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ORIGINAL ARTICLE
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ABSTRACT

Objectives: The improvement of prediction for adverse pregnancy outcomes is quite essential to the women suffering from 
pre-eclampsia, while the collection of predictive indicators is the prerequisite. The traditional knowledge-based strategy for 
variable selection confronts challenge referring to dataset with high-dimensional or unfamiliar data. In this study, we 
employed five different automatic variable selection methods to screen out influential indicators, and evaluated the 
performance of constructed predictive models. Methods: Seven hundreds and thirty-three Han-Chinese women were 
enrolled and 56 clinical and laboratory variables were recorded. After grouping based on binary pregnancy outcomes, 
statistical description and analysis were performed. Then, utilizing forward stepwise logistic regression (FSLR) as the 
reference method, another four variable selection strategies were included for filtering contributing variables as the predictive 
subsets, respectively. Finally, the logistic regression prediction models were constructed by the five subsets and evaluated 
by the receiver operator characteristic curve. Results: The variables confirmed statistical significance between the adverse 
and satisfactory outcomes groups did not overlap with the variables selected by selection strategies. “Platelet” and 
“Creatinine clearance rate” were the most influential indicator to predict adverse maternal outcome, while “Birth weight of 
neonates” was the best indicator for predicting adverse neonatal outcome. In average, the predictive models for neonatal 
outcomes achieved better performance than models for maternal outcomes. “Mutual information” and “Recursive feature 
elimination” were the best strategy under current dataset and study design. Conclusions: Variable selection strategies may 
provide an alternative approach besides picking influential indicators by statistical significance. Future work will focus on 
applying different variable selection methods to the high-dimensional dataset, which includes novel or unfamiliar variables. 
This aims to identify the most appropriate collection of predictors that can enhance prediction ability and clinical decision-
making.

Key words: pre-eclampsia, feature selection, variable selection, logistic regression, forward stepwise, mutual information, 
least absolute shrinkage and selection, recursive feature elimination, principal component analysis
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INTRODUCTION

Pre-eclampsia (PE) is a leading cause of neonatal and 
maternal mortality and morbidity that complicates 
approximately 2%-8% of all pregnancies worldwide.[1] As 
the precise pathogenesis of PE is not completely 
explored, early prediction is still challenging in clinical 
practice. The proposed prediction scheme for PE should 
be serial short-term predictive models, which can predict 
the potential risks before, during and after pregnancy, to 
facilitate individual surveillance and intervention.

Logistic regression model, as one of the most popular 
classification methods, the predictive performance is 
influenced by a set of selected influential variables.[2] 
Before the development of modeling, variable selection 
is an essential procedure in order to (1) avoid the high 
dimensionality which may lead to computational 
complexity and poor performance of the model; (2) 
provide a better understanding of the causal relationship 
between predictive outcomes and response variables;[3] 
suggest a cost-effective monitoring regarding these 
important variables. (3) Stepwise logistic regression, for 
instance, is an automatic variable selection method 
applied to logistic regression widely.

As machine learning continues to flourish and evolve in 
medicine rapidly to provide important contributions, 
feature selection, an alternative expression of variable 
selection, is indispensable component of the learning 
process, dealing with the challenge of high-dimensional 
data. Nowadays, many feature selection methods are 
applied to structured medical records as effective pre-
processing procedure to eliminate redundant variables 
for the development of predictive models. However, 
there is no so-called “best strategy”, only a good method 
for a specific problem setting.[4] Therefore, the purpose 
of this study is to investigate and better understand the 
performance of each variable selection method when it 
is applied to current dataset, accumulating more 
experience for selecting candidates.

In this study, a dataset consisting of women with a prior 
diagnosis of PE was employed, and clinical and 
laboratory variables were collected. By selecting the 
influential variables with different selection strategies, 
logistic regression models were established and the 
predictive accuracy for pregnancy outcomes was 
evaluated, aiming for providing the efficient model 
created by prior combination of accessible predictors. 
The application of variable selection methods may 
promise the achievement of retrieving reliable variables, 
especially for low resource settings.

Healthcare practitioners may not be familiar with many 
of the concepts introduced in this paper. With the basic 

level of statistical understanding, clinicians interpret the 
latest clinical information, it may be a meaningful 
attempt to access a basic understanding of machine 
learning which may assist for developing decision 
support systems for patient benefit.

METHODS

The flow chart of this research can be seen in Figure 1A.

Study population
A retrospective study was conducted consisting of 
women admitted to two tertiary care hospitals with 
delivery service in China, Shengjing Hospital of China 
Medical University (CMU), and Second Affiliated 
Hospital of Dalian Medical University (DMU), from 
January 1, 2007 to December 31, 2017. Medical records 
were reviewed and 733 Han-Chinese women diagnosed 
with pre-eclampsia with definite records of pregnancy 
outcomes were enrolled. The diagnostic criteria for “pre-
eclampsia” were based on the American College of 
Obstetricians and Gynecologists practice bulletin.[5] This 
project was approved by the Ethics Committee of 
Shengjing Hospital of China Medical University 
(No.2013PS68K) and Second Affiliated Hospital of 
Dalian Medical University (No.2022033). This research 
had an exemption from informed consent.

