! ol 71 ] 6
Zi (Chcps) 5t (2s'—2—) (log 1yat/ 42 5t (log )2 12151{|S2<Z)|}
N 1 11 1 o, 1
~mn,t’,s 1(2¢'—2— ’ NY

n St (25'—2—n) (log %)4t +2§t (log %)2 (log %)2

where in the last inequality we employ (4.15) and (4.17). Therefore, combining (4.18)
and (4.20) we arrive at

U $:)

zeG

(4.20)

1 1 1 1 o 1
Rt Syaa—a ) (log 1)#'+2 67" (log 1)? (log §)*’

#Ik152 Z ‘ﬁkl

which implies
1 1
#Ly Znis SRIHDS =V (1) (log Tyo+ar

Since 7y, C Z, we deduce that
Zﬂ(zt'ﬂ)sutug > Z r§2t’+1)s’7t’76
i€T i€y,
1 1
@A~ (14n) (Jog 1y6+av

>

—k1((2/+1)s'—t'—€
Nn(eyt,)’s/) tlusl 2 (( ) )

1

> 5t’n—e
~ (E,t/,S/),t,78/ 1 644t/
(log §)

n

€/2 1

(log 1ys+4¢ > 1,

N€tl 15
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where in the third inequality we recall § = 27%1 and in the fourth as well as the last
inequality we recall (4.3). This enables us to deduce

dimy (F) > 2t/ +1)s' —t' — ¢
for any % <s <s,0<t <tande>0. Therefore,
dimy (F) > (2t +1)s —t = (2s — 1)t + s.

We conclude the proof. O

5. Proof of Lemma 2.5

This section is devoted to the proof of Lemma 2.5. For the readers’ convenience,
we restate Lemma 2.5 in the following.

Lemma 5.1. Let A, B,C € R? such that min{||A—B||,[|[A—=C||, |B—C|} > 2c
with ¢ < 1. For a > 0 such that a < 3¢*, define

b—a<|z—Al|<b+a,
W:={ (z,b)eR?*x[5,2]: b—a<|z—B|<b+a,
b—a<|z—C|<b+a

Then
diam W < %.
c

We briefly explain the approach. We will decompose W' as

w= |J w) x .

belC[1/2,2]
Then for each fixed b,

b—a<|z—A|<b+a,
Wh):=8 zeR?*: b—a<l|lz—B|<b+a, p=S5MADbNS*B,b)NSYC,b)
b—a<|lz—C||<b+a

is a subset in R? formed by the intersection of three annuli. We will show that
W(b) # 0 only for b ranging in a set I with diameter < %. Moreover, if W(b) #
(0, then A, B,C form a non-degenerate AABC with circumcenter M and W (b) is
contained in a rhombus centered at M with diameter < 5. This will imply

a

diam W' < —
c

The above justification is contained in next two auxiliary lemmas. In what follows,
given A,B € R? and 0 < a < ;—Z, we denote by R the rectangle centered at the
middle point of AB whose short sides have length 9—6“ and long sides have length 6

parallel to the bisector of AB.
Lemma 5.2. Let A,B € R? and b € [£,2]. If ¢ < min{1, 12221} and 0 < a <
% < 1, then
S%(A,b) N SYB,b) C Ry5.
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Proof. Let ||A — B|| = 2u. Without loss of generality, we assume A = (—u,0)
and B = (u,0). It is easy to see that

S*(A,b) N SB,b)
={reR?|b—a<|r—A|<bt+a, b—a<|z—B| <b+a}
CU = {r = (11,15) € R? | max{||z — A|, ||z — B||} <3,

20 <o — Al - o — BJ < 2},

Since u = @ > ¢ > a, from planar geometry we know that the set
{z eR*|||lz — Al| - ||z — B|| = +2a}
consisting of points, whose absolute difference of distances to the two fixed points A
and B is the constant 2a, is a hyperbola in R? determined by the equation
y(z) = y(a1,22) =1
where y : R? — R is defined by

2 2
T )

y(r) = y(z1, 229) > 2

w2 —a?
Then we observe that
{r eR*| —2a < ||z — A|| — ||z — B|| < 2a} = {x € R? | y(a1,25) < 1}
and hence
U = [B((~u,0),3) N B((u,0),3)] N {z € R? | y(x1,2) < 1},

which implies
UcC{xcR?||xg| <3, y(o,2) <1}

Figure 5 shows the case that v = 2 and a = 0.75.

y(xlrxz) =1

Figure 5. The case u = 2 and a = 0.75.
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Letting |z2| = 3 in the equation y(z1, z2) = 1, we have |z1]| = a,/1 + 2. Since

20a < ¢ < 1 and u > ¢, it holds

9 9 9 81 9a
e LT R v it P

This implies that the rectangle with four vertices (:t%%, +3) has short side length 97“
and long side length 6. By recalling the definition of R%%, we have

S%(A,b) N S%(B,b) C U C RE, = {x € R? | |z1] < 22, |o| < 3},

= 2¢

@

which concludes the proof. O

Lemma 5.3. Let A, B,C € R? such that min{||[A— B||, |[A—C|,|B—-C]||,2} >
2c. Let b€ [5,2]. Then for a > 0 such that a < 55¢* < b, define

b—a< - Al <bta,
(5.2) Wh):=8 zeR?*: b—a<|z—B|<b+a,
b—a<|lz—C| <b+a

If the triangle AABC' is degenerate, then

(5.3) W) =0 forallbe [%,2].

If AABC' is non-degenerate, let M be the circumcenter of AABC' and
hi=|M = Al = [[M = B|| = [M - C]|.

Then, we have

(5.4) W) c B(M,K%) forallbe [},2].
In addition, if W (b) # (0, then
(5.5) belh—K&% h+K%|N[32].

Here in (5.4) and (5.5), K is an absolute constant.

Proof. Without loss of generality, we assume the side BC' of AABC has maximal
length. Then LA := ZBAC > w/3. Since W(b) = S*(A,b) N S*(B,b) N S*(C,b),
from Lemma 5.2 we know
(5.6) W(b) C R%5 NRE.

Below we estimate diam(R%; NR%¢) from above.

Denote by L; and Lo the bisector of AB and AC respectively. Hence D :=

Ly N AB is the middle point of AB and F := L, N AC is the middle point of AC.

See Figure 6 for an illustration.
Let d = %% Since 20a < 2, we have

(5.7) d= 22 << 1<

Case 1. ZA = m. That is, AABC degenerates. By (5.7), it is easy to see
R5%% NR%GE = 0, which, with help of (5.6), implies
W) =0 foralbels,2].
That is, (5.3) holds.
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Figure 6. An illustration for Ly, Ly, R and RY¢.

Case 2. LA € (m — arctan(2¢/9), 7). We will show that
(5.8) REC AR, = .
Denote ||A — B|| = 2u and ||A — C|| = 2v. Since M is the circumcenter of AABC,
it is the intersection of lines L; and L,. Then the line L3 passing through A and
M divides R? into two connected components. Since the center D of R%% and the

center E of R¢, are contained in different connected components above and d < ic
by (5.7), a sufficient condition for R%5 N R, = 0 is that

(5.9) R ALy =0 and RN Ly = 0.

See Figure 7 for an illustration.

Ly L,

a,c a,c
RAB RAC

Z®

Figure 7. An illustration for Case 2.

Recall that half of the length of the short sides of R%%; and R%¢, is d = §¢. By as-
sumption ZA € (m —arctan(2¢/9), 7), this implies ZDM A+ ZEM A < arctan(2¢/9).
Hence

2c _c—d _u—d 2c _c—d _v—d
10) tanZDMA < — < < d tan/EMA < — < <

(5.10) tan <g <3 <5 and tan 5 <3 =3

where in the second inequality we apply d < £ from (5.7). Now we explain how (5.10)

implies (5.9). Let D’ be the intersection of the line segment AD and the long side of

the triangle R%%. Also, let L] := Ly + (D' — D). That is, line L} is the translation
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of line L; by the vector D' — D in R?. Denote the intersection of L} and Lz by M.
See Figure 8 for an illustration.

L,

Z®

Figure 8. An illustration for D', M’ and Lj.

We observe that

A=D1 u-—d

D =M D= M|
where in the last inequality we recall that ||[A—D’|| = ||A—D||—||D-D'||, ||[A—D|| = u
and ||D — D'|| = d. Combining (5.10) and (5.11), we deduce that

u—d (511 ,oo . (6:10) u —d
_ 478 OV n /D MA <
D' — | an 3

(5.11) /D'M'A=/DMA and tan/ZD'M'A

which implies

| D" — M'|| > 3.
This, combined with the fact that half of the length of the long sides of R%% is 3,
shows that

RY5 N Ly =0.
By a similar argument, we also have R%: N Ly = @ with the help of (5.10). This
shows that (5.9) is true and hence (5.8) holds.

Case 3. LA € [rn/3,m — arctan(2¢/9)]. In this case, W(b) may not be empty.
Now, we assume that W(b) # (), which implies that R%5 N R # 0. Moreover,
denote by Vﬁi the closed d-neighbourhood of lines L;, i = 1,2. Then V§ NV{ is a
rhombus Ty, centered at M satisfying R%5 N R%¢ C T We will show that

(5.12) diam Ty < 324
C

See Figure 9 for an illustration.
Denote the length of two diagonals of Ty, by d; and dy and the the length of four
sides of Ty by I. We have

(5.13) diam Ty = max{dy, dp},
(5.14) d? + d% = 41
and
2d
1 | = :
(5.15) sin ZA
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ZA

Tm
Figure 9. An illustration for the estimate ||y — M.

Since ZA € [r/3,m — arctan(2¢/9)], we have
. : 2c e
(5.16) sin ZA > sin | arctan — | > sin — > —
9 9 7 18

where in the second last inequality we use the fact that arctany > % if 0 <y < 1
and in the last inequality we use the fact that siny > 2 if 0 <y < 1.

Combining (5.13), (5.14), (5.15) and (5.16), we obtain
2d
(5.17) diam Ty, < 21 < 77 - 324%

where in the last equality we recall d = %% Therefore, we conclude (5.12).
Combining Case 2 and Case 3, we conclude (5.4).
Finally, we show (5.5). Let € W(b). By (5.2) and (5.13), we have

a a
b=hl=b—IM-All <p=]z-All+ ]z -Ml|Sat+ 5 < 5

The proof is complete. U
Now, we are in a position to show:
Proof of Lemma 2.5. For b € [3,2], define
W (b) := W(b) x {b}
b—a<l|z— Al <b+a,
=< (z1,29,23) = (v,23) €R3: b—a<|z—B||<b+a, z3=0

b—a<|o—C|<b+a,

First we assume AABC degenerates. Then by (5.3), we know

W(b)=0 forallbell 2.

Hence the lemma holds for this case.
Next, we assume AABC' is non-degenerate. Then by (5.4), we have

(5.18) W (b) C B(M,b), K%)N{z3=b} CR*® forallbe [1,2],
where M is the circumcenter of the triangle AABC.
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Since W (D) # 0 implies h — K% < b < h + K% from Lemma 5.3, we know

(5.19) we | woc U W (b).

{b|W (b)£0} belh—K & htK %]

Then combining (5.18) and (5.19), we deduce (2.8), i.e.
diam W < =,
c

which finishes the proof. U
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ABSTRACT. For0 < s < 1and 0 <t < 3,aset F < R?is called a circular (s, t)-Furstenberg
set if there exists a family of circles S of Hausdorff dimension dimy S = ¢ such that

dimu(F n S) > s, SeS.
We prove that if 0 < ¢ < s < 1, then every circular (s, t)-Furstenberg set F — R? has

Hausdorff dimension dimpg F' = s + t. The case s = 1 follows from earlier work of Wolff
on circular Kakeya sets.
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2 KATRIN FASSLER, JTAYIN LIU AND TUOMAS ORPONEN

1. INTRODUCTION

We start by introducing a few key notions. Throughout the paper, we identify families
of circles S with subsets of R? x (0, o) in the obvious way: the circle S(x,r) with centre
r € R? and radius r > 0 is identified with the point (z,7) € R? x (0,00). With this
convention, if E < R? x (0,), then the Hausdorff dimension of the circle family S =
{S(z,r) : (x,r) € E} is defined to be

dimg S := dimg E.

Definition 1.1 (Circular Furstenberg sets). Let 0 < s <land 0 <t < 3. Aset F c R%is
called a circular (s, t)-Furstenberg set if there exists a family of circles S with dimpy S > ¢
such that dimy(F n S) > sforall S € S.

Equivalently, there exists a set E < R? x (0, o0) with dimyg E > t, and with the property
that dimy (F n S(x,r)) = sforall (z,r) € E.

Our main result is the following:

Theorem 1.2. Let 0 < t < s < 1. Then, every circular (s,t)-Furstenberg set F = R? has
Hausdorff dimension dimy F' > s + t.

Remark 1.3. After the first version of this paper was posted on the arXiv, Zahl [29, The-
orem 1.12] proved a significant generalisation of Theorem 1.2, which covers much more
general "curvy" Furstenberg sets and yields the same lower bound dimy F' = s + t.

Theorem 1.2 will be deduced from a more quantitative J-discretised version, Theorem
1.8 below. To state this version, it is convenient to introduce the following subset of the
parameter space R? x (0, 00), where the centres are near the origin, and the radii are
bounded both from above, and away from zero:

Notation 1.4 (The domain D). We write
D := {(z,r) e R* x [0,00) : |z| < sandr e [3,1]} (1.5)

A similar normalisation already appears in Wolff’s work on circular Kakeya sets, for
example [27]. As long as we restrict attention to circles S(p) with p € D, his geometric
estimates will be available to us, including [27, Lemma 3.1].

The following definition will be ubiquitous in the paper:

Definition 1.6. Let s > 0, C > 0, and § € 27N, A bounded set P c R? is called a
(0, s, C')-set if

|P N B(x,r)|s < Cre|Pls, zeRY r =4
Here, and in the sequel, |E|s refers to the number of dyadic J-cubes intersecting E. We
also extend the definition to the case where P is a finite family of dyadic J-cubes: such a
family is called a (0, s, C')-set if the union UP is a (4, s, C')-set in the sense above.

The following observations are useful to keep in mind about (9, s, C)-sets. First, if P
is a non-empty (4, s, C)-set, then |P|s > C~15=%. This follows by applying the defining
condition at scale » = §. Second, a (9, s, C')-setis a (6,¢,C)-set forall 0 < ¢ < s.

It turns out that the critical case for Theorem 1.2 is the case s = ¢: it will suffice to
establish a d-discretised analogue of the theorem in the case s = ¢ (see Theorem 1.8
below), and the general case 0 < ¢ < s of Theorem 1.2 will follow from this. With this in
mind, we introduce the following J-discretised variants of a circular (s, s)-Furstenberg
sets. In the definition, mps : R® — R3 stands for the map mps (1, ..., z5) = (21, 72, T3).
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Definition 1.7. Let s € (0,1], C > 0,and § € 2N, A (4, s, C)-configuration is a set Q  R®
such that P := 73 (f2) is a non-empty (4, s, C')-subset of D, and E(p) := {ve R?: (p,v) €
1} is a non-empty (4, s, C')-subset of S(p) for all p € P. Additionally, we require that the
sets E/(p) have constant cardinality: there exists M > 1such that |E(p)| = M forallp € P.

If the constant M is worth emphasising, we will call © a (6, s, C, M )-configuration.
Conversely, if the constant C' is not worth emphasising, we will talk casually about (9, s)-
configurations (but only in heuristic and informal parts of the paper).

We note that automatically M > 6~°/C, since E(p) is a non-empty (4, s, C)-set, but it
may happen that M is much greater than 6 7.

Theorem 1.8. For every x > 0 and s € (0,1), there exist €,y € (0, 5] such that the following
holds for all 6 € (0, do]. Let Q be a (9, s,0~¢, M)-configuration. Then, | F|s; = 6"~°*M, where

F=J EW®).

peP

The proof of Theorem 1.8 is based on starting with a (9, s, §~)-configuration €2, and
refining it multiple times (the required number depends on « and s) until the following
total multiplicity function of the final refinement is uniformly bounded from above.

Definition 1.9 (Total multiplicity function). Let Q c R® be a bounded set, and let § > 0.
For w € R?, we write

ms(w | Q) := |{(p,v) € Q:we B(v,0d)}s. (1.10)

The total multiplicity function is called this way, because we will also introduce "par-
tial" multiplicity functions (denoted m; ) ;) which do not take into account all pairs (p, v) €
(2, but rather impose certain restrictions on p, depending on the parameters A and t.

The next theorem contains the technical core of the paper, and it implies Theorem 1.8.

Theorem 1.11. For every x > 0 and s € (0, 1] there exist 5o, € € (0, 3] such that the following
holds for all § € (0,6¢]. Let Q = D x R% be a (6, s, 6~¢)-configuration with |P| < 6=5~¢. Then,
there exists a subset Q' < Q such that |Y'|s = §%|Q|s, and

ms(w | ) <577, we . (1.12)

Remark 1.13. In practical applications of Theorem 1.11, it will be important to know that
the constant ¢ > 0 stays bounded away from zero as long as x > 0 and s € (0, 1] stay
bounded away from zero. This is true, and follows from the proof of Theorem 1.11,
where the dependence between e and &, s is always explicit and effective. Since Theorem
1.8 is a consequence of Theorem 1.11, this remark also applies to Theorem 1.8.

Deducing Theorem 1.8 from Theorem 1.11, and finally Theorem 1.2 from 1.8, is accom-
plished in Section 2.

1.1. Circular vs. linear Furstenberg sets. The results in this paper should be contrasted
with their (known) counterparts regarding linear (s, t)-Furstenberg sets.

Alinear (s, t)-Furstenberg set is defined just like a circular (s, ¢)-Furstenberg set, except
that the t-dimensional family of circles is replaced by a t-dimensional family of lines. The
main difference between linear and circular Furstenberg sets is that the parameter space
of circles is 3-dimensional, whereas the parameter space of lines is only 2-dimensional.



4 KATRIN FASSLER, JTAYIN LIU AND TUOMAS ORPONEN

This difference makes linear Furstenberg sets substantially simpler: in particular, the
analogue of Theorem 1.2 for linear (s, t)-Furstenberg sets is known, see [8, Theorem A.1]
or [11, Theorem 12] for two very different proofs, and [6, 7, 14, 27] for earlier partial
results. Furthermore, any results for circular Furstenberg sets imply their own counter-
parts for linear Furstenberg sets, simply because the map z — 1/z takes all lines to circles
through 0. In particular, Theorem 1.2 gives another — seriously over-complicated — proof
for [8, Theorem A.1] and [11, Theorem 12].

Even with Theorem 1.2 in hand, the theory of circular Furstenberg sets remains sub-
stantially less developed than its linear counterpart. Theorem 1.2 is obviously sharp in
its stated range 0 < t < s < 1, but gives no new information if ¢ > s (compared to
the case ¢t = s). In contrast, it is known that linear (s, ¢)-Furstenberg sets have Haus-
dorff dimension > 2s + €(s,t) for t > s (see [15]). Even stronger results are available
for ¢ > min{1, 2s} (see [4, Theorem 1.6] and [20] for the current world records). For cir-
cular Furstenberg sets, the only improvement over Theorem 1.2 is known in the range
t € (3s,3]: in an earlier paper [10], the second author proved that every circular (s, t)-
Furstenberg set has Hausdorff dimension at least t/3 + s, when s € (0,1] and ¢ € (0, 3]
(the result is only stated for ¢ € (0, 1], but the proof actually works for ¢ € (0, 3]).

The sharp lower bound for the dimension of linear (s, t)-Furstenberg sets is a major
open problem: it seems plausible that every linear (s, t)-Furstenberg has dimension at
least min{(3s + t)/2,s + 1}. The case t = 1 of the problem was posed by Wolff in [26,
§3] and [27, Remark 1.5]. The (s + 1)-bound governs the case s + ¢t > 2, and is already
known, see [4, Theorem 1.6]. The bound min{(3s + t)/2, s + 1} would be sharp if true.

Linear Furstenberg sets can be viewed as special cases of circular Furstenberg sets
(as explained above), so at least one cannot hope for something stronger than the lower
bound min{(3s + t)/2, s + 1} for circular (s, t)-Furstenberg sets. However, it is not clear
to us if the optimal lower bounds for linear and circular Furstenberg sets should always
coincide. Theorem 1.2 shows that they do in therange 0 <t <s < 1.

Remark 1.14. After this paper appeared on the arXiv, the linear Furstenberg set problem
was solved in [16, 18].

1.2. Relation to previous work. The main challenge in the proof of Theorem 1.11 is
to combine the non-concentration hypotheses inherent in (4, s)-configurations with the
techniques of Wolff [24, 25] developed to treat the case s = 1 of Theorem 1.2. Our argu-
ment is also inspired by the work of Schlag [19].

To be accurate with the references, Wolff in [24, Corollary 5.4] proved that if ¢ € [0, 1],
and E < R? is a Borel set containing circles centred at all points of a Borel set with Haus-
dorff dimension > t, then dimy £ > 1 + ¢. This is formally weaker than the statement
that circular (1,t)-Furstenberg sets have dimension > 1 + t, but the distinction is fairly
minor: Wolff’s technique is robust enough to deal with circular (1, ¢)-Furstenberg sets.
The main novelty in the present paper is to consider the cases (s,t) with 0 <t < s < 1.

To illustrate the challenge, consider the case s = % Let 2 = {(p,v) : pe Pandwv €
E(p)} be a (6, 3)-configuration. The (4, 5)-set property of the sets E(p) < S(p) implies
that |E(p)|s Z 6~/ for all p € P. Unfortunately, this information alone is far too weak,
because all the circles S(p), p € P, may be tangent to a single rectangle R = R? of
dimensions § x 62, and |R|s ~ 6~'/2. So, if we only had access to the information
|E(p)|s Z 6~'/2, all the sets E(p) might be contained in R. In this case, the resulting
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"Furstenberg set" F in (1.8) would have |F|s < |R|s ~ /2. In other words, we could
hope (at best!) to prove the trivial lower bound

dim F > 1, (1.15)

whereas the "right answer" given by Theorem 1.2 is dimF > 1. In a previous work
[10], the second author showed that every circular (s, s)-Furstenberg set has Hausdorff
dimension at least max{4s/3,2s%}, and the second bound "2s*" matches (1.15) for s = 1:
this bound indeed follows by applying the techniques of Wolff and Schlag without fully
exploiting the non-concentration of the sets E(p). The first bound "4s/3" used the non-
concentration, but only in a non-sharp "two-ends" manner.

Our proof is also inspired by the very recent work of Pramanik, Yang, and Zahl [17].
In fact, [17, Section 1.1] is entitled A Furstenberg-type problem for circles, and a special case
of Theorem 1.2 follows from [17, Theorem 1.3]. To describe this case, let s € [0, 1], and
let E < R be a set with dimy £ > s. Let S be a t-dimensional family of circles, with
0 <t <s,and write Eg := Sn (F xR) forall S € §. Assume that dimpg Fg = dimg E > s
forall S € S. Then

F = U Eg

SeS
is an (s, t)-Furstenberg set, and [17, Theorem 1.3] (with some effort) implies dimy F' > s+
t. In other words, [17, Theorem 1.3] treats the case of (s, t)-Furstenberg sets arising from
the specific construction described above. This precursor allowed us to expect Theorem
1.8, but we did not succeed in modifying the argument of [17] to prove it in full generality.
Our proof, outlined in the next section, is therefore rather different from [17].

While the existing literature on circular Furstenberg sets is narrow, there are many
more works dealing with various aspects of circular — or in general: curvilinear — Kakeya
problems. We do not delve into the details or definitions here, but we refer the reader to
[1,2,5,9,12,13, 21, 22, 23, 28] for more information.

1.3. Ideas of the proof: key concepts and structure. When studying circular Kakeya
or Furstenberg sets, one needs to understand the geometry of intersecting é-annuli. If
p = (z,7) € R%2 x (0,00) and § > 0, we write S(p) for the closed §-annulus around the
circle S(p), thus S%(p) = {w € R? : dist(w, S(p)) < d}.

If p = (z,7),q = (2/,r") € D c R? x (0, %), what does this intersection S°(p) n S%(q)
look like (when non-empty)? Wolff noted that the answer depends on two parameters:

A= Ap,q) =[x —2|—|r—7"]| and t:=t(p,q):=|p—q| (1.16)

Notice that "t" in (1.16) has a different meaning than the letter "t" in (s, t)-Furstenberg
sets. For the majority of the paper (proofs of Theorems 1.8 and 1.11), we only consider
(s, s)-Furstenberg sets, so this should not cause confusion. In fact, from now on the letter
"t" will always refer to the distance parameter defined in (1.16), except for the short proof
of Theorem 1.2 in Section 2 (where the distance parameter is not needed).

Here ) is called the tangency parameter. If A(p,q) = 0, then the circles S(p), S(q) are
internally tangent, whereas if A\(p, ¢) ~ 1, the circles S(p), S(q) intersect roughly transver-
sally. The intersection S°(p) n S%(q) can be covered by boundedly many (6, /v/At)-
rectangles. In general, a (0, o)-rectangle is the intersection of a §-annulus with a disc of
radius o, thus

R (p.v) = 5°(p) " B(v,0)
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for some v € S(p). If § < o < /9, a (§,0)-rectangle looks like a "straight" rectangle of
dimensions ~ § x o. If ¢ > /¢, then the curvature of the annulus becomes visible, and a
(0, o)-rectangle is a genuinely "curvy" set of thickness J and diameter ~ o.

When bounding the total multiplicity function m; (Definition 1.9), one ends up study-
ing families of (6, o)-rectangles, for all possible values § < ¢ < 1. In some form, this
problem appears in all previous works related to circular Kakeya sets, but the manner of
formalising it varies. For us, the main new twist is to incorporate the information from
the "fractal" sets E(p) < S(p).

In addition to the total multiplicity function, we introduce a range of partial multiplicity
functions. The precise definition is Definition 5.29, but we give the idea. For 6 < A <t <
1, the partial multiplicity function m; »; looks like this: for (p,v) € Q (with p € P and
v € E(p)), we write

msae(py ) == {0/, 0") € Q% - Mp,p)) ~ A, t(p, ) ~ tand RS (p,v) n RS (Y, 0) # &}

Here o := §/+/\t, a common notation in the paper. The set Q2 is the (J, o)-skeleton of
slightly vaguely, it is a maximal (J x o)-separated set inside the original configuration €.

It turns out that the total multiplicity function m; is bounded from above by the sum
of the partial multiplicity functions ms, » ¢, where the sum ranges over dyadic pairs (A, ?),
§ < A <t < 1. There are < (log(1/6))? < § % such pairs (A, t). So, to prove the upper
bound (1.12) for my, it suffices to prove it separately for all the partial functions ms y ;.
This is what we do, see Theorem 7.5. Bounding ms by the sum of the partial functions
ms ¢ is straightforward, and is accomplished at the end of the paper, in Section 7.7.

The partial multiplicity functions m; ) ; have been normalised so that they might po-
tentially satisfy the same bounds as the total multiplicity function (see Theorem 1.11):
after replacing the original (4, s)-configuration 2 by a suitable refinement (' (depending
on A and t), we expect — and will prove in Theorem 7.5 — that

ImspiC 1) ey 81, I<A<E<SL (1.17)

The proof of (1.17) proceeds in a specific order of the triples (9, A, t). In order to cope with
a given triple (4, A, t), we will need to know a priori that the triples (A, A, ¢) and (0, X', t)
forall § < M < X have already been dealt with. More precisely: if we have already found
a refinement Q' < 2 such that (1.17) holds for all the triples (5, \',t) with § < X' < )\, and
also for the triple (A, A, t), then we are able to refine ' further to obtain (1.17) for (9, A, t).

We can now explain a technical challenge we need to overcome: the partial multiplicity
function ms » + counts elements in the (4, o)-skeleton of €2, rather than €2 itself. However,
our assumptions on the configuration ) were formulated at scale § — recall that Q2 is a
(0, s)-configuration, which meant that both P, and the sets E(p), are (J, s)-sets. In or-
der for (1.17) to be plausible, the property of "being a (9, s)-configuration" needs to be
hereditary: the (8, o)-skeleton Q3 of a (4, s)-configuration Q needs to look like a (4, o, 5)-
configuration (whatever that precisely means). This is not literally true, but we develop
reasonable substitutes for this idea in Section 3.

