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In spatial blind source separation the observed multivariate random fields are assumed to be 
mixtures of latent spatially dependent random fields. The objective is to recover latent random 
fields by estimating the unmixing transformation. Currently, the algorithms for spatial blind 
source separation can only estimate linear unmixing transformations. Nonlinear blind source 
separation methods for spatial data are scarce. In this paper, we extend an identifiable variational 
autoencoder that can estimate nonlinear unmixing transformations to spatially dependent data, 
and demonstrate its performance for both stationary and nonstationary spatial data using 
simulations. In addition, we introduce scaled mean absolute Shapley additive explanations 
for interpreting the latent components through nonlinear mixing transformation. The spatial 
identifiable variational autoencoder is applied to a geochemical dataset to find the latent 
random fields, which are then interpreted by using the scaled mean absolute Shapley additive 
explanations. Finally, we illustrate how the proposed method can be used as a pre-processing 
method when making multivariate predictions.

1. Introduction

Nowadays spatially indexed data are encountered in many fields of science. For example, in geochemistry, samples are collected 
at different locations and analyzed for their chemical compositions to detect patterns, for identifying areas of pollution, or for mining 
purposes. From now on, we denote the location as 𝒔 ∈  ⊂ℝ𝑞 , and let 𝒙(𝒔) = (𝑥1(𝒔), … , 𝑥𝑑 (𝒔))⊤ be the observable 𝑑-variate vector. 
Here the set of possible locations  is the domain and the data are usually called spatial data. In most applications 𝑞 = 2 and for 
simplicity, without loss of generality, we also assume the same from now on. Spatial data are usually characterized by its mean 
function 𝒎(𝒔) and a (spatial) covariance function 𝑪(𝒙(𝒔), 𝒙(𝒔′)) = 𝐸

(
(𝒙(𝒔) −𝒎(𝒔))(𝒙(𝒔′) −𝒎(𝒔′))⊤

)
, where 𝒔, 𝒔′ ∈  . The main idea 

in modeling is that observations closer together are more similar than observations further apart. However, as the covariance function 
is usually quite complex, modeling spatial data is often quite difficult and is, for example, much more challenging than modeling 
time series data, which have a natural direction (past to present) that is missing in spatial data. Thus, 𝒙(𝒔) is quite often assumed as 
stationary to simplify spatial modeling, meaning that 𝒎(𝒔) =𝒎 for all 𝒔 ∈  and 𝑪(𝒙(𝒔), 𝒙(𝒔′)) =𝑪(||𝒔− 𝒔′||) for all 𝒔, 𝒔′ ∈  , i.e. the 
mean is the same at all locations and the spatial dependence depends only on the distance between observations. For an overview 
discussing the complexity of modeling 𝑪 , see [1].

Another suggestion for simplifying spatial data modeling is considering a latent component modeling as a pre-processing step. The 
data are then represented using 𝑑 independent, latent components in 𝒛(𝒔) = (𝑧1(𝒔), … , 𝑧𝑑 (𝒔))⊤. Thus, after pre-processing, univariate 
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models can be fitted to components and the components can be interpreted individually and predicted separately [2]. While the 
latent components can simply be seen as useful modeling tools, they often turn out to have physical meanings for which however 
subject knowledge is usually needed. A popular approach to latent component modeling is linear blind source separation (BSS) [3], 
which aims to find independent latents components using the observed data by assuming that the observations are generated from the 
components through some linear mixing system. Recently, [4–6] suggested a spatial BSS (SBSS) approach for stationary multivariate 
spatial data, where the independent latent components are obtained by jointly diagonalizing two or more moment-based matrices. 
SBSS was also extended to nonstationary multivariate spatial data by [7], then yielding nonstationary spatial source separation 
(SNSS). In the SNSS model, 𝒙(𝒔) is assumed to be stationary with respect to 𝒎 but not with respect to 𝑪 . A drawback of SBSS and 
SNSS is that both assume a linear mixing procedure, which is interpretable and mathematically tractable but might be too simplistic 
in reality.

The motivation for the use of nonlinear BSS approach is the same as for linear BSS, that is, one wants to find a useful representation 
of high-dimensional data to be used in further analyses [8]. As the mixing procedure is assumed to be nonlinear, the components are 
unidentifiable without additional assumptions on the mixing function or on the distribution of the latent components [9]. Recently, 
unsupervised deep learning methods, such as variational autoencoders (VAEs) [10], and their extensions, such as [11,12], were 
applied to find unmixing function and latent components based on the observed data. As the regular VAE solutions in general 
suffer from unidentifiability issues, [13] proposed in a time series context the identifiable VAE (iVAE) method, which uses some 
additionally observed data to make the VAE model identifiable. In [14] a structured nonlinear BSS framework, which is suitable also 
for two dimensional graphs, was proposed. However, to our knowledge, models for spatial nonlinear BSS have not been developed 
or studied yet.

In this paper, we extend the iVAE method for spatially dependent data and study its performance using vast simulation studies and 
a real geochemical data example. Nonlinear BSS framework in general lacks tools for latent component interpretation, which is an 
essential task when analyzing the discovered latent representation. Therefore, a procedure based on Shapley additive explanations 
[15] for interpreting the latent components through nonlinear mixing transformation is introduced and illustrated. The paper is 
organized as follows. We review the basics of linear and nonlinear BSS in Section 2. Sections 3 and 4 introduce new iVAE method 
and new tools for interpreting the latent components, respectively. In Sections 5 and 6, simulation studies and a real data example 
are used to illustrate the performance properties of iVAE. The paper is concluded with a discussion in Sections 7 and 8.

2. Background

Before showing how iVAE can be extended to spatial data, we give some background on linear and nonlinear BSS as well as 
Shapley values, which are later used to interpret the latent components.

2.1. Linear and nonlinear BSS

Assume for now that 𝒙 = (𝑥1, … , 𝑥𝑑 )⊤ is a 𝑑-variate observable random vector. In linear blind source separation (BSS), one 
assumes that 𝒙 is a linear mixture of unknown 𝑑-variate latent components 𝒛 = (𝑧1, … , 𝑧𝑑 )⊤, that is,

𝒙 =𝑨𝒛, (1)

where 𝑨 is an invertible 𝑑 × 𝑑 mixing matrix. The goal in BSS is to recover both 𝑨 and 𝒛 based on 𝒙 only, but this cannot be done 
without making some additional assumptions on 𝒛. Different BSS methods vary in the assumption made on latent components. For 
example, in independent component analysis (ICA) we assume iid data with independent latent components, and in second-order 
source separation (SOS) we assume that the components are weakly stationary time series. For general overview of BSS methods, see 
[3]. In [5], spatial BSS methods were introduced.

As the assumption on linear mixing is often too restrictive, nonlinear BSS methods have been introduced. For a recent review 
of methods, see [8]. Notice that although the methodology is often referred to as nonlinear ICA, in what follows, we use the more 
general term, nonlinear BSS, as it allows the components to be of any data type. In nonlinear BSS, one assumes that 𝒙 is generated 
by applying an unknown invertible mixing transformation 𝒇 ∶R𝑑 →R𝑑 on the latent components 𝒛 as

𝒙 = 𝒇 (𝒛). (2)

The objective is then to identify the transformation 𝒒 ∶R𝑑 →R𝑑 which returns 𝒛 as

𝒛 = 𝒒(𝒙) (3)

based on the observations of the vector 𝒙 only. Generally, without additional assumptions on the mixing function or on the dis-

tribution of the latent components, nonlinear BSS is unidentifiable as there is an infinite amount of nonlinear transformations to 
generate mutually independent components from the observations [9]. Thus, additional constraints on the distribution of 𝒛 must be 
introduced to obtain identifiability without restricting the mixing transformation 𝒇 severely.

