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Abstract

We present an updated view on the phenomenon of mutually enhanced magicity based on the current
experimental knowledge of atomic masses, including some recent precision measurements performed
with the ISOLTRAP mass spectrometer at ISOLDE/CERN. We discuss the trends of the proton
and neutron empirical shell gaps computed either in the standard approach, along chains corre-
sponding to magic numbers of protons and neutrons, respectively, or along the neighbouring isotonic
chains differing by two nucleon numbers. We show that in the latter case the empirical shell-gap
trend is anti-correlated to the one observed along the magic-number chains. We perform a theoreti-
cal investigation of the origin of this feature by an analysis of the contributions from the monopole,
pairing and quadrupole interactions, focusing on the phenomenon of mutually enhanced magicity. We
emphasize the role of quadrupole correlations for explaining the full range of experimental information.

Keywords: Nuclear Structure and Reactions, Radioactive Beams

1 Introduction

With the development of precision mass-
measurement techniques based on ion traps and
storage rings [1], the atomic masses of more
than 2400 isotopes have been determined with
an uncertainty lower than 100 keV [2]. This sig-
nificant evolution has refined the features of the
mass surface (the locus of all atomic masses as
a function of proton and neutron number) to an
extent allowing to observe not only its global
trend, but also the trends of its derivatives. The
latter, expressed as finite differences of atomic
masses called mass filters, have played an essen-
tial role in studying the different features of

nuclear-structure phenomena, such as (in decreas-
ing order of magnitude) shell effects (≈ 5 MeV),
pairing gaps (≈ 1 MeV) and quadrupole defor-
mation (< 1 MeV). The enhanced precision has
enabled examining more than the average fea-
tures of these mass filters and the extended range
has allowed a broader basis of interpretation.

Of the different mass filters, one of the most
widely analyzed and the one that we will give
particular attention to in this work is the two-
nucleon (neutron or proton) empirical shell gap.
It is regarded as an essential piece of experi-
mental information for identifying the so-called
nuclear magic numbers and, in relation to a shell
or mean-field model of nuclear structure, for quan-
tifying the size of the underlying energy gaps.
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Such parallels are not without caveats as discussed
for example in [3, 4], advocating that theory-
experiment comparisons should be restricted to
the observables themselves. For such comparisons,
the two-nucleon shell gap is an attractive bench-
mark because it is computed only using the masses
of even-even nuclei, which are significantly simpler
to calculate than their odd counterparts. It is thus
not surprising that a lot of experimental effort has
gone into extending the knowledge of empirical
shell gaps and thus tracing the evolution of magic
numbers in exotic nuclei, matched by a compara-
ble theoretical effort, which in the last years has
also seen a significant contribution from ab-initio
approaches [5–10].

One important experimental feature of the
two-neutron empirical shell gap is the so-called
“mutually enhanced magicity”, namely the fact
that moving along a neutron-magic chain the shell
gap peaks when crossing a magic number of pro-
tons. The same is true for the two-proton empirical
shell gap at the crossing of a neutron magic num-
ber along a proton-magic isotopic chain. This phe-
nomenon has been observed a few decades ago in
the 208Pb region [11] and was explained for 208Pb
by [12] using a shell-model framework and quite
general arguments, but focusing on the monopole
part of the residual interaction, while noting the
likely, non-negligible role of multipole correlations.
More recently, the phenomenon was described in
the framework of a symmetry-restored generator
coordinate method (GCM) using a Skyrme inter-
action (SLy4) [3, 13], a crucial role being played by
the treatment of quadrupole correlations beyond
the mean field (BMF).

With the contribution of precision mass
measurements performed at radioactive-ion-beam
facilities, evidence for the phenomenon of mutu-
ally enhanced magicity has been gathered far
beyond the information available at the moment of
the original discovery. More recent highlights con-
cern very neutron-rich, doubly magic nuclei in the
regions of 78Ni [14] and 132Sn [15–17]. All these
measurements suggest that mutually enhanced
magicity is a universal phenomenon across the
nuclear chart. Furthermore, in one of the more
recent studies [18] it was shown that the trend of
the neutron empirical shell gap is sensitive to the
phenomenon of “enhanced magicity” even when
it is computed two neutrons before a magic neu-
tron number. The difference of behaviour for this

shifted empirical shell gap is that crossing a pro-
ton magic number manifests as a local minimum
instead of a maximum. In [18] this was explained
as an effect of the same BMF correlations, but
without a formal justification. A similar feature
was discussed in [19] concerning the neutron shell
gap computed two neutrons after a magic number,
again relying mostly on empirical analogies.

In this study we analyze precision mass
data including some recent measurements from
ISOLTRAP [16, 18, 19] to revisit the phenomenon
of mutually enhanced magicity. In particular, we
address the universality of the phenomenon, as
the arguments brought in the original paper of
[12] are relying on single-particle states and resid-
ual interactions valid around 208Pb. We begin by
reviewing the role of the monopole part of the
residual interaction, and discussing in which con-
ditions it explains or not the observed trends of
the empirical shell gap. We then go further and
address the role of pairing correlations via the
seniority model and (by a perturbative analysis)
the role of quadrupole correlations. For both the
monopole, pairing and quadrupole contributions,
we discuss their impact on the trends of the shifted
empirical shell gap.