We next outline where the "inductive" structure for proving (1.17) stems from. Why
do we need information about the triple (A, \,t) in order to handle the triple (J, A, )?
The reason is one of the main technical results of the paper, Theorem 6.5. This is a gen-
eralisation of Wolff’s famous "tangency bound" [24, Lemma 1.4]. We sketch the idea of
Wolff’s result, and our generalisation, in a slightly special case. Namely, we will confine
the discussion to the case ¢t = 1 to keep the numerology as simple as possible.
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In Wolff’s terminology, a pair of sets W, B — P < D is called bipartite if
dist(W, B) ~ 1.
If p e Wand ¢ € B, we have |p — ¢| ~ 1, but the tangency parameter \(p,q) may
vary freely in [0,1]. If A(p,q) ~ A € [0, 1], recall that the intersection S°(p) n S°(q) can

be covered by boundedly many (4, 5/+/\)-rectangles. When bounding the multiplicity
function m; » 1, the following turns out to be a key question:

Question 1. What is the maximal cardinality of incomparable (8, 5/+/X)-rectangles which are
incident to at least one pair (p, q) € W x B with X(p,q) ~ A?

One of the main results in Wolff’s paper [24] contains the answer in the case A = . If

Rs is a collection of incomparable (4, v/§)-rectangles incident to at least one pair (p, q) €
W x Bwith A(p, q) < 6, then [24, Lemma 1.4] states that

1Rs| < (IW||B])** + lesser terms. (1.18)

This is a highly non-trivial result. In contrast, the case A ~ 1 is trivial: the sharp answer
is |R1| < |W||B|. In this case the (J,5/+/1)-rectangles are roughly §-discs, and clearly a
generic bipartite pair IV, B may generate ~ |IV|| B| transversal intersections.

Is there a way to "interpolate" between these bounds? One might hope that if § «
A « 1, then [Rs| £ ([W]|B])?™ for some useful intermediate exponent §(\) € (,1).
Unfortunately, this is not true: if A » ¢, the best one can say is |[R| < |W||B].

w Ry Ry
SS————

FIGURE 1. Scenarios with |Ry| ~ |W||B|.

Figure 1 shows two slightly different ways in which |R | ~ |IW||B| can be realised. In
both examples, there are two well-separated collections W, B of (thick, A\-separated) A-
annuli, all elements of which are tangent to a common (), v/))-rectangle R). (A technical
comment: to make the figure clearer, we deliberately draw annuli with external tangen-
cies, although formally all our tangency-counting problems and estimates concern num-
bers of internal tangencies. The distinction between internal and external tangencies is,
however, not relevant for the phenomenon we describe here.)

Inside each annulus in W (respectively B) pick Xyy (respectively X ) thinner §-annuli,
shown in darker colours. This way one gets two well-separated collections W, B of /-
annuli with cardinalities

(Wl =W|-Xw and |B|= B[ X3.

The picture on the left of Figure 1 represents the case X)y = Xp = 1, the picture on
the right represents the case |[W| = |B| = 1. If the d-annuli in W, B are chosen ap-
propriately, their pairwise intersections (contained in R)) are located at incomparable
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(8, 3/+/X)-rectangles, say R. (To be more accurate, this can be done as long as the to-
tal number of intersections |W||B| does not exceed the total number of incomparable
(6,8/+/\)-rectangles contained in R), roughly (\/§)2.) Each of the rectangles in R has
type (= 1, > 1) relative to (W, B). Therefore, |R| ~ |W||B|, provided |W||B| < (\/4).
The trivial upper bound |R)| < |W||B| is useless for A « 1, but there is a way to
improve it. The examples shown in Figure 1 indicate the main obstructions: the high
numbers of incomparable (§,5/1/\)-rectangles are "caused" by either
(a) a high level of tangency of "parent" annuli of thickness ), or
(b) a high number of "child" J-annuli contained inside "parent” annuli of thickness A.
If we stipulate a priori bounds on the numbers relevant for problems (a)-(b), we get a
non-trivial upper bound for |R,|, which looks like this (see Theorem 6.5 for a precise
statement):
IRAl S (IW]|B|)** - (X,Y3)"? + lesser terms, (1.19)
Here X\ = max |P n B)|, where the "max" runs over balls of radius ), and Y), is an upper
bound for how many A-annuli can be tangent to any fixed (\, v/\)-rectangle. In fact,

Yy = [[maxi|re.

In the examples of Figure 1, we have X\ = 1 and Y, = |W| = |B| ~ \/d (left picture) or
Xy ~ |[W| ~|B| ~ Adand Yy = 1 (right picture). In both cases (1.19) only yields the
trivial bound, as it should. On the other hand, if we have already established (1.17) for
the triple (A, A, 1), we can rest assured that Yy < 1, and (1.19) becomes a useful tool for
proving (1.17) for the triple (4, A, 1) (bounds for the number X, are, more easily, provided
by non-concentration conditions on the collections of circles). This explains why our
inductive proof of (1.17) needs information about the triples (A, A, ¢) to handle the triples
(0, A\, t). There is a separate reason why all the triples (4, N, ¢), \' < )\, need to be treated
before the triple (4, A, t), but we will not discuss this here: the reason will be revealed
around Figure 4.

We have now quite thoroughly explained the structure of the paper, but let us sum-
marise. In the short Section 2, we first deduce Theorem 1.8 from Theorem 1.11, and then
Theorem 1.2 from Theorem 1.8. Section 3 deals with the question: to what extent is the
(A, 0)-skeleton of a (9, s)-configuration a (), o, s)-configuration?

Section 4 introduces (9, o)-rectangles properly, and studies their elementary geometric
properties. For example, what do we exactly mean by two (9, o )-rectangles being "incom-
parable"? The results in Section 4 will look familiar to those readers knowledgeable of
Wolff’s work, but our (4, o)-rectangles are more general than Wolff’s (4, 4/3/t)-rectangles,
and in some cases we need more quantitative estimates than those recorded in [24].

In Section 5, we establish the cases (A, A, t) of the estimate (1.17). The main produce of
that section is Theorem 5.31. The geometric input behind Theorem 5.31 is simply Wolff’s
estimate (1.18), and this is why it can be proven before introducing the general (9, A, t)-
version in (1.19). The proof of (1.19) occupies Section 6.

Finally, Section 7 applies the estimate (1.19) to prove (1.17) in full generality. The upper
bound for the total multiplicity function ms is an easy corollary, and the proof Theorem
1.11 is concluded in Section 7.7. In Appendix A we prove some results from Section 4.2.

Notation. Some of the notation in this section has already been introduced above, but
we gather it here for ease of reference. If r € 2, the notation |E|, refers to the number
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of dyadic r-cubes intersecting E. Here F might be a subset of R, R?, or R3. We will only
ever consider dyadic cubes in R? which are subsets of the special region D introduced in
(1.5). Therefore, the notation D, will always refer to dyadic r-cubes contained in D.

In general, we will denote points in R? (typically in D) by the letters p, p’, ¢, ¢'. Points
in R? are denoted by v, v’, w, w’.

For p = (z,7) € R% x (0,00) (typically p € D), we write S(p) = S(z,r) for the circle
centred at z and radius > 0. The notation S%(p) refers to the §-annulus around S(p),
thus S°(p) = {w € R? : dist(w, S(p)) < 6}.

The notation A < B means that there exists an absolute constant C' > 1 such that
A < CB. The two-sided inequality A < B < A is abbreviated to A ~ B. If the constant
C'is allowed to depend on a parameter "#", we indicate this by writing A <y B.

For ¢ € (0, 1], the notation A <5 B means that there exists an absolute constant C' > 1
such that

ALC- (1 + log (%)C) B.

We write A =5 B if simultaneously A <5 B and B s A hold true. If the constant C' is
allowed to depend on a parameter "0", we indicate this by writing A <s¢ B.

Given p = (x,7) € R? x [0,00) and p' = (2/,7') in R? x [0,00), we write A(p,p’) :=
||z — 2’| = |r — 7’||. This is slightly inconsistent with our notation from (1.16), but in the
sequel we prefer to use the letter "A" for this "tangency" parameter.

Acknowledgements. We would like to thank the anonymous reviewers for reading the
manuscript carefully, and for making many helpful suggestions.

2. PROOF OF THEOREM 1.8 AND THEOREM 1.2
We first use Theorem 1.11 to prove Theorem 1.8.

Proof of Theorem 1.8 assuming Theorem 1.11. Let 2 < RS be a (6, 5,0, M)-configuration.
Write P := ms(Q) < D, and E(p) = {v € R? : (p,v) € Q} = S(p). By replacing P
and E(p) by maximal J-separated subsets, we may assume that P, E(p), and {2 are finite
and §-separated to begin with. Furthermore, P contains a (§,s,5 2¢)-subset P < P of
cardinality |P| < 6= by [15, Lemma 2.7]. Then Q2 := {(p,v) : p€ P and v € E(p)} remains
a (8,s,0 2¢)-configuration with |E(p)| = M. It evidently suffices to prove Theorem 1.8
for this sub-configuration, so we may assume that |P| < §° to begin with.

With this assumption, we may apply Theorem 1.11 to find a subset ' < Q with || >
d%|Q| = 6" M| P| and the property

ms(w | ) <577, w e R?,

For p € P, we write Q/(p) := {v € R? : (p,v) € Q'} < E(p) (this will become standard

notation in the paper).
Let I be a maximal d-separated set in

Uow e F
peP
where F appeared in the statement of Theorem 1.8. We claim that [F'| > §** M, if § > 0
is small enough. This will evidently suffice to prove Theorem 1.8.
First, we notice that |[Q'(p)]s n F'| Z |(p)| for all p € P, where [A]; refers to the
d-neighbourhood of A. The reason is that if w € €' (p), then dist(w, F') < ¢, and therefore
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there exists a point w’ € [ (p)]s N F’ with |w — w'| < 4. Moreover, since '(p) was
assumed to be §-separated, the map w — w’ is at most C-to-1. As a consequence of this
observation,

Y, e ®):we B(v,8)} = [[¥®)]s 0 F'| 2 [ (0)].

weF’
Now,
I /.

weF’ weF’

ZZHUGQ cwe B 2 Y ) = 2

weF’peP |F/| peP’ |FI|
Now, recalling that || > §*M|P| > §**<=*M, and rearranging, we find |F’| > §*~°M,
assuming ¢ > 0 small enough. This is what we claimed. O

Now we use Theorem 1.8 to prove Theorem 1.2. This is virtually the same argument
as in the proof of [8, Lemma 3.3], but we give the details for the reader’s convenience.

Proof of Theorem 1.2. Fix 0 < t < s < 1, and let F' < R? be a circular (s, t)-Furstenberg
set with parameter set E = R? x (0, o0) satisfying dimy E > t. To avoid confusion, we
mention already now that the plan is to apply Theorem 1.8 with parameter "t" in place of
"s", and with M ~ ¢~* (which is potentially much larger than ).

Translatmg and scaling F, it is easy to reduce to the case £ c D. Fix ¢’ € [t/2,t] and
t' < & < s. Since ML (E) > 0, there exists &« = «(E,t) > 0 and E; c F such that
HY (E1) > o, where

Ei:={pe E|H%(F nS(p)) > a}. 2.1)
This follows from the sub-additivity of Hausdorff content.

We also fix a parameter £ > 0, and we apply Theorem 1.8 with constants x and ¢/
(as above). The result is a constant e(x,t') > 0. Recalling Remark 1.13, the constant
e(k,t") > 0 stays bounded away from zero for all ¢’ € [t/2,t]. We set

3 !
€ :=€(k,t) 1= t’el[?/fQ,t] e(k,t') > 0.
Next, we choose kg = ko(«, e) = ko(E, ', €) € N satisfying

o> Z and k2 < min{20 /C, 25F0 /O3, 2.2)
k= ko
where C' > 1 is an absolute constant to be determined later. Let &/ = {D(z;,7;)}iez be an
arbitrary cover of F' by dyadic r;-cubes with r; < 27k and F ~ D(z;,7;) # & forallie T.
For k = kg, write
Ip:={iel:r = 2_k} and Fj := {uD(z;,7i) i € Iy}
By the pigeonhole principle and (2.2) we deduce that for each p € E, there exists k(p) >
ko such that
H3(F 0 S(p) 0 Fr) > k(p) 7

Using pigeonhole principle again we obtain that there exists k1 > kg such that
M (o) > ki 2.3)
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where E; := {p € E; : k(p) = k1}. By the construction of E3, we have
Hip(S(0) 0 Fiy) = Hy(F 2 S(p) 0 Fiy) > ki, pe Ea.
Write § = 2751, By (2.3) and [3, Lemma 3.13], we know that there exists a §-separated
(6,1, Ck?)-set P c Es satisfying (k72/C)6~" < |P| < 6 V. Since P c Fsy, we have
Hio(S(p) 0 Fiy) > k%, peP. (2.4)

Applying [3, Lemma 3.13] again to S(p) n F,, p € P, we obtain §-separated (6, s', Ck?)-
sets E(p) < S(p) N Fy, such that

L@
|E(p)| = M = (k7%/C)6 % = 6", peP.

By (2.2), Pisa (0,t',6¢)-set, and each E(p) isa (d,s’,d¢)-set. Since s’ > ¢/, the sets E(p)
are automatically also (4, ¢, 0 ¢)-sets. Therefore,

Q:={(p,v):pe Pandve E(p)} c R®
isa (6,t',0™¢, M)-configuration. Recall that ¢ < ¢(x, t') by the definition of €. Letting

F = U E(p)

peP

and applying Theorem 1.8, we deduce that |F|s > SEU M > 5285t
Since E(p) c Fy, for each p € P, we have F c Fj,, which implies

[T | = |Fiyls = | Fls = 6%

Then
P gl rogr VY
2 :T‘“? +t'—2K > 2 : T“? +t'—2K 55 +t —2/<;|Zk1| > 1.

K3 K
€L 1€Zy,
As the covering was arbitrary, we infer that dimy F' > s’ +t' — 2k. Sending s’ 7 s,t' ' t,
and &\, 0, we arrive at the desired result. ]

3. PRELIMINARIES ON (0, s)-CONFIGURATIONS

The proof of Theorem 1.11 — the multiplicity upper bound for (6, s)-configurations —
will involve considering such configurations at scales A » §. In a dream world, a (4, s)-
configuration would admit a "dyadic" structure which would enable statements of the
following kind: (a) the A-parents of a (J, s)-configuration form a (A, s)-configuration,
and (b) the A-parents of a (4, s, C, M)-configuration form a (A, s, C’, M')-configuration.
Such claims are not only false as stated, but also seriously ill-defined.

To formulate the problems — and eventually their solutions — precisely, we introduce
notation for dyadic cubes.

Definition 3.1 (Dyadic cubes). For 6 € 27, let Ds be the family of dyadic cubes in R? of
side-length ¢ which are contained in the set D. We also write D := | Jseq-1 Ds. If P < R3
is an arbitrary set of points, or a family of cubes, we also write

D(;(P) = {QE'DJZQ(\P#@}.

For p € D, we write Q5(p) € D; for the unique cube in Ds containing p.
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We then explain some of the problems we need to overcome. The first one is that if
P c Dor P c Dsisa (4,s)-set, it is not automatic that Pr := Da(P) is a (A, s)-set
for 6 < A < 1. This is not too serious: it is well-known that there exists a "refinement"
P' < P such that |P'| =5 |P|, and P} is a (A, s)-set (a proof of this claim will be hidden
inside the proof of Proposition 3.14).

There is another problem of the same nature, which seems more complex to begin
with, but can eventually be solved with the same idea. Assume that 2 = {(p,v) : p €
Pand v € E(p)} is a (9, s)-configuration, and A » J. In what sense can we guarantee
that some "A-net" Qa < Qis a (A, s)-configuration? By the fact stated in the previous
paragraph, we may start by refining P — P’ such that P, is a (A, s)-set. Then the
question becomes: which set Ea(p) < S(p) should we associate to each p € P} in such
a manner that

QA ={(p,v) :pe Pyand v e Ean(p)}
isa (A, s)-configuration — which hopefully still has some useful relationship with 2? This
question will eventually be answered in the main result of this section, Proposition 3.14,
but we first need to set up some notation.

Forp = (z,r) € R and an arc I < S(p), we let V(p, I) be the (one-sided) cone centred
at x and spanned by the arc I. That is,

V(p,I) := | J{z +t(e — 2)}i=0.
eel

Definition 3.2 (Dyadic arcs). We introduce a dyadic partition on the circles S(p). If o €
2~Nand p = (z,7) € D, we let S,(p) be a partition of S(p) into disjoint (half-open) arcs of
length 27ro. We also let S(p) := |, o1 So(p). (We note that for p = (z,7) € D, always
r € [3,1], so the dyadic o-arcs have length comparable to o.)

Remark 3.3. The notation of dyadic arcs S, (p) will often be applied with parameters such
as o = +/0/toro =0/ v/ \t, which are not dyadic rationals to begin with. In such cases,
we really mean S5 (p), where & € 27 is the smallest dyadic rational with o < &.

Notation 3.4. In the sequel, it will be very common that the letters p, ¢, p refer to dyadic
cubes instead of points in D. Regardless, we will use the notation S(p), S5(p) and V' (p, I).
This always refers to the corresponding definitions relative to the centre of p, ¢, p, which
is an element of D.

Lemma 3.5. Let 0 <0 < A < 1and 0 < o < X < 1 be dyadic numbers with A < X. Assume
that p € Ds and p € Da with p < p, and let v € S, (p). If v € Sx(p) is such that

vnV(p,v) # &,
then there exists an arc I, < S(p) of length < ¥ such that v < V(p, I) and v < I.

For all p, p, and v as in the statement of the lemma, there exists at least one v € Sx.(p)
such that v n V(p, v) # ¢, simply because R? = Uyes,(p)V (P, V).

Proof. Without loss of generality, we may assume that ¥ < 1/12, say. We denote
Ss(p,v) = {veSs(p):vnVip,v) # I}

Our goal is to bound the cardinality of Sx.(p, v) uniformly from above and prove that I
can be obtained as the union of the arcs in Sx(p, v).
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Let (z,7), (x,r) € D be the centers of the cubes p € D5 and p € Dx, respectively. By
assumption, r > 1/2and A < ¥ < 1/12, so that r — 3A > 1. Since S(p) = S3*(p) by a
simple application of the triangle inequality, we find

dist(v, x) > dist(S(p),x) 2 1. (3.6)

Moreover, using also that » > 1/2, and § < 1/12, it follows that x must be contained in
the interior of the disk bounded by S(p).

By the connectedness of v and since v n {x} = ¢, we find that U g, )V is a connected
set in S(p) which implies that Sx(p,v) = {vi}i=1,.. m is a family of adjacent arcs. If m €
{1, 2}, then their union is obviously an arc I, of length at most 47r¥ with v < V(p, Iy)
and v < I,. Thus we assume from now on that m > 3. Letting v and v; be the
two endpoints of the arc v;, we can arrange the arcs v; € S(p, v) in such an order that
v =v,;,, foralli=1,--- 'm~—1

To conclude the proof of the lemma, it suffices to show that m is bounded from above
by a universal constant. As v € S,(p) for p = (x,r), the length ¢(v) of v is 27ro. As x lies
inside the disk bounded by S(p), the set v n V(p, v;) is a curve for every i. Since 0 < X
and r < 2, we have that

m m—1
A7 = L(v) = 2 v V(p,vy)) = Z v V(p,vi)).
i=1 i=2
Thus, the desired upper bound for m will follow, if we manage to prove that

LvnV(p,vy)) =%, 2<i<m—1. (3.7)
Note that
oV (p,vi) = {x} U {x+t(vi —x)}t=0 U {x +t(v; —x)}0, 1<i<m.
Write v;" := {x + t(v;7 —x)}4=0 and V; := {x + t(v; — x)}i>0. We have
vinv, =g, 1<i<m.
Recall that v n {x} = . Then, by the arrangement of the arcs v;, we know for i =
2,---,m — 1, that v must intersect both v;" and v; . Let
:Uje\_/jmv and z; €V Nnu, 2<i<m—1.
We claim that
|z — 27| 2 %, 2<i<m—1, (3.8)

which will yield (3.7) and thus conclude the proof of the lemma.
To prove (3.8), recall that v; is an arc of length 27r¥ in S(p). Thus

(v, V) =278 < /2.

10
We have
lo; — x| = dist({z] },v;) = inf{|a] —y|:y eV, } = |z —x|sin (¥}, V)
09 £(vf,9;)
~ 2
where for the second inequality we recall that z}” € v = $3(p), and we use the fact that
sinf = 6/2 for all 0 < 6 < 7/2. The proof is complete. O

2,
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Dyadic cubes have the well-known useful property thatif @, Q' € DwithQ n Q' # &,
then either Q@ < Q' or @' < Q. For a fixed circle S(p), the dyadic arcs S(p) have the
same property, but things get more complicated when we want to compare dyadic arcs
in S(p), S(q) for p # q. The next notation is designed to clarify this issue.

Notation 3.9. Let 0 <0 < A < land 0 < 0 < ¥ < 1 be dyadic numbers. Assume that
p € Ds and p € Da with p < p. For each v € S,(p), we write v < v for the unique arc
v € Sx.(p) such that the centre of v is contained in V(p, v). In particular, v nV (p,v) # &.
For two pairs (p,v) and (p, v), we write

(p,v) < (p,v) < pcpandv<v.

We remark that by Lemma 3.5, if A < ¥ and (p,v) < (p, V), thenv < V(p, I) for an arc
I, c S(p) of length ~ ¥ with v c I,.

The "<" relation is illustrated in Figure 2. It gives a precise meaning to "dyadic parents"
of pairs (p, v) withp € Ds and v € S(p). We just have to keep in mind that if (p, v) < (p, V),
then it is not quite true that v = v. A good substitute is the inclusion v < V (p, Iy).

Definition 3.10 (Skeleton). Let 0 < § < A and 0 < ¢ < X be dyadic rationals. Assume
that p € Ds and E,(p) € S;(p). The (A, X)-skeleton of E,(p) is the set

Ex(p) = {veSu(p) : v < vforsomeve E,(p)},

where p € Dy is the unique dyadic cube with p < p. (It is important to note that the
(A, X)-skeleton of E,(p) is a subset of Sx;(p) instead of Sx.(p). These coincide if A = §.)

We also need the following version of the definition. Let P — Ds, and assume that we
are given a (possibly empty) family F;(p) © S,(p) for all p € P. Write Q = {(p,v) : p €
P and v € E,(p)}. Then, the (A, X)-skeleton of (2 is defined to be

Qf := {(p,v) : p € Da, v € Ss(p), and (p,v) < (p, v) for some (p,v) € Q}.

In other words, Q& consists of pairs (p, v) such that p € DA(P), and v € Ex(p) for some
p € P with p  p. We write

Es(p) :={veSs(p): (p,v) €N} and Pa:={peDa:Ex(p) # I}

Remark 3.11. Note that Fx,(p) is the union of all the (A, ¥)-skeletons Ex(p) for all p € P
with p < p. Thus, Ex(p) may be rather wild, even if the individual sets E,(p) are nice
(say, (o, s)-sets). Proposition 3.14 will regardless give us useful information about the sets
Ex.(p), provided that we are first allowed to prune 2 (and hence the sets E,(p)) slightly.

Let us recap the meaning of (4, s, C, M )-configurations from Definition 1.7. These were
defined to be sets ) = R’ such that P = mps(Q2) < D is a non-empty (4, s, C)-set, and
E(p) = {veR?: (p,v) € Q}isa (4,s,C)-subset of S(p) for all p € P, satisfying |E(p)|s =
M. We next pose the following dyadic (and slightly generalised) variant of the definition.

Definition 3.12. Let0 <s<1,C > 0,andlet0 <6 < 1,0 < 6,0 < 1 be dyadic rationals.
A (0,0, s,C, M)-configuration is a set of the form
Q= {(p,v) :pe Pand v e Ey;(p)},

where P c Dy is a (0, s,C)-set, and E,(p) c S,(p), forp € P,is a (o, s, C)-set of constant
cardinality |E,(p)| = M. If Qisa (4,0, s,C, M)-configuration for some M, we simply say
that Qis a (4, 0, s, C')-configuration.
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FIGURE 2. The red squares represent the centres of three circles
S(p1), S(p2), S(p3), where p1,p2, p3 € D;s. In the figure we have p1, p2, p3 ©
p for a certain p € Da, where A > §. Therefore the red §-annuli
S%(p1), 5% (p2), S (p3) are contained in the (yellow) A-annulus S2(p). The
black dots on the red circles represent the sets E,(p1), Es(p2), E5(p3), and
the three longer arcs spanning the cones form the set Ex.(p) < S(p). As
shown in the figure, each pair (p;,v) with v € E,(p;) satisfies (p;,v) <
(p,v) for some v € Ex(p).

In the new terminology, the (4, s, C, M )-configurations from Definition 1.7 correspond
to (6,0, s, C, M)-configurations. To be precise, we should distinguish between (4, s, C, M )-
configurations and "dyadic" (4, s, C, M )-configurations, but we will not do this: in the
sequel, the terminology will always refer to the dyadic variant in Definition 3.12.

We record the following simple refinement principle for (0, o, s, C, M )-configurations:

Lemma 3.13 (Refinement principle). Let €2 be a (6,0, s, C)-configuration, and let G < 2 be
a subset with |G| = ¢|QQ|, where ¢ € (0,1]. Then, there exists a (9, o, s, 2C/c)-configuration
O < Gwith |Q] = (2/4)|9.

Proof. Write 2 = {(p,v) : pe Pand v e E,(p)}. Forpe P,let G(p) := {ve E,(p) : (p,v) €
G}. Note that (with M := |E,(p)|), we have
cM|P| = ¢l < |Gl = Y |G(p)] < M{p: |G(p)| = cM/2}| + cM|P|/2.
peP

It follows that the set P’ := {p € P : |G(p)| = ¢M/2} has |P’| = ¢|P|/2. For each p € P,
let E/(p) = G(p) be a set with |E/(p)| = ¢M /2 = ¢|E,(p)|/2. Now, P"is a (4, s,2C/c)-set,
E!(p)isa (o,s,2C/c)-set for all p € P’, and

Q :={(p,v) :pe PPandv' € E/(p)} c G
is the desired (4, o, 2C/c)-configuration with |Q'| = c|P'|M /2 > (c?/4)|]. O
We then arrive at the main result of this section.

Proposition 3.14. Let 0 < d < A < 1and 0 < 0 < ¥ < 1 be dyadic numbers with § < o
and A < 3. For every C' > 1, there exists a constant C' ~s5 C' such that the following holds.
If Qis a (6,0,s,C)-configuration, then there exists a subset G < Q with |G| =5 || whose
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(A, X)-skeleton G£ is a (A, %, s, C")-configuration with the property
1]
|GE |

Remark 3.16. Let0 < § < A < 1land 0 < 0 < ¥ < 1 be dyadic rationals. Let Q@ = {(p, v) :
p € Pand v e E,(p)}, as in Proposition 3.14. We will use the following notation:

{(p,v) € G : (p,v) < (P, V)} ~s (p,v) € G5. (3.15)

p®v:={(p,v) e Q:(p,v) <(p,Vv))}, p € Da, v € Sx(p).

(So, the sets p ® v depend on "Q2" even though this is suppressed from the notation). The
sets p ® v are disjoint for distinct (p, v) with p € Da and v € Sy(p). Indeed, if p # p/,
evidently no pair (p,v) can lie in p ® v and p’ ® v’ for any v, v’ € S(p). On the other
hand, if p = p’ and p € Ds with p ¢ p = p/, then for each arc v € S,(p) we have chosen
exactly one arc v € Sy;(p) such that v < v. Thatis, (p,v) < (p, v) for only one (p, v).

To simplify the proof of Proposition 3.14 slightly, we extract the following lemma:

Lemma 3.17. Let 0 < § < A < 1 be dyadic rationals, and let P < Ds be a (4, s, C')-set. Assume
that every set
pnP:={peP:pcp}, p € Pa := DaA(P),

has cardinality |p n P| € [m, 2m] for some m > 1. Then Pp is a (A, s, C")-set with C' ~ C.
Proof. Let @ € D, with A < r < 1. Then,
m-|Q n Pa| <|Q n P| < Crf|P| < 2m - Cr®|Pal.
Dividing by "m" yields a dyadic version of the (A, s, C")-set condition for Pa. This easily
implies the usual (A, s, C’)-set condition with a slightly worse "C”". O
We then complete the proof of Proposition 3.14.