In many recent studies [16–18,13,19], the main assumption leading to identifiability is that each latent component 𝑧𝑖, 𝑖 = 1, … , 𝑑, 
is statistically dependent on an 𝑚-dimensional auxiliary variable 𝒖, and that the conditional distribution is a member of the family 
of exponential distributions with parameters 𝜆𝑖,𝑘, 𝑘 = 1, … , 𝑟. Assuming the independence of the 𝑑 conditional latent distributions 
2

yields then the joint distribution 𝑝(𝒛|𝒖) =∏𝑑

𝑖=1 𝑝(𝑧𝑖|𝒖). Following [13], the dependence of the parameters 𝜆𝑖,𝑘 on 𝒖 is expressed using 
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a function 𝝀(𝒖) = (𝝀1(𝒖), … , 𝝀𝑑 (𝒖)), where 𝝀𝑖(𝒖) = (𝜆𝑖,1(𝒖), … , 𝜆𝑖,𝑟(𝒖))⊤ contains the parameters depending on 𝒖 for component 𝑖. This 
function must be learned, for example, using some neural network. The joint conditional distribution can then be written as

𝑝𝑻 ,𝝀(𝒛|𝒖) = 𝑑∏
𝑖=1

𝑄𝑖(𝑧𝑖)
𝑍𝑖(𝒖)

exp

[
𝑟∑

𝑘=1
𝑇𝑖,𝑗 (𝑧𝑖)𝜆𝑖,𝑘(𝒖)

]
, (4)

where 𝑄𝑖(𝑧𝑖) is a base measure, 𝑍𝑖(𝒖) is a normalizing constant, and 𝑻 𝑖(𝑧𝑖) = (𝑇𝑖,1(𝑧𝑖), … , 𝑇𝑖,𝑟(𝑧𝑖))⊤ contains sufficient statistics. The 
dimension 𝑟 of each sufficient statistic 𝑻 𝑖(𝑧𝑖) and 𝝀𝑖(𝒖) is assumed to be fixed. By assuming the source distribution (4) and the 
additionally observed auxiliary variable 𝒖, the aim becomes identifying the latent sources using the unmixing transformation 𝒒(𝒙, 𝒖).

In a time series context, there are several examples of auxiliary variables found in the literature. In the case of stationary time 
series, one can use as 𝒖, for example, the previous observations [17]. For nonstationary time series data, the time segment of the 
observation can be used [16,13,19]. We propose in Section 3 a nonlinear BSS method for spatial data. The method extends the 
method proposed in [13] that uses VAEs with auxiliary variables to learn the full identifiable generative model, and is thus referred 
as identifiable VAE (iVAE).

2.2. SHAP values and mean absolute SHAP values

The main advantage of using nonlinear BSS methods is that they can discover some meaningful underlying latent representation 
through a nonlinear mixing environment by recovering the true latent components 𝒛. However, the interpretation of the latent 
representation can be difficult without knowing how the observed variables interact with the latent components. In case of linear 
BSS, it is easy to inspect the contributions through mixing/unmixing matrices, but when the mixing function is nonlinear, we do 
not have such methods available. Later in this paper, we suggest novel metrics for evaluating contributions of input variables for 
nonlinear models with multiple outputs, such as iVAE. We explain the procedure of calculating these values in detail in Section 4, 
but let us first review here the Shapley values [20] and Shapley additive explanations (SHAP) [15] that our metrics base upon.

The SHAP framework is based on the Shapley values, which are originally used in cooperative game theory to fairly distribute 
the payout of a game between a group of players. Let  be a set of 𝐾 players and 𝛾 be a function giving the payout of the game for 
any set of players 𝐾 . The Shapley values calculated based on the function 𝛾 produce the attributions 𝑎𝑖 for each player 𝑥𝑖 ∈ so that

𝛾(𝐴) = 𝑎0 +
𝐾∑
𝑖=1

𝑎𝑖𝑥
′
𝑖
, (5)

where 𝐴 ⊆, 𝑎0 is a baseline output without any players and 𝑥′
𝑖
= 1(𝑥𝑖 ∈𝐴) is a binary variable which gets a value of 1 if 𝑥𝑖 belongs 

in set 𝐴 and value of 0 otherwise. The function 1 is an indicator function. The Shapley value for player 𝑥𝑖 is then given by

𝑎𝑖 =
∑

𝐴⊆⧵𝑥𝑖

|𝐴|!(||− |𝐴|− 1)!
𝐾!

(𝛾(𝐴 ∪ 𝑥𝑖) − 𝛾(𝐴)), (6)

where | ⋅ | denotes the size of a set. The game can be looked as any mathematical function. Then, the function inputs correspond the 
players, and the output of the function corresponds the payload. If the game 𝛾 is a statistical model, the players are the observations 
of 𝐾 variables  = {𝑥1, … , 𝑥𝐾} and the payout is the predicted value of a variable 𝑦 produced by 𝛾 with an input 𝐴 ⊆, then the 
attribution of an observation 𝑥𝑖 of 𝑖th variable to the outcome prediction is given by 𝑎𝑖.

Typically, statistical models have fixed input size, which is why the formulation in (6) is not directly applicable. The SHAP 
framework suggests a procedure where 𝛾(𝐴) is estimated with 𝐸(𝛾̃(𝒙)|𝐴), where 𝒙 = (𝑥1, … , 𝑥𝐾 )⊤ and 𝛾̃ has a fixed input size of 𝐾 . 
The Shapley values calculated based on these conditional expected values 𝐸(𝛾̃(𝒙)|𝐴) are called SHAP values, mathematically given 
by

𝑎̃𝑖 =
∑

𝐴⊆⧵𝑥𝑖

|𝐴|!(||− |𝐴|− 1)!
𝐾!

(𝐸(𝛾̃(𝒙)|𝐴 ∪ 𝑥𝑖) −𝐸(𝛾̃(𝒙)|𝐴)). (7)

The conditional expected value 𝐸(𝛾̃(𝒙)|𝐴) is calculated in practice by averaging over the outputs of 𝛾̃ of a representative background 
data while keeping the observed values in set 𝐴 fixed. While it is possible to calculate the exact SHAP values using this procedure, 
the computational burden becomes heavy when the number of variables is high. To reduce the computational burden, the kernel 
SHAP method [15] can be used. The kernel SHAP approximates the SHAP values 𝑎̃𝑖 based on local interpretable model-agnostic 
explanations (LIME) [21] by minimizing the equation

𝜁 =
∑
𝐴⊆

(
𝐸(𝛾̃(𝒙)|𝐴) − 𝑎̃0 +

𝐾∑
𝑖=1

𝑎̃𝑖𝑥
′
𝑖

)2

𝜋(𝐴), (8)

where

𝜋(𝐴) = 𝐾 − 1( 𝐾 ) , (9)
3

|𝐴| |𝐴|(𝐾 − |𝐴|)
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with respect to the values 𝑎̃𝑖. By using the specific kernel 𝜋(𝐴) called Shapley kernel, the algorithm in fact recovers the Shapley 
values. For more details, see [15].

The SHAP values are calculated individually for each (multivariate) observation/prediction pair making them a useful tool to 
interpret how each component of the observation affects the model prediction. In many cases, we are interested in the population 
level effects, that is, how the observed variables affect the model prediction on population level. Methods, such as mean absolute 
SHAP (MASHAP) [22] and Shapley global additive importance (SAGE) [23], aim to obtain the population level importance for the 
input variables. In this paper, we focus on MASHAP values, which can be easily extended to models with multiple outputs as will be 
shown in Section 4. Let now 𝑛 be the number of observations and 𝑑 the number of observable variables, and let 𝑎̃𝑖,𝑗 be a SHAP value 
for 𝑖th variable of 𝑗th observation. The MASHAP value for the 𝑖th variable is then calculated as

𝑣𝑖 =
1
𝑛

𝑛∑
𝑗=1

|𝑎̃𝑖,𝑗 |. (10)

The MASHAP values 𝑣𝑖 can be interpreted as contribution or importance of 𝑖th input variable to the whole output population.

3. Nonstationary spatial source separation using VAE

In this paper, we use iVAE [13] to solve the nonlinear SNSS problem by assuming nonstationarity in the variance of the latent 
fields. We use spatial segmentation as an auxiliary variable 𝒖 and assume that the sources are distributed as in (4). With spatial 
segmentation we mean that the domain  is divided into 𝑚 segments 𝑖 ⊂  , so that 𝑆𝑖 ∩ 𝑆𝑗 = ∅ for all 𝑖 ≠ 𝑗 and ∪𝑚

𝑖=1𝑖 =  , 
𝑖, 𝑗 = 1, … , 𝑚. Then, the auxiliary variable for the observation 𝒙(𝒔) is 𝒖(𝒔) = (1(𝒔 ∈ 1), … , 1(𝒔 ∈ 𝑚)))⊤, i.e. a 𝑚-dimensional standard 
basis vector giving the segment corresponding to the spatial location of the observation. From now on, we use the notation 𝒙 ∶=
𝒙(𝒔), 𝒛 ∶= 𝒛(𝒔), and 𝒖 ∶= 𝒖(𝒔) for the sake of convenience. iVAE assumes the following generating model:

𝑝𝒇 ,𝑻 ,𝝀(𝒙,𝒛|𝒖) = 𝑝𝒇 (𝒙|𝒛)𝑝𝑻 ,𝝀(𝒛|𝒖), (11)

where 𝑝𝒇 (𝒙|𝒛) is defined as

𝑝𝒇 (𝒙|𝒛) = 𝑝𝝐𝒇
(𝒙− 𝒇 (𝒛)), (12)

which means that 𝒙 can be composed of an independent noise vector 𝝐𝒇 and a mixing transformation 𝒇 (𝒛) as 𝒙 = 𝒇 (𝒛) + 𝝐𝒇 . The 
distribution 𝑝𝝐𝒇 is assumed to be a zero mean Gaussian distribution with infinitesimal variance to match the form of the nonnoisy 
nonlinear ICA model in (2). In the limit of infinite data, iVAE recovers the true latent components 𝒛 up to permutation and signed 
scaling under some mild conditions on the mixing function 𝒇 , the sufficient statistics 𝑻 and the auxiliary variable 𝒖 [13]. Here, we 
focus on Gaussian distributed latent variables, in which case the variances of the latent components are required to vary enough 
based on the auxiliary variable 𝒖, and the mixing function 𝒇 is required to have continuous partial derivatives.

iVAE consists mainly of the encoder 𝒈, the decoder 𝒉 and the auxiliary function 𝒘. The encoder 𝒈(𝒙, 𝒖) = (𝒈𝝁(𝒙, 𝒖)⊤, 𝒈𝝈(𝒙, 𝒖)⊤)⊤
maps the observed data (𝒙, 𝒖) to mean and variance vectors 𝝁𝒛|𝒙,𝒖 and 𝝈𝒛|𝒙,𝒖. The mean and the variance are used to sample a new 
latent representation 𝒛′ by using a reparametrization trick [10], which is generating 𝒛′ as 𝒛′ = 𝝁𝒛|𝒙,𝒖 + 𝝈⊤

𝒛|𝒙,𝒖𝝐, where 𝝐 ∼𝑁(𝟎, 𝑰)
and 𝑰 is an identity matrix. The estimate of the unmixing transformation 𝒒 is obtained as 𝒈𝝁. This means that we obtain the latent 
components 𝒛 as 𝝁𝒛|𝒙,𝒖, which is a mean of the variational distribution given by the encoder. Meanwhile, the decoder 𝒉(𝒛) estimates 
the true mixing function 𝒇 (𝒛) and maps the latent representation 𝒛′ back to observable data 𝒙′. The auxiliary function 𝒘(𝒖) estimates 
the parameters 𝝀(𝒖) of (4) in the segment given by 𝒖. The functions 𝒈, 𝒉 and 𝒘 are deep neural networks, which are flexible function 
estimators and we denote their parameters as 𝜽𝒈, 𝜽𝒉, and 𝜽𝒘, respectively, which must be estimated. Coming back to the generating 
model as in (11), we now have that

𝑝𝜽𝒉 ,𝜽𝒘
(𝒙,𝒛|𝒖) = 𝑝𝜽𝒉

(𝒙|𝒛)𝑝𝜽𝒘 (𝒛|𝒖), (13)

where 𝑝𝜽𝒉 (𝒙|𝒛) is defined as in (12). iVAE learns simultaneously the full latent generative model and the variational approximation 
𝑞𝜽𝒈

(𝒛|𝒙, 𝒖) of its true distribution 𝑝𝒒(𝒛|𝒙, 𝒖). The parameters 𝜽 = (𝜽⊤
𝒈
, 𝜽⊤

𝒉
, 𝜽⊤

𝒘
)⊤ are estimated by maximizing the lower bound of the 

data log-likelihood defined by

(𝜽|𝒙,𝒖) ≥𝐸𝑞𝜽𝒈
(𝒛|𝒙,𝒖)(log𝑝𝜽𝒉 (𝒙|𝒛) + log𝑝𝜽𝒘 (𝒛|𝒖) − log 𝑞𝜽𝒈 (𝒛|𝒙,𝒖)). (14)

The variational approximation 𝑞𝜽𝒈 (𝒛|𝒙, 𝒖) is obtained using the reparametrization trick. The schematic presentation of iVAE is 
illustrated in Fig. 1. In our simulation studies in Section 5, we assume the source density distribution 𝑝𝜽𝒘 (𝒛|𝒖) to be Gaussian, where 
the mean and variance vectors, 𝝁𝒛|𝒖 and 𝝈𝒛|𝒖, are given by the auxiliary function 𝒘(𝒖). Hence, in practice we have 𝑝𝜽𝒘 (𝒛|𝒖) =
𝑁(𝒛|𝝁𝒛|𝒖, diag(𝝈𝒛|𝒖)), 𝑞𝜽𝒈 (𝒛|𝒙, 𝒖) =𝑁(𝒛|𝝁𝒛|𝒙,𝒖, diag(𝝈𝒛|𝒙,𝒖)), and 𝑝𝜽𝒉 (𝒙|𝒛) =𝑁(𝒙|𝒙′, 𝛽𝑰), where 𝛽 > 0 is a constant close to zero as 
4

𝑝𝜽𝒉
should estimate the true distribution 𝑝𝒇 with infinitesimal variance. We use 𝛽 = 0.01.
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Fig. 1. Schematic presentation of iVAE. iVAE learns simultaneously the encoder, the decoder, and the auxiliary function. The latent components 𝒛 are obtained as 
𝝁𝒛|𝒙,𝒖 , which is a mean of the variational distribution given by the encoder.

4. Interpreting the latent representation

In this section, we introduce the scaled MASHAP values and explain how they can be used to evaluate variable importance for 
model with multiple outputs.

MASHAP and SAGE, as defined in Section 2.2, estimate successfully the population level importance of input variables for a 
single output variable. However, for a model with multiple outputs it would be beneficial to be able to compare the population 
level importance values across the different outputs, as well as to obtain an importance value for each input variable with respect 
to all output variables. Here, we suggest a heuristic procedure to obtain scaled MASHAP values, which are comparable importance 
values between different output variables, and to calculate average scaled MASHAP values, which are interpreted as a population 
level importance values for the models with multiple output variables. The procedure to obtain scaled MASHAP and average scaled 
MASHAP values is summarized in Algorithm 1, and discussed in detail next.

Algorithm 1: An algorithm for calculating the scaled MASHAP values and average scaled MASHAP values.

Input: 𝑛 ×𝐾 data matrix 𝑿, function 𝜸̃∗ ∶R𝐾 →R𝐻 ;

Output: Scaled MASHAP values 𝑽 ; Average scaled MASHAP values 𝒗∗ ;

Initialize: 𝐻 ×𝐾 matrix 𝑽 ; 1 ×𝐾 vector 𝒗∗ ;

for 𝑖 = 1 to 𝐻 do

Set 𝛾̃ = 𝛾̃∗
𝑘
;

for 𝑘 = 1 to 𝐾 do

Calculate SHAP values 𝑎̃𝑘,1, … ̃𝑎𝑘,𝑛 as in (7);

Calculate MASHAP value 𝑣𝑘 as in (10);

Set 𝑽 [𝑖, 𝑘] ← 𝑣𝑘 ;

end

Set 𝑽 [𝑖, ] ← 𝑽 [𝑖,]∑𝐾

𝑘=1 𝑽 [𝑖,𝑘]
;

end

for 𝑘 = 1 to 𝐾 do

Set 𝒗∗[𝑘] ←
∑𝐻

𝑖=1(𝑽 [𝑖,𝑘])
𝐻

end

Let 𝜸∗ be a model or a function with 𝐻 -dimensional output. As SHAP and MASHAP assume a function with a single output, 
we calculate the MASHAP values independently for each output 𝑖 = 1, … , 𝐻 of the function 𝜸∗ by setting 𝛾̃ = 𝛾∗

𝑖
. Then, we obtain 

the contributions of each input variable to each output variable. However, by using this procedure, the MASHAP values are not 
5

comparable across different input variables. This is because the MASHAP values give only the relative importance of each input 
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variable to a single output variable. As the distributions and scales of the output variables might differ, the sum of the MASHAP 
values of the input variables is not constant. Hence, the values are not relative to each other across the output variables, and 
comparisons of the MASHAP values might lead to false interpretations.

To make the MASHAP values comparable, we suggest scaling the values to unit sum for each individual output variable. The 
scaling ensures that all output variables are weighted identically making the scaled MASHAP values comparable also across the 
outputs. In addition, we propose average scaled MASHAP values to identify the importance of the input variables for a model with 
multiple output variables. Let 𝑽 be a matrix whose rows 𝒗𝑘 contain the scaled MASHAP values for the 𝑘th input variable. By taking 
means column-wise, we get a 𝐾 -dimensional vector 𝒗∗ giving the relative importance of each input variable.

In context of nonlinear BSS, the scaled MASHAP values can be used to evaluate the contribution of each observed variable to 
a latent component, and the contribution of each latent component to an observable variable. By calculating the average scaled 
MASHAP values for the BSS model’s mixing estimate, we obtain importance values for each latent component. When the average 
scaled MASHAP value is high, the latent component explains high proportion of the original variables, and when it is low, the latent 
component does not have much impact on most of the variables.