The exclusion criteria applied were as follows: (1) 
uncertainty regarding the last menstrual period (LMP) 
and unwillingness to undergo an ultrasound scan before 
14 weeks of gestation; (2) known major fetal anomaly or 
abnormal karyotype; (3) multiple gestation; (4) presence 
of cardiovascular, respiratory, hepatic, renal, immune 
system, hematological system diseases, acute infectious 
disease, major uterine anomaly, cervical cerclage, or 
malignant tumor; and (5) missing data rates exceeding 
50% for analyzed variables.[6]

Grouping
733 women were categorized separately on the basis of 
maternal or neonatal adverse outcomes. (1) Grouped 
based on maternal outcomes: the adverse maternal 
outcomes group (A-M, N = 182) and the satisfactory 
group (S-M, N = 551); (2) Grouped based on neonatal 
outcomes: the adverse neonatal outcomes group (A-N, 
N = 423) and the satisfactory group (S-N, N = 310). 
The adverse maternal and neonatal outcomes regarding 
pre-eclampsia were identified according to the interna-
tional consensus,[7] comprising 14 maternal and 8 
neonatal outcomes, the detailed list of outcomes can be 
seen in Table 1, 2 of this reference.

Collection of variables
All maternal variables were collected within 24 h of 
admission, neonatal variables were recorded within 24 h 
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Table 1: Variables with statistical significance between the adverse maternal outcomes group and the control

Variables A-M group (N = 182) S-M group (N = 551) P value

Gravidity 2 (1-3) 2 (1-3) 0.041

Gestational age (weeks) 33.2 (30.4-36.4) 36.9 (34.3-38.6) <0.001

Delivery mode <0.001

    vaginal delivery 2 (1.1%) 57 (10.3%) 

    forceps delivery 1 (0.5%) 2 (0.4%) 

    cesarean section 146 (80.2%) 454 (82.4%) 

    2nd-trimester labor induction 20 (11.0%) 30 (5.4%) 

    stillbirth delivery 13 (7.1%) 8 (1.5%) 

Low birth weight 75 (41.2%) 178 (32.3%) 0.028

Birth weight of neonates (g) 1894.9 ± 975.8 2520.1 ± 993.7 <0.001

Maternal body mass index 28.8 ± 4.0 30.7 ± 4.5 <0.001

Systolic pressure (mmHg) 154.8 ± 28.4 148.4 ± 21.1 0.005

Diastolic pressure (mmHg) 100.3 ± 20.8 95.7 ± 15.0 0.006

Leukocyte (×109 /L) 11.56 ± 7.18 9.61 ± 3.17 <0.001

Neutrophil (×109/L) 27.93 (7.35-75.78) 12.76 (6.14-70.99) 0.010

Platelet (×109/L) 149.7 ± 69.3 194.4 ± 64.7 <0.001

APTT (s) 31.70 ± 9.16 29.89 ± 5.00 0.012

fibrinogen (g/L) 4.00 ± 1.14 4.36 ± 1.60 0.005

ALT (U/L) 22 (16.6-35.3) 17 (12-24) <0.001

AST (U/L) 21.9 (14-34.5) 17 (12-24) <0.001

Total protein (g/L) 53.7 ± 7.3 55.8 ± 7.0 <0.001

Albumin (g/L) 28.9 ± 4.4 30.4 ± 4.7 <0.001

Urea (mmol/L) 5.81 ± 2.60 4.43 ± 2.46 <0.001

Creatinine (μmol/L) 71.0 ± 27.1 56.9 ± 14.8 <0.001

Creatinine clearance rate 141.8 ± 53.8 176.5 ± 59.4 <0.001

Uric acid (μmol/L) 418.0 ± 104.5 374.6 ± 99.9 <0.001

Serum sodium (mmol/L) 134.8 ± 14.4 137.2 ± 2.5 0.026

Serum calcium (mmol/L) 1.97 ± 0.19 2.06 ± 0.17 <0.001

Serum phosphorus (mmol/L) 1.37 ± 0.25 1.30 ± 0.24 0.001

Urine pH 6.09 ± 0.64 6.26 ± 0.68 0.002

Spot urine protein <0.001

    negative 5 (2.7%) 106 (19.2%) 

    ± 10 (5.5%) 54 (9.8%) 

    + 18 (9.9%) 106 (19.2%) 

    ++ 53 (29.1%) 124 (22.5%) 

    +++ 72 (39.6%) 120 (21.8%) 

    ++++ 24 (13.2%) 41 (7.4%) 

Urine glucose 0.017

    negative 161 (88.5%) 519 (94.2%)

    ± 16 (8.8%) 14 (2.5%) 

    + 2 (1.1%) 10 (1.8%) 

    ++ 3 (1.6%) 5 (0.9%) 

    +++ 0 2 (0.4%) 

    ++++ 0 1 (0.2%) 

Urine Ketone 0.039

    negative 171 (94.0%) 490 (88.9%)

    ± 4 (2.2%) 20 (3.6%) 

    + 2 (1.1%) 6 (1.1%) 

    ++ 3 (1.6%) 20 (3.6%) 

    +++ 2 (1.1%) 9 (1.6%) 

    ++++ 0 6 (1.1%) 

Urinary casts 1.7 (0.8-4.4) 1.3 (0.1-3.7) 0.009

24-hour urinary protein (mg) 3929.2 (1809.0-9380.0) 1860.0 (366.0-5716.3) <0.001

Cholesterol (mmol/L) 7.08 ± 2.13 6.70 ± 2.07 0.031

APTT: activated partial thromboplastin time; ALT: alanine aminotransferase; AST: aspartate aminotransferase.
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Table 2: Variables with statistical significance between the adverse neonatal outcomes group and the control