Proof of Proposition 3.14. In the first part of the proof, we construct certain sets P < Da
and E(p) < Sx(p), p € Pa, by pigeonholing, and we define Q2 = {(p,v) :pe Prand v e
E(p)}. The set G < 2 will be defined as

G= ] povcQ (3.18)
(p,v)eQ

This implies trivially that G& = Q. In the second part of the proof, we show that  is a
(A, 3, s, C")-configuration satisfying (3.15), so in particular p® v # & for all (p,v) € Q.
Therefore also G& o ) by definitions, and the proof will be complete.

Write Q = {(p,v) : pe Pand v € E(p)}, where P c Ds and E(p) < Ss(p). To construct
Pa, consider initially P& := Da(P). Each p € Pi may contain different numbers of
§-cubes from P, and to fix this we perform our first pigeonholing. Let p € PA and define

Ds(pn P):={peP:pcpland Py;:={pePa:2"" <[Ds(pn P)| <2}

for i = 1. Observing that

|Pl=) > IDs(pnP)

1EN pePA ;
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and noting that Pa ; is empty if 2071 > |Ds| ~ § 3, we conclude by pigeonholing that
there exists igp <5 1 such that

|Pl~s ), |Ds(p P

PEPA i

For this index 4o, we then have | Pa ;,| =5 |P|/2%.

For each p = (x,r) € P}, we next construct families S(p), j € N, that will be used for
the definition of the sets E(p). Again, we use pigeonholing to find a subset of {p®v: p €
Pa iy, v € Ss(p)} of typical cardinality.

First, since each p € Ph ;, contains ~ 2% cubes p € P, since we have |E,(p)| = M for
all of them, and since for each such p and v € E,(p) there exists a unique v € Sx(p) such
that (p,v) < (p, v), we obtain

S p@v|~20M. (3.19)

veSs(p)

Next, for j > 1, we define
SL(p) = {veSu(p): lp@v|e 2, 2)} (3.20)

Since § < o by assumption, we have |p ® v| < 630~ < % Tt follows that SL(p) = &
if 27 » 6. Hence, by (3.19) and pigeonholing, there exists j(p) <s 1 such that

Z IP®v| ~s 200 M.
vesi® (p)

By a second pigeonholing, since |Pa ;,| < 673, there exists jo S5 1 and Pa © Pa, © PX
such that
1P|

o (3.21)

|Pal =5 |Paio| =5

and
Z IP®v|~s2°M, pe Pa. (3.22)
vesl(p)

In (3.25), we will see that all the sets S%O (p), p € Pa, have cardinality x4 2% M /270, but
the sets E(p), p € Pa are required to have exactly the same cardinality. To this end, we
define

Ms; := min{|S¥(p)| : p € Pa}, (3.23)

which satisfies My, > 1 by (3.22). For each p € Pa, we choose E(p) to be an arbitrary
subset of S¥ (p) of cardinality |E(p)| = Ms. Now, as already announced at the start of
the proof, we set 2 := {(p,v) : p € Pa and v € E(p)}, and we define G <  with the
formula (3.18). We record that |Q| = | Pa|Ms.

Keeping in mind Remark 3.16 about the disjointness of the sets p ® v, and using the

definition of the sets E(p) ¢ Sg’ (p), we have

Gl= > Y p®v|z|Pal- Ms-20!

PEPA veE(p)
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To conclude that |G| Z5 || = |P|M, it suffices to check that

- |PIM
¥~ |PA|2J0

(3.24)

Since (p@ V) N (p® V') = & for v # v/, recalling first (3.20) and (3.22), and then (3.21),

we have

200N |P|M
2j0 % |Pa|2d0’

Hence (3.24) holds by the definition of My, in (3.23), and therefore |G| ~5 |(2|, as desired.

In retrospect, (3.25) also implies My, ~ 2% M /270,

We next verify (3.15). The definition of S%O (p) in (3.20) results in
~ 9J0 (%;24) |P|M — @
pRVv| ~2° ;5 PalMs |0 p € Pa and v € E(p). (3.26)
By the definition of G, we have (p®v) "G =p®vVv # J for p € Pa and v € Ex(v), and
evidently G& = Q. Therefore (3.15) follows from (3.26).

Next we show that Pa isa (A, s,C")-set and E(p) isa (X, s, C’)-set for all p € Pa. This
will show that Q) = G% isa (A, X, s, C’, My)-configuration, and conclude the proof of the
proposition. To verify that P is a (A, s, C')-set, note that P' = | J,cp, Ds(p N P) has
|P'| =5 |P| by (3.21). Therefore P’ is a (4, s, C")-set with C' ~5 C. But now Pa = Da(P’),
and every cube in PA contains ~ 2% elements of P’. Therefore, it follows from Lemma
3.17 that Pa is a (A, s, C”)-set.

It remains to verify that E(p) isa (3, s, C’)-setforall p € Pa. Fixpe P, letX <r <1
be a dyadic number and v, € S,(p). Our goal is to show (and it suffices to show) that
l{veE([p):vcv,} s Cr°Ms. To this end, we first note that

Hve Es(p) :v<v}| SCrM, pepn P (3.27)

S (p)] ~s pe Pa. (3.25)

This follows by observing that all v € E,(p) with v < v, are contained in V(p, I,) n S(p)
by Lemma 3.5, and diam(V (p, Iv) n S(p)) S .
Next, observe that

U P®VC U {(p,v) :ve E(p)and v < v, }. (3.28)
veE(p) peEpNP

Thus recalling that |[p @ v| ~ 270 for v € E(p) S%O(p), we have

|{v€E(p):vcvr}|-2j0~‘ U p®v‘
veE(p)

VOV,
< ‘ U {(p,v) :ve Ey(p) and v < v, }
peEpPNP
< [pn P| max [{(p,v) :v € Ey(p) and v < v, }|
pepnP

(3:27) |
< 2. Crs M.
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To conclude the proof, we recall from (3.25) that My, =5 200 ) /270, Therefore,
%0

27o
as desired. We have now proven that G§ = Q = {(p,v) : p€ Prandv € E(p)} is a
(A, X, s,C", Msy;)-configuration, as claimed. O

2
{veEMD):vav} s Cre-

~s Cr®Msy, v e S, (p),

4. RECTANGLES AND GEOMETRY

The purpose of this section is to gather facts about curvilinear rectangles (that is: pieces
of annuli) and their geometry. Similar considerations are present in every paper regard-
ing curvilinear Kakeya problems and its relatives, for example [17, 24, 25, 27].

4.1. (6, 0)-rectangles and some basic properties.

Definition 4.1 ((J, o)-rectangle). Let 6,0 € (0,1]. By definition, a (J, o)-rectangle is a set
of the form

Ry (p,v) := 5°(p) " B(v,9),
where p € D and v € S(p). For C > 0, we write CRS(p,v) := RS (p, v).

Remark 4.2. If the reader is familiar with the terminology of Wolff’s paper [24], we men-
tion here that Wolff’s "(§, t)-rectangles" are the same as our (4, /d/t)-rectangles. While
Wolff’s notation for these objects is more elegant, the purpose of our terminology is to
handle e.g. (6, §/+/At)-rectangles without having to introduce further notation.

For the next lemma, we recall that A(p, p') = ||z—2'|—|r—7r'|| forp = (x,7) € R?x(0, o)
and p’ = (2/,7") € R? x (0, ).

Lemma 4.3. Let p,q € D be points with |p — q| = t and A(p,q) = A. Then, the intersection
S%(p) N S%(q) can be covered by boundedly many (0, o )-rectangles, where

o:=6/A/(A+0)(t+9).

Conwversely, assume that v € S(p) n S(q). Then, for all C' = 1, we have
CRi(p,v) < S9°(q), (4.4)
where C' < max{C,C?5/(\ +6)} < C2.

Proof. The first statement is well-known, see for example [27, Lemma 3.1], so we only
prove the inclusion (4.4). Recall that p,q € D, so the radii of the circles S(p), S(q) are
bounded between § and 1. For this reason, there is no loss of generality in assuming
that S(p) is the unit circle S(p) = S, that the radius of S(g) is € [1, 1), and that S(q) is
centred at a point z = (z,0) with > 0. These are incidentally the same normalisations as
in [27, Lemma 3.1], and our proof is overall very similar to the argument in that lemma.

With this notation, we observe that
A=A = |2 = 0] = L= 7l| = [(1=2) = 1] ~ [(L=2)* =7,

andt = [p—g¢q| ~ z + (1 —r). Since S(p) n S(q) # &, we moreover have z > 1 —r,
and therefore ¢ ~ . We may assume that z ~ ¢ > J, since otherwise (4.4) follows from
CRS(p,v) € S9°(p) € 59T (q) = §27(g).
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We assume that v € S(p) n S(q). Since S(p) = S!, we may therefore write v = ¢ for
some 0y € (—m, 7). Recalling that z is the center of S(¢), we have

. 1 — 2 2
1—2xcosfy+ a2 =] — 22 =12 «— cosfy = ;74_:5 4.5)
T
We further rewrite this as
1 — 72 4 42 2 _ (142
cosfp= LT U=,
2z 2z
where |h| = [r?2 — (1 — 2)?|/(22) ~ A/t. We now claim that
0 — 6| < Co ~ _ G e — 2|2 — 2| < C'6, (4.6)
(A+0)t

where C' ~ max{C, C?§/\}. This means that a circular arc on S(p) of length Co around
v = € is contained in S¢%(¢). Since every point on CR? (p,v) is within distance CJ <
C'$ from such a circular arc, (4.4) follows immediately.
Revisiting the calculation in (4.5), the condition on the right hand side of (4.6) is equiv-
alent to
1—r? '
|1 —2zcosf + 22 —r?| <C'6 < |cosh —cosby| = |cosf — Tiﬂ < ¢
2x 2
Moreover, the right hand side here is ~ C’¢/t. To prove that this estimate is valid when-
ever |6 — 0y| < Co, we note that
1 =sin®0p + cos® Oy = sin?fy + (1 —h)? = sin®6y = 2h — h?,

and therefore

|cos’ | = |sinfy| = +/|2h — h2| S /A

recalling that |h| ~ A/t < 1. Finally, for all |§ — 6y| < Co, we have
0 0
| cos @ — cos bp| = U cos’(dg" < J | cos’ ¢ — cos’ Og|dC + |0 — o] - | cos’ Op| =: ) + I>.
0o 0o

The term I is bounded from above by

L<Co/Ni~—20 il

AN+ )t t
Since cos’ = sin is 1-Lipschitz, the term I; is bounded from above by
ne[le-atac= [ igac~p-ar <ot = S0
0% 0 (A+ )t
This completes the proof of (4.6) with constant C’ ~ max{C4J, C?5/(\ + 9)}. O

Corollary 4.7. Let p,q € D be points with A\ = A(p,q) and t = |p — q|. Write 0 :=
d/A/ (A + 6)(t + 8). Assume that

CR(p,v) N CRY(q,w) # &
for some v € S(p), we S(q), and C = 1. Then, CRS (p,v) < C'RS(q, w) for some C' < C*.
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Proof. Fix v e CR%(p,v) n CR3 (g, w). Then
max{dist(v, S(p)), dist(v), S(q)}} < C6.
Consequently, there exist points
v € S(p) n B(v,Co) and w' € S(q) n B(w,Co)

such that [v — v| < Cd and |w’' — v| < C§. Now we shift the circles S(p) and S(q) a little
bit so that v lies in their intersection. The details are as follows. Write p = (z,r), and
define p’ = (2/,r), where 2’ = x + (v —v'). Thus, S(p’) = S(p) + v — ¢/, and

v=2v+(v-2)eSp) +(v-2)=8).

We define similarly ¢’ := (y/,r), where ¢ = (y,7),and ¢/ =y + v —v'.
With these definitions, |p — p/| < Cd and |¢ — ¢'| < C§, and

veSp)nS().

Write M := A(p/,¢') and t' := |p' — ¢/|, and ¢’ := 6/+/(N + 0)(¢' + 0). After a small case
chase, it is easy to check that 0 < AC0o’, where A > 1 is absolute (the worst case in the
inequality occurs if A <t < §,but X' ~ ¢/ ~ C9). It now follows from Lemma 4.3 that

(ACHRL (¢ v) « S7°(d),
where ¢’ < C4, since A > 1 is absolute. Finally,
CRy(p,v) = S°°(p) n B(v, Co)
c 829"y A B(v, AC%0")
< (ACH)RZ (¢ v) © 57°() © 527 g).
Since also C R’ (p,v) < B(v,2Co) c B(w,4C0o), we have now shown that
CR)(p,v) © §°7°(g) m B(w,4C0) = 2C'R} (¢, w),
as claimed. O

4.2. Comparable rectangles.

Definition 4.8. Given a constant C' > 1, we say that two (, 0)-rectangles R;, Ry are C-
comparable if there exists a third (J, 0)-rectangle R = RJ(p,v) such that Ry, Ry ¢ CR. If
no such rectangle R exists, we say that Ry and R; are C-incomparable.

The definition of C'-comparability raises a few questions. Is it necessary to speak about
the third rectangle R, or is it equivalent to require that Ry = CRy and Ry < C'R; (up to
changing constants)? If this definition is equivalent, is it enough to require the one-sided
condition Ry < C'Ry? The answer to both questions is affirmative, and follows from the
next lemma.

Lemma4.9. Let 0 < 0 < 0 < 1, and let Ry, Ry be (0, o)-rectangles satisfying Ry < CRy for
some C = 1. Then C Ry < C'R; for some C' < C°.

PTOOf. Write R1 = Rg(pl,vl) and R2 = Rg(pg,vg). Lett := |p1 —p2| and \ := A(pl,pg).
Write

7 := C3//(\ + Co)(t + C9).
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From Lemma 4.3, we know that the intersection S“°(p;) n S“%(ps) can be covered by
boundedly many (C§, &)-rectangles. Since Ry = CRy = S (p1)nS(ps), and diam(Ry) 2,
o, we may infer that & > 0. We set C := max{1,C(0/5)} < C.

It follows from our assumption RS (p1,v1) = C RS (p2, v2) that RS (p1,v1) = CRS? (pa, va),
and in particular CRS? (p1,v1) n CRS%(pa, v2) # . Therefore, applying Corollary 4.7 at
scale C'§ and with constant C, we get

CRS (pa, v2) © CRES (pa, v) “C " C"RE4 (py, v1) < SCC"% (1)

for some C' < C* ~ C*. Finally, since also C RS (p2,v2) € B(ve, Co) < B(v1,2C0), using
that v; € Ry < B(vg, Co), we may infer that

CRg(pg,vg) - Scclé(pl) N B(v1,2Co) CC'Rg(pl,vl).
Since CC’" < C%, the proof is complete. O

Remark 4.10. Lemma 4.9 clarifies the (up-to-constants) equivalence of different notions of
comparability. If Ry, Ry are C-comparable (4, o)-rectangles according to Definition 4.8,
then there exists a third (¢, o)-rectangle R such that Ry, Ry ¢ CR. But now R < C'Ry
according to Lemma 4.9, so R; < C'Ry. By symmetric reasoning, also Ry < C'R;.

Similarly, if we took as our definition the one-sided inclusion Ry < C' Ry, then Lemma
4.9 would imply that Ry < C'R;, and consequently we could infer the symmetric condi-
tion Ry € C'Ry and Ry < C'R;y (or Ry, Ry c C'R with either R := Ry or R := R»).

We record the following useful corollary of Lemma 4.9:

Corollary 4.11 (Transitivity of comparability). For every C > 1 there exists C' < C° such
that the following holds. Let 0 < § < o < 1, and let Ry, Ra, R3 be (0, o)-rectangles such that
Ry, Ry and Ry, R3 are both C-comparable. Then Ry, R are C'-comparable.

Proof. Since R;, Ry and Ry, R3 are C-comparable, by definition there exist (9, o)-rectangles
Ri2 and Ra3 such that Ry, Ry < C Ry and Ry, R3 < C'R23. We may infer from Lemma 4.9
that

R1 c CR12 c ClRQ and Rg c CR23 c C,RQ,

for some C’ < C°. This means by definition that R, R3 are C’-comparable. O

Next, given a family R of pairwise 100-incomparable (9, o)-rectangles, for A > 100, we
will show that there exists a subfamily R < R consisting of A-incomparable rectangles
such that A°M|R| = |R|. This result will be proved in Corollary 4.13.

Indeed, Corollary 4.13 is a direct consequence of the following proposition:

Proposition 4.12. Let A > 100 and § < o < 1, and let R be a family of pairwise 100-
incomparable (9, o)-rectangles. Suppose also that there exists a fixed (6, o)-rectangle R such
that the union of the rectangles in R is contained in AR. Then, |R| < A1C.

After somewhat tedious initial reductions, the proof will be virtually the same as the
proof of [17, Lemma 3.15]. We postpone the details to the Appendix A, and only give a
short outline here. Since [17, Lemma 3.15] was stated for curvilinear rectangles arising
as neighborhoods of arcs of graphs of C%(I) functions defined on an interval I ¢ R, we
need several auxiliary lemmas (see Lemma A.2, A.8, A.12, and A.17 in Appendix A) to
reduce our proof to a situation similar to [17, Lemma 3.15]. Then, in the terminology of
[17], the (8, o)-rectangles we need to consider are called (9, t)-rectangles with t = §/0>
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provided that o > /5 (hence ¢ < 1). Thus in the range o > /4, our proposition would
basically follow from [17, Lemma 3.15]. (The comparison between the different types
of rectangles is stated more precisely in (A.10)-(A.11).) But we also need to check that
the proof works if o < +/6. In this range our rectangles are shorter than any of the
rectangles literally treated by [17, Lemma 3.15]. The argument we give in Appendix A
for Proposition 4.12 reveals, however, that the proof sees no essential difference between
these cases. Alternatively, one could treat the case o < v/J separately, relying on the fact
that the (0, o)-rectangles in this range look like "ordinary" or "straight" rectangles.

The following consequence of Proposition 4.12 is similar in spirit to [17, Lemma 3.16].
It is not used in this section but will be applied later in the proof of Theorem 6.5.

Corollary 4.13. Let A > 100 and 6 < o < 1. Let R be a pairwise 100-incomparable family
of (8,0)-rectangles. Then R contains a subset R of cardinality |R| = A=°|R| consisting of
pairwise A-incomparable rectangles.

Proof. Let R be the maximal A-incomparable subfamily of R. That is, R consists of pair-
wise A-incomparable rectangles, and any element in R is A-comparable to at least one
rectangle in R. For R € R, we define

RA(R) :={R' e R: R c CA’R},

where C' > 1 is an absolute constant to be fixed momentarily. By Proposition 4.12,

IRA(R)| < A, ReR. (4.14)
We claim that
R =[] Ra(R). (4.15)
ReR

Once (4.15) has been verified, a combination of (4.14)-(4.15) shows that |R| < |R| 4%, and
the proof will be complete.

To prove (4.15), fix R’ € R. Then R’ is A-comparable to some R € R by the maximality
of R. By Remark 4.10, this gives R’ < C A’R, provided that C' > 0 is a sufficiently large
absolute constant. In particular, R’ € R 4(R), as desired. O

4.3. A slight generalisation of Wolff’s tangency counting bound. The following defi-
nition is due to Wolff [24].

Definition 4.16 (t-bipartite pair). Let 0 < § < t < 1. A pair of sets W, B D is called
t-bipartite if both W, B are /-separated, max{diam(B), diam(W)} < ¢, and additionally

dist(B,W)>t¢ and diam(B u W) < 100t.

Lemma 4.17. Let § <t < 1, and let W, B < D be a t-bipartite pair of sets. Let C' > 1 be a
constant, and assume that py,...,pr € Wand qi, ..., q € B are points satisfying

A(pi, q;) < C6, 1<i<k 1<j<l

Assume further that there exists a point v € R? which lies on all the circles S(p;), S(g;)-
Write . := A/3/t. Then, for suitable C' ~ C, every (5, )-rectangle RS.(p;,v) is contained in
every annulus S (p,,) and S€"°(qy,) (where i has no relation to m,n).
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Proof. We will use the inclusion (4.4). Namely, (4.4) applied with A := C'§ shows imme-
diately thatif (¢,7) € {1,...,k} x {1,...,1} is a fixed pair, then

RS (pi,v) = S9%(q;) (4.18)
for some C' ~ C. (Note that now ¥ < vC8/4/A(pi, qj)|pi — qj] ~ +/Co in the notation
of (4.4), so we may apply (4.4) with constant ~ v/C to obtain (4.18).) This already proves
that every rectangle R%(p;, v) is contained in every annulus S¢°(¢;). What remains is to

prove a similar conclusion about the annuli S°(p,,) for m # i.
To proceed, we observe that (4.18) can immediately be upgraded to

RS (pi,v) = RS (gj,v), (4.19)
simply as a consequence of (4.18) and definitions. Further, if m € {1, ..., k}, we have
RS (q5,0) = S (o), (4.20)

by another application of the inclusion (4.4) (here still C” ~ C’' ~ C). Now, chaining
(4.19)-(4.20), we find R%(pi,v) = S¢"¥(p,,). Combined with (4.18), this completes the
proof. O

In this paper, we will need the following slight relaxation of ¢-bipartite pairs:

Definition 4.21 (Almost ¢-bipartite pair). Let 0 < ¢ < 1. A pair of sets W, B < D is called
(0, €)-almost t-bipartite if both W, B are d-separated, and additionally

dist(W, B) = 6t and diam(Bu W) <46 “t.
Definition 4.22 (Type). Let 0 < 6 < 0 < 1, ¢ > 0. Let W, B < D be finite sets. For
m,n > 1, we say that a (6, o)-rectangle R < R? has type (> m, > n). relative to (W, B) if
R c $%"7"(p) for at least m points p € W, and R — 5% “(g) at least n points ¢ € B.

Here is a slight variant of [24, Lemma 1.4]:

Lemma 4.23. For every € > 0, there exists g > 0 such that the following holds for all § € (0, do].
Let 0 < 6 <t < 1,andlet W,B c D be a (6, €)-almost t-bipartite pair of sets. Let ¥ := +/d/t,
and let RS, be a family of pairwise 100-incomparable (8, X)-rectangles of type (> m,> n).
relative to (W, B), where 1 < m < |W|and 1 < n < |B|. Then,

3/4
IRE| < ¢ (('W”B') L |B|> : (4.24)

mn m n
where C > 0 is an absolute constant.

This lemma is the same as [24, Lemma 1.4], except that it allows for constants of form
"6~¢" in both Definition 4.21 and Definition 4.22. In [24, Lemma 1.4], the definition of "t-
bipartite pair" is exactly the one we stated in Definition 4.16, and the definition of "type"
was defined with a large absolute constant Cp > 1in place of §~¢. As it turns out, Lemma
4.23 can be formally reduced to [24, Lemma 1.4] with a little pigeonholing.

Proof of Lemma 4.23. In this proof, the letter "C" will refer to an absolute constant whose
value may change from line to line.

We may assume that 6'73¢ < ¢, since if (W, B) is (4, €)-almost t-bipartite for some ¢ <
5173, then both W and B have cardinality < 612, and it easily follows that |R%| < 6-¢<.
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By assumption, we have diam(W) < ¢~ and diam(B) < ¢ “t. Therefore, we may
decompose both W and B into r < (6 t/5)3 = ¢ subsets W1, ..., W, and By,..., B,
of diameter < 6¢. Now, for each pair W;, B;, we have

dist(W;, Bj) =!Ti € [0°t, 6 t]. (4.25)

Each pair (W;, B)) is 7;;-bipartite in the terminology of Definition 4.16, since (4.25) holds,
and
max{diam(Wi), diam(Bj)} < 0t < Tij and diam(Wi ) Bj) < 3Tij-
Next, notice that if R € R, then there exists (by the pigeonhole principle) at least one
pair (W;, B;) such that RS has type (> m, > 7). relative to (W;, B;), where
m = max{0%m,1} and 7 :=max{d%n,1}.

This means that there exist at least m circles S(p1),...,S(pm) with p;, € W; and and at
least 7 circles S(q1), ..., S(gn) with ¢; € B; with the property

Res™ () and Re s () 426)
Based on what we just said, we have
RE < | JREGS) = [RYI< Y IREG,)), (427)
i 7

where R (i, j) refers to rectangles of type (= m, > 7). relative to (W;, B;). Since the
number of pairs (i, 7) is < 6~ ¢, it suffices to prove (4.24) for each R4 (i, j) individually.
Fix 1 < i,j < r, and write 7 := 7;; € [0, “t], and also abbreviate (or redefine)
W := W; and B := B; and RS := RL(i,j). Before proceeding further, we deduce
information about the "tangency" of p, € W and ¢, € B satisfying (4.26). Recall that
lpk — qi| = 7 = 6, and note that diam(R) > & = 4/6/t. Then,
L.4.3 5176

VOt < diam(R) S ——0
V 5EtA(pk7 QZ)

from which we may infer that
Alpe,q) S07%,  1<k<m,1<I<nq. (4.28)

For purposes to become apparent in a moment, it would be convenient if W, B were
§173¢-separated instead of just §-separated. This can be arranged, at the cost of reduc-
ing m and 7 slightly. Indeed, we may partition W and B into §' 3‘-separated subsets
Wi,...,Wsand By, ..., By, where s < §%¢. Now, arguing as before, every rectangle R €
RS has type (= m/, > 7’) relative to at least one pair (W}, B;), where /' := max{§%m, 1}
and 7’ := max{d°n, 1}. After repeating the argument at (4.27), we may focus attention
to bounding the number of rectangles associated with a fixed (W;, B;). Since the passage
from (W, B) to (W, B;) eventually just affects the absolute constant "C" in (4.24), we now
assume that W, B are § 1_‘rie—sepam’ced to begin with, and m’ = mand n = 7'

The improved separation of W, B gives the following benefit: the pair (W, B) is 7-
bipartite relative to the scale §'73¢ in the strong sense of Definition 4.16. The role of
"§" (or now §173¢) is hardly emphasised, but one of the assumptions in Definition 4.16
was that a 7-bipartite set is §-separated, and the conclusion of [24, Lemma 1.4] concerns
"type" and "tangency" defined for d-annuli and (6, 4/0/t)-rectangles. Now, since W, B are
§173¢-separated, we have access to the conclusion of the same lemma at scale §'3¢.
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Now, [24, Lemma 1.4] implies that the maximal number of pairwise 100-incomparable
(6173¢,4/8173¢ /7)-rectangles of type (= m,> 7) relative to (W;, B;) is bounded from
above by the right hand side of (4.24). The definition of "type" here is the one which
Wolff is using in the statement of [24, Lemma 1.4]: a (6173¢,4/§1—3¢/7)-rectangle R has
type (= m, > n) relative to (W, B) if there are p1,...,ps € Wand qi, . . ., gs € B such that

Rc S99 () n S99 *(q), 1<k<m, 1<l<n, (4.29)

where C' > 0 is an absolute constant.

What does this conclusion about the rectangles R tell us about the cardinality of R$?
We will use the (6, Y)-rectangles in R{, to produce a new family R of pairwise 100-
incomparable (§173¢, 3)-rectangles satisfying (4.29), where 3 = 4/61=3¢/7. Then, we will
apply the upper bound for |R| (given by [24, Lemma 1.4]) to conclude the desired esti-
mate for |RY|.

Recall from (4.26) that each of our (5, Y)-rectangles R € R has type (= m,> 7).
relative to (W, B) in the sense R < 8% “(pg) n S “(q) for everyl<k<mand1l <<
n. As we observed in (4.28), this implies A(py, ¢) < 173, Recall that further |py —q| ~ 7
foralll<k<mand1l <l <n.

In view of applying Lemma 4.17, we would need that the circles S(p;) and S(g;) share
a common point. This is not quite true, but it is true for slightly shifted copies of S(p;)
and S(gq;). Namely, take "v" to be an arbitrary point in R, for example its centre (writing
R = R‘sz(p,v) for some p € D and v € S(p)). Now, since v € R 35175(]%), there exists
Pk € B(pg, 817¢) such that v € S(py,) (see the proof of Corollary 4.7). Similarly, there exist
points q; € B(qg,617¢), 1 < I < 7, such that v € S(q). Note that the crucial hypotheses
A(pr, @) < 6173 and [pr — qi| ~ T were not violated (since 7 = 5t > ¢ %).