2 Experimental information

The two-nucleon empirical shell gap expresses the
drop of the two-nucleon separation energy at the
crossing of a magic number (corresponding to the
type of nucleon in question). As such, its analogy
to a gap in a spectrum of single-particle energies is
immediate. The formal definition of the quantity
is:

∆2n(Z,N0) = E(Z,N0 − 2) + E(Z,N0 + 2)

− 2E(Z,N0),

∆2p(Z0, N) = E(Z0 − 2, N) + E(Z0 + 2, N)

− 2E(Z0, N), (1)

where E(Z,N) is the (negative) binding energy
of the nucleus, the 2n and 2p subscripts mark
the neutron or proton gap, while N0 and Z0

correspond to a “magic” number of neutrons or
protons, respectively.
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The shifted empirical shell gaps mentioned
previously, ∆±

2n and ∆±
2p, are defined as:

∆±
2n(Z,N0) = E(Z,N0 ± 4) + E(Z,N0)

− 2E(Z,N0 ± 2)

∆±
2p(Z0, N) = E(Z0 ± 4, N) + E(Z0, N)

− 2E(Z0 ± 2, N) (2)

where the + or − superscript denotes the direction
in which the definition of the gap is shifted.

In Fig. 1 are shown the experimental two-
neutron separation energies as a function of neu-
tron number, for several isotopic chains. The
intervals representing the ∆2n and ∆±

2n for the
magic neutron number N = 50 are marked.
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Fig. 1 Experimental two-neutron separation energies S2n

from the 2020 Atomic Mass Evaluation [2] as a function of
neutron number, for the Z = 36− 44 isotopic chains. Only
even Z and N values are considered. The S2n drops defin-
ing the two-neutron empirical shell gap at N = 50 in the
normal (∆2n) and shifted (∆±

2n) variants are marked. The
inset presents the simplified model space used for the anal-
ysis of the empirical shell-gap trend using the monopole,
pairing and quadrupole Hamiltonians. The 2j+1 degener-
acy is explicitly shown for each level. The π axis marks on
the S2n plot the Z values of the different chains.

In order to start with a global view of the
experimental trends, in Fig. 2 we represent the
two-neutron empirical shell gap for the magic
numbers N0 = 28, 50, 82 and 126, based on data
from the Atomic Mass Evaluation. This time the
2016 version of the evaluation [20] is chosen as
reference, because it allows emphasizing contribu-
tions from more recent measurements performed
by ISOLTRAP [16, 18, 19] and TITAN [17], which

are represented in full symbols. The phenomenon
of mutually enhanced magicity manifests as the
∆2n peaks observed at the crossing of a magic
proton number. One notices quite clearly the min-
ima in ∆−

2n at the same proton numbers Z0 =
20, 40, 50, 82, as well as in ∆+

2n, where data are
available, for Z0 = 20, 28, 40 and perhaps less
markedly for Z0 = 82. The (anti-)correlation
between the trends of the regular shell gap, on
the one hand, and the shifted shell gap, on the
other, indicates that a similar nuclear-structure
phenomenon should be the dominant cause. A
similar picture with similar features is presented
for the proton empirical shell gap in Fig. 3 (note
that for this figure only data from the most recent
AME are shown [2]).
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Fig. 2 Two-neutron empirical shell gap computed in the
three variants discussed in this work, namely ∆2n,∆

+
2n and

∆−
2n. Data are taken from the AME2016 [20], ISOLTRAP

[16, 18, 19] (full circles) and TITAN [17] (full square). Pro-
ton magic numbers are marked by a dashed line.

In the following, we will study what is expected
for the trends of ∆2n and ∆±

2n by considering the
effect of the monopole, pairing and quadrupole
proton-neutron part of the nuclear Hamiltonian.
Taking a perturbative approach, the binding
energy of the nuclear system will be described as a
sum of independent contributions from the three
parts of the interaction:

E(Z,N) = Em + Epair + EQ, (3)

which naturally leads to a similar decomposition
of the empirical shell gap (in any variant):

∆2n(Z,N) = ∆2n,m +∆2n,pair +∆2n,Q, (4)
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all being a priori functions of both the proton and
the neutron numbers. Although the analysis will
focus for simplicity on the neutron empirical shell
gap, the results would apply in a similar way to
the proton gap.
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Fig. 3 Two-proton empirical shell gap computed in the
three variants discussed in this work, namely ∆2p,∆

+
2p and

∆−
2p. Data are taken from the AME2020 [2]. Neutron magic

numbers are marked by a dashed line.