The interpretations based on scaled MASHAP and average scaled MASHAP values are demonstrated in more detail in Section 6.

5. Simulations

While we have the theoretical results of identifiability when the variances of latent components are varying enough based on the 
auxiliary variable 𝒖, these results apply only in limit of infinite data. In real life applications, with finite data, there is however no 
guarantee that the identifiability conditions are fulfilled. In this section, we aim to study the performance of iVAE in various spatial 
scenarios with finite sample size using the simulation studies. We consider six different simulation settings, where the observed 
data are generated from nonlinear ICA model (2). The underlying latent components 𝒛 are generated differently in each setting. 
Some of the settings exhibit nonstationary variance, meaning that the identifiability conditions are fulfilled, while some settings are 
stationary, for which the identifiability conditions are not fulfilled. We compare iVAE to SBSS and SNSS, although they are developed 
for linear mixing and are thus not optimal when the mixing function is nonlinear. In addition, iVAE is compared against a modified 
version of time contrastive learning (TCL) [16], where the auxiliary variable is a spatial segmentation instead of a time segmentation. 
TCL exploits nonstationarity in variance when solving the BSS problem and can estimate nonlinear unmixing transformations. The 
simulations can be reproduced using R 4.3.0 [24] together with R packages SpatialBSS [25], gstat [26] and NonlinearBSS. The 
NonlinearBSS package, which is available at https://github .com /mikasip /NonlinearBSS, contains an R implementation of spatial 
iVAE and some methods to generate nonstationary spatial data from the nonlinear ICA model (2). The simulations were executed on 
the CSC Puhti cluster, a high-performance computing environment.

In all simulation settings, 𝑛 = 5000 locations 𝒔𝑗 , 𝑗 = 1, … , 𝑛, are sampled uniformly in the spatial domain  = [0, 100] ×[0, 100]. For 
each location 𝒔𝑗 a three-variate observation 𝒙𝑗 = 𝒙(𝒔𝑗 ) is generated, meaning that 𝑑 = 3 in all simulations. In Settings 1, 2 and 3, the 
data consist of ten clusters and are generated using different parameters in each cluster. The clusters are generated by sampling ten 
random points and dividing the field so that each cluster contains the locations that have the smallest distance to the corresponding 
point. Notice that we do not use the ground truth segmentation as an auxiliary variable in modeling as was done in previous studies, 
such as [16–18,13], in a time series context. Instead, we use small enough segments to allow the model to approximate the ground 
truth clusters without having prior information on them. This is illustrated in Fig. 2, where 𝑛 = 5000 uniformly sampled points in 
ten clusters are presented. In the figure, the colors represent the ten generated ground truth clusters and the grid on top of the plot 
illustrates the spatial segmentation used by iVAE and TCL.

Settings 1 and 2. The latent field consists of identically and independently distributed (iid) three-variate Gaussian vectors. 
Each cluster, 𝑘 = 1, … , 10, has a unique, diagonal covariance matrix 𝚺𝑘 = diag(𝜎1,𝑘, 𝜎2,𝑘, 𝜎3,𝑘), where 𝜎1,𝑘, 𝜎2,𝑘, 𝜎3,𝑘 ∼ Unif(0.1, 5). In 
Settings 1 and 2 the mean vectors are 𝝁𝑘 = (0, 0, 0)⊤ and 𝝁𝑘 = (𝜇1,𝑘, 𝜇2,𝑘, 𝜇3,𝑘)⊤, respectively, and 𝜇1,𝑘, 𝜇2,𝑘, 𝜇3,𝑘 ∼ Unif(−5, 5).

Setting 3. The latent field consists of three-variate Gaussian fields with a Matern correlation structure. Each cluster has its own 
parameters for the Matern covariance function

𝐶𝑀 (ℎ; 𝜈,𝜙) = 1
2𝜈−1Γ(𝜈)

(
ℎ

𝜙

)𝜈

𝐾𝜈

(
ℎ

𝜙

)
, (15)

where ℎ = ||𝒔− 𝒔′|| is the Euclidean distance between two locations 𝒔 and 𝒔′, 𝜈 > 0 is a scale parameter, 𝜙 > 0 is a range parameter, 
Γ is the gamma function, and 𝐾𝜈 is the modified Bessel function of the second kind with shape parameter 𝜈. The range and scale 
parameters are generated independently from 𝜈𝑖 ∼ Unif(0.1, 5) and 𝜙𝑖 ∼ Unif(0.5, 8).

Settings 4 and 5. The latent field is a single three-variate Gaussian random field with a Matern correlation structure. The 
Matern parameters for Setting 4 are (𝜈1, 𝜙1) = (0.5, 15), (𝜈2, 𝜙2) = (2, 20), and (𝜈3, 𝜙3) = (0.2, 10). In Setting 5, the parameters are 
(𝜈1, 𝜙1) = (1, 5), (𝜈2, 𝜙2) = (2, 3), and (𝜈3, 𝜙3) = (6, 2). Setting 4 shows strong spatial dependence and higher variability in sample 
variance across the space, whereas Setting 5 shows weak spatial dependence and low variability in sample variance.

Setting 6. The latent field is a single three-variate random field with a nonstationary Matern correlation structure as presented 
in [27]:

𝐶𝑀𝑛
(𝒔,𝒔′;𝜎, 𝜈,𝜙) = 𝜎(𝒔)𝜎(𝒔′)𝑟1(𝒔)𝑟1(𝒔′)𝑟2(𝒔,𝒔′)−1

(16)
6

(
𝑟2(𝒔,𝒔′)−1∕2ℎ

)𝜈(𝒔,𝒔′)
𝐾𝜈(𝒔,𝒔′)(𝑟2(𝒔,𝒔′)−1∕2ℎ),
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Fig. 2. Five thousand simulated points in a 100 × 100 field based on ten randomly generated clusters. The colors indicate true cluster membership and the grid on top 
of the plot illustrates the spatial segmentation used by TCL and iVAE.

where ℎ = ||𝒔− 𝒔′|| and we denote 𝜈(𝒔, 𝒔′) = (𝜈(𝒔) + 𝜈(𝒔′))∕2,

𝑟1(𝒔) =
(

𝜙2(𝒔)∕4𝜈(𝒔)
Γ(𝜈(𝒔))2𝜈(𝒔)−1

)1∕2

and

𝑟2(𝒔,𝒔′) =
(
𝜙2(𝒔)
8𝜈(𝒔)

+ 𝜙2(𝒔′)
8𝜈(𝒔′)

)
,

(17)

where 𝜎 ∶ℝ2 →ℝ+, 𝜈 ∶ℝ2 → ℝ+ and 𝜙 ∶ℝ2 →ℝ+ are the local variance, shape, and range parameter functions, respectively. We 
choose these functions as

𝜎(𝒔;𝒅𝜎, 𝛼𝜎) = log(1.1 + (𝒔⊤𝒅𝜎)∕𝛼𝜎),

𝜈(𝒔;𝒅𝜈 , 𝛼𝜈) = (𝒔⊤𝒅𝜈)1∕5∕𝛼𝜈 + 0.1, (18)

𝜙(𝒔;𝒅𝜙, 𝛼𝜙, 𝑐𝜙) = (𝒔⊤𝒅𝜙)∕𝛼𝜙 + 𝑐𝜙).

For the first component 𝑧1, we select the parameters 𝒅𝜎 = (1, 1), 𝛼𝜎 = 2, 𝒅𝜈 = (0, 1), 𝛼𝜈 = 5, 𝒅𝜙 = (1, 1), 𝛼𝜙 = 5, and 𝑐𝜙 = 10; for 𝑧2, 
we select 𝒅𝜎 = (0, 1), 𝛼𝜎 = 1.5, 𝒅𝜈 = (1, 0), 𝛼𝜈 = 4, 𝒅𝜙 = (1, 1), 𝛼𝜙 = −8, and 𝑐𝜙 = 40; for 𝑧3, we select 𝒅𝜎 = (1, 0), 𝛼𝜎 = 2, 𝒅𝜈 = (1, 1), 
𝛼𝜈 = 3, 𝒅𝜙 = (0, 1), 𝛼𝜙 = 4, and 𝑐𝜙 = 10. By using the above correlation structure, the variance, range, and scale parameters of the 
random field vary in space differently within each component.

Settings 1 and 2 are considered the easiest settings for the iVAE model as variances (and means in Setting 2) of the latent fields 
explicitly change between the clusters. These settings are spatial variants of the time series settings of some previous simulation 
studies, such as [13,16], where the latent components have varying means/variances based on some time segments. The settings aim 
to set a baseline performance under conditions, where the variances are explicitly changing based on our chosen auxiliary variable. 
Meanwhile, Settings 4 and 5 are used to measure the performance when the latent fields are stationary, and thus not identifiable 
in theory. Of these two, Setting 4 has higher variability in sample mean and in sample variance through the latent fields making it 
more optimal for iVAE. Settings 3 and 6 are chosen to illustrate the performance when the latent fields are nonstationary.