Now, we are in a position to apply Lemma 4.17 at scale §1 3¢, and with "7" in place of
"t". The conclusion is that if we set

R:= R(R) := RL “(p1,v),  £:= /6737,
then (4.29) holds, provided that the constant C' > 0 is sufficiently large (initially with the
points py, g, but since |y — pr| < 017 ¢ and |¢ — @] < 617, we also get (4.29) as stated).
In other words, R is a (6173¢, ¥)-rectangle which has type (> m, > 7n) relative to (W, B)
in the terminology of Wolff.
We have now shown that each rectangle R € R gives rise to a (6173¢, ¥)-rectangle
R(R) which has type (> m, > n) relative to (W, B). We also observe that

R 55 (p1) n B(v,%) € (1) n B(v, %) = R(R). (4.30)

Finally, let R be a maximal pairwise 100-incomparable subset of {R(R) : R € R}}. The
rectangles in R have type (> m, > n) relative to (W, B), so |R| satisfies the desired upper
bound (4.24) by [24, Lemma 1.4]. It remains to show that

IRL| < 67CIR). (4.31)

If R € RS, then R(R) ~100 R for some R € R. Combining (4.30) and Lemma 4.9, we
may infer that R < R(R) ¢ CR for some absolute constant C' > 0. Therefore, (4.31) will
follow if we manage to argue that

{ReRL:Rc CR} <6 %%,  ReR.
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But since the rectangles in R{. are pairwise 100-incomparable, this follows immediately
from Proposition 4.12. The proof is complete. O

5. BOUNDING PARTIAL MULTIPLICITY FUNCTIONS WITH HIGH TANGENCY

In this section, we will finally introduce the partial multiplicity functions ms )+ men-
tioned in the proof outline, Section 1.3 (see Definition 5.29). The plan of this section is to
prove a desirable upper bound for m, , ; — the partial multiplicity function only taking
into account incidences of maximal tangency at scale A\. This will be accomplished in
Theorem 5.31, although most of the work is contained in Proposition 5.2.

Notation 5.1 (Gﬁ,t (w)). Let0 < d <o < 1,and let P < D;, { E(p)},ep be finite sets, where
E(p) € Sy(p) forallpe P. Let Q = {(p,v) : pe Pand v € E(p)}. If G = Q is an arbitrary
subset, d < A<t <1,and p = 1, we define

G (w) = {0, V) e G:t/p<Ip—p| <ptand \p < A(p,p') <pA},  we.

The distance |p — p/| and A(p,p’) are defined relative to the centres of p,p’ € D;. If
A € [0, pd] (as in Proposition 5.2 below), we remove the lower bound A(p,p’) > \/p from
the definition.

Proposition 5.2. For every > 0, and s € (0,1], there exist e = e(k,s) € (0,1] and Ay =
Xo(€, &, s) > 0 such that the following holds for all X € (0, \o]. Let A <t < 1and ¥ := 4/ \/t.
Let = {(p,v) : pe Pandv € E(p)} be a (\, X, s, \)-configuration (see Definition 3.12).
Then, there exists a (X, X, s, Cx A~ €)-configuration G < Q with |G| ~, |Q| with the property

o' € GA, (w) : ARy (w) n A Ry(W) # I} < ATFP|,  weG. (5.3)
To be precise, ¥ in Proposition 5.2 refers to the smallest dyadic rational Y € 27N with

¥ < %, recall Remark 3.3. Taking this carefully into account has a small impact on some
constants in the proof below, but leave this to the reader.

Proof of Proposition 5.2. Write Ms, := |E(p)| for p € P (this constant is independent of
p € P by Definition 3.12). We start by disposing of the special case where ¢ < A'~*/3. In
this case we claim that G = Q works. To see this, note that now ¥ = /\/t > \/6 g0
My, = |E(p)| < |Ss(p)| < A~ */%. Furthermore,
N (o) < {0 v) e Qi e PABEAT)), (o),
assuming that ¢ < /6. Fix w = (p,v) € Q. Then, for every p’ € B(p, \' */?), using the
Y-separation of E(p'), there are < A\~ possible choices v' € E(p’) such that
AT RMw) N ATRA(Y V) # @
Consequently,
o’ € QA (W) : AT R (W) N ATRI(W) = BH S AP Blp, AT
S A*2€A(171{/2)S|P| < /\3755/6|P|.

using the (\, s, \™)-set property of P in the final inequality, as well as € < x/6,and s < 1.
We have now proven (5.3) with G = 2. In the sequel, we may assume that

t = AR, (5.4)
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Fix € = €(k, s) > 0 and A > 0 (depending on ¢, &, s) be so small that

A-1820/81e < ks and  AISPTN\I8EYRle = (5.5)
where A > 1is a suitable absolute constant. We start by defining a sequence of constants
Co»Ci»...»Cp:=)\°¢

where h = [20/k], and such that C; = AC}?H. Thus,

[20/x1 [20/x1

Co < ABTT 718 < A\75 (5.6)

We will abbreviate

nj(w| G) := [{w' € Gyj(w) : CjRA(w) n C;RA(W') # @}

"en

for G € Q and w € Q. Note that the constants C; are decreasing functions of "j", so
nyp < np—1 < ... < ng. Also, nj(w | G) is an upper bound for the left hand side of (5.3)
foreach 0 < j < h,since C; > A™°.

We start by recording the "trivial" upper bound

no(w | G) < no(w | Q) < Co| P, weQ, Gc. 5.7)

The first inequality is clear. To see the second inequality, fix w = (p,v) € Q and p’ € P.
Now, if v’ € Sy (p’) is such that

CoRg(p/,’U,) M CoRg(w) #* @,

then |[v—2'| < CoX. But the points v’ € Sx,(p') are X-separated, so there are < Cy possible
choices for v/, for each p’ € P. This gives (5.7).

The trivial inequality (5.7) tells us that the estimate (5.3) holds automatically with G =
Qand k = 2s,since A™¢ < Cy < A™° by (5.5).

By the previous explanation, if > 2s, there is nothing to prove (we can take G' = Q).
Let us then assume that x < 2s. Then, let

O=E1<I€2<...</€h=28

be a (ks/10)-dense sequence in [0, 2s] (this is why we chose h = [20/x]). We now define
a decreasing sequence of sets 2 = Gy © G; D ... D Gy, where k < h. We set Gy := (,
and in general we will always make sure inductively that |G;41| > £|G}| for j > 0. Note
that no(w | Go) < A7*|P| = A* "r|P| by (5.7), for all w € Gy.

Let us then assume that the sets Gy o ... © G, have already been defined. We also
assume inductively that n;(w | G;) < A*7%-i|P| for all w € G;. This was true for j = 0.
Define

Hj={weGjinja(w|Gy) 2 X r-um|Pl},  0<j<k
This is the subset of G; where the lower bound for the multiplicity nearly matches the

(inductive) upper bound — albeit with a slightly different definition of the multiplicity
function. There are two options.

(1) If |H;| > 3|G/|, then we set H := H; and k := j and the construction of the sets
G'j terminates.
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(2) If |H;| < 1]|G;], then the set G;41 := G;\ H, has |G+1| = |G}, and moreover
nj1(w | Gjp1) S nj(w | Gy) S X-0|P we Gy,

In other words, Gj41 is a valid "next set" in our sequence Gy > ... > G11, and
the inductive construction may proceed.

The "hard" case of the proof of Proposition 5.2 occurs when case (1) is reached for

"n-n "en

some "j" with k;,_; > k. Namely, if case (1) never takes place for such indices "j", then
we can keep constructing the sets G; until the first index ";j" where kj_; < k. At this
stage, the set G := G satisfies n;(w | G) < A*7"|P| for all w € G (so (5.3) is satisfied
because C; > A9, and since |G| = 277|Q| = 27 [2Y/#|Q| ~, |Q|, the proof is complete.
(To be accurate, G is not quite yet a (d, X, s, Cx A~ ¢)-configuration, but this can be fixed by
a single application of Lemma 3.13).

In fact, we claim that case (1) cannot occur: more precisely, if € = ¢(k, s) > 0 is as small

as we declared in (5.5), then case (1) cannot occur for xj,_; > «. To prove this, we make a

counter assumption: case (1) is reached at some index j € {0, ..., h} satisfying x;_; > k.
We write & := kj,—; and

Kh—(j+1) = K —(, where ¢ < (ks)/10 < (Rs)/10. 5.8)
We also set

G := Gj and H:=H;={we G: njr1(w | G) = AS_R+C|P|}’
=

so that |H|
abbreviate

|G| =, |Q] by the assumption that case (1) occurred. Finally, we will

n = AP (5.9)
in the sequel. Thus, to spell out the definitions, we have H < G, and
(o' € GYIM (W) : CiaRY(W) N CjRAW) # B} 2 n,  we H. (5.10)
On the other hand, by the definition of G=0G j,and & = Kkj—j, we have
{o' € Gﬁ;(w) (CjR{(w) N CiRy (W) # B < A FIP[ =X "%n,  weG. (5.11)
We perform a small refinement to H. Note that

D HP)| = [H| 2, 19 = Ms|P],
peP

where as usual H(p) = {v € E(p) : (p,v) € H}. Consequently, there exists a subset
P < P of cardinality |P| 2, |P| and a number Msx. >, My such that |H(p)| > My, for all
p € P. For each p € P, we further pick (arbitrarily) a subset H(p) = H(p) of cardinality
precisely |H(p)| = Ms. Then, we define H := {(p,v) : pe Pandv € H(p)} = H. Note
that |H| ~, ||, and now H has the additional nice feature compared to H that

|H(p)| = Mg,  peP. (5.12)

Let B be a cover of P by balls of radius it/ Cj+1 such that even the concentric balls
of radius 2tC;; (that is, the balls {SCJZ 1B : B € B}) have overlap bounded by A—Clr)e
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(this is possible, since C; < ACWe forall 1 < j < h, recall (5.6)). Then, we choose the
ball B(po, %t/CjH) € B in such a way that the ratio

_ [P0 B(po, 3t/Cj+1)]

[P~ B(po,2Cj111)|

is maximised. We claim that 8 > \C(®)¢: this follows from the estimate

IPl< Y |PABI<6 ) |P8CE, Bl < oA 0P|,
BeB BeB

and recalling that | P| 2, | P|. Now, we set

W := P n B(py, 1t/Cj41) and B := P n B(py,2Cj1t) \ B(po, 5t/Cj11),  (5.13)

so that
|B| < |P n B(po, 2C;41t)| = 07HW| S A=C0 w7). (5.14)

We also set
W:={(p,v)e H:pe W} and B:={(p,v)eG:pe B}.

Let us note that

(W(p)| ={ve E(p): (p,v) e W} = |H(p)| = Ms ~; Ms, peW, (5.15)
since W < P, recall (5.12). We now claim that
weW = GU(w) By (W) (5.16)

Indeed, fix w = (p,v) € W and (p/,v') € Gii“ (w). We simply need to show that p’ € B,
and this follows from p € W < B(po, 1¢/Cj+1), and t/Cji1 < |p — p/| < Cj11t, and the
triangle inequality:
$/Ci < Ip—p'| = Ipo —pl < Ipo — 9| < Ipo —p| + [p — 9| < 2C; 11t
From (5.16), and since W ¢ H ¢ H, and recalling (5.10), it follows
C;
{B€B)7" (W) : Cip1RY(w) N CiRY(B) # Y =2n >0, weW. (5.17)
Next, we consider the rectangles
R = {R{(w) : we W}

To be precise, let R be the maximal family of pairwise 100-incomparable (), ¥)-rectangles
inside the family indicated above. Below, we will denote the 100-comparability of R, R’
by R ~100 R'. We now seek to show that every rectangle in Rg has a high type relative
to the pair (W, B), in the terminology of Definition 4.22.

To this end, we first define the quantity

m(R) = |[{we W : R ~100 R3(w)}, (5.18)

The value of m(R) may vary between 1 and < A~*, but by pigeonholing, we may find a
subset R = R with the property m(R) = m € [1, A~4] for all R € R, and moreover

DT HRERY : R ~100 RY(W)} Za Y] HRERY : R ~100 R§(w)}. (5.19)
weW weW
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Now, we have

Z > 2 Yrwriow)

ReRA peW wveE(p)

(pv)eW
(5.1
5 Z > {ReRY: R ~100 R(p,v)}]
peW veE(p)
(pv)eW
5.15 Y
615 \W | Ms, - WM (5.20)
m m

The second-to-last inequality is true because every rectangle R (p,v) with (p,v) € W is
100-comparable to at least one rectangle in R, by definition of R3.

5.0.1. Proving that m < n. We next claim that
m(R) < A\™°n,  ReRR, (5.21)

where n > 1 was the constant defined in (5.9). In particular m < A~¢n. The estimate
(5.21) will eventually follow from the inductive hypothesis (5.11), but the details take
some work. Let R}(w) € R3, with w = (p,v) € W. According to (5.17), there exists at

least one element 3 = (q,w) € BS;“ (w) < G such that

Cj1 R (w) N Ci1 RS (B) # . (5.22)
We claim that if o’ = (p/,o') € W is any element such that R (w) ~j00 Ra(w'), then
automatically
W' eGYi(B) and C;RA(w') N C;RA(B) # & (5.23)
This will show that

1 - ~Cj A A/, J 10 —C
m(R) < {o' € Gy1(B) : C;R3(8) n CiRXMW) # B} < A~“n,
as desired. The points w,w’ € W and € B, as above, will be fixed for the remainder of
this subsection.

The second claim in (5.23) is easy: since Ra(w) ~100 R (w'), it follows from Lemma
4.9 that R}(w'") € AR} (w) © Cj41R}(w) for a suitable absolute constant A > 1. Lemma
4.9 then yields

Cj1Rg(w) © ACY, R(W) © CjR(W). (5.24)
The second part of (5.23) follows from this inclusion, and (5.22).
We turn to the first claim in (5.23). Since w’ = (p/,v') € W and 8 = (¢, w) € B, we have
p' € Wand qe€ B, so
t/Cj t/CJ_H |p - q| QC]+1t Cjt.
It therefore only remains to show that A(p’,¢) < C;\. To this end, recall that w = (p, v).
Then, since § = (¢, w) € BS%“ (w), we have
A= A(p,q) < Cj+1A and t:=[p—q| < Cjt.
Consequently,
Si=MA/A+ N+ X)) 2 CLV/ME=C L s,
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and because of this,

(5.22)
AC?, | RA(w) n AC2 | RA(B) © Cja1R3(w) n CiaRY(B) # @

It now follows from Corollary 4.7 applied at scale A and with constant C' = ACJZ 41 that
Ry (w) © G RY(8) = ST2(a), (5.25)

for some C’ ? +1- On the other hand, we saw in (5.24) that

Jj+1 N
RA(w) € ACS, | RA(W) € $4%n1 (),

and therefore R (w) is contained in the intersection SC?H’\( ) N S (p'). But this in-
tersection can be covered by boundedly many discs of radius C; 2 NVAW QY — 4l

which shows that
Moo G
t T VAW QY —dl
and rearranging this we find A(p’, ¢) < Cl?H)\ This proves that A(p’, ¢) < C;\, since we

chose C; = AC}?H above (5.6). We have now shown (5.23), and therefore (5.21).

5.0.2. The type of rectangles in R3,. We claim that that every R € R$ has type (= m, > ),
relative to (W, B), where

mi=MNm, n>=MNn, and p=10-18P""l¢, (5.26)

Let us recall from Definition 4.22 what this means: a (), X)-rectangle R has type (> m, >
n), relative to W, B if there exists at least m points {p1,...,pn} < W and at least n points
{q1,...,qa} < B such that

RS (p)n S “(q), 1<k<m 1<I<n (5.27)

To see this, recall that m(R) = m for all R € R, where m(R) was defined in (5.18): there
exist m pairs {wi,...,wn} < W such that R ~qg Rz(wj) Writing wi, = (p, vx), and
using Lemma 4.9, this implies

Rc ARM(wi) € SM “(pr),

where A > 1 is absolute, and the second inclusion holds for A > 0 small enough. This is
even better than the first inclusion in (5.27). There is a small problem: some of the points
"pr" may be repeated, even though the pairs wi, = (pi, vy) € W are distinct. However,
for py € D fixed, there are < 1 choices vy, € F(p) such that R = AR (px, vx) (since E(p) is
Y-separated), so the number of distinct points "p;" is 2 m, and certainly > m.

The proof of the second inclusion in (5.27) is similar, but now based on (5.17): for all
R = R}\(w) € RR, there exist n pairs

{Br,.... B} © B (W) st CRACiaRA(B) # Bfor1 <1<,
If we write 3; = (¢;, w;), then the same argument which we used in (5.25) shows that
RY(w) © CY RY(B) < SO+ @) = 8 "(a),  1<i<n, (5.28)
using in the final inclusion that

(5.6) [20/x] r20/x], (5-26)
1 K —9.1 K —
C?+1 < Cg < A9 8 Y 9-18 € < A p’
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assuming A > 0 small enough (depending on ¢, ) in the final inequality. This proves
the second inclusion in (5.27). Again, all the "n" points ¢; need not be distinct, but for
every fixed g, the first inclusion in (5.28) can hold for < C? +1 < A * choices of "w;", so

l{q1,...,qi}| 2 A\’n, as desired. This completes the proof of (5.27).

5.0.3. Applying Lemma 4.23. To find a contradiction, and conclude the proof, we aim to
apply Lemma 4.23 to bound the cardinality of R3, from above. Notice that, by the defi-
nition of W, B, see (5.13), the definition of "p" at (5.26), and since 4C;;1 < A7, the pair
(W, B) is (A, p)-almost t-bipartite. In the previous section, we showed that every rectan-
gle R € R has type (> m, > n), relative to W, B. Therefore, Lemma 4.23 is applicable to
R3\. This yields the following inequality (see explanations below it):

[\ %2? IRS| Sa (|B||W|)3/4 + 1B] + i < <|W|2>3/4 + Iy
m mn m n mn m

To make the estimate look neater, we allowed the "~ " notation hide constants of the form
A~ C(®)e, where C(k) > 1 is a constant depending only on x. In the second inequality, we
are hiding the constant A=CP = \=Clr)e produced by Lemma 4.23. In the third inequality,
we are hiding the constant A\~ “(*)¢ produced by (5.14). The factor A~¢ in the second
inequality appears from (5.21), and it is a good moment to recall from (5.8) that { <
(ks)/10.

W/e observe immediately that the second term on the right cannot dominate the left
hand side for € = €(k,s) > 0 sufficiently small (the choice in (5.5) should suffice), and
A = A€, k, s) > 0 sufficiently small: this is because My, > XX 7% = ¢ At = NeRs/0 >
A~%$/T (using our assumption (5.4)), whereas A ¢ < A~#%/10 by (5.8).

Therefore, the term |W|*2/(mn)?* needs to dominate the left hand side. Rearranging
this inequality, using again m < A\~ ‘n, recalling that n = A\* %*¢|P|, and finally using the
(A, s, A" 9)-set property of P to bound |[W| < A~ “¢*| P| leads to

1/2 5/2
My S A=SAn=1 2|12 < \=5/2-CHR/2 (||Ig||) / <\ ACHR2 (;) / |
This inequality is impossible for €, A > 0 small enough depending on &, since k > &, and
¢ < (k8)/10 < //10 — and finally because My, = |E(p)| = A% = X¢(t/\)*/2.

To summarise, we have now shown that the case (1) in the construction of the sequence
{G,} cannot occur as long as long as x,—; > k. As we explained below the case distinc-
tion, this allows us to set G := G for the first index satisfying ~;—; < . The proof of
Proposition 5.2 is complete. O

We will use Proposition 5.2 via Theorem 5.31 below. First, as promised at the beginning
of this section, we introduce the partial multiplicity functions. Compare these with the total
multiplicity function from Definition 1.9.

Definition 5.29 (Partial multiplicity function). Fix0 < d < A< A<t <landp > 1. Let
P c Ds, and E(p) < Ss(p) for all p € P. Write Q = {(p,v) : pe Pand v € E(p)}, and let
o € 27N be the smallest dyadic rational larger than A/v/\t. For G < ©, we define

mRSG (W | G) = {w' € (G2}, (w) : CRYw) nCRMW) = @}, weG UGS,
Here G is the (A, o)-skeleton of G.
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Remark 5.30. The only interesting parameters "A" for us willbe A = § and A = A. If
A = ¢, we will usually write 0 = A/ V=06 / Vt, and for A = )\, we will instead use the
capital letter © = A/v/At = 4/\/t. Also, to be accurate, the notation o, . typically refers
to the smallest dyadic rational greater than §/4/At and /)\/t, respectively.

Finding a nice notation for the partial multiplicity functions is a challenge, due to
the large number of parameters. In addition to the "range" and "constant" parameters
p and C, one could add up to 4 further parameters: two "skeleton" parameters and two
"rectangle” parameters. In practice, however, if the triple (A, A, t) is given, the only useful
rectangles are the (A, A/v/\t)-rectangles. This relationship stems from Lemma 4.3. So,
we have decided against introducing the fourth parameter independently.

Theorem 5.31. For every k > 0 and s € (0,1], there exist ey := €y(x,s) € (0,%] and &y =
do(€, K, s) > 0 such that the following holds for all 6 € (0, 6o] and € € (0, €].

Let Q2 be a (0,9, s, ¢)-configuration with P := mwps(2). Fix 6 < X\ <t < 1. Then, there
exists a (0,9, s, Co~)-configuration G < Q such that C ~;,. 1, |G| ~5, ||, and

mi 0 YW Q) <ETNIP we G (532)
Proof. Let us spell out what (5.32) means: for ¥ = 4/)\/t, we should prove that
o' € (G (@) 1 07VRY(w) NI R(w') # @Y < 6T°N|P|s,  we Gy,

We first dispose of the case where A > §%/10. In this case we simply take ¢y = /5 and
G := Q. Now, the left hand side of (5.32) is bounded from above by

|G§| 5 )‘73271 < )\74 < (572"{/5 = 573’%/5560 < 5*3H/5A3|P|)\’

using finally the assumption that P is a non-empty (9, s, 6~)-set.

Let us then assume that A\ < §*/'°. We apply Proposition 3.14 with o = § and A = A
and ¥ = 4/\/t > o. This produces a subset Gy < (2 of cardinality |Go| ~s |2|] whose
(A, X)-skeleton

(Go)s = {(p,v) : p€ Pyand v € E(p)}
isa (X, X, s, Co ¢)-configuration with C' & 1 (in particular, this skeletonisa (\, X, s, C6~)-
configuration). Moreover, recall from (3.15) that

2]
(Go)3l’
It may be worth emphasising a small technical point: we never claimed, and do not claim
here either, that Gy would be a (4, 0, s, Cd~€)-configuration.

Next, we apply Proposition 5.2 with constants ", s". This produces a constant ¢; :=
e1(k,s) > 0. Note that since A < §*/'0 by assumption, we have C§~ < \=20/% for
d > 0 small enough. Therefore, if we choose "ey" presently so small that 20¢y/x < €1, we
see that (Go) is a (), X, 5, A “1)-configuration. Now, by Proposition 5.2, there exists a
(A, 3, s, CxA—1)-configuration G < (Go) with |G| ~, [(Go)3], and the property

{w' '€ G (W)t A IRy (w) N A OIRY(W) # T < AR, weG. (5.34)

|{(p7 U) € GO : (p,U) < (p,V)}| 5 (p>V) € (GO)g (533)

Note that 7 < A™“! by our choices of constants, and A > §, so (5.34) implies

o' e G, () 1 7Ry (w) N 6TORY (W) # B} <5TN|P|, weG.  (535)
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We also used that |Py| < | P|y. Next, let

Gi:= |J {v)eGo:a<mevi= [J Gn@ev.
(p,v)eG (p,v)eG

Then (Gl)g c G by definition, so (5.35) implies (5.32) for G1. Moreover, as explained in
Remark 3.16, the sets p ® v are disjoint, so

(5.33) Q
Gil= ). [Gon(p®V)| =5 |G- | |A ~k 9.
[(Go)s
(p,v)eG 0%

The only problem remaining is that Gy may not be a (4, 9, s, Cd~¢)-configuration. How-
ever, |G| =5, |€], so it follows from the refinement principle (Lemma 3.13) that there
exists a (9, 6, s, C6~“)-configuration G < G such that C =5, 1 and |G| ~;, |©2|. Now, G
continues to satisfy (5.32), so the proof of Theorem 5.31 is complete. O

Remark 5.36. It may be worth remarking that if G is the final (J, 6, s)-configuration in the
previous theorem, the (), Y)-skeleton G\ may fail to be a (), X, s)-configuration. This
was not claimed either. It seems generally tricky to ensure that a set G < (2 is simultane-
ously a (9, o, s)-configuration and a (A, X, s)-configuration for 6 « A and o « X.

6. AN UPPER BOUND FOR INCOMPARABLE (5, U)-RECTANGLES

Notation 6.1. Let0 < 0 < A< land 0 <o < ¥ < 1. Letp € D5, and let E,(p) < S,(p)
(recall that the notation Ss(p) refers to a circle associated to the centre of p). We write

&) = (J RE@,v)c S (p),
VEEE(p)

where p € Da is the unique dyadic A-cube with p < p, and Ex(p) is the (A, X¥)-skeleton
of E,(p), namely Ex(p) = {ve Sx(p) : v < v for some v € E,(p)}.

Lemma6.2. et C >1,0<0<A<1,0<0<X < 1. Assumealso that A < X.. Let p € Dy,
and let E5(p) < Sy(p). Then CES(p) < C'ES (p) for some C' ~ C.

FIGURE 3. The rectangles CR%(p,v) and C'R&(p,v) in the proof of
Lemma 6.2.
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Proof. The proof is illustrated in Figure 3. The set £2(p) is a union of the (8, o)-rectangles
RS (p,v) centred at v € E,(p). Let R = RJ(p,v) be one of these rectangles. By the def-
inition of (A, X)-skeleton, there exists v € Ex(p) such that v < v, or in other words
pcpeDaandvn V(p,v)# . Since [p — p| < 2A and § < A, we have

S9(p) = S*°4(p).

Moreover, it follows from v N V(p,v) # & and A < ¥ that [v — v| < C'Y, where C' > 0
is absolute. Consequently,

B(v,Co) € B(v,C¥) € B(v,(C + C")X).
Combining this information, we have
CRy(p,v) = S°°(p) 0 B(v,Co) = §2°%(p) 0 B(v,(C + C")%) = C"RS (p, V),
with C” := max{2C, C' + C'}. This completes the proof. O

We next define a variant of the "type" introduced in Definition 4.22.

Definition 6.3. Let 0 < § < o < 1,and let P < D;. For every p € P, let E(p) < Ss(p). Let
W, B P be finite sets. For § < A < 1,and m,n > 1, we say thata (J, o)-rectangle R < R?
has A-restricted type (= m, = n). relative to (W, B, {E(p)}) if there exists a set Wr ¢ W of
cardinality |Wg| = m, and for every p € Wg a subset Br(p) c B of cardinality |Br(p)| >
n such that the following holds:

(1) 6N < A(p,q) <0 “Aforall pe Wy and all ¢ € Br(p).
(2) Rc 6 E3(p) n 6 <E(q) for all p e W and all g € Br(p).

If A = 6, then the requirement in (1) is relaxed to A(p, q) < §' <.

Remark 6.4. The presence of the sets E(p) is a major difference compared to Definition
4.22, and we will distinguish between these two definitions by using the terminology
"...relative to (W, B)" in Definition 4.22, and "...relative to (W, B, { E(p)}) in Definition 6.3.
We will make sure that there is never a risk of confusion which definition is meant.

Other differences are (obviously) the condition (1) of Definition 6.3, which is com-
pletely absent from Definition 4.22. A more subtle point is the asymmetry of Definition
6.3: even if a rectangle has A-restricted type (= m, > m), relative to (W, B, {E(p)}), it
need not have A-restricted type (= m, > m). relative to (B, W, {E(p)}).