Variables A-N group (N = 423) S-N group (N = 310) P value

Gravidity 2 (1-3) 2 (1-2) 0.001

Parity 0 (0-1) 0 (0-1) 0.006

Thyroid disease history 48 (11.3%) 15 (4.8%) 0.002

Gestational age (weeks) 32.9 ± 4.0 38.3 ± 1.9 <0.001

Delivery mode <0.001

    vaginal delivery 14 (3.3%) 45 (14.5%) 

    forceps delivery 0 3 (1.0%) 

    cesarean section 338 (79.9%) 262 (84.5%) 

    2nd-trimester labor induction 50 (11.8%) 0

    stillbirth delivery 21 (5.0%) 0

Birth weight of neonates (g) 1736.3 ± 777.2 3247.9 ± 627.4 <0.001

Low birth weight 219 (86.6%) 34 (13.4%) <0.001

Maternal body mass index 29.5 ± 3.9 31.1 ± 5.1 <0.001

Systolic pressure (mmHg) 152.8 ± 25.0 146.3 ± 20.4 <0.001

Diastolic pressure (mmHg) 98.4 ± 18.3 94.8 ± 14.0 0.002

Leukocyte (×109/L) 10.58 ± 3.76 9.48 ± 5.36 0.001

Neutrophil (×109/L) 63.00 (8.44-74.93) 7.18 (5.52-51.60) <0.001

Hemoglobin (g/L) 122.5 ± 22.4 118.3 ± 15.1 0.002

Hematokrit (%) 36.89 ± 6.85 35.97 ± 4.81 0.034

Platelet (×109/L) 172.24 ± 75.01 197.88 ± 55.31 <0.001

PT (s) 10.66 ± 1.45 11.83 ± 7.92 0.003

fibrinogen (g/L) 4.11 ± 1.42 4.55 ± 1.59 <0.001

ALT (U/L) 21.0 (16.0-32.0) 14.0 (10.0-20.0) <0.001

AST (U/L) 18.0 (12.0-30.0) 17.0 (12.0-22.1) 0.011

Total protein (g/L) 53.13 ± 7.29 58.15 ± 6.24 <0.001

Albumin (g/L) 28.62 ± 4.57 31.90 ± 4.19 <0.001

Globulin (g/L) 24.56 ± 5.16 27.81 ± 28.53 0.022

Urea (mmol/L) 5.43 ± 3.02 3.93 ± 1.38 <0.001

Creatinine (μmol/L) 64.90 ± 22.16 54.35 ± 12.29 <0.001

Creatinine clearance rate 151.76 ± 54.15 185.90 ± 64.35 <0.001

Uric acid (μmol/L) 407.77 ± 106.88 349.90 ± 89.27 <0.001

Serum sodium (mmol/L) 136.17 ± 9.67 137.29 ± 2.76 0.047

Serum calcium (mmol/L) 2.01 ± 0.20 2.07 ± 0.15 <0.001

Serum phosphorus (mmol/L) 1.36 ± 0.26 1.26 ± 0.20 <0.001

Urine leukocytes count 22.24 (2.10-65.05) 2.78 (1.00-15.00) <0.001

Spot urine protein <0.001

    negative 25 (5.9%) 83 (26.8%) 

    ± 20 (4.7%) 43 (13.9%) 

    + 53 (12.5%) 72 (23.2%) 

    ++ 125 (29.6%) 57 (18.4%) 

    +++ 152 (35.9%) 42 (13.5%) 

    ++++ 48 (11.3%) 13 (4.2%) 

Urine erythrocytes count 17.79 (6.67-38.92) 1.98 (0.00-11.12) <0.001

Urine ketone 0.026

    negative 389 (92.0%) 270 (87.1%) 

    ± 13 (3.1%) 12 (3.9%) 

    + 4 (0.9%) 4 (1.3%) 

    ++ 14 (3.3%) 12 (3.8%) 

    +++ 1 (0.2%) 9 (2.9%) 

    ++++ 2 (0.5) 3 (0.9%) 

Urinary casts 1.97 (0.90-5.12) 0.88 (0.00-2.36) <0.001

24-hour urinary protein (mg) 5520.0 (2063.8-9820.0) 675.6 (236.6-1984.5) <0.001

Cholesterol (mmol/L) 7.12 ± 2.46 6.37 ± 1.28 <0.001

Triglyceride (mmol/L) 4.57 ± 2.94 3.89 ± 1.32 <0.001

Amniotic fluid index (cm) 5.66 ± 3.06 8.27 ± 3.93 <0.001

PT: prothrombin time; ALT: alanine aminotransferase; AST: aspartate aminotransferase
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Figure 1. The flow chart of the study and the illustration of three variable selection strategies. (A) The flow chart of this study; (B) The illustrative images 
of three variable selection strategies: filter, wrapper and embedded.

after delivery, and biological samples were analyzed in 
the laboratories of two hospitals. Gestational ages were 
confirmed by ultrasonic examination before 14 
gestational weeks.

Maternal variables included (1) Basic information (14 
variables): age, gravidity, parity, weight, height, body 
mass index (BMI), systolic pressure, diastolic pressure, 
history of chronic hypertension, in vitro fertilization and 
embryo transfer (IVF-ET), advanced maternal age ( > 
35 years), scarred uterus, pregestational or gestational 
diabetes mellitus, and thyroid disease; (2) Laboratory test 
indexes (37 variables): 6 variables from routine blood 
tests, 4 variables from coagulation tests, 5 variables from 
liver function tests, 4 variables from kidney function 
tests, fasting blood glucose levels, 5 variables related to 

serum ion concentrations, 8 variables from routine urine 
dipstick testing, 24-hour urinary protein levels, 2 lipid 
profile-related parameters, and amniotic fluid index 
(detailed in Supplementary 1).