Mixing procedure. The observed data 𝒙 are generated by applying a mixing function 𝒇𝐿 to the latent fields 𝒛 as 𝒙 = 𝒇𝐿(𝒛). 
The mixing function 𝒇𝐿 is generated using multilayer perceptron (MLP) with 𝐿 layers following previous studies [16,18,13]. In 
making the mixing function invertible and differentiable, the number of hidden units in each layer equals the number of latent 
components and the nonlinear activation functions are smooth bijective functions, such as a hyperbolic tangent or exponential linear 
unit (ELU) [28]. In addition, the mixing matrices of the layers of MLP are normalized to have unit length row and column vectors to 
guarantee that none of the latent components vanish in the mixing process. Let 𝜔𝑖 be the activation function of 𝑖th layer and 𝑩𝑖 be 
the normalized mixing matrix of 𝑖th layer. Then, the mixing function 𝒇𝐿 is defined as

𝒇𝐿(𝒛) =

{
𝜔𝐿(𝑩𝐿𝒛), 𝐿 = 1,
𝜔𝐿(𝑩𝐿𝒇𝐿−1(𝒛)), 𝐿 ∈ {2,3,…}.

(19)
7

In these simulations, we use linear activation 𝜔𝐿(𝑥) = 𝑥 for the last layer and ELU activation
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𝜔𝑖(𝑥) =

{
𝑥, 𝑥 ≥ 0,
exp(𝑥) − 1, 𝑥 < 0,

(20)

𝑖 = 1, … , 𝐿 − 1, for the other layers. This means that the mixing function 𝒇 1 with one layer corresponds to a linear mixing case. The 
simulations are repeated 1000 times with 1, 2 and 3 mixing layers.

Model specifications. In iVAE’s encoder, decoder, and auxiliary function, we use three hidden layers with 128 units and leaky 
rectified linear unit (ReLU) activation to ensure that the model is capable of estimating the possible nonlinearities in mixing/unmixing 
functions and in the function 𝝀(𝒖), which is modeled by the auxiliary function. Likewise, in TCL, we use three hidden layers with 128 
units and leaky ReLU activation. For both models, iVAE and TCL, a 20 × 20 segmentation is used as an auxiliary variable, meaning 
that the spatial domain is divided into 𝑚 = 400 equally sized squares. This segmentation is illustrated in Fig. 2. iVAE and TCL are 
trained for 200 epochs with a batch size of 64. The initial learning rate is 0.01, which is decreased with second-order polynomial 
decay over 10000 training steps until the learning rate of 0.0001. SBSS and SNSS algorithms use two ring kernels defined by the 
parameters 𝒓1 = (0, 2) and 𝒓2 = (2, 4). Further, SNSS uses a 10 × 10 segmentation. The sizes of the rings and the segmentation for 
SNSS yielded the best average performance in an initial simulation containing 100 trials of each setting with various segmentations 
and ring sizes.

Performance index. We use the mean correlation coefficient (MCC), which is a widely used performance metric in nonlinear 
ICA, to measure the performance of different methods, e.g. [16,17,13,18]. MCC is a function of the correlation matrix 𝑲 = Cor(𝒛̂, 𝒛), 
where 𝒛̂ includes the estimated latent components, and is calculated as

MCC(𝑲) = 1
𝑝
sup
𝑷∈

tr(𝑷 abs(𝑲)), (21)

where  is a set of all possible permutation matrices, tr(⋅) is the trace of a matrix, and abs(⋅) denotes taking the absolute value of a 
matrix elementwise. The optimal MCC value is one in which case the estimated and true sources are perfectly correlated up to their 
signs.

Results. The resulting MCC values are presented in Fig. 3. In Settings 1, 2, 3 and 6, where the variances of the latent fields 
are varying based on the spatial location, and thus fulfilling the identifiability conditions, iVAE shows superior performance as 
compared with SBSS, SNSS, and TCL. In Setting 1, where the latent fields are zero-mean Gaussian with varying variances between 
the clusters, SNSS performs almost as well as iVAE, especially when the number of mixing layers is one. However, in Setting 2, 
where the mean also changes between the clusters, the performance of SNSS drops considerably, whereas the performance of iVAE 
remains good. In Setting 3, SBSS and SNSS perform similarly, but the methods do not reach the performance of iVAE, especially 
when the number of mixing layers is high. Meanwhile, Settings 4 and 5 are stationary and thus, in theory, more favorable for SBSS. 
Surprisingly, in Setting 4, where the Matern covariance function’s range parameters 𝜙 are high and the scale parameters 𝜈 are low, 
iVAE outperforms SBSS. This might be because such Matern parameters lead to high spatial dependence and larger variability in 
sample variance compared to Setting 5, which means that the mean and the variance are changing in some degree through out 
the spatial domain allowing the identifiability. However, in Setting 5, where the parameters are selected so that the mean and the 
variance are more stable throughout the field, SBSS slightly outperforms iVAE. In Setting 6, iVAE is the only method that is reliably 
capable of separating the sources. In conclusion, as long as the sample variance has enough variability in space, iVAE recovers the 
latent components well and outperforms the competing methods.

6. Real data example

In this section we demonstrate the spatial iVAE, SBSS and SNSS methods to a dataset derived from GEMAS geochemical mapping 
project [29], which is available in the R package robCompositions [30]. The application is two-fold. First, the latent fields are 
estimated with each method and the latent representations are compared using scaled MASHAP values. As we do not have any ground 
truth latent fields available as in simulations in Section 5, only the interpretability of the latent representations is compared. Second, 
we study if the prediction power can be increased by predicting the latent fields to new locations instead of predicting the observed 
variables directly. The predicted latent fields are then back transformed to the original variables by using the estimated mixing 
transformations provided by iVAE, SBSS and SNSS. TCL is not applied for the data as it does not estimate the mixing transformation 
𝒇 . For this reason, the scaled MASHAP values cannot be utilized for evaluating the importance of the latent components. For the same 
reason, the method is incapable of back transforming the estimated latent components, and thus cannot be applied for prediction 
purposes. The code for the analysis of the data is available at https://github .com /mikasip /NonlinearSNSS. The analysis was executed 
on a laptop running Windows 10, equipped with an Intel Core i5 processor (1.7 GHz) and 16 GB RAM.

The dataset consists of 2108 concentration measurements of 18 chemical elements (Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, Nb, P, Si, 
Sr, Ti, V, Y, Zn, Zr) in agricultural soil samples. We dropped one observation measured in Canary islands as it lacks neighboring 
observations. Therefore 𝑛 = 2107. The sample locations are presented in Fig. 4.

In this example, we are dealing with compositional data, meaning that the variables carry relative information to other variables 
rather than absolute information. In this dataset, the measurements are chemical elements’ relative proportions of the whole soil 
sample measured as milligrams per kilogram. Due to the sum constraints, compositional data do not follow the Euclidean geometry 
and it is custom to transform such data prior analysis. [4] argue that in the context of BSS, the isometric log-ratio (ilr) [31] trans-

formation is a natural choice yielding full rank data. While ilr coordinates are not easy to interpret, they have the additional benefit 
8

that they have a one-to-one relationship with the centralized log-ratio (clr) transformation. The clr transformation is popular among 
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Fig. 3. Boxlots of the mean correlation coefficients (MCC) of 1000 simulation trials of Settings 1-6 for iVAE, SBSS, SNSS and TCL. The color of the boxplots indicates 
the number of mixing layers where one layer corresponds to linear mixing.

practitioners, because, although the coordinates are singular, they are interpretable. Accordingly, the data are processed using an ilr 
transformation which reduces the dimension of the dataset by one, and therefore the dimension of the preprocessed data is 17. For 
interpretation purposes the ilr coordinates are transformed to clr coordinates and their interpretation goes similarly as in the case of 
log-transformed data, see [31] for further details.

In this application, we use the same iVAE model hyperparameters as in the simulation studies of Section 5. As an auxiliary variable, 
we use 10 km × 10 km spatial segmentation, which is illustrated in Fig. 4. Note that all spatial segments with zero observations are 
dropped. For SBSS and SNSS, we select the parameters provided in [7], where the same dataset was studied. Hence, we use one ring 
kernel with radius of 167 km for both SBSS and SNSS, and divide the spatial domain to four equally sized square segments for SNSS.