Theorem 6.5. For every n > 0, there exist € = €(n) € (0, 1] and 5o = do(n, €) € (0, 1] such that
the following holds for all § € (0,o]. Let 0 < § < A < t < 1 be dyadic rationals with A\ < §%.
Let P < Ds be a set satisfying

[Prp[<Xy, peDy, (6.6)

where X, € N. For every p € P, let E(p) < S5(p). Write ¥ := /\/t, and let Q3 be the
(A, X)-skeleton of Q = {(p,v) : pe Pand v e E(p)}. Assume that, for some Yy € N,

6—As 5—Ae

My Wl <Y, we, 6.7)

where A > 1 is a sufficiently large absolute constant, in particular A is independent of the
previous parameters 5,n, \,t. Write o := §/v/\t, and let W, B be a (3, €)-almost t-bipartite pair



ON THE HAUSDORFF DIMENSION OF CIRCULAR FURSTENBERG SETS 37

of subsets of P. Let 1 < m < [W|and 1 < n < |B|. Let RS be a collection of pairwise 100-
incomparable (9, o )-rectangles whose A-restricted type relative to (W, B, {E(p)}) is (= m, = n)..
Then, /
3/4
IRy <677 [('WHB|) (X002 + W] - X\Y) + 1Bl X,)Y, |- (6.8)
mn m n

Remark 6.9. It is worth noting that the upper bound (6.7) which is assumed here looks
exactly like the upper bound provided by Theorem 5.31.

Another remark is that (6.8) in the case A = § may actually be weaker than Wolff’s
tangency bound (4.24). In this case evidently X < 1, butit may well happen that Y, >» 1.
This is irrelevant for our purposes, since Theorem 6.5 will only be applied in a situation
where Y), 5 1. For the interested reader, we mention that the main loss in the proof arises
from the estimate (6.31), which is always unsharp if My N, - (myny) » (\/6)2.

Proof of Theorem 6.5. We start with the case m = 1 = n, and later deal with the general
case with a "random sampling" argument. Fix n > 0. We also choose ¢ > 0 so small
that /e < ¢n for a suitable absolute constant to be determined later (this constant will be
determined by the constant in Lemma 4.23).

In this proof, "C" will refer to an absolute constant whose value may change — usually
increase — from one line to the next without separate remark. We will also assume, when
needed, that "9 > 0 is small enough" without separate remark.

We may assume with no loss of generality that the rectangles in RJ, are pairwise §~*-
incomparable for a suitable absolute constant C' > 0, instead of just 100-incomparable.
This is because by Corollary 4.13, any collection of 100-incomparable rectangles RS con-
tains a 6~ ““-incomparable subset R’ of cardinality |RS | > §°(“)|RJ|, and now it suffices
to prove (6.8) for RY.

By assumption, every rectangle R € RS has M-restricted type (> 1,> 1), relative to
(W, B). Thus, for every R € RS we may associate a pair (p,q)r € W x B with the
properties

SASAP, ) <6 A and Rcd Ep)ndE(q) S (n)nsS “(q). (6.10)

(If A = §, we only have A(p,q) < §'7¢) We record at this point that any fixed pair
(p,q) € W x B can only be associated to boundedly many rectangles R € R:

{ReRS: (p,a)r = (p,q)}| S 1, (p,q) €W x B. (6.11)

Indeed, if there exists at least one rectangle Ry € RS such that (p,q)r, = (p,q), then
Ip — q| = 0t and A(p,q) = 0°A. Under these conditions, Lemma 4.3 implies that the
intersection $° “(p) N $%" “(¢) can be covered by boundedly many (61, §1=C¢/v/\t)-
rectangles, and actually they can be selected to be of the form

7Ry =Ry (), 1<GS T,
where each R; is a (6, 0)-rectangle. (We note that this is true also if A\ = §, using only
|p — q| = 6 in that case.) We claim that each rectangle R € RS with (p,q)r = (p,q) is
§~C-comparable to one of the rectangles R;. This will imply (6.11), because at most one
rectangle in RS can be §~““-comparable to a fixed R;: indeed any pair of (4, o)-rectangles
6~Y-comparable to R; would be < 6~““-comparable to each other by Corollary 4.11,
contradicting our "without loss of generality" assumption that the rectangles in R’ are
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§~C“-incomparable. Thus, the left hand side of (6.11) is bounded by the number of the
rectangles R; (which is < 1).

We then show that every R € RS with (p,q)r = (p,q) is §““-comparable to some
R;. Namely, if (p,q)r = (p,q), then R < S%"“(p) n S%"~(¢) by definition, and because
diam(R) < 20, it follows that R = §~“R%(q, v) for some v € S(q) (here e.g. v is the closest
point on S(gq) from the centre of R). On the other hand, since the rectangles 6~““R; =
6~Y“R%(q,v;) cover S5 (p) ~ S9"7°(q), one of them intersects R, say R § YR # &
Now, it is easy to check that

Rj <& ““Ro(q,v),
and therefore R, R; < ¢ ~C¢RJ (q,v). In other words, R, Rj are ¢ ~C¢_.comparable.
With the proof of (6.11) behind us, we proceed with other preliminaries. Let

peDA(W) =W, and qe Dy\(B) =: By,
and write
Ry(p,q) := {ReR) : (p,q)re (W np)x (Bnaq)}
With this notation, we have
R)l< ), IRMpa)l. (6.12)
(P,a)EW x B

We use the pigeonhole principle to find subsets

W}\CW,\ and B)\CB,\

with the properties
W apl~ My, peWs, 6.13)
|Bnd| ~ Ny, qebB,,
(where M, Ny € {1,..., X} are fixed integers) and such that
5. (612) 5 5
IR < O RMpdlxs D, IR(p.a)l. (6.14)
(P,a)EWA x By (p,q)EW x By

It now suffices to show that
DRI @) S5 (WIBDYHXAYA)Y? + [WI(XAY)) +|BI(XaY)).  (6.15)
(p,q)EWxx By
To begin with, we claim that
RS(p.q)| S MyNy,  peWy, qeBy. (6.16)
This follows from

IRS(p,q)| = > {ReRy: )k = (0.0},
(P.)e(Wnp)x(Bnaq)

and the fact recorded in (6.11) that every term in this sumis < 1.
To proceed estimating (6.14), notice that we only need to sum over the pairs (p,q) €
Wy x By with R%(p,q) # . In this case there exists at least one pair p € W N p
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and ¢ € B n q satisfying (6.10). It follows from Lemma 6.2 applied with A = X and
Y= 4/N/t = max{\, o} that

St < |p—q| <o %t A(p,q) <5 %\ and 0 XEX(p) n o *EX(q) # . (6.17)

Here the bounds |p — q| > 4%t and A(p,q) < § 2\ used our assumption A < §%¢ (and
that |[p — ¢| > 6t for some pair p € p and ¢ € q). To spell out the definitions, here

&p = (J Rpv),
veEx (p)
where Ex,(p) is the (\, ¥)-skeleton of E(p) (for p € P n p). We record at this point that

peWyuByandve Ex(p) — (p,v)e R,

where (% is the (3, A)-skeleton of .
We write p ~ q if p € W), q € By, and the conditions (6.17) hold. Then, by (6.14) and
the preceding discussion

(6.16) L
RIS D) IR(P, @)l S MaNx-[{(p,q) e Wx x By :p ~q}l. (6.18)
p~q
To estimate the cardinality |{(p,q) : p ~ q}|, we will infer from (6.17) that whenever
p ~ q, then S(p) and S(q) are "roughly" tangent to a (), X)-rectangle, denoted R(p, q),
more precisely satisfying

Ry(p.q) < 6 “°EX(p) N6 “E¥(a) (6.19)

for a suitable absolute constant C' > 1. Let us justify why R (p, q) can be found. Since
5‘265§(p) A 5_255§(q) # &, there first of all exist v € Ex(p), w € Ex(q), and a point

vE (5*2€R§(p, V)N 5*2€R§(q, w).

Consequently, we may find points p and g with |[p—p| < § 2Aand |q — q| < § %A such
that v € S(p) n S(q). Since ¥ > ), we also have

max{dist(v, Fx(p)), dist(v, Ex(q))} < §%%. (6.20)

Now, it follows from (6.17) and the inclusion (4.4) (and noting that ¥ < §7“4/A/|p — q|)
that

R(p,q) := R(p,v) < §” A (p) n 87 (@).
Taking also into account (6.20), we arrive at (6.19).

Now that we have defined the (\, ¥)-rectangles R3\(p, q), we let R be a maximal col-
lection of pairwise 100-incomparable rectangles in {Rg(p, qQ:peWy qeByandp ~
q}. For R € R, we then write R ~ (p,q) if p ~ qand R ~190 R3(p,q). With this
notation, we may estimate

{(p,@) e Wa xBy:p~a}[ < D, {(pa)eWaxBy: R~ (p,q)}, (6.21)
ReRQ

since every pair (p, q) with p ~ q satisfies R ~ (p, q) for at least one rectangle R € R3.
To estimate (6.21) further, we consider the following slightly ad hoc "type" of the rect-
angles R € R relative to the pair (W), B,). (This notion will not appear outside this
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proof.) We say that R € R{ has type (my,ny) relative to (W, B,) if the following sets
WA(R) € Wy and By (R) < B, have cardinalities [Wy(R)| = my and |By(R)| = ny:
e W) (R) consists of all p € W, such that R = 6~ <€ (p).
e By(R) consists of all q € By, such that R = §~C<£3(q).
Here
C:=2032, (6.22)

where "C" is the absolute constant from (6.19). We observe at once that the type of every
rectangle R € R is (> 1,> 1) in this terminology, because each R € R has the form
R = R}\(p, q) for some (p,q) € W) x By, and (6.19) holds for this pair (p, q).

Remark 6.23. Assume for a moment that A < 6V¢. Then, if R € Rg has type (= my,ny)
relative to (W), B, ) according to the definition above, then R also has type (= m, n)) ¢ e
relative to (W), B)) in the sense of Definition 4.22. This is simply because

5-CE(p) = 57 ),
and 6~ C¢ < A\~ CV€ by the temporary assumption A < §V¢. But the "ad hoc" definition
here is far more restrictive: it requires R to lie close to the sets Ex;(p) and Ex(q).
We now establish two claims related to our ad hoc notion of type:

Claim 6.24. If R € R has type (my,n)) relative to (W), By), then

{(p,a) € Wy x By: R~ (p,a)}| < many. (6.25)
Proof. Let W} (R) < W, be the subset of all those p € W, such that R ~ (p, q) for at least
one q € B). Define B (R) similarly, interchanging the roles of YW, and B). Evidently

{(p.@) e Wi x Bx: R~ (p,a)}| < WAR)|IBA(R)].

It remains to show that W} (R) € W) (R) and B} (R) < B\(R). To see this, fix p € W} (R).
By definition, there exists q € B) such that R ~ (p,q). This means that R is 100-
comparable to the rectangle R (p,q) which satisfies (6.19). According to Lemma 4.9,
there exists an absolute constant C' > 0 such that

619 | oo . _Ce
Rc CRy(p,q) © C6 OEX(p) n C5EX(q) = 6~ C°EX(p).

This shows that p € W) (R) by definition. Thus W} (R) < W\(R). The proof of the
inclusion B} (R) < By(R) is similar. O

Claim 6.26. Assume that R € R has type (my, ny) relative to Wy, By), and assume that the
constant "A"” in (6.7) satisfies A = 3(C + 1), where C is the absolute constant determined at
(6.22). Then

max{my,ny} < Y. (6.27)
This is where the absolute constant A in the statement of Theorem 6.5 is determined.

Proof of Claim 6.26. Write R = R(p,q) with p € W), q € By, and p ~ q. Then, enu-
merate Wi(R) = {P1,--.,Pm,}- Now 6%t < |p; —q| < 6 *tforall 1 < j < m,, and
moreover

Rc ™ E(p) n - E (@), 1<j<my.
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Unraveling this inclusion, there exist w € Fx(q), and for each 1 < j < m) some v; €
Ey;(pj) such that

R c 67 CRy(pj,v;) n 67 R (q, w). (6.28)
We now claim that
—Ae .
(pja Vj) € (Qg)();\,t (qa W)’ 1< J < my, (629)
if A > 3(C + 1). Noting that w := (q, w) € 3, this will prove that

_Ac CAe CAe —Ae 5—Ac (6.7)

ma < (' € (1, (@) 1 0 ARYW) 0T ARYW) £ B) =ml 1" (@] Q) < Yo,

and the upper bound |B)(R)| = n) < Y) can be established in a similar fashion.
Regarding (6.29), we already know that 4t < |p; — q| < 0 “<¢, provided that A > 2.

So, it remains to show that A(p;,q) < 6~4¢\. But (6.28) implies that

Rc 8 “Mp)ns® “Ma),  1<j<ma

The set R € R has diam(R) ~ ¥ = 4/)\/t, and on the other hand Lemma 4.3 implies
that the intersection of the two annuli above can be covered by boundedly many discs of
radius

57CN\JAD; a)lp; — ol <57 CTIN Ay @) .

This shows that 4/\/t < 5_(C+1)6)\/4/A(pj,q) -t, and rearranging gives A(p;,q) <
6~2(C+De ) This completes the proof of (6.29), and the lemma. a
<

Each rectangle R € R has some type (my,ny) relative to (W, By), with 1 < my,ny <
A~3. By pigeonholing, we may find a subset R < R3 such that every rectangle R € R
has type between (my,ny) and (2my, 2ny) for some my,ny > 1, and moreover

D P eWsxBy: R~ (p, @)} ~5 Y, {(p.@) e Wi xBx: R~ (p,q)}| (630)

ReR3, ReRQ
When we now combine (6.18) with (6.21), then (6.30), and finally (6.25), we find
IRS| S5 MaNy - (many) - |R3. (6.31)

To conclude the proof of (6.8) from here, we consider separately the "main" case A < 6V<,

and the "trivial" case A > §V*. In the trivial case, we simply apply the following uniform
estimates: B
max{my,ny} < A7 <6 Ve and |RY| <A ¢ <5 OVE

Consequently, using also M) < min{|W|, X} and N, < min{|B|, X}, we get
RS S5 6 3CVE(MANy) < 5 3CVe(IW | B))¥AX,/2.

This is even better than the case m = 1 = n of (6.8), assuming 3C'y/e < 1.

Assume then that A < §V¢. In this case, as pointed out in Remark 6.23, the family 7@%
consists of (A, ¥))-rectangles of type (= my, = ny)c, relative to (W, By), in the sense of
Definition 4.22. Furthermore, the pair (W, B,) is (A, Cy/€)-almost t-bipartite by (6.17),
and since §2¢ < A\~ CV*, Consequently, by Lemma 4.23, we have

RY| < A-OW) [(IMH%I) LA |BA|] , 6.32)

LUSNION my LN
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In particular, we may choose € = (1) > 0 so small that A\=O(V&) < 5.

The estimate (6.32) is not yet the same as the case m = 1 = n of (6.8). To reach (6.8)
from here, we consider separately the cases where the first, second, or third terms in
(6.32) dominate. In all cases, we will use (recall (6.13)) that

oW - B
WAL S |]\V;/| and [B,| < |N| and max{M,, Ny} < X,.
A A

Now, if the first ("main") term in (6.32) is the largest, then (omitting the factor A9 for
notational simplicity, and combining (6.31) with (6.32))

|WA||BA|>3/4

IRS| S5 MAN, - (many) - (
many

6.27)
S (MAN)YE - (mamy )4 (W] B < (X Y)Y2 - (W] B))4.

This is what we desired in (6.8) (case m = n = 1).
Assume next that the second term in (6.32) dominates. Then,

W,

RS S5 MaNy - (many) - = Nx-nx- W] S XYW
Similarly, if the third term in (6.32) dominates, we get [R%| Ss XYy |B|. This concludes
the proof of (6.8) in the case m =1 = n.

We then, finally, consider the case of general 1 < m < |[W|and 1 < n < |B|. This
is morally the random sampling argument from [24, Lemma 1.4], but the details are
more complicated due to our asymmetric definition of "A-restricted type". Fix a large
absolute constant A > 1 (to be determined soon; this constant has no relation to the
constant A introduced in Claim 6.26). Let W < W be the subset obtained by keeping
every element of W with probability A/m. Define the random subset B c B in the same
way, keeping every element of B with probability A/n. However, if m < 24, we keep
all the elements of W, and if n < 24, we keep all the elements of B. We assume in
the sequel that min{m,n} > 2A and leave the converse special cases to the reader (the
case max{m,n} < 2A is completely elementary, but to understand what to do in the case
m < 2A < n, we recommend first reading the argument below, and then thinking about
the small modification afterwards.)

The underlying probability space is {0, 1}"! x {0,1}/Bl =: A. The pairs (w, 3) € A are
in 1-to-1 correspondence with subset-pairs W x B ¢ W x B, and we will prefer writing
"(W, B) € A" in place of "(w, 3) € A". We denote by P the probability which corresponds
to the explanation in the previous paragraph: thus, the probability of a sequence (w, 3)
equals

P{(w, B)} = (%)Hwi:l}\(l _ %)\{wizo}\(%)\{ﬁjzl}\(l _ %)\{ﬂjzo}l_
The most central random variables will be [W| and | B|, formally
Wi(w,B) = {1l <i<W]:w; =1} and |Bl(w,p):={1<j<|B|: =1}
In expectation E|IW| = A|W|/m and E|B| = A|B|/n. By Chebychev’s inequality, the
probability that either [W| > 4A|W|/m or |B| > 4A|B|/n is at most 1. We let A’ < A be

sequences in (w, 3) € A for which [W (w, )| < 4A|W|/m and |B(w, B)| < 4A|B|/n. As we
just said, P(A") > %
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Let RS(W, B)  RJ be the subset which has M-restricted type (> 1,> 1), relative to
(W, B). We claim that there exists (W, B) € A’ such that

RS < 4[R5 (W, B)|. (6.33)

To see this, fix R € RS, and recall the definition of \-restricted type (= m, > n). relative
to (W, B). There exists a set Wy ¢ W with |Wgr| = m, and for each p € Wx a subset

B(p) c B with |B(p)| = n, (6.34)

such that 6\ < A(p,q) < 6 A forall pe Wx and g € B(p),and R < 6 E3(p) n 6 <E(q)
for all p e Wg and ¢ € Br(p). We claim that for any ¢ > 0, we have

P({3 at least one pair (p,q) € W x Bsuchthatpe Wgand g€ B(p)}) >1—¢, (6.35)

assuming that the constant "A" is chosen large enough, depending only on c. Before
attempting this, we prove something easier: P({W n Wg # &}) > 1 —c. Foreachp € Wg
fixed, we have

B(p¢ W) =1- 2

Moreover, these events are independent when p € W, (or even p € W) varies. Therefore,

W Wr=2)) = [] Bpe W) = (1 — 2" < (- 24y4) " (636)

pPEWR

Since m > 2A, the right hand side is bounded from above by p? for some (absolute)
p < 1, and in particular the probability is < c as soon as p* < c.

To proceed towards (6.35), we partition the event {IW n Wr # ¢} into a union of
events of the form {W n Wg = H}, where H © Wp is a fixed non-empty subset. Clearly
the events {W n Wx = H} and {W n Wx = H'} are disjoint for distinct (not necessarily
disjoint) H, H' < Wg. For every & # H < Wg, we designate a point py € H in an
arbitrary manner. For example, we could enumerate the points in Wg, and py € H could
be the point with the lowest index in the enumeration. Then, for H < Wk fixed, we
consider the event {B n B(py) # &}, where B(py) = B is the set from (6.34). Since
P({q ¢ B}) = 1 — A/n, and |B(py)| > n, a calculation similar to the one on line (6.36)
shows that

PA{BABpu)# @) =1-p>1—-¢, @#HcWpg, (6.37)
assuming that p? < ¢. Furthermore, we notice that for ¢ # H ¢ W, fixed,
P{W nWgr = H} n{B n B(pn) # &}) = PUW n Wgr = H})P({B n B(pn) # &}).

From a probabilistic point of view, this is because the events {B n B(py) # &} and
{W n Wg = H} are independent. From a measure theoretic point of view, the set {IW n
Wgr = H}n{Bn B(py) # F} < {0,1}I"W] x {0, 1}/B] = A can be written as a product set.
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Now, we may estimate as follows:

> P({Bn Blpu) # B} n {W nWg = H})
Oi+HCWg

(6-37) _
> (1-¢) ), P{WnWg=H})
FJ#HCWg

=(1—c) P{WAWr#Z)) =(1-c)2

On the other hand, the events we are summing over on the far left are disjoint, and their
union is contained in the event shown in (6.35). This proves (6.35) with (1 — ¢)? in place
of (1 — ¢), which is harmless.

Let Gr < A be the "good" event from (6.35). Note that if (W, B) € Gg, then R has
restricted A-type (> 1,> 1), relative to (W, B) — indeed this is due to the pair (p,q) €
W x B with p € Wg and ¢ € B(p) whose existence is guaranteed by the definition of
(W, B) € Gg. Thus R € R%(W, B) (defined above (6.33)) whenever (W, B) € Gg. This
implies that

f RE(W, B)|dB(W,B) = Y P(N A {ReREW,B)) > 3 P(A  Gr).
N ReRS RERS
Finally, recall that P(A’) > 1/2 and P(Gr) > 1 —c. In particular, if we choose ¢ < 1/4 (and
thus finally fix "A" sufficiently large), then the integral above is bounded from below by
|R2|/4. This proves the existence of (W, B) € A’ such that (6.33) holds.
Finally, since every R € RS (W, B) =: RS has A-restricted type (> 1,> 1), relative to
(W, B), the first part of the proof implies

IRS| < 4IRS <677 [(|W||B|)3/4(X)\Y)\)l/2 + [W(X\Y)) + |B|(X,\Y,\)] :

Since (W, B) € A/, we have |[W| < 4A|W|/m and |B| < 4A|B|/n. Noting that "A" is an
absolute constant, the upper bound matches (6.8), and the proof is complete. O

7. PROOF OF THEOREM 1.11

In this section we finally prove Theorem 1.11. In fact, we will prove a stronger state-
ment concerning the partial multiplicity functions ms ) ;, see Theorem 7.5 below. Theo-
rem 1.11 will finally be deduced from Theorem 7.5 in Section 7.7.

Recall Notation 5.1. We will need the following slight generalisation, where the ranges
of the "distance" and "tangency" parameters can be specified independently of each other.

Definition 7.1 (G} (w)). Letd < A<t < 1L, and G = Q = {(p,v) : pe Pand v € E(p)}.
For py,pt = 1 and w = (p,v) € Q, we write

G (W) = A{( V) € G Mpx < Alp,p') < pxXand t/p < |p — p'| < pet}.
Similarly, for @ ¢ P c D, we will also write
V) ={a€ QMo < Ap,q) < padand t/ps < |p —q| < pit}.

Thus, the former notation concerns pairs, and the latter points. The correct interpretation
should always be clear from the context (whether G < Q or Q = P).
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Whenever § < A < dpy, we modify both definitions so that the two-sided condition
A pa < A(p, q) < pa)is replaced by the one-sided condition A(p, ¢) < paA.

Notation 7.2. Thankfully, we can most often (not always) use the definitions in the cases
px = p = pi. In this case, we abbreviate G0, =: G .

Definition 7.3 (mgs\’”it’c). Fix0 <d<A<t<landpy,p = 1. LetQ = {(p,v) : p€
P and v € E(p)} as usual, and write o := §/+/\t. For any set G  , we define

MR (W | G) = |{w' € (G CRY(w) n CRY(W) # @}, weG.
Here G2 is the (4, 0)-skeleton of G.

Notation 7.4. Consistently with Notation 7.2, in the case p) = p = p; we abbreviate

The full generality of the notation will only be needed much later, and we will remind
the reader at that point.

Theorem 7.5. For every k € (0,3] and s € (0,1], there exist € = €(k,s) > 0and &y =
do(€, K, s) > 0 such that the following holds for all 6 € (0, o). Let Q = {(p,v) : pe Pandv e
E(p)} bea (9,9, s,~°)-configuration with

|P| <65, (7.6)

Then, there exists a subset G <  of cardinality |G| = 0"|Q| such that the following holds
simultaneously forall 6 < A <t < 1:

mi WG <6, wed. (7.7)

Theorem 1.11 will be easy to derive from Theorem 7.5. The details are in Section 7.7.
Theorem 7.5 will be proven by a sequence of successive refinements to the initial config-
uration 2. Every refinement will take care of the inequality (7.7) for one fixed pair (A, ?),
but the refinements will need to be performed in an appropriate order, as we will discuss
later. After a large but finite number of such refinements, we will be able to check that
(7.7) holds for all § < A <t < 1 simultaneously.

Notation 7.8. Throughout this section, we allow the implicit constants in the "~s" no-
tation to depend on the constants «, s and € = €(k, s) in Theorem 7.5 (the choice of ¢ is
explained in Section 7.1). Thus, the notation A $s B means that A < C(log(1/6))¢B,
where C = C(e, K, s) > 0. In particular, if 6 > 0 is small enough depending on ¢, x, s, the
inequality A <5 B implies A < 6~ “B.

7.1. Choice of constants. We explain how ¢ in Theorem 7.5 depends on &, s. Let €pax =

€max (K, ) > 0 be an auxiliary constant, which (informally) satisfies € < €max < K. Pre-
cisely, the constant e, is determined by the following two requirements:

e Let A be the absolute constant from Theorem 6.5. We require ey« to be so small
that if Theorem 5.31 is applied with parameters & = xs/100 and s, then A¢epax <
€o(%, s), where the ¢(k, s) is the constant produced by Theorem 5.31.

o We apply Theorem 6.5 with constant 7 = ks/100, and we require that epax < €(1)
(where ¢(n) is the constant produced by Theorem 6.5).
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o We require that enax < cks for a small absolute constant ¢ > 0, whose size will be
determined later.

The relationship between the "final" € in Theorem 7.5, and the constant ey, fixed
above, is the following, for a suitable absolute constant C' > 0:

C - 10"%%¢ < €. (7.9)

As stated in Theorem 7.5, the threshold Jp > 0 may depend on all the parameters ¢, &, s.
We do not attempt to track the dependence explicitly, and often we will state inequalities
of (e.g.) the form "C' < 0" under the implicit assumption that 6 > 0 is small enough,
depending on e. Here, we only explicitly record that ¢y > 0 is taken so small that

CA(e, k)C/e < by cma, (7.10)
where A(e, k) > 1is a constant depending only on «, and C' > 1 is absolute.
7.2. The case t ~ A. In the "main" argument for Theorem 7.5, we will need to assume

that t > 6*/19\. The opposite case t < §*/10) is elementary, and we handle it straight
away. So, fix § <\ <t < 1 witht < §~/10)\,

Claim 7.11. There exists a (9,6, s,46~)-configuration G < 2 (depending on X, t) of cardinality
|G| = |2|/16 such that (7.7) holds with e := /100.

We record that our assumption ¢ < 6 /10X implies
o = 0/VAt = 820 (8/\) = 655 (8/N). (7.12)

To save a little space, we abbreviate R(p,v) := k' RS (p,v). We also write M := |E(p)|
for the common cardinality of the sets E(p), p € P. With this notation, we estimate as
follows (the final estimate will be justified carefully below the computation):

|P| Z PN (Q0)54 (2,0) : R(p,v) "R, V) # B}

pEP veE( p)
<SEa Y X N e Bm) xS0 Rew) aRE.Y) £ 2)| 713
pEPpePJ 6 )
< 87 2P| (7.14)
We justify the final estimate. The easiest part is
[P (D < [P B(p, 6™ t)| <[P o Blp,a~ 1OV < a2 10N|P|, - (715)

using the (0, s, d~)-set property of P. A slightly more elaborate argument is needed to
estimate the number of pairs (v, v') appearing in (7.13) for (p, p’) fixed. Fix (p,p’) € P x P
with p’ € Pft (p): thus [p — p/| = 6t = 6\ and A(p,p’) = 6°\. Lemma 4.3 implies that
the intersection

Y% (p) 0 S (') (7.16)
can be covered by boundedly many discs of radius
5/’% < 6/"'€ —26(5/)\) =

VAW, ) +6/k)(p— D[+ 0/k) /(NN
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(Here we assumed that § > 0 is small enough in terms of €, x.) Let {B(z;,7)}$_, be an
enumeration of these discs. Now, if R(p,v) n R(p’,v’) # ¢, then both v, v’ must lie at
distance < 2r from one of these discs (the intersection R(p,v) n R(p',v’) is contained in
the intersection (7.16), and diam(R) < o/k < 0/(Ak) < r). On the other hand,

|E(p) n B(zi,7)| <67 M < §3(5/A)°M and  |S,(p)) » B(z;,4r)| < 6 /4,

where the first inequality used the (4, s,0¢)-set property of E(p), and the second in-
equality used (7.12), along with the o-separation of S, (p'). This shows that
{(v,0) € E(p) x S;(0') : R(p,0) nR(p',0') # @} < 6 4(6/0)* M

When this upper bound is plugged into (7.13), then combined with (7.15), we find (7.14).
To conclude the proof, notice that the left hand side of (7.14) is in fact the expectation
of the random variable

meg;t (w | ),

relative to normalised counting measure on 2. By Chebychev’s inequality, there exists a
set G < Q with |G| > 3|Q| such that

—€

m?m’””_ (w]G) <my, ‘(W] Q) <FEAP <5, wed,

using the assumption (7.6) that | P| < §~°~¢ in the final inequality. Finally, we replace "G"
by a slightly smaller (6, , s, 46~)-configuration by applying Lemma 3.13 with ¢ = 3.