Neonatal variables included the following (5 variables): 
gender of neonates, low birth weight status, birth weight 
of neonates, gestational age at delivery, and mode of 
delivery.

The ”creatinine clearance rates” were calculated based 
on the Cockcroft-Gault equation. [8]

Random missing data were inevitable in our retrospective 

study to threat the validation of results unnecessarily. We 

performed imputation method for missing value before 
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any subsequent analysis. K-nearest neighbor intelligent 

imputation was the preferential technique. This algorithm 

can investigate the relationships between values, and the 

missing values can be approximated by the “k” neighbors 

that are closest to them.[9]
 The missing data rate was 

calculated after data imputation.

After statistical analysis, all the variables were 
standardized ranging from 0 to 1. The same order of 
magnitude ensures the weakness or even elimination of 
disturbance factors, which guarantees the comparability 
between different variables and improves the accuracy of 
predictive modeling.

Selection of predictive variables
Variable selection was conducted using five distinct 
strategies as a pre-processing step for subsequent 
development of predictive models.

Stepwise logistic regression analysis
Stepwise logistic regression analysis includes three 
variants: stepwise forward selection, stepwise backward 
elimination, and stepwise combined with forward 
selection and backward elimination, while the last one 
holds the merits of forward selection and backward 
elimination.[10–12] The Statistical Package for the Social 
Sciences (SPSS) provides computing packages for either 
forward or backward stepwise procedure. Forward 
stepwise logistic regression (FSLR) was applied to the 
current dataset with default entry criterion.

Dimensionality reduction
High-dimensional data cause computational complexity 
and “curse of dimensionality”. Dimensionality reduction 
convert the higher dimension data space into lower one, 
discarding redundant features. It includes two 
mainstream methods: feature extraction and feature 
selection. Feature extraction transforms the original 
features of data to construct lower-dimension feature 
spaces, while feature selection can preserve the critical 
information of data.[13]

Principal component analysis (PCA) is one of the most 
common feature extraction techniques applied. By 
identifying the patterns of variables to highlight their 
similarities and differences, this feature transformation 
technique converts the high-dimensional correlated 
variables into linear uncorrelated variables. These new 
independent variables derived from original variables are 
known as principal components (PC). The PCs holding 
maximum information are reserved for efficient 
calculation, with the properties of collecting highly 
correlated variables within each component and being 
uncorrelated with each other.[14–15]

Feature selection methods
Three major feature selection approaches can be distin-

guished as: filters, wrappers and embedded methods. 
(Figure 1B) To ensure clarity for readers with a 
background in medicine, the term ‘variable selection’ 
was employed instead of ‘feature selection’ in the 
following section to avoid any potential confusion.

Filters

Filters rely on the general characteristics of training data 
and carry out the variable selection process as a pre-
processing step with independence of the modeling 
algorithm.[4] In this study, the proposed filter variable 
selection method is “mutual information (MI)”.

Mutual information filter is a share the least filter. With 
the measurement of information amount that one 
random variable contains about another, the MI 
between two variables indicates the reduction in 
uncertainty of one due to the knowledge of the other.[16] 
By calculating the MI between candidate subsets and the 
outcomes of classification, this method was applied to 
the field of variable selection. The component variables 
in the selected subset share the least redundancy 
between each other, while demonstrate greatest 
correlation with the outcome.[17]

Wrappers

The wrapper methods interact with the machine learning 
models. All the variables are considered as a whole, each 
possible combination of variables is evaluated by using 
learning model as the performance evaluator, and critical 
variables are selected based on the success of the 
selection process. Therefore, wrappers guarantee the 
accurate prediction result than the filter method, but 
consume much more time than filters in general, 
consequently.[18]

Recursive feature elimination (RFE) is introduced as a 
wrapper. Initially, the original variables are utilized to 
develop the learning model (the proposed model is 
random forest algorithm in this study). After the 
accuracy scores are calculated for each variable, the 
variables with less scores are removed from the list and a 
new subset of efficient variables is constructed. The 
model is constructed again and the process is repeated 
until there is no more variable which can be excluded, or 
the defined number of variables is reached. Finally, the 
subset with advanced performance is the optimized 
collection of variables.[18–19]

Embedded methods

Embedded method selects variables as part of the model 
construction, the selection process is integrated with the 
modeling algorithm, indicating the variable selection is 
completed during the training of the model.[19]
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Least absolute shrinkage and selection (LASSO) 
regression is an efficient embedded variable selection 
method. LASSO shrinks the regression coefficients of 
each variable by a tuning parameter, which is also known 
as penalty. When the parameter is sufficiently large, the 
absolute size of coefficients is forced to shrink. By 
setting as many coefficients as possible to zero, the 
penalized dataset is regressed with as few variables as 
possible. With the controlled penalizing coefficient, 
LASSO facilitates the desirable variables.[20–22]

As the number of variables selected by the FSLR method 

was determined automatically, the number of variables 

selected by the other four strategies was fixed based on 

the determination made by FSLR. This approach was 

adopted to facilitate a comparative analysis of the 

efficiency exhibited by the following models.