First, the contributions of the latent components to the clr transformed variables are determined for iVAE, SBSS and SNSS 
by calculating the scaled MASHAP values for each method’s mixing function estimate. For mixing function estimate, the input is 
the estimated latent components and the output is the ilr transformed observations, which are then transformed back in the clr 
transformed observations. Then, the scaled MASHAP values can be interpreted as importance of each latent feature to an original 
9

variable (in log scale). The averages of the scaled MASHAP values can be interpreted as importance of each latent feature to the whole 
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Fig. 4. Sample locations of GEMAS dataset and 100 km grid representing the segmentation used in iVAE model.

Table 1

The scaled MASHAP values for the decoder part of the trained iVAE model.

IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC13 IC14 IC15 IC16 IC17

clr(Al) 0.099 0.119 0.154 0.169 0.093 0.075 0.039 0.041 0.023 0.080 0.049 0.025 0.008 0.007 0.007 0.007 0.007

clr(Ba) 0.223 0.074 0.021 0.163 0.092 0.113 0.035 0.048 0.114 0.053 0.015 0.019 0.009 0.005 0.005 0.005 0.005

clr(Ca) 0.046 0.410 0.016 0.096 0.175 0.051 0.046 0.059 0.030 0.018 0.009 0.023 0.005 0.004 0.004 0.004 0.004

clr(Cr) 0.236 0.044 0.085 0.162 0.038 0.028 0.125 0.026 0.065 0.137 0.013 0.015 0.007 0.005 0.005 0.005 0.005

clr(Fe) 0.404 0.098 0.101 0.060 0.032 0.025 0.034 0.037 0.026 0.045 0.076 0.028 0.009 0.006 0.006 0.006 0.006

clr(K) 0.236 0.148 0.053 0.207 0.052 0.035 0.083 0.022 0.016 0.056 0.049 0.019 0.006 0.004 0.004 0.004 0.004

clr(Mg) 0.197 0.223 0.139 0.086 0.090 0.021 0.033 0.089 0.034 0.045 0.012 0.014 0.004 0.003 0.003 0.003 0.003

clr(Mn) 0.252 0.039 0.174 0.020 0.119 0.178 0.024 0.040 0.111 0.007 0.014 0.010 0.003 0.002 0.002 0.002 0.002

clr(Na) 0.163 0.158 0.020 0.069 0.274 0.155 0.024 0.020 0.021 0.011 0.009 0.054 0.006 0.004 0.004 0.004 0.004

clr(Nb) 0.055 0.338 0.083 0.037 0.031 0.036 0.097 0.095 0.020 0.036 0.097 0.045 0.007 0.006 0.006 0.006 0.006

clr(P) 0.057 0.079 0.251 0.048 0.186 0.161 0.032 0.090 0.016 0.038 0.008 0.020 0.003 0.003 0.003 0.003 0.003

clr(Si) 0.300 0.231 0.055 0.029 0.056 0.024 0.093 0.086 0.029 0.019 0.014 0.036 0.008 0.005 0.005 0.005 0.005

clr(Sr) 0.175 0.366 0.058 0.046 0.033 0.016 0.102 0.019 0.035 0.020 0.018 0.092 0.005 0.004 0.004 0.004 0.004

clr(Ti) 0.099 0.310 0.127 0.087 0.078 0.021 0.074 0.029 0.065 0.022 0.023 0.041 0.006 0.005 0.005 0.005 0.005

clr(V) 0.381 0.081 0.100 0.082 0.026 0.022 0.043 0.017 0.085 0.105 0.014 0.022 0.005 0.005 0.005 0.005 0.005

clr(Y) 0.057 0.290 0.087 0.038 0.087 0.047 0.076 0.073 0.116 0.026 0.058 0.011 0.013 0.005 0.005 0.005 0.005

clr(Zn) 0.237 0.087 0.137 0.163 0.084 0.027 0.047 0.086 0.045 0.056 0.012 0.005 0.004 0.002 0.002 0.002 0.002

clr(Zr) 0.241 0.309 0.026 0.106 0.041 0.045 0.044 0.021 0.021 0.052 0.040 0.025 0.010 0.005 0.005 0.005 0.005

Average 0.192 0.189 0.094 0.093 0.088 0.060 0.058 0.050 0.049 0.046 0.029 0.028 0.007 0.004 0.004 0.004 0.004

dataset. The scaled MASHAP values are calculated by using 200 observations as background data. To ensure that the background 
data represents the whole dataset as well as possible, the background locations are selected one by one, so that the new location has 
the maximum distance to any previously selected location. The obtained background data are presented in Fig. 5.

For interpretation, we order latent components in decreasing order based on the average scaled MASHAP values. By inspecting the 
resulting scaled MASHAP values of iVAE’s mixing function estimate provided in Table 1, we see that the latent components 1 and 2 
are the most important ones as they have the highest average scaled MASHAP values of 0.192 and 0.189, whereas the values of other 
components are smaller than 0.094. The fact, that the average scaled MASHAP values of latent components IC13-IC17 are almost 
10

zero, indicates that these components are essentially noise and do not explain any of the chemical elements. Hence, fewer latent 
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Fig. 5. Sample locations used as background data for calculating the SHAP values.

components would be enough to model the data. The average scaled MASHAP values of SBSS and SNSS, provided in Appendix A in 
Table A.3 and Table A.4, are spread more evenly for the latent components. SBSS has average scaled MASHAP values from 0.035 
to 0.114 and SNSS from 0.029 to 0.127. This indicates that none of the components can be dropped without losing information of 
the dataset. Also, based on the scaled MASHAP values, it is hard to determine the most interesting components, which makes the 
interpretation more difficult.

The two most important latent components provided by each of the methods are inspected more closely. The components based 
on iVAE are plotted in Fig. 6, and the components given by SBSS and SNSS are plotted in Appendix A Figs. A.7 and A.8, respectively. 
Of components recovered by iVAE, the first latent field shows north-south behavior by having low values in north and higher ones 
in south, while the second latent field separates the middle Europe by having higher values there and lower ones in south and north. 
SBSS and SNSS both have one component separating the area from Ukraine to northern Germany (the second component for SBSS 
and the first for SNSS), while the other ones do not show that clear spatial structures. For SBSS, the first component has slightly 
lower values in diagonal area from United Kingdom to Greece while the rest of the map has high values, and the second component 
for SNSS shows any spatial behavior only in area of Portugal and Spain.

We also calculated the scaled MASHAP values for iVAE’s unmixing function estimate, where the original observations are treated 
as input together with the auxiliary variables, and the output is the latent components. By this, we can determine which observed 
variables contribute the most to each of the latent components. Same background data is used as provided in Fig. 5. By looking at 
the scaled MASHAP values for the unmixing function estimate, provided in Table A.5, it is evident that Ba and V contribute the most 
to the latent component 1, while the latent component 2 has highest contributions of Ca, Sr and Mg.

Finally, we study if the prediction power can be increased by predicting the latent components rather than the original observa-

tions. We perform 10-fold crossvalidation by dividing the data randomly to 10 equally sized sets which are used one by one as a test 
data, while the rest of the data is used as a training data. The goal is to predict the observed chemical elements to the locations of 
the test data. As the data are multivariate and the variables are dependent on each other, the options are to use some multivariate 
modeling approach which takes the dependencies into account, or to find independent latent components which can be modeled

individually. As a multivariate modeling approach we consider cokriging, which takes cross dependencies of each variable pair into 
11

account. Cokriging is compared against latent component approaches, where the latent components are found by iVAE, SBSS and 
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Fig. 6. The first (left) and the second (right) latent fields for GEMAS dataset recovered by iVAE.

SNSS, and the independent latent components are modeled individually using ordinary kriging and universal kriging. Ordinary krig-

ing assumes a stationary mean in the space whereas universal kriging allows a trend in space. For details about kriging and cokriging, 
see e.g. [32,33].

In cokriging, we fit Matern variogram models for all variograms and cross-variograms of the ilr transformed variables. For vari-

ogram models, we select a mutual range parameter by calculating the mean of range parameters of each variable’s fitted univariate 
variograms. The mutual range parameter is selected in order to have a positive definite cokriging system, which is required to cal-

culate predictions to new locations. The Matern parameters for each variogram and cross-variogram are fitted using ordinary least 
squares (OLS) method. As the predicting with cokriging is computationally very expensive with such many variables and large sample 
size, we use only 50 nearest points for cokriging predictions to make it feasible.