7.3. Uniform sets. We start preparing for the proof of Theorem 7.5 (the case of pairs
(\,t) with t > §=%/10)\) with a few auxiliary definitions and results which allow us to
find — somewhat — regular subsets inside arbitrary finite sets P c D.

Definition 7.17. Let n > 1, and let
5=An<An_1<...<A1<A0=1

be a sequence of dyadic scales. We say that a set P < D is {A;}}_-uniform if there is a
sequence {N;}"_; such that [Da,;(P np)| = [P npla; = Njforall j € {1,...,n} and all
p € Da,_, (P). As usual, we extend this definition to P < D;s (by applying it to U P).

The following lemma allows us to find {A;}7_;-uniform subsets inside general finite
sets. The result is a special case of [15, Lemma 7.3], which works for more general se-
quences {A;}L; than the sequence {2 JT} * | treated in Lemma 7.18.

Lemma 7.18. Let P = D, m,T € N, and 6 := 27T, Let also A; := 2797 for 0 < j < m, so
in particular § = Ay,. Then, there there is a {A;}1 | -uniform set P' < P such that

[P'ls > (4T) "™ |Pls. (7.19)
In particular, if e > 0 and T~ ' log(4T) < ¢, then |P'|5 = §¢|Pls.

Proof. The inequality (7.19) follows by inspecting the short proof of [15, Lemma 7.3]. The
"in particular" claim follows by noting that

(4T)fm _ 27m10g(4T) _ 2fmT-(T_1 log(4T)) _ 6T_1log(4T).

This completes the proof. O
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7.4. Initial regularisation for the proof of Theorem 7.5. We denote the "given" (4, 9, s, ¢)-
configuration in Theorem 7.5 by

Qo = {(p,v) : pe Pyand v € Ey(p)},

where Py < Ds is a non-empty (9, s, ¢)-set, and Ey(p) < Ss(p) is a (d,s,0 ¢)-set of
cardinality M > 1 (for every p € Fy). The purpose of this section is to perform an initial
pruning to 2, that is, to find a (6, 6, s, § 2¢)-configuration

Q= {(p,v):pe Pand v € E(p)} = Qy,

where P is a (6, s,07%¢)-set, each E(p) is a (4, s, 6~2¢)-set with constant cardinality, and
12| &5 |Q0]. The subset 2 will have additional useful regularity properties compared to
g. After we are finished constructing (2, we will focus on finding the "final" set G (as in
Theorem 7.5) inside (2, instead of §2.

There is no loss of generality in assuming that § = 2™ for some m > 1, and some
T > 1 whose size depends on € (and therefore eventually ). We start by applying Lemma
7.18 to the sequence

Nj=27T0 0<j<m.

Provided that 77! log(4T) < ¢, the resultis a {); }7*1-uniform subset Iy < P with car-
dinality |Pj| > 6¢|P|. In particular, P} is a (d, s, *¢)-set. We define Qf, := {(p,v) : p €
Pjand v € Ey(p)}. Then || = 6¢|Q|. From this point on, the proof will see no differ-
ence between ), Py and ), P}, so we assume that P, = P and Qy = €, to begin with —
or in other words that Py is {\;}7,-uniform for X; = 2777, 1 < j < m. In particular, the
"branching numbers"

Nj =[Py nply;, p € Dory,(P), 1 <j<m,

n_.n

are well-defined (that is, independent of "p").

We have slightly overshot our target: the argument above shows that P, may be as-
sumed to be {2777 }7L1-uniform. We only need something weaker. Let ¢ > 0 be so small
that the requirement (7.9) is met. Let A < [, 1] be a finite set of cardinality |A| ~ 1/e
which is multiplicatively 6~¢/>-dense in the following sense: if A € [4,1] is arbitrary, then
there exists A € A with A < A < § 92\, If § > 0 is so small that 27 < § ¢, we may (and
will) choose A < {2777} = {\;}7.,. We agree that {5, 1} € A, and for every A € A\ {1},
we denote by A € A the smallest element of A with X > \.

Since A ¢ {2777}, the set Py is automatically A-uniform: the number

Ny = |P()ﬂp|)\, pE'D;\(PO), )\EA\{l}v (7.20)

is independent of the choice of p € D;(Fp). From this point on, the uniformity with re-
spect to the denser sequence {2777} | will no longer be required. From (7.20), it follows
that also the number

X)\ = |Poﬁp|5 = |P0|/|P0|)\, pED)\(Po), )\EA, (721)

is independent of the choice of p € Dy (%) (since X, is the product of the numbers N/
for X € A with M < ), recalling that § € A by definition).

Next, for every A € A fixed, we associate a finite set 7(\) < [A,1] of cardinality
|T(\)| ~ 1/e which is multiplicatively §~</?-dense on the interval [\, 1] in the same sense
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as above: if ¢ € [\, 1] is arbitrary, then there exists t € 7(\) such thatt < ¢ < 5~ ¢2t. For
later technical convenience, it will be useful to know that the sets

At):=red:te TN}, teT:=JTM), (7.22)
AEA

are multiplicatively 6—</?-dense in [6,¢]. This can be accomplished by choosing both
the \’s and the #’s from some "fixed" multiplicatively §~¢/?-dense sequence in [4, 1], for
example {5,862 57 ... 1}.

We order the pairs (A, t) with A € A and ¢ € 7 () arbitrarily. The total number of pairs
is < e 2. Then, we apply Theorem 5.31 with constant xs/100 to the first pair (\1,#;). If
€max > 0 is sufficiently small (as small as we stated in Section 7.1), and since € < epax <
Aemax < €o(R, s), Theorem 5.31 provides us with a (6,0, s, Cé~€)-configuration G < {2y
such that C =5 1, |G| ~5 |Q0], and

5—A€max76—A€max _ A
MY At (W] G) < MNPy,  weGy, (7.23)

where ¥ = 4/A1/t;, and A > 1 is the constant from Theorem 6.5.

Assume that we have already found a sequence of (9, 6, s, C;6~¢)-configurations G' =:
G1 2 Gy o ...Gj, where C; ~5; 1 and |G;| ~s; |Q0], and (7.23) holds for G relative to
the pair ()}, ;) (with 3; = 1/\;/t;). We reapply Theorem 5.31 to §2; := G}, and the pair
(Aj+1,tj41). This is legitimate, since j < €2, and the constant C;0~¢ is smaller than the
threshold 6 ~“»»x required to apply Theorem 5.31 with constant "xs/100" (by our choice of
"e"). Thus, Theorem 5.31 outputs a (6,9, s, C;+10~)-configuration G ;1 < G; satisfying
(7.23) for the pair (A\j11,t41), and with |G 1] ~5j4+1 [Qo]-

After Theorem 5.31 has been applied in this "successive" manner to all the pairs (, t)
with A e Aand t € T(\), we arrive at a final (9, 6, s, Ccd~)-configuration

Q= {(p,v):pe Pand v e E(p)}, (7.24)

where C, x5 1, || =5 |Q], and (2 satisfies simultaneously a version of (7.23) for all the
pairs (\;,t;). In particular, we note that |P| ~s |Fy| and |E(p)| ~5 M for all p € P.
Therefore, P, E(p) remain (4, s, C.d¢)-sets with C¢ =5 1.

Remark 7.25. 1t is worth comparing the accomplishment (7.23) with the ultimate goal (7.7)
in Theorem 7.5. Roughly speaking, we have now tackled the cases (A, A, t) of (7.7) (with
the caveat that this has only been done for the pairs (X, ¢) with A € A and ¢t € T(X)).

7.5. Proof of Theorem 7.5. We just finished constructing the (6, 6, s, Cc6~¢)-configuration
Q= {(p,v) : pe Pandv € E(p)} c Qo with |Q] x5 |Q| which satisfies property (7.23)
(with G = Q) forall A\ € A and t € T(\). We record this once more:

—Ae —Ae
1) max ,5 max

UDWW (w|Q) < 5_55/100>\8|P0|)\, we N, (7.26)
for every A € A and ¢ € T(\), where X = /)\/t.

Remark 7.27. At this point, we remind the reader that the left hand side of (7.26) is short-

hand notation for
§—A5max’§—A5max’§—A€max
My A\t (w]Q),

recall Notation 7.4. Soon we will need the full generality of the notation mg’*/\”f’c.
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The main step towards proving Theorem 7.5 for every pair (A, t) withd < A <t < 1is
to prove it for the (finitely many) pairs (A, ¢) with A € A and ¢t € T(\). Write

T:=JTO) <61,
AeA
and foreveryt e T,let A(t) := {Ae A:te T(A\)} < [,1]. Recall from (around) (7.22) that
A(t) is multiplicatively 6 ~¢/?-dense in [4, ¢]. This will be used in the form of the corollary
that A(t) is multiplicatively 6~¢/2-dense in [§, max A(t)].

Proposition 7.28. For every fixedt € T and X € A(t), there existsa (0, 9, s, Ccd~¢)-configuration
G < Q (depending on A, t), such that |G| =5 ||, and

mi w6 <5, wed, (7.29)
where C' > 0 is an absolute constant to be determined in the proof of Proposition 7.30.

We will prove Proposition 7.28 in such a way that the various configurations "G" will
form a nested sequence. So, once the proposition has been established for all pairs (A, ?)
with t € 7 and A € A(t), then the "last" set G will satisfy (7.29) for all pairs ¢t € 7 and
A € A(t) simultaneously. We start with the easiest cases where A ~ t. The value of the
constant "C." will change many times during the proof, but it will always remain C. ~s 1.

Pairs (\,t) witht < 6 /19X, Let A € Aand t € T with ¢t < 6 */19\. In this case we
apply the claim proved in Section 7.2: the conclusion is that there exists a (4, d, s,4Cc0~°)-
configuration G; < ( satisfying (7.29) for the fixed pair (), t). (To be perfectly accurate,
one needs to apply the proof of the claim with constant C'x in place of x.) Next, we simply
repeat the argument inside (G4, and for all the pairs (A, t) € A x T with ¢t < §—r/10)  in
arbitrary order. This involves refining 2 at most < ¢ 2 times, so the final product of this
argument remains a (9, 9, s, Ccd ~¢)-configuration.

Before launching to the main argument — treating the cases A < 6"/10t — we use (7.29)
to complete the proof of Theorem 7.5.

Proposition 7.30. Assume that (7.29) holds for simultaneously for all (\,t) € A x T. Then, if
the absolute constant C' > 0 is large enough, we have

mi " (w|G) <5, wed (7.31)
simultaneously for all 6 < X <t < 1 (not necessarily from A x T).

Proof. Let 6 < A <t < 1. Let A e Aand t € T(\) be elements with A < A < §-¢2)\ and
t <t < §79?t. Recall that
mane " (@] G) = ('€ (@D, @) T R (@) kR W) 2 @Y. we G

where G? is the (6, )-skeleton of G (with ¢ = §/4/At). An unpleasant technicality is
that = §/+/At € [0,6 “?0] might be a little different from o, so elements of G are
not automatically elements of GS. However, for every w’ = (q,w) € GJ, we may pick
& = (q,w) € G& with (¢,w) < (¢,w), and in particular |w — w| < C& for an absolute
constant C' > 1. Then, it is straightforward to check that

—€/2

W e (G, (w) = & e(GL} (W), we G, (7.32)
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and
IR (w) e IR (W) # @ = Cr'RY(w)n CrIRY(Q) # &. (7.33)

The implication (7.33) follows from the inclusion k' R%(w') = Cxk~'R3(&') (note that
o = o). Regarding (7.32), it is worth noting that the implication is even true in the special
case A < 61792 (recall Definition 7.1) since in that case A < 6.

Finally, observe that the map v’ — &' is at most 6 —“-to-1: if (¢, w1), (¢, w2), . .., (¢, wn) €
G? are distinct, and @' = (g, ) is the image of them all, then |w; — w;| > No for some
1 <i# j < N,and on the other hand max{|@ — wy|, |& — w;|} <7 < §~/?0.

Combining this with (7.32)-(7.33), we find

Cej2 e (7.29)
mg,x,:’ﬁ (w6 < 6™ mis " ‘WlG) < Y, wed.

This proves (7.31), since € < & (by the choices in Section 7.1). (|
7.6. Proof of Proposition 7.28. We then arrive at the core of the proof of Theorem 7.5.

7.6.1. Structure of the proof Proposition 7.28. Very much like in Section 7.4, we will enu-
merate the pairs (\,#) with t € T, and A € A(t) n [0,5%'%], and we will construct a
decreasing sequence of (4, J, s)-configurations G1 © G2 O ... such that G satisfies (7.29)
for the pair (\;,?;) — and therefore automatically for all pairs (\;,¢;) with 1 < i < j. We
will show inductively that |G| ~5 €.

In contrast to Section 7.4, this time the ordering of the pairs ();, ;) matters. We will do
this as follows. We enumerate the elements of 7 arbitrarily. Then, if t; € T is fixed, we
enumerate the pairs (\, ;) with A € A(t;) N [d,%/1%,] in increasing order. Thus, the first
pair is (d,¢;), the second one (§'~%2,¢;), and so on. This has the crucial benefit that when
we are in the process of proving (7.29) for a fixed pair (\,t;), we may already assume
that (the current) G satisfies (7.29) for all pairs (N, ¢;) with X' € A(t;) and X < .

7.6.2. Setting up the induction. We will then begin to implement the strategy outlined
above. Fix t := t; € T arbitrarily, and for the remainder of the proof. We enumerate
A(t) n [6,5%/1%4] in increasing order, with the abbreviation |A| := |A(t) [, 6%/1%¢]]:

§=A <X <... <Ay <o (7.34)

For each index 1 < I < |A| we also define a constant C; > 1 in such a way that the
sequence C; > Cy > ... > (|5 = 1is very rapidly decreasing, more precisely

Ci1 = Ale,r)'Cy, 1 <1 <A (7.35)

for a suitable constant A(e,x) > 1, depending only on x, and to be determined later,
precisely right after (7.51). To complete the definition of the sequence {C;}, we specify its
smallest (last) element:

Cla| = Cr™, (7.36)
where k > 0 is the parameter given in Theorem 7.5, and C' > 0 is the absolute constant
from (7.29). With these definitions, and noting that |A| < C/e for an absolute constant
C > 0, we have

(7.10)
Cy = Ale, k)MCy < CA(e, k) w7 < 67 5 € (0,0]. (7.37)
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We will prove the following by induction on k € {1,...,|A|}: there exists a decreasing
sequence of (4,9, s, Ccd€)-configurations G; O ... D Gy such that |G)| =5 ] for all
1 <1 < k, and such that the following slightly stronger version of (7.29) holds:

mS | G) <5, weGL1<I<hl (7.38)

Once we have accomplished this for k = |A|, we set G := G|5. Then (7.29) holds for
G (by (7.36)), and for all pairs (\,t) with A € A(t). After this, we may repeat the same
procedure for all ¢ € T in arbitrary order (but always working inside the configurations
we have previously constructed). This will complete the proof of Proposition 7.28.

Remark 7.39. Notice that the constants "C;" in (7.38) decrease (rapidly) as [ increases. The
idea is that we can prove (7.38) with index "k+1" and the smaller constant C 1, provided
that we already have (7.38) for all 1 <[ < k, and the much larger constants C; » Cj;.

7.6.3. The case k = 1. This case is a consequence of (7.26) applied with A = A\; = §, with
G1 := Q. Note that in this case 0 = §/vVAt = /Nt = %, s0 (7.26) with A = § (and our
fixed t € T) can be rewritten as

S~ Aemax 6 Aemax

Mg, 51 (w|Q) <o 1ONP s <07F,  we . (7.40)

This is actually much stronger than what we need in (7.38), since € < €pax, and Cy ~ . 1.
One small point of concern is that (7.38) is a statement about w € G; = 2, whereas (7.40)
deals with w € Q4 = Q2. This is not a problem thanks to the following elementary
lemma, which will also be useful later:

Lemma 7.41. Let 0 < 0 < A<t < land py,p;,C = 1. Let G < Qand w e G. Let @ € G be
the parent of w in the (9, o)-skeleton Gg, where o = 6/ VAt as usual. Then,

’ 7C A Ty El I El 7AC
mi @ 1 6) < mp W | 6) < miy @ @), (7.42)
where A > 1 is absolute.

In particular, (7.40) for w € Q% implies (7.38) for all w € Q, at the cost of replacing the
second §—Acmax by §—Aemax / A (which is still much bigger than Cy ~ 1).

Proof of Lemma 7.41. We only prove the upper bound, since the lower bound is estab-
lished in a similar fashion. Let us spell out the quantities in (7.42):

mg3hC(w | G) = o' € (G2 (w) : CRY(w) n CRY() # B}

and
Mm@ | G) = W' € (G54 (@) : ACRY (@) n ACR (W) # B}

The crucial observation is that if the point w € G is written as w = (p, v), then the parent
= (p,v), where |v — v| < 1, and the "p-component" remains unchanged. In particular,

(@R = W e @R @)

since these inclusions only concern the p-components of w,w’, . Therefore, (7.42) boils
down to the observation

CRM(w) nCR (W) # & — ACR)(@)n CR(W) # &,
which follows from CRS(w) ¢ ACRS (@) (for A > 1 sufficiently large). O
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7.64. Cases 1 < k +1 < |A|. We then assume that the (0,9, s, C.0~¢)-configurations
G1 D ... D Gy have already been constructed for some 1 < k < |A|. We next explain
how to construct the set Gi;1. To be precise, our task is to construct a (4,9, s, Ccd™)-
configuration Gj1 < Gj, with the properties Ce ~5 1, |Gr11| ~s5 |Gk|, and

Cr4167,Ck41

S ka1t (W] Gr1) <6°°, w € Git1. (7.43)
We abbreviate
Ai=M1 and 0= 6/4 et (7.44)

for the duration of this argument. We write G, = {(p,v) : p € Py and v € Gi(p)} with
|Gr(p)| = My, for all p € Py. Here |Py| ~s |P| and M}, =5 M since |G| =5 |©2] = M|P).

Note that the multiplicity function appearing in (7.43) counts elements in the (4, 0)-
skeleton of G41. It would be desirable to know that |E,(p)| = M, is a constant indepen-
dent of p € P, where

E,(p) = {v e Sy(p) : v < v for some v € G(p)}

is the (4, 0)-skeleton of Gi(p). This may not be true to begin with, but may be accom-
plished with a small pruning, as follows. For each (p, v) € (G)3, let

M(p,v) = [{(p,v) € Gy : (p',v) < (p,V)}| = {v € Gi(p) : v < V}].

The second equation follows from p € Ds (that is, (p',v) < (p,v) implies p’ = p). Now,
for each p € P, fixed, we pigeonhole an integer M (p) > 1 and a subset E/ (p) = (G1)%(p)
such that M (p) < M(p,v) < 2M(p) for all v € E! (p), and further

[{v € Gi(p) : v < v for some v € E. (p)}| =5 |Gr(p)| = M. (7.45)
It follows that M(p) - |E! (p)| ~5 My ~s M for all p € P;. Next, we pigeonhole an integer

M, > 1, and a subset P, ¢ P, such that M, < |E,(p)| < 2M, for all p € P, and
| P| ~5 | P|. With this definition, let

G :={(p,v) : p€ Py, ve Gr(p), and v < v for some v € E (p)}.
Thus, the (6, 0')-skeleton of G'is G5 = {(p,v) : p € Py and v € E/(p)}, and for each p € P,
the (6, o)-skeleton of G(p) is G4 (p) = E!(p), which has constant cardinality M, (up to
a factor of 2). To simplify notation, we denote in the sequel E,(p) := E/ (p) for p € Py.
Note that

~ (7.45) | -
|G| = Z Z |{U € Gk(p) v < V}| X5 |Pk|Mk 5 |Pk|Mk = |Gk|
pePy, VEE,(p)
To summarise, the procedure above has reduced Gy, to a subset G = G, of size |G| =5
|G|, and further we have gained the following properties:
Go(0)] = |Eo(p)] € [Mo,2M5],  pe Py, (7.46)

and

{ve Grp) :v < v}| = M(p) ~s M/My,  p€ Py, veE(p). (7.47)
We also record for future reference that

M, ~ | ()] 2 60~ = & <“§7> , (7.48)
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since G(p) is a non-empty (9, s, C.6~€)-set. (It follows from (7.46)-(7.47) that |G(p)| ~s M
for all p € P, but G may fail to be a (6, d, s, Cd~¢)-configuration in the strict sense that
the sets |G(p)| have equal cardinality. This will not be needed, so we make no attempt to
prune back this property. The moral here is that the set G, can be completely forgotten:
we will only need G' = G}, in the sequel, and the rough constancy of |GS (p)|.)

We then begin the construction of the set G411 < G. This argument requires another
induction, in fact very similar to the one we saw during the proof of Proposition 5.2. This
is not too surprising, given that the "base case" § = A, or in other words k = 1, of (7.38)
followed directly from Proposition 5.2. To reduce confusion with indices, the letters "%, 1"
will from now on refer to the sets in the sequence G1, ..., G}, already constructed in our
"exterior" induction and we will use letters "i, j" are reserved for the "interior" induction
required to construct G4 1.

Remark 7.49. It may be worth noting that the "exterior" induction runs ~ 1/e times,
whereas the "interior" induction below runs only [20/k| ~ 1/k times. This is signifi-
cant, because it is legitimate to increase (say: double) the constant "¢" roughly 1/ times
and still rest assured that the resulting final constant is < 21/%5¢ < emax (a small number).

In contrast, it would not be legitimate to double the constant "¢" roughly 1/ times in the
"exterior" induction.

We start by setting h := [20/x], and defining the auxiliary sequence of exponents
100€ < €, < €p—1 < ... < €0 < €max/100, (7.50)

where ¢; < €;_1/10 for all 1 < j < h. This choice of the sequence {¢;} is possible thanks

to the relation between the constants "¢" and "en,ax" explained in Section 7.1. Namely, in
(7.9) we required that

C - 10"9%%¢ < e
In addition to the exponents {¢;}, we also define an auxiliary sequence of constants {C;}:

Cri1 €« Cp«Cp1 «...«Cy « Cy. (7.51)

The necessary rate of decay for the sequence {C;} turns out to be of the form AC? 1 <Cj
for an absolute constant A > 1. There are h = [20/x| constants in the sequence, so the
sequence {C;} can be found, satisfying (7.51), since C}, = A(e, k)Cj41 by (7.35). This is the
requirement which determines the size of the constant A(e, k). It may worth remarking
that the constant A(e, k) necessarily depends on both ¢ and «. This is because the index
"k" in Cy, Cj41 ranges in {1,...,C/e} for an absolute constant C' > 1, so Cj41 depends
on both ¢, k. Given the requirement for the constants C; stated below (7.51), we see that
the size of the multiplicative gap A(e, k) = Ci/Cj41 also depends on both ¢, .

Recall that our goal is to define the next set "G 1" satisfying (7.43). To do so (as in
the proof of Proposition 5.2), we consider an auxiliary sequence of sets G = Gg > G D

. D G;. Finally, we will set Gj,;.1 := G for a suitable member of this auxiliary sequence
(or in fact a slight refinement of G;).

Recalling from (7.44) that o = 6/ V)t and \ = Ak+1, and writing

P = Cj(S_E, (7.52)
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we will abbreviate

579" C;
mj(w | G):=mg,, "(w|G)

' € (G)), P (W) CRLW) n CRAW) £ Y| (753)

for G ¢ G and w € G. We recall that the constant § < refers to the range of the tangency
parameter ")", and the constant p; refers to the range of the distance parameter "t". It is
worth noting that

Cj+1 < Cj and Pji+1 < Pj and & 9+ < 5_Ej,

somp < mp—1 < ... < my. Itis also worth noting that since ¢; > 10¢, the "tangency”
range 6~ is very much larger than the "distance" range p; ~ . 07¢, assuming that § > 0
is sufficiently small in terms of ¢, .

We start by recording the "trivial" upper bound

mo(w | G) < mp(w | Qo) S Cod ¥ €, wedG,Gcd, (7.54)

which has nothing to do with the parameters 6=, pg, and only has to do with the con-
stant Cy ~ . 1. The first inequality is clear. To see the second inequality, fix w = (p,v) €
G and (p/,v") € (Q0)2 = {(¢,w) : ¢ € Py and w € S,(q)} such that

CORg’(p/7vl) M CORg'(p7U) # @

Then v' € S, (p') and |v' — v| < Cyo. But S;(p’) is o-separated, so this can only happen
for < Cy choices of v'. This gives (7.54), recalling that | Py| < §* by assumption (7.6).

The trivial inequality (7.54) tells us that the estimate (7.43) holds automatically with
Gry1 = G and k = 2s (with room to spare), assuming that 9, ¢ > 0 is chosen so small that
Co<o g 5-5/2. S0, we may assume that 0 < x < 2s. Let0 = k1 < k2 < ... < kp =2s
be a (ks/10)-dense sequence in [0,2s]. Thus h < 20/k. As already hinted above, we
now define a decreasing sequence of sets G=Gy>G; D...5G;, wherel < h. We
set G := G, and in general we will assume inductively that |G;.1| > 3|G;| for j = 0
(whenever G, G;;1 have been defined). Note that mg(w | Go) < 62 = § " by (7.54),
for all w € Gy, provided that § > 0 is small enough.

Let us then assume that the sets Gg > ... > G; have already been defined. We also
assume inductively that

mg;\z’pj’cj (W] Gj) =mj(w ]| Gj) <6 ", w e Gj. (7.55)

This is true by (7.54) for j = 0, as we observed above. Define
Hj = {w € Gj : mj+1(w | Gj) > (57'%*@“)}.

Note that rj,_(;41) < rp—j. So, Hj is the subset of G; where the lower bound for the
(j + 1)** multiplicity nearly matches the (inductive) upper bound on the j** multiplicity.
There are two options.

(1) If [Hj| > 1|G;|, then we set H := H;, and the construction of the sets G; termi-
nates. We will see that this case cannot occur as long as xj,_; > k.
(2) If [Hj| < 3|G/|, then the set G;11 := G;\ H; has |G 41| > 1|G;|, and moreover

mj+1(w | Gjt1) S mjpi(w | Gy) <6700 we Gy
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In other words, G, is a valid "next set" in our sequence Gg > ... 2 G4, and
the inductive construction may proceed.

If (and since) case (1) does not occur for indices j > 0 with x;_; > &, we can keep

constructing the sets G until the first index "j" where r;_; < . At this stage, the set
Gri1:=G; (7.56)

satisfies m;(w | Gry1) < 6" for all w € G}41 by the inductive assumption (7.55). This
implies (7.43), since Cj11 < C, by (7.51). Moreover, |Gy11| = 277|G| = 272Y%|G| ~4 |G}],
so Gj+1 is a valid "next set" in the sequence {G}}. To be precise, we still need to apply
Lemma 3.13, and thereby refine Gj+; (as in (7.56)) to a (6,0, s, Ccd~¢)-configuration of
cardinality ~; |Gj|. This will complete the definition of G .

Thus, to complete the construction of the sequence {G}}, and the proof of Theorem 7.5,
it suffices to verify that the "hard" case (1) cannot occur for any j > 0 such that x,_; > &.
To prove this, we make a counter assumption:

Counter assumption: Case (1) occurs at some index j € {0, ..., h} with k;_; > k.