Predictive models
After the scheme of variable selection was employed to 
remove spurious variables, logistic regression analysis 
was performed for the development of prediction 
models. Binary logistic regression analysis is a non-linear 
regression technique that assumes the expected 
probability of a binary outcome. The regression coeffi-
cients quantify the contribution of variables to the 
probability. Comparisons were expressed as odds ratios 
(OR) and 95% confidence intervals (95% CI), the 
variables with higher odds ratios were considered to 
have more significant pattern changes.[23] Model 
calibration was assessed via the Hosmer-Lemeshow 
goodness-of-fit test.

The quality of the models was assessed by the receiver 
operator characteristic (ROC) curve. Over a series of 
thresholds, the discriminatory power of the models can 
be determined by the area under the curve (AUC).

The dataset from CMU (n = 411) was utilized as the 
“Training dataset” for model validation in our research, 
and procedures of “predictive variable selection” and 
“construction of logistic regression models” were 
conducted based on this dataset. Subsequently, the 
constructed models were applied to the dataset from 
DMU (n = 322), which served as the “Testing dataset”. 
ROC curves were generated using this testing dataset, 
and corresponding AUC values were calculated.

For all logistic regression models, the technique we 
optimized to correct the bias during discriminative 
process was “ten-fold cross-validation”. Initially, the 
Dataset are divided into ten equal size subsets randomly; 
and then, seven subsets are utilized for training and 
three remaining subsets are utilized for testing in each 
iteration; after ten iterations were performed, each 
subset can be used as a testing set in a rotatory manner. 
The final performance of models is calculated as the 
average of all the iterations.[24]

Statistical description and analysis
The normality of distribution was analyzed by the 
Shapiro-Wilk test for continuous variables. Intergroup 
comparisons between continuous variables with normal 
distributions were performed by Student’s t-test and 
presented as mean   ±   standard deviation. Continuous 
variables with skewed distributions were compared using 
the Mann-Whitney U test and described as median 
(interquartile range). Categorical variables were analyzed 
by Chi-square test. Ordinal variables were compared by 
the Mann-Whitney U test. A probability level of P-value 
< 0.05 was taken as statistically significant.

All analyses were performed by: Python language 
version 3.6.9; SPSS version 26 (IBM Corp., Armonk, 
NY, USA); GraphPad Prism 6.01 (GraphPad Software, 
San Diego, CA, United States).

Ethical issues
Ethical approval was obtained from the Medical Ethics 
Committee of Second Affiliated Hospital of Dalian 
Medical University (2022-033) dated 28-04-2022, and the 
Shengjing Hospital of China Medical University 
(2013PS68K) dated 04-03-2013. All procedures adhered 
to the ethical standards with the principles of the 
Declaration of Helsinki. The requirement for informed 
consent was waived off for this retrospective and 
observational study. Personal information of the 
participants was shielded before any analysis.

RESULTS

Population characteristics
A total of 733 pregnant women with documented 
pregnancy outcomes were included in this study. Fifty-
six clinical and laboratory variables were extracted from 
medical records. Missing data rate can be seen in Supple-
mentary 1. There were 182 participants (24.8%) who met 
the criteria of adverse maternal outcomes, while 423 
participants (57.7%) involved in adverse neonatal 
outcomes. Among 56 variables, thirty-one variables 
confirmed significantly statistical differences when 
compared A-M and S-M (Table 1), and 16 variables 
demonstrated highly statistical significance (P < 0.001). 
While there were 38 variables confirmed statistical 
differences when compared A-N and S-N (Table 2), and 
26 variables demonstrated highly statistical significance.

Variables selected by different strategies
Five different variable selection strategies were applied 
to identify influential factors that predicted the adverse 
maternal or neonatal outcomes. As the number of 
selected variables was automatically determined by 
stepwise logistic regression, to access the impartial 
evaluation, the size of selected variable collection for 
each strategy was proposed to be equal to the number of 
variables retrieved by FSLR. Therefore, seven variables 
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were selected as the contributing factors to predict 
adverse maternal outcomes (Table 3), and eleven 
variables to predict adverse neonatal outcomes (Table 4). 
As they were displayed in two Tables, the variables 
selected by different strategies varied both in content 
and sequence.

Referring to the selected variables employed to predict 
adverse maternal outcomes, “Platelet” and “Creatinine 
clearance rate” were the two variables voted by all 
strategies, indicating their unique roles in the prediction 
of maternal outcomes. Five variables demonstrated no 
statistical difference between the A-M and S-M groups, 
when screened out by different selection strategies: 
“Serum chloride” and “Prothrombin time” were selected 
by FSLR, “Body mass index” by MI, “Urine erythrocytes 
count” and “Urine leukocytes count” by both MI and 
RFE, while variables selected by PCA and LASSO are all 
statistically different between the two groups.

As to the variables selected to predict neonatal outcomes, 
“Birth weight of neonates” was the only variable approved 

by all the strategies, which is easy to be understood. 
Meanwhile, “24-hour urinary protein”, “Uric acid” and 

“Creatinine clearance rate” were the three variables 

selected by four variable selection methods out of five, all 
of which are renal function assessment indexes.

There were six variables screened out by different 
se lect ion s t ra teg ies  as  inf luent ia l  indicators  
demonstrating no statistical difference between the A-N 
and S-N groups. “Urine pH”, “history of Pregestational 
or gestational diabetes”, and “Maternal height” by FSLR; 
“Thrombin time” by MI; “Urine specific gravity” and 
“Serum potassium” by LASSO. It can be figured out 
that, based on our current dataset, there is no 
satisfactory indicator acknowledged by all the retrieving 
strategies to predict the neonatal outcomes in advance.