In ordinary and universal kriging, we fit Matern, exponential and spherical variogram models for each independent component 
and select the best based on the OLS method. For ordinary kriging, we allow the mean of the spatial field to be a linear function 
of spatial coordinates. To make a fair comparison, we use only 50 nearest points also for kriging predictions. The predicted latent 
components are transformed back to ilr variables using each method’s mixing function estimate. At last, the predicted data are trans-

formed from ilr space to clr space, where the performance is evaluated. As performance measures, we use mean squared error (MSE), 
mean absolute error (MAE) and root mean squared error (RMSE). MSE, MAE and RMSE are calculated as 𝑀𝑆𝐸 = 1

𝑛
(𝑥 − 𝑥̂)2, 𝑀𝐴𝐸 =

1
𝑛
|(𝑥 − 𝑥̂)| and 𝑅𝑀𝑆𝐸 =

√
1
𝑛
(𝑥− 𝑥̂)2, where 𝑥 is the true value and 𝑥̂ is the estimated one. The average performances over the 10-fold 

crossvalidation are presented in Table 2. The lowest MSE, MAE and RMSE are obtained when iVAE is combined with ordinary kriging 
making it the best performing prediction method. SNSS combined with kriging slightly outperforms cokriging, and SBSS combined 
with kriging has very similar performance as cokriging. Universal kriging does not increase the performance, which indicates that 
the fields do not have linear trend in space. Because of the performance gain of iVAE combined with kriging, and the fact univariate 
kriging is computationally much more feasible than cokriging, we consider iVAE combined with kriging the best prediction method.

7. Discussion

Based on the results of this paper, iVAE is a preferable method in settings, where the variances of the latent fields are not 
12

stable across space. However, in stationary settings where the sample mean and sample variance did not change enough, SBSS still 



Information Sciences 665 (2024) 120365M. Sipilä, K. Nordhausen and S. Taskinen

Table 2

MSE, MAE and RMSE prediction errors of 10-fold crossvalida-

tion, where the chemical elements of the GEMAS dataset were 
predicted to new spatial locations using either cokriging or iVAE, 
SBSS and SNSS combined with ordinary or universal kriging.

Method MSE MAE RMSE

Cokriging 0.1811 0.2787 0.4252

iVAE + Ordinary kriging 0.1768 0.2717 0.4201

iVAE + Universal kriging 0.1770 0.2719 0.4203

SBSS + Ordinary kriging 0.1819 0.2777 0.4261

SBSS + Universal kriging 0.1825 0.2781 0.4268

SNSS + Ordinary kriging 0.1792 0.2758 0.4230

SNSS + Universal kriging 0.1797 0.2762 0.4236

performed better. In practice, this means for example having small range and large shape parameters in a Matern covariance function. 
However, many real-world spatial phenomena, such as temperature or humidity, often show high spatial dependence making iVAE 
the preferable method. To overcome the performance drop in stationary settings with low spatial dependence, it requires development 
of new models/methods which do not assume nonstationarity for identifiability.

In the geochemical application, we calculated the average scaled MASHAP values of the latent components of spatial iVAE’s 
mixing function estimate, and discovered that fewer components might be sufficient to model the dataset. iVAE allows modeling the 
data with fewer latent components than the observed variables but currently there are, to the best of our knowledge, no methods for 
estimating the latent dimension.

In our simulation studies, TCL performed poorly in all settings. This is most likely due to nonoptimal simulation setups for the 
method. TCL relies on classifying observed data into chosen segments; when the classification task is too easy (e.g. we have data 
with changing mean or the number of real clusters is too low), TCL succeeds in classification without finding ICs. This problem was 
previously acknowledged also in [13].

8. Conclusions

In this paper we extended iVAE, first proposed by [13], to the nonlinear SNSS setting. We discussed the theoretical background 
of the method and provided useful tools for interpreting the latent components through nonlinear mixing environment using SHAP 
values. We used simulation studies to illustrate the performance of iVAE method in nonlinear SBSS and SNSS settings, and applied 
the method for a geochemical dataset.

Simulation studies revealed that iVAE outperformed its competitors in all settings where the variability in variance of the latent 
fields was relatively high, that is, the variances changed relatively much between different locations. The variability was achieved 
either by having multiple (in our simulations, ten) clusters with varying variances, by having latent fields with a nonstationary 
correlation structure or by having latent fields with stationary correlation structure that yields strong spatial dependence and enough 
variability in sample variances in space. In the stationary setting, where the mean and variance did not change enough, SBSS still 
performed better.

In the geochemical application, we utilized iVAE, SBSS and SNSS to find the latent fields for the geochemical dataset. We 
interpreted the latent fields provided by SBSS, SNSS and iVAE by calculating the scaled MASHAP values for the mixing function 
estimates, and discovered which fields are the most important ones for each method. Based on the scaled MASHAP values, iVAE 
provided the easiest interpretable components, two of which were the most important ones. We examined the results further by 
comparing the two most important component of SBSS, SNSS and iVAE by plotting the corresponding latent fields. iVAE provided 
clearer structure for the components than the competing methods. In depth interpretations of the latent components, however, 
requires subject expertise and is beyond the scope of this paper. We also studied if the prediction power can be increased by pre-

processing the data using iVAE, and then predicting the independent latent components univariately, and backtransforming the 
predictions to the original variable space. The results suggest that by using iVAE as pre-processing method, the prediction power can 
be increased compared to alternative multivariate predicting approach.

In future research, models and methods for nonlinear SBSS should be developed also for stationary data, as iVAE relies on non-

stationary variances for identifiability. Furthermore, in our simulations, we only considered Gaussian random fields and assumed 
Gaussian latent components in model specification. In the future, deeper analysis of iVAE’s performance must be done using simula-

tions and various real data examples, where then also the effect of different source density distributions and the robustness properties 
under outliers or model mismatch must be studied, as was done for SBSS in [34]. The methods should be compared also in more fa-

vorable settings for TCL. Considering the flexibility of iVAE in terms of possibilities for auxiliary data, the method could be extended 
to various situations, such as for spatio-temporal data, as was also recently considered in a linear BSS framework [35]. For the latent 
field interpretation, we considered MASHAP based procedure for population level interpretations. In future work, other approaches, 
such as Shapley additive global importance [23] should be explored for latent component interpretation. Finally, in future work, 
13

procedures for estimating the dimension of the latent representation will be developed.
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Appendix A. Additional results for a real data example

Table A.3

Scaled MASHAP values for SBSS method’s mixing function estimate.

IC3 IC2 IC4 IC1 IC5 IC6 IC7 IC12 IC11 IC15 IC8 IC17 IC10 IC9 IC13 IC16 IC14

clr(Al) 0.033 0.157 0.168 0.032 0.125 0.013 0.001 0.034 0.080 0.039 0.113 0.060 0.002 0.050 0.024 0.067 0.002

clr(Ba) 0.193 0.074 0.068 0.063 0.050 0.054 0.013 0.079 0.040 0.033 0.133 0.065 0.028 0.046 0.014 0.013 0.032

clr(Ca) 0.015 0.134 0.186 0.005 0.136 0.016 0.052 0.090 0.055 0.042 0.078 0.020 0.061 0.008 0.057 0.018 0.028

clr(Cr) 0.310 0.016 0.147 0.038 0.069 0.081 0.045 0.031 0.037 0.006 0.007 0.012 0.005 0.044 0.076 0.022 0.053

clr(Fe) 0.129 0.160 0.053 0.037 0.003 0.088 0.033 0.104 0.086 0.015 0.004 0.117 0.020 0.051 0.075 0.002 0.023

clr(K) 0.170 0.047 0.102 0.058 0.089 0.121 0.085 0.015 0.064 0.013 0.084 0.091 0.003 0.010 0.009 0.025 0.013

clr(Mg) 0.116 0.205 0.091 0.089 0.022 0.022 0.061 0.013 0.037 0.037 0.048 0.011 0.080 0.133 0.012 0.014 0.009

clr(Mn) 0.160 0.038 0.046 0.029 0.025 0.015 0.012 0.043 0.011 0.135 0.053 0.131 0.098 0.013 0.049 0.033 0.109

clr(Na) 0.073 0.075 0.054 0.297 0.086 0.103 0.010 0.015 0.026 0.038 0.009 0.050 0.017 0.037 0.004 0.055 0.050

clr(Nb) 0.009 0.052 0.132 0.153 0.016 0.037 0.053 0.061 0.028 0.081 0.065 0.037 0.024 0.079 0.097 0.034 0.041

clr(P) 0.065 0.100 0.094 0.029 0.004 0.111 0.019 0.112 0.035 0.070 0.027 0.029 0.067 0.065 0.049 0.088 0.035

clr(Si) 0.152 0.228 0.003 0.138 0.154 0.027 0.032 0.019 0.021 0.039 0.016 0.018 0.011 0.094 0.030 0.003 0.016

clr(Sr) 0.113 0.088 0.121 0.084 0.106 0.026 0.010 0.056 0.081 0.007 0.009 0.059 0.072 0.034 0.005 0.035 0.095

clr(Ti) 0.050 0.034 0.101 0.089 0.035 0.031 0.193 0.055 0.050 0.032 0.027 0.019 0.102 0.016 0.082 0.054 0.030

clr(V) 0.182 0.085 0.025 0.012 0.085 0.143 0.059 0.084 0.103 0.041 0.008 0.001 0.084 0.002 0.007 0.029 0.050

clr(Y) 0.002 0.042 0.083 0.189 0.019 0.085 0.102 0.063 0.023 0.068 0.025 0.035 0.063 0.036 0.059 0.073 0.034

clr(Zn) 0.146 0.003 0.163 0.091 0.025 0.075 0.137 0.068 0.073 0.051 0.042 0.011 0.025 0.013 0.020 0.049 0.008

clr(Zr) 0.131 0.245 0.032 0.164 0.038 0.031 0.121 0.036 0.005 0.076 0.045 0.006 0.001 0.005 0.003 0.057 0.003

Average 0.114 0.099 0.093 0.089 0.060 0.060 0.058 0.054 0.047 0.046 0.044 0.043 0.042 0.041 0.037 0.037 0.035

Table A.4

Scaled MASHAP values for SNSS method’s mixing function estimate.