7.6.5. Deriving a contradiction. The overall strategy is similar to the one we have already
encountered in the proofs of Proposition 5.2 and Theorem 6.5. We will use the counter as-
sumption to produce a "large" collection of incomparable (4, o)-rectangles, each of which
has a high (A-restricted) type relative to a certain (d, emax)-almost ¢-bipartite pair (I, B)
of subsets of P. Eventually, the existence of these rectangles will contradict the upper
bound established in Theorem 6.5. The hypothesis (6.7) of Theorem 6.5 will be valid
thanks to our previous refinements, specifically (7.26).
We write & := xj—; and (recalling the (xs)/10-density of the sequence {x;}),

Kh—(j+1) = Kk —C, where ¢ < (ks)/10 < (ks)/10.
We also abbreviate
G:=G; and H:=H;={weG:mj(w|G) ="} cG,

and we recall that |H| > |G| ~s |Gi| ~5 M|P| by the assumption that we are in case (1).
Finally, we will abbreviate

n =6 ", (7.57)

To spell out the definition of "m;, 1" (recall (7.53)), we have

[{w' € (Gg);ﬁﬂl,pﬁl(w) 1 Cj1RM(w) N CjaRO(W) # B} 2n,  weH. (7.58)

On the other hand, by the inductive assumption (7.55) applied to G = G, and recalling
that k = xj,—;, we have

o' € (G2)5, ™ (w) : CiR (W) nCyRW) # B} <6 F =5 n, weG. (759

The numerology is not particularly important yet, but it is crucial that a certain lower
bound for m;;1(- | G) holds in a large subset H — G, whereas a nearly matching upper
bound for m;(w | G) holds for all w € G. Achieving this "nearly extremal" situation was
the reason to define the sequence {G;}.
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Remark 7.60. In fact, we will need (7.58)-(7.59) for w € H? and w € G9 instead of w € H
and w € G, respectively. This is easily achieved, at the cost of changing the constants a
little. Indeed, if A > 1 is a sufficiently large absolute constant, then (7.58)-(7.59) imply

879+ pi1,AC 41 )
mé)\t ’ ! ( |G)>n7 weHU:
and
57 p;,C;/A _
LW p3:Cil (w]| G) <6 n, we Gl

These inequalities follow from Lemma 7.41. It will be important that the constant C; is
substantially larger than C; 1, but we can arrange this so (recall the definition (7.51)) that
even C;/A » ACj;. To avoid burdening the notation with further constants, we will
assume from now on that (7.58)-(7.59) hold as stated for w € H} and w € G9, respectively.

The set H ¢ G may have lost the uniformity property (7.46) at scale o. That is, we
no longer know that all the (4, 7)-skeletons H(p) = G (p), for p € Py, have roughly
constant cardinality (let alone M, ). (Recall that the set P, = P, was defined below (7.45).)
We resuscitate this property by a slight pruning of H. Note that

M|P|~; [H| = ) > [{veH(p):v<v}. (7.61)
pe Py, veHS (p)

By pigeonholing, choose a number M, > 1, and a subset P < P, with the properties
M, < |HS(p)| < 2M, forall p e P, and such that the quantity on the right hand side of
(7.61) is only reduced by a factor of ~5 1 when replacing P;, by P. Thus,

MIP|~; >, > HveH(p):v<v} <|P|-2M,-max|{ve H(p) : v < v}|. (7.62)
peP veH?S (p) v

Here the "max" runs over all v € H(p), with all possible p € P. Here H(p) < G(p) and
p € P, so we see from (7.47) that the "max" is bounded by <5 M/M,. Since evidently
M, < 2M,, we may now deduce that M, ~s M, and |P| ~s | P;|. At this point we define
H := {(p,v) € H : p € P}. Then it follows from (7.62) that |H| ~; |[H| ~5 M|P|, and
moreover

] (p)| = [H(p)| ~ My ~5 My, pe P. (7.63)

7.6.6. Finding a t-bipartite pair. Next, we proceed to find a (9, emax)-almost t-bipartite pair
of subsets of P, very much like in the proof of Proposition 5.2. Let B be a cover of P by
balls of radius t/(4p;+1) such that the concentric balls of radius 2p;,1t (that is, the balls
{8p§+1B : B € B}) have overlap bounded by O(pj;1) = Oc(67°) < 6~ “m» (recall that
pj+1 = Cj1167°). Then, we choose a ball B(pg,t/(4pj+1)) € B in such a way that the ratio

|P 0 B(po, t/(4pj+1))]
[P~ B(po, 2pj+1t)]
is maximised. Here P c P, — Py is the subset of cardinality |P| ~; |P| ~s |P| we just

found above, recall (7.63). We claim that § <5 6“»»<: this follows immediately from the
estimate

6=

Pl< S P Bl <0 S [P st Bl <65 P,
BeB BeB
and since |P| ~; |P|. Now, we set
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W .= ]5 M B(pg,t/(4pj+1)) and B:=Pn B(po, 2pj+1t)\B(p0,t/(2pj+1)), (764)
so that
|B| < |P n B(po,2pj11t)| = 07HW| S5 67 |[W|. (7.65)
We record at this point that
dist(W, B) = *t/pj1 = 6™t and diam(W U B) < 4p; 1t < 57, (7.66)

so the pair (W, B) is (0, émax)-almost ¢-bipartite, independently of ";j" or "k". This will be
needed in an upcoming application of Theorem 6.5.
We then set

W = {(p,v) € I:Ig :peW} and B:={(p,v)e G:pe B}. (7.67)

We note that the "angular" components of W have separation o, but the angular compo-
nents of B are §-separated; this is not a typo. Let us note that

— 7.63) —
W (p)| = [B()|, "% M, ~5 My, peW (7.68)

(For this purpose, it was important to choose W < P.) Also, it follows from definitions
of W, B that if p € W, and ¢ € P is arbitrary with ¢/p; 11 < |p — q| < pj+1t, then g € B.
Consequently,
weW = (G))}, P (w) B}, (w).

For this inclusion to be true, it is important that in the definition of "B" we take into ac-
count all points in P, and not only the refinement P. Now this is certainly true, because
we are even taking along all the points in P. From this, and since W < HJ, and recalling
(7.58), it follows

€41 .
(e B, (W) CiuRi(w) nCiaRL(B) £ @Y =n>0, weW. (7.69)

We also used the reduction explained in Remark 7.60 that we may assume (7.58) to hold
for all w € H?. Without this reduction, (7.69) would instead hold with constant "C Cj".

7.6.7. The rectangles RS. We will produce a family of 100-incomparable (6, o)-rectangles
with high A-restricted type relative to (W, B). This will place us in a position to apply
Theorem 6.5. Consider the (4, o)-rectangles { R} (w) : w € W}, and let

RS c {R(w) : we W}
be a maximal family of pairwise 100-incomparable elements. Some rectangles in RS may
arise as RS (w) for multiple distinct w € W. We quantify this by considering
m(R) = [{we W: R ~1p0 Ry(w)}|, ReR], (7.70)

where "~ (" refers to 100-comparability. We note that since every R € Rg satisfies R ~1q0
RS (w) for some w € W, we have m(R) > 1 (and m(R) < |[W| < 6~%). By pigeonholing,
we may find a subset R} < RJ with the property m(R) = m € [1,06 4] for all R € RY,
and moreover

DI HRER) : R~1p0 Ry (W)} =5 Y {RERY : R ~100 RY(w)}]:
weW weW
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Now, we have

_ 1 1
|Rg| = E Z m(R) = E Z Z Z 1{R~100Rg(p,v)}

ReRS ReRS peW veW (p)
1 (7.68) W Mo‘
v 2 Y [ReRD: R Rv))| 25 Ve g
m m
peW veW (p)

(The final lower bound would not necessarily hold for R?, since every rectangle RS (p,v),
(p,v) € W, is not necessarily 100-comparable to at least one rectangle from RJ.)

7.6.8. Proving that m < n. Recall the constant n = § *¢ from (7.57). We next claim that
m(R) Sew0n,  ReR], (7.72)

and in particular m <., 0 ‘n. This inequality is analogous to (5.21) in the proof of

Proposition 5.2, but the argument here will be a little harder: now we will finally need

the inductive information (7.38) regarding the higher levels of tangency \; for 1 <1 < k.
Let R = RS (p,v) € R, with (p,v) e W. According to (7.69), there exists at least one

B=(qwye B, () e (@), (p,v) (7.73)

such that C;11 RS (p,v) n C;j41R3(B) # . We first claim that if ' = (p/,v) e W < G
is any element such that RS (p,v) ~100 RS (w'), then automatically
t/pj < §t/pjn1 < [P’ —al <dpjat <pjt and CRO(W) N CiRy(B) # & (7.74)
The first property follows from the separation (7.64) of the sets W, B, and noting that
pj =Cj67¢=24C; 110~ = 4pj41 (recall (7.52)).
For the second property, note that since R (p,v) ~100 RS (w'), we have RS (w') <

AR (p,v) © C;41RS(p,v) for some absolute constant A > 0 according to Lemma 4.9,
and by a second application of the same lemma,

CjHRg(an) - C;‘+1R2(W/)

for some C ., < C?H. In particular, C; 1R} (p,v) € C;R3(w'), recalling from (7.51) the
rapid decay of the sequence {C;}. The second part of (7.74) follows from this inclusion,
recalling that C;;1 R(p,v) n Cj11R%(B) # &.

Let us recap: we have now shown that for ' € W with R} (p,v) ~100 R(w'), the
conditions (7.74) hold relative to the fixed pair 3 € B¢ (determined by R). This gives an

inequality of the form
m(R) < o' € (G5} (8) : C;R5(8) n CiRe(w) # B, (7.75)

where the (non-standard) notation (GJ)}” () refers to those pairs (p',v") such that t/p; <
Ip" —q| < pjt. In particular, we have no information - yet — about the tangency parameter
A(p', q). This almost brings us into a position to apply (7.59), except for one problem:
(7.59) only gives an upper bound for the cardinality of elements

§ 9 p;
W € (G, (8).
To benefit directly from this upper bound, we should be able to add the information
S9N AW, q) <679\ (7.76)
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to the properties (7.74). This is a delicate issue: it follows from the choice of 5 = (¢, w) in
(7.73) that we have excellent two-sided control for A(p, ¢). Regardless, it is only possible
to obtain the upper bound for A(p', q) required by (7.76), given the information that
RS (p,v) ~100 R%(p/,v"). The lower bound may seriously fail: the circles S(p'), S(¢) may
be much more tangent than the circles S(p), S(¢), see Figure 4. This problem will be
circumvented by applying our inductive hypothesis. Before that, we however prove the
upper bound: we claim that if the properties (7.74) hold, then the upper bound in (7.76)
holds. This will be a consequence of Corollary 4.7.

S(q) S(p) S(p)

FIGURE 4. The failure of the lower bound in (7.76) in a case where A ~ 1 &~
t, thus 0 = §/v/At ~ 6. The black and red annuli S°(p), S°(q) on the left
intersect in a (6, §)-rectangle R = R}(p,v). On the right, the rectangle R
is evidently 100-comparable to a (6, §)-rectangle R’ = R}(p',v") = S°(p'),
but nevertheless A(p/,q) =~ § < \.

Let p', p,q be as in (7.74). Thus RS (p',v") ~100 R%(p,v), where the point (p,v) € W
satisfied
Ci1Ro(p,v) 0 G Bolg,w) # 2, (7.77)
and
5N < Alp,g) <6 9N and t/p; < |p— gl < pyt. (7.78)
These conditions place us in a position to apply Corollary 4.7. We write A := A(p, ¢) and

t:=|p—gq|,and & := §//(A + 6)(t + §). If follows from the upper bounds in (7.78), and
since p; = C;0 ¢ < ¢ “+!, that

o <6 9ta. (7.79)
After this observation, it follows from (7.77) that
Aj 1Ry (p,v) 0 ARy (g, w) # & (7.80)

for some A S Cj 1679+ <o 079+ Using (7.79) again, we may also choose the
constant A ;. (under the same size constraint) so large that

ARg(p> ’U) = Aj-l—le'(pa U)>

where A > 1 is an absolute constant to be specified momentarily. Now, according to
Corollary 4.7, (7.80) implies

ARY(p,v) © Aj11RY(p,v) = Al Ra(q,w) (7.81)

for some A’ | < Aij Ser 074+ Finally, since RS (p',v") ~100 RS (p,v), we have

RO (p',v) S AR (p,v) A;-HRg_(q, w) < SA9+15(q).

Trivially also R2 (p',v') < S25+12(pf), so RS (p/,v') = §A5+1°(q) m SA5+19(p'). This implies
Al LS L.4.3

L Z diam(R)(p',0") ~ o

AP, Q' —al
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Recalling that A’ | <. 09+, this can be rearranged to
AW q) Sew (07719 o) |p' — g|7h = 675N (t/]p — q]) Se 679N

In the final inequality we used thatp’ € W and g € B,so |[p' —q| = t/p; 2. 09+t. In (7.50),

the sequence {¢;} was chosen to be so rapidly decreasing that ¢; > 10¢;,;. Therefore, if

0 > 0 is small enough, the inequality above implies the upper bound claimed in (7.76).
Recalling also (7.75), we have now shown that

m(R) < [{' € (GD)L,”(B) : CRY(B) n GRS () # B}, (7.82)

where the "< \" symbol refers to the fact that we only have guaranteed the upper bound
in (7.76), but not a matching lower bound.

As noted above, the matching lower bound A(p’, ¢) £ A may be false. However, recall
from (7.44) that A = A1, and that the sequence {\;}¥_, is multiplicatively §—¢-dense (or
even 6~ “/%-dense) on the interval [, 6°\] < [, \x]. Therefore, we are either in the happy
case of the 2-sided bound

SINS AP, q) <O 9N, (7.83)
or otherwise A(p', q) < 6%\ < §°)\, and we can find an index 1 < I < k such that
56)\5/05 <A< A(pl,q) <6 N<LCo N (7.84)

In fact, there is a small gap in this argument: if A(p’,q) < ¢, then we cannot guarantee
(7.84) for any 1 < I < k. To fix this, we modify (7.84) so that in the case [ = 1, only the
upper bound is claimed. With this convention, the index [ € {1, ..., k} satisfying (7.84)
can always be found whenever A(p’, ¢) < 6% \.

One of the two cases (7.83)-(7.84) is "typical” in the following sense. Since A(p',q) <
d~% A for all pairs (p',q) appearing in (7.82), by the pigeonhole principle there exist

m(R) ~ m(R) pairs wy, ..., wyr) € W with first components p1, ..., pnr) € W, and a
fixed index 1 <1 < k + 1, such that
N/Cr < Api,q) < Ci6 Ny, 1 <i<m(R), (7.85)

for some fixed 1 <1 < k + 1. In the casel = k + 1, the constant "¢" in (7.85) needs to
be replaced by ¢, recalling the alternatives (7.83)-(7.84). In the case | = 1, the two-sided
inequality in (7.85) has to be replaced by the one-sided inequality A(p;, q) < C1517¢.

A subtle point is that even though the pairs wy, . .. ,wp(g) are distinct, the first compo-

nents p1, . . ., pm(g) Need not be. However, they "almost” are: for p € W fixed, there can
only exist < C; choices v € S,(p) such that C;RS(p,v) n C;R%(B) # & (as in (7.74)).
Thus,
For this argument, it was important that the "angular" components of the pairs in W
are elements in S,(p), recall (7.67). For notational convenience, we will assume in the
sequel that the points p1, ..., py(r) are distinct, and we will trade this information for
the weaker estimate m(R) 2. Cj_lm(R) (this is harmless, since C; S, 1).

Now, we have two separate cases to consider. First, if | = k + 1, then \; = ), and we
have §\ < A(pi,q) <0 % Aforall 1 <i < m(R). In this case

m(R) Scm(B) < | € (G2)],” ™ (8) : CRI(B) n CRLW) # @} < 0-n,
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using that 8 € BJ G (recall also Remark 7.60 where we explained why (7.59) may be
assumed to hold for 8 € G, not just B € G). This proves (7.72) in the case [ = k + 1.
Assume finally that 1 < ! < k. Then, according to (7.85) we have

m(R) Se m(R) < [{o' € (GL)S " (8) : C;RL(B) n C;RL(W) # D). (7.86)

We note that p; = C;07¢ < C;6~° by the choice of the intermediate constants {C,}, see
(7.51), so the inequality (7.86) implies

m(R) e {w' € (G () : CjRA(B) n C;RS(w') = T}, (7.87)

(This remains true as stated also in the special case [ = 1: in this case (7.85) had to
be replaced by the one-sided inequality A(p;,q) < C167A\ = C16'~¢, but this implies
wi = (pi,vi) € (G‘S)fll‘i “(B) for A\; = &, see the last line of Definition 7.1).

The right hand side looks deceptively like m¢ ‘. /\ p G (w | G) (note also that C; < (),
and since G c G, the inductive hypothesis (7. 38) now appears to show that

(7.57)
m(R) <. 07" < 6 ‘n,

as desired, using here that K = xj,_; > x by our counter assumption. There is still a small
gap in this argument: the definition of mgl)\&l:’cl counts elements in the (6, 0;)-skeleton of
G with 0; = §/y/\t > o, rather than the (4, 0)-skeleton appearing on the right hand side
of (7.87).

This is easy to fix. The solution is to first use the (distinct!) points p1,.. ., pyr) found
in (7.85) to produce a collection of pairs wy, ... , Wm(R) € Ggl. Indeed, for every 1 < i <

m(R), we know from (7.74) that there corresponds a pair w; = (p;,v;) € G2 such that
C,; R (pi,vi) n C;RL(B) # . (7.88)

For every 1 < i < m(R), choose w; := (p;,v;) € Ggl with (p;,v;) < (pi, vi). Note that
the pairs w1, ..., Wy r) are all distinct, since the "base" points py, ..., py(r) are distinct.
Further, it follows from (7.88), combined with

(7.51) 5 5 5 -
AC]' < Cy,<C = CjRa(pi,’UZ') (= ClRol (pi,vi) = ClRal (@),

(here A > 1is a sufficiently large absolute constant) that
CiR) (@) nCiRY,(B) # &, 1<i<m(R). (7.89)

(The deduction from (7.88) to (7.89) looks superficially similar to the deduction of the
second claim in (7.74), but now the situation is much simpler, because (p;, v;) and (p;, v;)
have the same "p;".) We note that the tangency and distance parameters of the pairs
((pi, vi), B) and (w;, ) are exactly the same, since the "base point" p; remained unchanged.
Consequently, by (7.87) and (7.89), we have

m(R) < [{@' € (G3,)SH "(B): QLR (B) n CiR), (&) # B}

(7.38) (7.57)
=mgy JNBIG) < I < (7.90)

We have finally proven (7.72).
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7.6.9. The type of the rectangles R € RS. We next claim that every rectangle R € RS has
A-restricted type (= m, = 7)., relative to (W, B,{E(p)}), where m := §“»>m and n :=
o¢maxpy Recall from Definition 6.3 what this means. Given R € 7@3, we should find a
subset Wr < W with |Wg| > m, and the following property: for every p € Wg, there
exists a subset Br(p) c B of cardinality |Br(p)| > 7 satisfying

6emax)\ < A(p’ q) < 5_511121)()\ and R = 6_€maxgg(p) A 6_5max€g(q) (7.91)

for all p € Wg and ¢ € Bgr(p). If A = §, the first requirement in (7.91) is relaxed to
A(p,q) < dmax .

Remark 7.92. In (7.91), the definition of the sets £(p), £2(q) involves the (6, o)-skeletons
of E(p) and E(q). We emphasise that these sets are not the "original" sets Ey(p), Eo(q)
given in Theorem 7.5 (recall the notation from Section 7.4), but rather the subsets found
at the end of Section 7.4, see (7.24). This is important, since the upper bound (7.26) will
be needed in a moment.

To begin finding Wx and Bgr(p) for p € Wk, recall that m(R) = m for all R € RJ.
This mean that there exists a set Wr < W of m pairs {w;}["; = {(ps,vi)}I"; such that
R ~100 Rfi (wi) forall 1 < ¢ < m. While the pairs w; are all distinct, the first components p;
need not be. This issue is similar to the one we encountered below (7.85), and the solution
is also the same: for every p; fixed, there can only be < 1 possibilities for v € S;(p;) such
that R ~100 R%(pi,v). Therefore the number of distinct elements in Wg := {p1,...,0m}
is 2 m, and certainly |Wg| > 6“»»>m = m. To remove ambiguity, for each distinct point
pi € Wgr, we pick a single element v € S;(p;) such that (p;,v) € Wg, and we restrict Wg
to this subset without changing notation.

Next, fix p € Wg. Let v € S;(p) be the unique element such thatw = (p,v) e Wr c W.
Recall from (7.69) that

(Be B, (@) CrruRl(w) N CrRL(B) # @Y = n.
Thus, there exists a collection {3;}?_; = {(g, wi)}?, = B of pairs such that
Cjt1R5(w) N CjRo(gi, wi) # O, (7.93)
and
J9HN S A(p,qi) <0 9N and 0t < p — ¢ <0 mext (7.94)
for all 1 < i < n. In the estimates for |p — ¢;|, we already plugged in p; 11 = Cj116" ¢ <
0 “max, assuming § > 0 small enough.

Once more, the g;-components of the pairs {/3;} need not all be distinct, but they almost
are, by the following familiar argument: for each g;, there can correspond < C;, distinct
choices w € S,(g;) such that (7.93) holds. Therefore, Br(p) := {q1,...,q,} © B has
2z Cj_jln distinct elements, and certainly |Br(p)| = 7.

Let us finally check the conditions (7.91) for p € Wx and ¢ € Br(p). The tangency
constraint follows readily from (7.94), and noting that €11 < €pax. So, it remains to
check the inclusion in (7.91). Fix p € W and q € Br(p). By definition, p € Wr means that
R ~100 R} (w) for some w = (p,v) € Wx = GJ, and in particular v € E,(p) (the (4, 0)-
skeleton of E(p)). Next, ¢ € Br(p) means that there exists 5 = (¢, w) € BS (in particular
w € E,(q)) such that (7.93)-(7.94) hold. We now claim that

R c 6_€mang ((.U) A 5—6mang (6) c 5—6maxgg (p) A 5_€maxgg (q) (795)
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This is a consequence of Corollary 4.7, and the argument is extremely similar to the one
we recorded below (7.77)-(7.78). We just sketch the details. Applying Corollary 4.7 with
= 6/4/(A(p,q) + 6)(|p — g| + 0), it follows from the non-empty intersection (7.93) that

ARS(w) € A1 R3(B),

where A > 1is a suitable absolute constant, and A ;1 Sc 6 —0(65+1) (compare with (7.81)).
Next, from R ~19 R} (w), we simply deduce that R = AR} (w). Since max{A, A .1} <
d~“max for § > 0 small enough, the inclusion (7.95) follows.

We have now proven that every rectangle R € R has \-restricted type (= m, > f).,..
relative to (W, B, {E(p)}).

7.6.10. Applying Theorem 6.5. The constant emax = €max(k, s) > 0 was chosen (recall Sec-
tion 7.1) in such a way that Theorem 6.5 holds with constant n = xs/100. Therefore, we
may apply the theorem as soon as we have checked that its hypotheses are valid. At the
risk of over-repeating, we will apply Theorem 6.5 to the space 2 = {(p,v) :pe Pand v e
E(p)} < Qo constructed during the "initial regularisation” in Section 7.4. Crucially, we
recall that () satisfies the upper bounds (7.26) for all A € A and ¢ € T(\). This means that
the hypothesis (6.7) of Theorem 6.5 is valid with constant Yy = §=#5/100\%| By .

We also recall from Section 7.4 that our set P is A-uniform (without loss of generality),
and at (7.21) we denoted X := |Py n pls = | Pol/|Polx for p € Dx(Fp), and A € A.

We have now verified the hypotheses of Theorem 6.5. Recall from the previous section
that every rectangle R € R has type (= m, > 7).,,., relative to (W, B, {E(p)}). Therefore,
we may infer from Theorem 6.5 that

3/4
<|W||B|> o+ Wy o 1B Xm].

€max

|W|MU 7<71) |R6| <6 Ks/100

m mn

Here
X,LY, < (|P0|/|P0|)\) (57:‘68/100)\8|P0|)\) _ 5fns/100)\s|P |
We also recap from (7.72) that m e 075n < 66~ maxpy (where ¢ < ks/10), and from

(7.65) that |B| < §~2emax|WW|. Recalling from (7.57) that n > 6~"*¢, and from (7.6) that
|Po| < 677, we may rearrange and simplify the estimate above to the form

M, < 57&3/1007<7O(€max) [|W|1/2 . 5&/2 . (57&5/100)\5|P0|)1/2 + 6fns/100)\5|P0|]
< 5—58/100—&5/10—0(6;,“3)() [|W|1/2 . ()\/5)5/2 . 55/2—&5/100 + 5—&5/100(}\/5)5] ] (796)

To derive a contradiction from this estimate, recall from (7.48) that

M, > 6% (@) > §2ers/o (2) . (7.97)

The second inequality follows from our restriction to pairs (), t) with A < §*/19¢ (recall
(7.34), and that A = A\i;1). These inequalities show that the second term in (7.96) cannot
dominate the left hand side, provided that ep,ax is chosen small enough in terms of &, s,
and finally § > 0 is sufficiently small in terms of all these parameters.

To produce a contradiction with the counter assumption formulated above Section
7.6.5, it remains to show that the first term in (7.96) cannot dominate M,. Since P is
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a (4,s,0 ¢)-set, and W < P < Py is contained in a ball of radius ¢, we have |W| <
dt*|Po| < 07¢(t/0)*. Therefore, the first term in (7.96) is bounded from above by

51{/2—58(1/50+1/10)—O(511)ax) <\/6)\7t> < 6:‘%8/5 <\/6)\7t> ,

provided that €. > 0 is small enough in terms of x, s. Evidently, the number above is
smaller than the lower bound for M, recorded in (7.97), provided that €, €ax, d > 0 are
small enough in terms of x, s. We have now obtained the desired contradiction.

To summarise, we have now shown that case (1) in the construction of the sequence
{G,} cannot occur as long as kj,—; > x. As explained at and after (7.56), this shows that
we may define Gj.1 := G; for a suitable index "j", and this set G, satisfies (7.43). This
completes the proof of Proposition 7.28, then the proof of Proposition 7.30, and finally
the proof of Theorem 7.5.

7.7. Deriving Theorem 1.11 from Theorem 7.5. It clearly suffices to prove Theorem 1.11
for all k¥ € (0,c], where ¢ > 0 is a small absolute constant to be determined later. Fix
k€ (0,c], and let € = €(k, s) > 0 be so small that Theorem 7.5 holds with constants &, s.

Let Q = {(p,v) : pe Pand v € E(p)} be a (4, s, C)-configuration, as in Theorem 1.11.
There is no a priori assumption in Theorem 1.11 that the sets P, E(p) are d-separated, but
it is easy to reduce matters to that case; we leave this to the reader, and in fact we assume
that P ¢ Ds and E(p) < Ss(p) forall p € P.

To prove Theorem 1.11, we need to find a subset G < Q2 satisfying |G| = §%|Q|, and

ms(w | G) S5 677, w e R2. (7.98)
We start by applying Theorem 7.5 to €2 to find the subset G < 2 of cardinality |G| > §%|Q2|.
By the choice of "¢" above, we then have

mg,},fﬂ(w |G) <6,  weG. (7.99)

We claim that if the absolute constant "c > 0" is chosen small enough (thus ™1 > ¢=! > 0
is sufficiently large), then (7.99) implies that

{(P',v") € G :v' € B(v,28)}| = mas((p,v) | G) S5 077, (p,v) €G. (7.100)

Let us quickly check that this implies (7.98) for all w € R2. Indeed, if m;s(w | G) > 0, then
there exists at least one pair (p,v) € G such that w € B(v,J). Now, it is easy to see from
the definitions that ms(w | G) < mas((p,v) | G).