The Supplementary 2 presented the relevance of each 
selected variable to adverse outcomes as a score, but 
different variable selection algorithms resulted in varying 
magnitudes of scores across variables. (The variables 
selected by FSLR were not included as they were ranked 
as their sequential entry to the regression model.)

It is interesting that the PCA never singled out a variable 
which demonstrated no statistical significance. Then, 
different subsets of candidates entered into the binary 
logistic regression predictive models subsequently.

Evaluation of predictive models developed by 
different collections of variables
All variables entered into the logistic regression had a 
variance inflation factor (VIF) of < 5, indicating a lack 
of multicollinearity between them. The evaluating 
parameters (including AUC, Sensitivity, Specificity, 

Positive predictive value, and Negative predictive value) 
of predictive models for adverse pregnancy outcomes 
appear in Table 5. The overall level of AUC values of 
adverse neonatal outcomes predicting models is higher 
than that of adverse maternal outcomes (Figure 2A-B), 
which can be explained by the closer correlation 
between the selected variables and the neonatal 
outcomes.

The LR-MI predictive model exhibited the highest levels 
of AUC values (AUC = 0.824) for maternal adverse 
outcomes, while the LR-PCA model failed to achieve its 
optimal performance. In predicting adverse neonatal 
outcomes, the LR-RFE model ranked first (AUC = 
0.842), and the AUC of LR-MI was 0.819, still 
demonstrating a strong predictive ability compared to 
other models. In addition, the LR-PCA model underper-
formed once again with the lowest AUC values.

As the variables selected by FSLR were listed according 
to their sequential entry to the model, in order to display 
the relevance of variables to adverse maternal outcomes, 
the OR and 95% CI were shown in Table 6 and the 
corresponding forest plot was displayed in Figure 2C.

In the forest plot, the horizontal axis represents the OR 
and 95% CI, while the vertical dotted line positioned at a 
value of 1 is referred to as the “line of null effect”. On 
the left side of this line, the protective variables such as 
“creatinine clearance rate”, “serum chloride”, and 
“platelet” were observed. Increasing their values 
effectively reduced adverse outcomes. Conversely, 
“leukocyte” and “creatinine” are identified as risk 
variables since an increase in their values elevates the 
probability of adverse outcomes. The OR value of the 
variable “Birth weight of neonates” is equal to 1, 
indicating no significant impact on outcomes. This can 
be attributed to the negligible effect observed when 
altering the birth weight of neonates by a mere gram.

DISCUSSION

Currently, machine learning is being applied in the field 
of preeclampsia across three main domains:(1) 
Predicting the onset of pre-eclampsia prior to any 
discernible symptoms;[25–27] (2) Predicting adverse 
neonatal and maternal outcomes associated with evident 
or suspected pre-eclampsia;[28–30] (3)  Identify ing 
potentially highly predictive variables through diverse 
datasets.[31] It is evident that numerous predictive models 
constructed by machine learning algorithms have been 
extensively reported worldwide; however, the identi-
fication of predictive variables remains inadequate.

Typically, the selection of variables for a regression 
predictive model is guided by hypotheses that have been 
formulated based on theoretical reasoning or previous 
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Table 3: List of variables selected by different variable selection strategies for predicting adverse maternal outcomes

Ranking FSLR PCA MI RFE LASSO

1 Creatinine Creatinine Creatinine clearance rate* 24-hour urinary protein Platelet*

2 Platelet* Creatinine clearance rate* Platelet* Birth weight of neonates Creatinine clearance rate*

3 Leukocyte Platelet* Body mass index Urine erythrocytes count Leukocyte

4 Creatinine clearance rate* Birth weight of neonates Urinary Casts Platelet* Creatinine

5 Serum chloride Urea 24-hour urinary protein Creatinine clearance rate* Neutrophil

6 Prothrombin time Gestational age Urine erythrocytes count Urine leukocytes count Birth weight of neonates

7 Birth weight of neonates Uric Acid Urine leukocytes count alanine aminotransferase Diastolic pressure after admission

*represent the variable that has been voted by all strategies. The variables selected by forward stepwise logistic regression (FSLR) were ranked based on their 

sequential entry into the regression model, while the ranking of the variables screened by the other four strategies was determined based on their relevance to 

disease occurrence. PCA: principal component analysis; MI: mutual information; RFE: recursive feature elimination; LASSO: least absolute shrinkage and 

selection.

Table 4: List of variables selected by different variable selection strategies for predicting adverse neonatal outcomes

Ranking FSLR PCA MI RFE LASSO

1 Birth weight of neonates* Birth weight of neonates* Birth weight of neonates* 24-hour urinary protein# Birth weight of neonates*
2 Spot urine protein Low birth weight Gestational age Birth weight of neonates* Gestational age

3 Delivery mode Gestational age 24-hour urinary protein# Urine erythrocytes count Amniotic fluid index

4 Amniotic fluid index Spot Urine protein Neutrophil Urine leukocytes count Neutrophil

5 Urine pH 24-hour urinary protein# Creatinine clearance rate# AST Urine specific gravity

6 Low birth weight Total protein Hemoglobin Uric acid# 24-hour urinary protein#

7 Fibrinogen Albumin Low birth weight ALT Prothrombin time

8 Pregestational or gestational diabetes Creatinine clearance rate# Uric acid# Creatinine clearance rate# Creatinine clearance rate#

9 Urinary Casts Uric acid# Platelet Platelet AST

10 Maternal height Urea Thrombin time Creatinine Uric acid#

11 Albumin Creatinine Leukocyte Low birth weight Serum potassium

The variables screened out by forward stepwise logistic regression (FSLR) were ranked as their sequential entry to the regression model. *indicates the variable 

voted by all the strategies. #were selected by the four strategies. ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; PCA: principal component 

analysis; MI: mutual information; RFE: recursive feature elimination; LASSO: least absolute shrinkage and selection.