IC2 IC5 IC7 IC3 IC4 IC6 IC8 IC1 IC14 IC9 IC10 IC16 IC12 IC17 IC11 IC15 IC13

clr(Al) 0.096 0.216 0.017 0.003 0.015 0.063 0.007 0.165 0.040 0.068 0.079 0.062 0.031 0.066 0.011 0.011 0.051

clr(Ba) 0.150 0.095 0.034 0.026 0.093 0.027 0.046 0.022 0.053 0.030 0.134 0.037 0.088 0.064 0.061 0.010 0.029

clr(Ca) 0.102 0.263 0.026 0.041 0.046 0.032 0.007 0.068 0.091 0.067 0.019 0.030 0.025 0.077 0.009 0.064 0.035

clr(Cr) 0.131 0.037 0.068 0.019 0.186 0.128 0.043 0.089 0.059 0.035 0.064 0.002 0.027 0.037 0.004 0.041 0.030

clr(Fe) 0.196 0.046 0.027 0.030 0.062 0.056 0.018 0.056 0.139 0.023 0.082 0.002 0.055 0.049 0.014 0.042 0.104

clr(K) 0.112 0.107 0.024 0.113 0.072 0.022 0.061 0.060 0.037 0.073 0.073 0.016 0.076 0.063 0.021 0.041 0.028

clr(Mg) 0.238 0.111 0.029 0.053 0.021 0.002 0.157 0.073 0.026 0.021 0.114 0.016 0.046 0.001 0.008 0.039 0.045

clr(Mn) 0.070 0.034 0.040 0.047 0.041 0.071 0.056 0.099 0.165 0.029 0.013 0.054 0.110 0.063 0.030 0.062 0.016

clr(Na) 0.005 0.144 0.089 0.124 0.137 0.086 0.063 0.080 0.062 0.014 0.021 0.099 0.008 0.017 0.021 0.019 0.012

clr(Nb) 0.078 0.082 0.100 0.099 0.011 0.089 0.099 0.001 0.017 0.080 0.004 0.070 0.067 0.012 0.116 0.053 0.021

clr(P) 0.113 0.057 0.083 0.029 0.028 0.058 0.004 0.081 0.085 0.145 0.000 0.169 0.023 0.039 0.049 0.028 0.008
14

clr(Si) 0.289 0.082 0.044 0.069 0.043 0.082 0.057 0.003 0.030 0.119 0.025 0.011 0.064 0.017 0.045 0.019 0.001
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Table A.4 (continued)

IC2 IC5 IC7 IC3 IC4 IC6 IC8 IC1 IC14 IC9 IC10 IC16 IC12 IC17 IC11 IC15 IC13

clr(Sr) 0.003 0.152 0.044 0.112 0.093 0.031 0.040 0.064 0.032 0.080 0.084 0.045 0.081 0.058 0.071 0.004 0.008

clr(Ti) 0.050 0.106 0.131 0.001 0.053 0.070 0.114 0.014 0.089 0.031 0.133 0.073 0.027 0.066 0.031 0.005 0.005

clr(V) 0.153 0.016 0.068 0.047 0.072 0.097 0.075 0.030 0.057 0.033 0.089 0.006 0.000 0.056 0.063 0.065 0.072

clr(Y) 0.079 0.071 0.151 0.191 0.018 0.000 0.106 0.030 0.006 0.042 0.018 0.011 0.055 0.049 0.048 0.094 0.028

clr(Zn) 0.086 0.031 0.154 0.164 0.126 0.157 0.064 0.059 0.051 0.053 0.003 0.009 0.003 0.015 0.018 0.003 0.004

clr(Zr) 0.328 0.063 0.137 0.092 0.028 0.000 0.050 0.063 0.001 0.039 0.017 0.092 0.006 0.026 0.031 0.008 0.019

Average 0.127 0.095 0.070 0.070 0.064 0.060 0.059 0.059 0.058 0.055 0.054 0.045 0.044 0.043 0.036 0.034 0.029

Table A.5

The scaled MASHAP values for the iVAE model’s encoder part.

IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC13 IC14 IC15 IC16 IC17

clr(Al) 0.042 0.027 0.024 0.014 0.042 0.039 0.050 0.011 0.109 0.017 0.008 0.082 0.009 0.036 0.038 0.042 0.036

clr(Ba) 0.128 0.047 0.017 0.029 0.086 0.009 0.142 0.037 0.201 0.018 0.060 0.095 0.059 0.060 0.059 0.069 0.057

clr(Ca) 0.057 0.221 0.028 0.089 0.039 0.155 0.114 0.042 0.063 0.090 0.133 0.028 0.038 0.066 0.075 0.070 0.085

clr(Cr) 0.029 0.031 0.013 0.084 0.014 0.063 0.028 0.155 0.031 0.134 0.027 0.027 0.062 0.058 0.053 0.065 0.058

clr(Fe) 0.055 0.015 0.028 0.043 0.033 0.074 0.056 0.019 0.019 0.013 0.089 0.128 0.014 0.039 0.045 0.053 0.048

clr(K) 0.062 0.006 0.062 0.103 0.031 0.008 0.007 0.059 0.015 0.070 0.023 0.087 0.015 0.060 0.059 0.066 0.052

clr(Mg) 0.072 0.110 0.161 0.068 0.129 0.086 0.015 0.035 0.019 0.046 0.029 0.025 0.171 0.073 0.097 0.064 0.068

clr(Mn) 0.042 0.024 0.125 0.006 0.034 0.098 0.215 0.027 0.058 0.008 0.025 0.045 0.032 0.058 0.054 0.051 0.051

clr(Na) 0.057 0.086 0.043 0.057 0.156 0.069 0.038 0.017 0.038 0.079 0.101 0.022 0.076 0.068 0.053 0.062 0.057

clr(Nb) 0.015 0.052 0.019 0.026 0.027 0.016 0.007 0.074 0.050 0.086 0.036 0.130 0.024 0.052 0.053 0.050 0.069

clr(P) 0.044 0.009 0.134 0.072 0.067 0.087 0.192 0.051 0.007 0.020 0.031 0.032 0.015 0.053 0.051 0.053 0.047

clr(Si) 0.078 0.033 0.007 0.016 0.057 0.063 0.011 0.141 0.101 0.042 0.071 0.011 0.086 0.066 0.050 0.034 0.064

clr(Sr) 0.051 0.102 0.068 0.035 0.057 0.010 0.017 0.068 0.032 0.071 0.160 0.008 0.034 0.047 0.049 0.057 0.054

clr(Ti) 0.028 0.054 0.043 0.046 0.055 0.012 0.026 0.087 0.044 0.044 0.074 0.007 0.051 0.056 0.056 0.065 0.063

clr(V) 0.093 0.018 0.019 0.054 0.057 0.038 0.011 0.035 0.095 0.151 0.020 0.017 0.057 0.048 0.050 0.051 0.043

clr(Y) 0.012 0.055 0.067 0.030 0.087 0.034 0.019 0.061 0.104 0.017 0.029 0.072 0.136 0.054 0.046 0.048 0.058

clr(Zn) 0.059 0.039 0.112 0.166 0.012 0.115 0.042 0.063 0.007 0.064 0.026 0.048 0.011 0.052 0.050 0.051 0.040

clr(Zr) 0.077 0.070 0.032 0.064 0.018 0.026 0.009 0.017 0.007 0.030 0.060 0.134 0.110 0.053 0.063 0.049 0.050
15

Fig. A.7. The first (left) and the second (right) latent fields for GEMAS dataset recovered by SBSS.
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Fig. A.8. The first (left) and the second (right) latent fields for GEMAS dataset recovered by SNSS.
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