The idea for proving (7.100) is to bound the total multiplicity function mss from above
by a suitably chosen partial multiplicity function ms » ;. Fix (p,v) = w € G. Then,

mas(w | G) < Y mas(w | G3 (W),
A<t
where G‘f\;(w) = {(p,v) e G : 6N < Ap,p') < d~Aand 6t < |p — p| < §~¢t} as
in Definition 7.1, and the sum runs over some multiplicatively §~“-dense sequences of

0 < A <t <1 (oreven all dyadic values, this is not important here). In particular, there
exists a fixed pair (), t), depending on w, such that

mas(w | G) S mas(w | G3; (@) = {(',0') € G/ (w) : v € B(v,20)}].
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Let {w;} = {(pj,v1)}}L; < G}, (w) be an enumeration of the pairs on the right hand
side. The points {p1,...,pn} may not all be distinct. However, note that if p; is fixed,
there are < 1 options v' € S5(p;) such that v’ € B(v, 2§) (since v is fixed). Therefore, there
is a subset of ~ N pairs among {(p;, v;)} such that the points p; are all distinct. Restricting
attention to this subset if necessary, we assume that all the points p; are distinct.

Write o := §/v/At. For every index j € {1,..., N}, choose (p;,v;) € G (the (,0)-
skeleton of G) such that (p;,v;) < (p;, v;). Automatically

(pj,vi) € (GO (w), 1<j<N,

since the point "p;" remained unchanged. We also note that |v; — v;| < o, and the pairs
(pj, v;) are distinct because the points p; are. We claim that

r RN (pjvi) nRTIRG (W) £ &, 1< SN, (7.101)
provided that © < ¢, and ¢ > 0 is sufficiently small. Indeed, fix 1 < j < N, and recall
that v; € B(v, 25). This immediately shows that v; € 2R (p,v) = 2R%(w), since & > §. On
the other hand, v; € S(p;), and |v; — v;| < o, so also v; € CR%(p;,v;) for some absolute

constant C' > 1. Now, (7.101) holds for all s ! > ¢! > max{2, C}.
We have now shown that

—€ _ _ —€ H_l
mas(w | G) S5 N < {w' € (GD)3, (w) : kT RY(W) n ' RY(w) # @} = mg, " (w]G).

Recalling (7.99), this proves (7.100), and consequently Theorem 1.11.

APPENDIX A. PROOF OF PROPOSITION 4.12

We complete the proof of Proposition 4.12 in this appendix. For the reader’s conve-
nience, we recall the statement of Proposition 4.12 here.

Proposition 4.12. Let A > 100 and 6 < o < 1, and let R be a family of pairwise 100-
incomparable (0, o)-rectangles. Suppose also that there exists a fixed (9, o)-rectangle R such that
the union of the rectangles in R is contained in AR. Then, |R| < A

As mentioned in Section 4.2, we first need several auxiliary definitions and lemmas.

Definition A.1. We denote by 7r1,: R? — L the orthogonal projection onto a 1-dimensional
subspace L in R% If I < L is a fixed segment, p € R? and v € S(p) are such that 77, (v) €I,
then we denote by I'1, , the connected component of 7, *(I) N S(p) containing v.

The set I't, , need not be a graph over Iin general. However, given a rectangle R and
a family R of (J, o)-rectangles as in Proposition 4.12 with a suitable upper bound on o,
we now show how to select a subfamily R, ¢ R with [R*| > |R|/2 such that both AR,
and the rectangles in R, look like neighborhoods of 2-Lipschitz graphs over a fixed line
L. By a “2-Lipschitz graph over L” we mean the graph of a 2-Lipschitz function defined
on a subset of L. In the argument below, we abbreviate RS (p,v) =: R(p,v).

Lemma A2. Let A > 1,6 < 0 < Ao < og := 1/600. Assume that R is a finite family of
(0, 0)-rectangles, all contained in AR, where R = R(p,v) is another (0, o)-rectangle. Then
there exists a 1-dimensional subspace L < R?, an interval I = L and a subfamily R, = R with
|R«| = |R|/2 such that

(1) 7(AR) c Iand I't p v is a 2-Lipschitz graph over 1,
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(2) foreach R(p,v) € Ry:
n(R)  Tand I't, , is a 2-Lipschitz graph over 1.

Proof. First, we find the subspace L and the subfamily R, < R. Let
J(p,v) 1= 8(p) N B(v, 155) and  J(p,v) := S(p) n B(v, 15)-

These are arcs on the circles S(p) and S(p) which contain the “core arcs” S(p) n B(v, Ao)
and S(p)nB(v, o) of the rectangles AR and R respectively. We claim that L can be chosen
from one of the three lines

L; =span(1,0), Lo = span(l, \/g), L3 = span(—1, \/3)

such that J(p,v) and J(p,v) are 2-Lipschitz graphs over L for at least half of the rect-
angles R(p,v) € R. The idea is that the arc J(p,v) (resp. J(p,v)) is individually a
2-Lipschitz graph over any line which is sufficiently far from perpendicular to (any tan-
gent of) that arc. For J(p, v) (resp. J(p,v)), this is true for at least two of the lines among
{L1, L2, L3}. We give some details to justify this claim.

For every circle S(x,r) and every line L, there exists a segment I of length 4r/+/5,
centered at 7y, (z), such that the two components of 77 ! (1) nS(x, r) are 2-Lipschitz graphs
over I; see the explanation around (A.6). The constant “1/100” in the definition of J(p, v)
has been chosen so small that for each v € S(p), there are two choices of lines L; such that
71, (J(p,v)) is contained in the segment on L; over which the corresponding arc of S(p)
is a 2-Lipschitz graph. This also uses the fact that we are only considering parameters
p = (x,r) € D,sothatr > 1/2.

For instance, if p = ((0,0),7) and v = (—@r, ir), then J(p,v) is clearly a 2-Lipschitz
graph over the line Ly, which is perpendicular to the direction of v, but J(p,v) is also a
2-Lipschitz graph over the horizontal line L; since

7w, (J(p,v)) < 7, (B(v,1/100)) = [—@r — ﬁ, —?r + ﬁ] c [—%r, %r]

(By the same argument J(p, v) is a 2-Lipschitz graph over L; for any v = (r cos ¢, rsin ¢)
with ¢ € [7/6, 57/6]).
Without loss of generality, we assume in the following that J(p,v) is a 2-Lipschitz
graph over L and Ls. For 1 < ¢ < 2, define
Ri:={R(p,v) € R : J(p,v) is a 2-Lipschitz graph over L;}.

We have |R| < |Ri| + |R2|- Hence if |R1| > |R|/2, we choose L = L; and R, = R;.
Otherwise, we choose L = Ly and R, = R». For an illustration, see Figure 5. We assume
with no loss of generality that L = L; = span(1,0) and R. = R;. We abbreviate 7 := 7,
and identify L with R via (z1,0) — x;. Next, we note that

Ii=[r(v) — g5, 7(V) + g5l € 7(J (V) () 7(J(p,v)). (A3)
R(p,v)eER %

This follows easily from the fact that |v — v| < 1/600 and that 7 restricted to J(p, v) and
J(p,v) is 2-Lipschitz;, we omit the details. Since J(p,v), J(p,v) are 2-Lipschitz graphs
over L, the inclusion (A.3) shows that I't p v, I'1,,, are 2-Lipschitz graphs over the seg-
ment I. Moreover, it is clear that

m(R) « m(AR) c m(B(v, 555)) =1, ReR..

This completes the proof of the lemma. O
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FIGURE 5. Finding the line L. The fat red rectangle represents AR, and
the smaller green rectangles inside AR represent the rectangles R' € R.

We will apply (a corollary of) Lemma A.2 to the rectangle R in Proposition 4.12. For
that purpose we may assume without loss of generality that the line L given by Lemma
A.2 is span(1,0), and we restrict the following discussion to this case. This convention
leaves for each graph I't, , two possibilities: it is contained either on an “upper” or on a
‘lower” half-circle. For p = (z,7) = (x1,22,7) € R? x (0,0), we write the circle S(p) as
the union of two graphs over L as follows

S(p) = S(x,r) = {(y1,42) € R*: (y1 — 21)* + (y2 — x2)> =} = S (p) L S_(p),

where
S(p) = {(wr, #V/r2 = (g —@1)? +22): gy € [y = +]

Now for p = (21, x2,7) € R? x (0, 0), we define

Jpa(0) := £A/12 — (0 —21)2 + 22, O€[z1—1r,21 +7]. (A.4)

We record for any 0 € (z1 —r,z1 +7),

2

y o 0 — 121 r
N I CRENG E)

The functions f, + are 2-Lipschitz on [z, — %r, 1+ %r], and this is the largest interval

with that property. At the endpoints of it, the corresponding function values are

and f;’,i(G) =+

(A.5)

Poaler = 22) = fra(m+ ) =22+ 2. (A.6)

The tangents to S(p) in the respective points on S(p) have precise slopes +2 or —2.

For simplicity, we denote m = 7z, : (y1,%2) — y1. Assume that I < L is an interval and
consider p € D and v € S(p). If the arc I't;, , introduced in Definition A.1 is a graph over
L, then

either Ty,, =7 "(I)nSy(p) or Tip,=7 "(I)nS (p) (A7)
and I't , is the graph of f, |1 or f, _|1, respectively. We may in the following assume
that the rectangles R(p,v) € R, given by Lemma A .2 all yield functions of the same type,
either all associated to upper half-circles, or all associated to lower half-circles. This type
may not however be the same as for the rectangle R, cf. Figure 5.

Lemma A.8. Under the assumptions of Lemma A.2 (with L = span(1,0)), there exists a subset
R. < R with |Ry«| = |R|/4 such that the conclusions (1)-(2) hold and additionally, either
Trpo =7 (I) N Sy (p) forall R(p,v) € Ry, 0r T1p, = 77 H(I) 0 S_(p) for all R(p,v) € R
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Proof. Observation (A.7) shows that the additional property can be arranged by discard-
ing at most half of the elements in the original family R, given by Lemma A 2. O

Even with this additional assumption in place, the family R, is not quite of the same
form as the families of graph neighborhoods considered in [17], but it is also not too
different. For arbitrary n > 0 and subinterval I < I in the domain of f, +, we define the
vertical n-neighborhood

o (D) ={(y,y2) e I xR fr 4 (1) =0 < y2 < fpr(y1) + 0}
Moreover, for any 7 € (0, 1/200], if f, + : I — R is 2-Lipschitz, then
(D) A S"(p) < f (D) U £ (D). (A9)
Here, the upper bound on 7 ensures that the points on S(p) which are 7n-close to points
in 771(I) n S(p) lie in the part of the graph of f, 1 where the Lipschitz constant is small
enough for the inclusion (A.9) to hold. In particular, if R = R(p,v) is a rectangle with

I =m(R)cIandn = 4§ < 1/200, and if f, € {f, +, fp,—} is such that I't , , is the graph of
[p, then the inclusion in (A.9) yields

Rc f(r(R)) (A.10)

since R 7' (n(R)) n S°(p). A priori, (A.9) only yields R < f° (7(R)) u f3° (7(R)),
but the conditions 6 < 1/200, 7(R) c I and the assumptions on I't; , ensure that either
Rc f;}i(ﬂ(R)) or Rc fz‘i‘s_ (m(R)).

We will also need an opposite inclusion for enlarged rectangles. Let 0 < o, R = R(p,v)
with 7(R) < I'and f, : I — R be 2-Lipschitz with graph equal to I't;,. Then, for any

C > 1,if I c Iisaninterval with |I| < Co and such that 7(R) < I, then
f°(I) < ACR. (A.11)

The inclusion pr‘S(I ) < S4C(p) is clear. To prove that also fpc 9(I) ¢ B(v,4C0), consider
an arbitrary point y = (y1,y2) € f$°(I). Since 7(R) © I < Iand I'ry, is the graph of f,,
there exists 6 € I such that v = (6, f,(#)) and using the 2-Lipschitz continuity of f, on
I o I, we can estimate

ly — vl < ly2 = fplyD)| + (1, fo(y1) — (0, fp(8))] < C8 + /5|y — 6] < 6 + 31| < 4C0,

concluding the proof of (A.11). In order to apply arguments that were stated in [17] for
certain C? functions, we need a preliminary result about the behavior of p — f, + with
respect to the C%(I)-norm.

Lemma A.12. There exists an absolute constant K > 1 such that for all p,p’ € D, if1 < R is
an interval so that fp, 1, fpr + : I — Rare 2-Lipschitz, then

I fpt = for ez < Klp = 9] (A.13)
The corresponding result for the pair (f, —, f;7,_) is also true, but not needed.

Proof. We abbreviate f, = f,; for p = (z1,22,7). The norm |f,|c2q) is uniformly
bounded for all p and I as in the statement of the lemma. Indeed, since f, is assumed to
be 2-Lipschitz on I, we have f,(6) € [z2 + %, x9 + 1], 6 € I, by the discussion around
(A.6) and hence

<Ar2—(O—z1)2<r (A.14)

Sl
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for all 6 € I. Since p € D, this yields a uniform upper bound for || f,[|c2(p), recalling the
expressions stated in (A.4)—(A.5) for f, and its derivatives. Thus it suffices to prove (A.13)
under the assumption that |[p — p’| < 1/400.

For arbitrary p, p’ € R? x (0, 0), we have

S < S (p). (A.15)
In particular,

(0, £(8)) € 71 (1) 2 S (p) & =l (y Py, et

Our upper bound |p — p'| < 1/400 and the assumption p, p’ € D rule out the possibility
that (6, f,y(0)) € f;'g ~#I(1). Indeed, by (A.6), we know on the one hand that

Fp(0) € [ + 5, ah + .
On the other hand, again by (A.6), if (6, f,/(0)) € f;‘f ~#l(1), then necessarily
fy(0) € [fvz —r=8p—plw2— = +8p- p'l] :
The two inclusions are compatible only if
Th+ ' <z — = +8p—p],

or in other words, if
r+r/

8|p_p/|>ml2_$2+ V5

Since this implies that 9|p — p’| = 1/4/5, it is impossible. Thus we conclude that
0. fy(®) € £P71(X), el

In particular, it follows
Ify = fpllo == Sup | f (8) = fo(0)] < 8lp — 1. (A.16)
€

We write again in coordinates p = (x1,22,7). The estimate (A.14), established at the
beginning of the proof, combined with (A.16), the assumption p,p’ € D, and a direct
computation gives

Ify = folloo S o =0, 1y = Fillo S 10 =91,
with uniform implicit constants. Together with (A.16), this concludes the proof. O

To prove Proposition 4.12, we have to deal with rectangles that are 100-incomparable
in the sense of Definition 4.8. We now record a simple consequence of this property that
will be easier to apply when working with the ‘graph neighborhood rectangles’.

Lemma A.17. Let 0 < § < o < 1/200 and assume that R = R(p,v), R’ = R(p',v') are
100-incomparable (0, o)-rectangles with p,p’ € D. Suppose further that there exists an interval
I such that Tty < S+ (p), Trp o © S¢(0'), m(R) U m(R') < Land so that f, . and f, ;. are
2-Lipschitz on 1.

Then, if R(p,v) n R(p',v") # &, there exists a point € 7(R(p,v) v R(p',v")) such that

Fpos (0) = fr.+(0)] > 200.
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Proof. We denote I := w(R(p,v) u R(p',v")) and observe that this is an interval since
R(p,v) n R(p',v") # &. By assumption I c I. To prove the lemma, we argue by contra-
diction and assume for all 8 € I,

[, (0) — S +(0)] < 206. (A.18)
This implies that
(A.10) (A.18)
R W) " fR (D) S D). (A.19)
Since

1] = |=(R(p,v) v R/, v)| < [7(B(v,0))| + [m(B(v', 0))| < 4o,

we can use (A.11) to conclude from (A.19) that R(p’,v") < 100R(p, v), contradicting the
100-incomparability of R(p,v) and R(p’,v"). This concludes the proof. O

We are now in a position to show Proposition 4.12:

Proof of Proposition 4.12. Let R = R(p,v) be a fixed (4, o)-rectangle as in the statement
of the proposition. Since every (4, 0)-rectangle R = R(p,v) < AR is contained in
S49(p,v) N S4%(p,v), and since S4%(p, v) N S4(p, v) can be covered by boundedly many
(A6, 4/ Aé/|p — p|)-rectangles according to Lemma 4.3, it follows that

S \/% .
This holds in particular for all R = R(p,v) € R. Hence defining
Pr :={peD: R(p,v) € R for some v € S(p)},
we know that there exists a universal constant C > 0 such that
Pr < B(p,C&) = R®. (A.20)

We make one more observation about the family R, which will show in particular that it
is finite. Namely, if R(p,v) € R, then

H{R(p',v) e R: |p—p'| <3} S A. (A.21)

Indeed, let R(pi,v1),..., R(pn,vyn) be a listing of the rectangles on the left. Then v; €
AR n S%(p) for all 1 < i < n. Note that diam(AR) ~ Ao. Now, if n = CA for a
suitable absolute constant C' > 1, we may find two elements v;, v; with |v; — v;| < 100.
But since |p; — pj| < 20, it would follow that the rectangles R(p;,v;) and R(p;,v;) are
100-comparable, contrary to our assumption. This proves (A.21).

We divide the remaining proof into two cases according to the size of o, using the
threshold o¢p = 1/600 from Lemma A.2. The first case, where o is close to 1, will follow
roughly speaking because the rectangles in R are so curvy that their containment in a
common rectangle AR forces Pr to be contained in a ~4 4 ball. The second case falls
under the regime where the assumptions of Lemmas A.2 and A.8 are satisfied, and we
can work with rectangles that are essentially neighborhoods of graphs over a fixed line.

Case 1 (A 1oy < o < 1). Inserting the lower bound for o into (A.20), we find that there
exists a universal constant C > 0 (possibly larger than before) such that

Pr  B(p, CA35).
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Hence, Pr can be covered by N < (CA3)3 balls By, ..., By of radius §/2. By (A.21), for
every i =1,..., N, there are < A rectangles R(p,v) € R with p € B;. We deduce that
IR| < (CA®)?  max } {R(p,v) e R: pe Pr n B;}| S (CA%)3. A~ A"
ie{l,...,

Case 2 (0 < A 10¢). Let now R, = R be the subfamily given by Lemma A.8. Without
loss of generality we may assume that for every R(p,v) € Ry, we have I'r , , © S (p). To
implement the approach from the proof of [17, Lemma 3.15], we need one more reduc-
tion to ensure that the rectangles R(p,v) we consider give rise to functions f, ; that are
sufficiently close to each other in C?(I)-norm. Using Lemma A.12, this can be ensured
if the parameters p are sufficiently close in D. By (A.20), and recalling diam D < 2, we
know already that

Pr.. :={peD: thereisv e S(p) with R(p,v) € R} < B(p, At), (A.22)
where A < A and
t:= min{d/c?,2}.
On the other hand, by (A.21), we also know that for each p € PR ., there are at most S A
many v € S(p) such that R(p,v) € R.. As a result,

|Proxl 2 AR (A.23)
Combining (A.22) and (A.23), we may choose a ball
By c B(p, At) (A.24)
of radius ﬁ, where K > 1 is the constant from Lemma A.12, such that
|Pr« 0 Bol 2 A7 PRl (A.25)

We define a further subfamily
R; :={R(p,v) € Ry« : p€ Pr.x N Bo}.
Hence by (A.23) and (A.25)
[R% > [Prs 0 Bol 2 A7¥[Rs|.
Thus if we manage to show that |R3| < A3, we can deduce that
AR S IR S A7 = R.| S AMA° £ AT

This will conclude the proof since |R.| ~ |R| by Lemma A.8.
It remains to prove that [R2| < A3. Applying Corollary A.12, we deduce that

Ifi = filc2ay <t pi,pj € Bo, (A.26)

where f; := f,, + and f; := f,, . Following the argument in [17, Lemma 3.15], we will
show that

{ReR%:zeR} <A  zeRL (A.27)
This will give
R - b0 < f >0 1rp S A-Leb(AR) S A%0,
AR ReRrg
as desired.

To prove (A.27), fix z = (fy,y0) € R? which is contained in, say, N pairwise 100-
incomparable (9, 0)-rectangles R; € Rg, for 1 < j < N. The claim is that N < A.
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Note that w(R;) necessarily contains the point 6y + o/3 or 6y — 0/3, and we can bound
individually the cardinality of the two subfamilies of {R; : j = 1,..., N} where one of
the two options occur. Thus let us assume in the following without loss of generality that
0o + 0/3 € m(R;) for all j.

To show our claim, it suffices to establish the following two inequalities:

and
|f{(60) — fi(60)| = 6/0, 1<i#j<N. (A.29)

The first inequality will be based on the assumption that the rectangles in R are contained
in AR, and the second inequality uses the 100-incomparability of the rectangles in R;,.

We give one argument that takes care both of the short rectangles (o < V/6), and the
long rectangles (o0 > /) treated in [17]. Recalling the C%(I) bound (A.26), we have

|fi = fill o2y < t = min{6/0®, 2}. (A.30)

We apply this to prove (A.28). Let us denote h := f; — f;, and let us assume to the contrary
that |/ (6p)| > 1004 - (6/0). Then, using (A.30), for all § € 7(R;) u w(R;) with |0 —6y| < o,
we have

/(0)] = |1 (60)| — |1 0|0 — 60| = 100A - (6/0) — min{s/0?,2}o > 994 - (8/0),

using A > 1. By (A.10) and the assumption that the rectangles R; all intersect at (6, 30)
and 6y € 7(R;) < I, we have |h(6y)] < 80. We will combine this information with
the lower bound for |1/| on the interval 7(R;) u m(R;) to reach a contradiction with the
assumption that R; U R; c AR. Recall that 6y + /3 € 7(R;) n 7w(R;). Then,

|h(60 + 0 /3)] = |h(0o + 0/3) — h(6b)| — 85 = 99A - (6/0) - 0/3 — 85 = 33A -6 — 85 > 25A4.
But this is not consistent with the assumption that
{00 + /3, fi(0o +0/3)), (6o + /3, f;(60 +/3))} = Ri u R; < AR,

noting that the “vertical” thickness of AR is at most 849 since AR c féj‘}f(w(AR)) or
AR c [ (7(AR)) according to (A.10).

The proof of (A.29) is similar. This time we make the counter assumption that |h'(6y)| <
d/o. The assumption 0y € 7(R; N R;) implies that 7(R; U R;) is an interval contained in

0y — 20,0y + 20]. Using (A.30), as above, this leads to the following estimate
[ g 8
R(0)] < |W(80)] + |H [e]d — o] < & + min {-%,2} 20 < 35/0, 0em(R; UR;).
o o J
Finally, since |h(6)| < 89, we deduce from the preceding estimate that
|h(6)] <85+ (30/0) - 20 = 140, 0 € 7(R; U Rj).

This inequality contradicts Lemma A.17 and shows that the counter-assumption cannot
hold. This completes the proof of (A.29), and thus the proof of Proposition 4.12. O



74 KATRIN FASSLER, JTAYIN LTU AND TUOMAS ORPONEN

REFERENCES

[1] Alan Chang and Marianna Csornyei. The Kakeya needle problem and the existence of Besicovitch and
Nikodym sets for rectifiable sets. Proc. Lond. Math. Soc. (3), 118(5):1084-1114, 2019.
[2] Alan Chang, Georgios Dosidis, and Jongchon Kim. Nikodym sets and maximal functions associated
with spheres. arXiv e-prints, page arXiv:2210.08320, October 2022.
[3] Katrin Fassler and Tuomas Orponen. On restricted families of projections in R®. Proc. Lond. Math. Soc.
(3),109(2):353-381, 2014.
[4] Yuqiu Fu and Kevin Ren. Incidence estimates for a-dimensional tubes and -dimensional balls in R2.
arXiv e-prints, page arXiv:2111.05093, October 2021.
[5] K. Héra and M. Laczkovich. The Kakeya problem for circular arcs. Acta Math. Hungar., 150(2):479-511,
2016.
[6] Kornélia Héra. Hausdorff dimension of Furstenberg-type sets associated to families of affine subspaces.
Ann. Acad. Sci. Fenn. Math., 44(2):903-923, 2019.
[7] Kornélia Héra, Tamas Keleti, and Andras Mathé. Hausdorff dimension of unions of affine subspaces
and of Furstenberg-type sets. J. Fractal Geom., 6(3):263-284, 2019.
[8] Kornélia Héra, Pablo Shmerkin, and Alexia Yavicoli. An improved bound for the dimension of («, 2c)-
Furstenberg sets. Rev. Mat. Iberoam., 38(1):295-322, 2022.
[9] Tamds Keleti. Small union with large set of centers. In Recent developments in fractals and related fields,
Trends Math., pages 189-206. Birkhduser /Springer, Cham, 2017.
[10] Jiayin Liu. Dimension estimates on circular (s,t)-Furstenberg sets. Annales Fennici Mathematici,
48(1):299-324, Mar. 2023.
[11] Neil Lutz and D. M. Stull. Bounding the dimension of points on a line. Inform. and Comput., 275:104601,
15, 2020.
[12] J. M. Marstrand. Packing circles in the plane. Proc. London Math. Soc. (3), 55(1):37-58, 1987.
[13] T. Mitsis. On a problem related to sphere and circle packing. J. London Math. Soc. (2), 60(2):501-516,
1999.
[14] Ursula Molter and Ezequiel Rela. Furstenberg sets for a fractal set of directions. Proc. Amer. Math. Soc.,
140(8):2753-2765, 2012.
[15] Tuomas Orponen and Pablo Shmerkin. On the Hausdorff dimension of Furstenberg sets and orthogonal
projections in the plane. Duke Math. |. (to appear), 2023+.
[16] Tuomas Orponen and Pablo Shmerkin. Projections, Furstenberg sets, and the ABC' sum-product prob-
lem. arXiv e-prints, page arXiv:2301.10199, January 2023.
[17] Malabika Pramanik, Tongou Yang, and Joshua Zahl. A Furstenberg-type problem for circles, and a
Kaufman-type restricted projection theorem in R®. arXiv e-prints, page arXiv:2207.02259, July 2022.
[18] Kevin Ren and Hong Wang. Furstenberg sets estimate in the plane. arXiv e-prints, page
arXiv:2308.08819, August 2023.
[19] W. Schlag. On continuum incidence problems related to harmonic analysis. J. Funct. Anal., 201(2):480-
521, 2003.
[20] Pablo Shmerkin and Hong Wang. Dimensions of Furstenberg sets and an extension of Bourgain’s pro-
jection theorem. Anal. PDE (to appear), page arXiv:2211.13363, November 2022.
[21] Karoly Simon and Krystal Taylor. Interior of sums of planar sets and curves. Math. Proc. Cambridge
Philos. Soc., 168(1):119-148, 2020.
[22] Karoly Simon and Krystal Taylor. Dimension and measure of sums of planar sets and curves. Mathe-
matika, 68(4):1364-1392, 2022.
[23] L. Wisewell. Kakeya sets of curves. Geom. Funct. Anal., 15(6):1319-1362, 2005.
[24] T. Wolff. Local smoothing type estimates on L? for large p. Geom. Funct. Anal., 10(5):1237-1288, 2000.
[25] Thomas Wolff. A Kakeya-type problem for circles. Amer. ]. Math., 119(5):985-1026, 1997.
[26] Thomas Wolff. Decay of circular means of Fourier transforms of measures. Internat. Math. Res. Notices,
(10):547-567, 1999.
[27] Thomas Wolff. Recent work connected with the Kakeya problem. In Prospects in mathematics (Princeton,
NJ, 1996), pages 129-162. Amer. Math. Soc., Providence, RI, 1999.
[28] Joshua Zahl. On the Wollff circular maximal function. Illinois J. Math., 56(4):1281-1295, 2012.
[29] Joshua Zahl. On Maximal Functions Associated to Families of Curves in the Plane. arXiv e-prints, page
arXiv:2307.05894, July 2023.



ON THE HAUSDORFF DIMENSION OF CIRCULAR FURSTENBERG SETS 75

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF JYVASKYLA, P.O. Box 35 (MAD),
FI-40014 UNIVERSITY OF JYVASKYLA, FINLAND

Email address: katrin.s.fassler@jyu.fi

Email address: jiayin.mat.liu@jyu.fi

Email address: tuomas.t.orponen@jyu.fi



	Dimension of Heisenberg Kakeya Sets and Circular Furstenberg Sets
	Acknowledgements
	List of included articles
	Abstract
	Tiivistelmä
	INTRODUCTION
	1. Kakeya Set and Its Generalizations
	2. Dimension of Kakeya Sets in Heisenberg Groups
	3. Dimension of Circular Furstenberg Sets
	References

	INCLUDED ARTICLES
	[A] On the dimension of Kakeya sets in the first Heisenberg group
	[B] Dimension estimates on circular (s, t)-Furstenberg sets
	[C] On the Hausdorff dimension of circular Furstenberg sets