Table 5: Evaluative criteria of different models for predicting adverse pregnancy outcomes

AUC SEN SPE PPV NPV

Adverse maternal outcomes

LR- Stepwise 0.780 0.396 0.952 0.724 0.832 

LR- PCA 0.667 0.526 0.910 0.588 0.888 

LR- MI 0.824 0.579 0.923 0.647 0.900 

LR- RFE 0.752 0.526 0.936 0.667 0.890 

LR- LASSO 0.708 0.396 0.952 0.724 0.832 

Adverse neonatal outcomes

LR- Stepwise 0.780 0.396 0.952 0.724 0.832

LR- PCA 0.767 0.679 0.913 0.760 0.875 

LR- MI 0.819 0.536 0.913 0.714 0.829 

LR- RFE 0.842 0.714 0.870 0.690 0.882 

LR- LASSO 0.791 0.429 0.913 0.667 0.797 

AUC: area under the curve; SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative predictive value; LR: logistic regression; PCA: 

principal component analysis; MI: mutual information; RFE: recursive feature elimination; LASSO: least absolute shrinkage and selection.
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Figure 2. The receiver operator characteristic (ROC) curves of the predictive models for adverse maternal and neonatal outcomes and the forest plot of the 
variables selected by forward stepwise logistic regression (FSLR). (A) The AUC values of the predictive models for adverse maternal outcomes 
constructed by the variables selected by five different strategies; (B) The AUC values of the models for adverse neonatal outcomes; (C) The forest plot of 
the variables selected by FSLR, showing Odds ratio and 95% confidence intervals of the variables. Ccr: creatinine clearance rate.

empirical evidence.[32] However, this traditional opinion 
confronts challenge, for which high-dimensional dataset 
with redundant or unfamiliar variables becomes a critical 
issue and requires new effective, or even automatic 
variable selection methods. In consequence, our study 
was conducted to apply five different variable selection 
methods to screen out influential variables for predicting 

adverse outcomes involved pre-eclampsia, that the 
variables were collected at the point of adverse events, 
then employ FSLR as the reference model, and evaluate 
the performance of five methods by AUC values when 
they developed predictive models.

The first main finding of this study is that the variables 
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demonstrated statistical significance may not overlap 
with the variables filtered by automatic variable selection 
strategies. There were 31 variables confirmed statistical 
significance between the adverse and satisfactory 
maternal outcomes groups, and 38 variables between the 
two neonatal outcomes groups, the choice of variables 
which would be the true predictors probably becomes a 
time and energy consuming issue. As to the variables 
screened out by FSLR, there were only seven variables 
contributed to the maternal outcomes and eleven 
variables to the neonatal outcomes, which made the 
construction of predictive models more precise and 
explanatory. Referring to the variables filtered by 
selection methods, they were all reasonable to predict 
the adverse pregnancy outcomes according to the 
previous evidence, and there were also several variables 
confirmed no statistical significance. Meanwhile, despite 
FSLR, other selection strategies could calculate the 
predictive scores of filtered variables and rank the 
variables by the influential importance, while the 
prediction ability of variables enrolled based on 
statistical significance could only be valued by the odds 
ratio and its 95% confidence interval. Though it still 
needs further investigation to compare the efficiency of 
both statistical significancy based strategy and data-
driven variable selection strategies, these automatic 
selection methods may provide an alternative choice, 
except for selecting variables only by statistical 
significance.

Regarding the variables selected by different variable 
selection strategies, both “Platelet” and “Creatinine 
clearance rate” were unanimously identified as predictors 
of adverse maternal outcomes, while four out of five 
strategies concurred on selecting “24-hour urinary 
protein,” “Uric acid,” and “Creatinine clearance rate” as 
predictors of adverse neonatal outcomes. Our findings 
provide evidence that targeted determinants for adverse 
maternal and neonatal outcomes may be associated with 
distinct mechanisms; for instance, severe maternal 
complications could involve coagulation dysfunction and 
renal injury,[33–34] whereas neonatal adverse outcomes 
might be attributed to hypoproteinemia and metabolic 
disorder.[34–37] Consequently, prevention and treatment 
measures should be tailored according to the specific 
situation.

The second main finding is that MI and RFE performed 
best under our current dataset, when predicting maternal 
and neonatal outcomes. Filter is an established variable 
selection strategy that does not rely on subsequent classi-
fication techniques and is computationally efficient. 
Conversely, the wrapper selects candidate variables 
based on the performance of classification techniques 
and effectively solves optimization problems, but incurs 
high computational costs due to evaluating and selecting 
all combinations of variables. Additionally, the 

embedded method integrates as a component of the 
classification algorithm, combining the strengths of both 
wrapper and filter.[38] The LASSO, however, did not 
yield models with high predictive accuracy in this study. 
This outcome can be attributed to the fact that the 
LASSO performs optimally when dealing with datasets 
characterized by a small sample size and a large number 
of variables. Under our current structural dataset which 
is a relatively low-dimensional issue with less irrelevant 
and redundant variables, the embedded approach could 
not sufficiently advanced for constructing satisfactory 
predictive model, as well as FSLR and PCA.

Concerning to the higher AUC values of neonatal 
outcome prediction, the variables we collected possess 
too direct relationship to the outcomes, like birth weight 
of neonates, which made the AUC values of the 
predictive models relatively high. While on the other 
hand, it indicates that there remains a lack of satisfactory 
variables for predicting fetal or neonatal outcomes.

Regarding the variables included by FSLR in predicting 
adverse maternal outcomes, we ranked these variables 
based on their sequential entry into the regression 
models. However, due to a lack of information regarding 
their influential weights on the outcomes, we presented 
the relevant OR, 95% CI, and statistical significance 
using an intuitive forest plot. The clinical significance of 
these selected variables aligns with our current 
knowledge as illustrated in Result 3. Furthermore, to 
concisely present our research findings, corresponding 
OR values and 95% CI for the variables selected to 
predict neonatal outcomes were not provided; however, 
interested readers can easily derive these results from our 
dataset when communicating with the corresponding 
authors.

Missing data is a commonly encountered problem in 
clinical research. In this study, we set the enrolled criteria 
of variables with missing data rate less than 50%,[39] 
which was still too high and may be considered as a 
limitation of our study. However, the missing problem 
may be induced at random, while it is more often that 
the problem is induced not at random, directly or 
indirectly. The lack of international or regional 
consensus which control the unified scheme of clinical 
variables obtained, as well as the emergency situation 
encountered more often referring to pre-eclampsia, all 
lead to the variables associated to rescue or surgery 
demonstrated lower rate of missing values, for instance 
of routine complete blood count or blood coagulation 
test. In consequence, simply excluding the variables with 
relatively high missing data rate may cause unforeseen 
biases which impact on the accuracy or validation of 
modeling. Meanwhile, if the missing data rate of 
particular variable is too high, it may indicate the 
difficulty of access in study population for which may 
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not be an ideal predictor to be included. (2) Therefore, 
the met criteria were set as 50%, and imputation 
technique was applied to avoid removing variables with 
relatively higher missing data rate. According to our 
previous study,[40] k-nearest neighbor intell igent 
imputation was the most effective method, and was 
employed in this study. After all, imputation is not the 
final solution, but the promotion of powerful predictive 
model to guarantee the establishment of international 
consensus and the avoidance of emergency.

Despite missing values, another limitation of our study is 
the tuned number of variables selected by different 
selection methods. As the FSLR served as the reference 
selection strategy, the number of filtered variables was 
automatically determined, while for other strategies, the 
parameterization of variable count was adjusted to 
match that synthesized by FSLR, aiming to facilitate an 
impartial comparison among different strategies when 
employing selected variables subsequently in 
constructing predictive models. However, it is possible 
to select the number of variables automatically, which 
can be applicable by performing cross-validation to 
evaluate the subsets containing different numbers of 
variables and to automatically select the number of 
variables that achieved the best mean score. (4) 
Therefore, the expected number of variables to predict 
pregnancy outcomes may prevent the other four 
strategies from achieving their best performance.

Future work will concentrate on the accumulation of 
more evidence that (1) the automatic variable selection 
strategies give full play to the role of screening out 
influential predictors to predict the outcomes of pre-
eclampsia, especially in high-dimensional data, like 
involving variables collected before, during and after 
pregnancies, as well as the novel biomarkers; (2) 
concentrate on the investigation of matching degree 
between certain selection strategy and certain dataset, 
aiming for exploring the optimized selection method to 
restrict the number of predictive variables and validate 
their significance; (3) focus on the construction of serial 
short-term predictive models to predict risks in different 
timespan of pregnancy timely and efficiently. If so, the 
contributing predictive models may lead to the 
establishment of standard clinical protocols and assist 
the process of decision-making by clinical practitioners, 
and finally benefits to this “mother and offspring” 
conflict.

CONCLUSIONS

Our study showed that under the current dataset, the 
variables demonstrated statistical significance may not 
completely overlap with the variables filtered by 
automatic variable selection strategies, which provide an 

alternative choice. “Platelet count” and “Creatinine 
clearance rate” were unanimously identified as predictors 
of adverse maternal outcomes, while four out of five 
strategies concurred on selecting “24-hour urinary 
protein,” “Uric acid,” and “Creatinine clearance rate” as 
predictors of adverse neonatal outcomes. These findings 
suggest that distinct mechanisms may be associated with 
targeted determinants for adverse maternal and neonatal 
outcomes, highlighting the need for tailored prevention 
and treatment measures according to specific situation. 
The MI-LR and RFE-LR exhibited a higher likelihood 
of selecting influential variables compared to other 
strategies in the current dataset. However, the LASSO-
LR method did not demonstrate sufficient advancement 
in constructing models for this relatively low-
dimensional dataset with fewer irrelevant and redundant 
variables. Medical researchers who develop regression 
models for clinical prediction with high-dimensional 
data or limited knowledge about novel indicators could 
thus benefit from using automatic strategies. Future 
work will concentrate on applying different selection 
methods to high-dimensional data and constructing 
serial short-term predictive models to further explore the 
characters of these selection strategies.
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