3 Effect of the monopole
Hamiltonian

In a first instance, we will perform the analysis
only taking into account the monopole Hamil-
tonian Hm (as in [12]). Nowadays still a lot of
the intuition concerning nuclear-structure evolu-
tion with proton and neutron number is based on
the effects of the monopole Hamiltonian (see for
example the global empirical study of [21] or the
more recent review [22]). Hm is written in the
second quantization as [23]:

Hm =
∑
i

ϵνi N̂
ν
i +

∑
i

ϵπi N̂
π
i +

∑
ij

V̄ πν
ij N̂ν

i N̂
π
j

+
∑
i,j≥i

N̂ν
i (N̂

ν
j − δij)

1 + δij
V̄ νν
ij

+
∑
i,j≥i

N̂π
i (N̂

π
j − δij)

1 + δij
V̄ ππ
ij , (5)

where the indices i, j run over all single-particle
states of the shell-model space, ϵi are the cor-
responding single-particle energies, N̂i are the
particle number operators for the states i, V̄ij

are the angular-momentum-averaged centroids of
the two-body matrix elements (TBME), δij is the
Kronecker delta and ν, π designate neutron and
proton states, respectively. We note that only the
diagonal elements of the monopole interaction are
considered. Equation (5) shows that the Hamil-
tonian Hm does not lead to any mixing of the
pure configurations built with the states of the
valence-space single-particle basis, but only shifts
the binding energy of the system depending on the
occupations of these states. The binding energy in
this case can be computed analytically, once the
interaction parameters are defined.

For simplicity, in the following discussion we
will restrict ourselves to a smaller valence space,
assuming that protons are filling a single j orbit
and that the neutron energy gap is formed
between two well defined shells, the occupation of
which does not change with the number of pro-
tons. The simplification is in fact equivalent to
the frozen picture where lower proton and neutron
orbits are completely filled and no neutron exci-
tations to higher orbits occur. This is represented
in the inset of Fig. 1. While we are limited to the
monopole part of the Hamiltonian, this simplifi-
cation only reduces the size of Eq. (5) without
affecting the generality of the result.

In the model space of Fig. 1, the sums in
Eq. (5) disappear and Hm is written as:

Hm =ϵνl N̂
ν
l + ϵνhN̂

ν
h + ϵπkN̂

π
k + V̄ πν

kl N̂ν
l N̂

π
k

+ V̄ πν
kh N̂ν

h N̂
π
k +

N̂ν
l (N̂

ν
l − 1)

2
V̄ νν
ll

+
N̂ν

h (N̂
ν
h − 1)

2
V̄ νν
hh + N̂ν

l N̂
ν
h V̄

νν
lh

+
N̂π

k (N̂
π
k − 1)

2
V̄ ππ
kk (6)

Taking into account the level degeneracy 2j+1,
we can now write directly the energy of the nuclei
used to compute the empirical shell gap ∆2n(Z0+
Np, N0), where in our case Z0 corresponds to an
empty k shell and N0 corresponds to a full l shell
and empty h shell. The detailed expressions for
the binding energies of the involved nuclei are pre-
sented in the Appendix, while here we give only
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the final expression of the empirical shell gap:

∆2n,m =2∆+ 2Np(V̄
πν
kh − V̄ πν

kl )− (4jl − 1)V̄ νν
ll

+ 2(2jl + 1)V̄ νν
lh + V̄ νν

hh , (7)

where ∆ = ϵνh − ϵνl is the real shell gap in the
simplified model and for compactness we have
reduced the notation of ∆2n,m(Z0 + Np, N0) to
∆2n,m.

This result is similar to what was obtained in
[12], in which the only term determining a vari-
ation of the empirical neutron gap with proton
number (at the monopole level) is the difference
of the proton-neutron TBME linking the two neu-
tron orbits around the gap and the proton orbit
being filled. However, it is clear from Eq. (7) that
the gap is maximum at the doubly magic nucleus
(Z0, N0) with respect to the larger proton numbers
only if the term V̄ πν

kh − V̄ πν
kl is negative, meaning

that the neutrons from above the gap are more
attracted to the protons than the neutrons from
below. Furthermore, a local maximum would be
obtained at (Z0, N0) only if in the proton shell
below the magic number the corresponding dif-
ference of monopole TBME changes sign. In its
most general form, the formula does not exclude
obtaining a minimum or neither a minimum, nor
a maximum at the magic number, for other values
of the proton-neutron interaction.

A maximum separation of the effective single-
particle energies (ESPE) defining the neutron gap
does indeed occur for N = 82 and N = 126 at
Z = 50 and Z = 82, respectively, but (in a differ-
ent region of the nuclear chart) the gap between
the neutron ESPEs defining the N = 50 shell
closure is in fact shrinking towards Z = 28 (see
discussions in [21, 24]) due to the corresponding
monopole terms in the Hamiltonian. Experimen-
tally, the mass surface above 78Ni does extrapolate
towards a local enhancement of the empirical shell
gap at the doubly magic nucleus (see Fig. 3),
despite this trend in ESPEs [14, 18]. For this lat-
ter example, the monopole analysis of Eq. (7) and
[12] would not predict a local maximum in ∆2n,
contrary to experiment. This brings into discus-
sion the role of correlations beyond the monopole
trends, which were not explicitly included in [12].

In order to compute at the monopole level
what is expected for ∆−

2n, we need to write also
the binding energy of the N0 − 4 isotope (see

Appendix), leading to a value of ∆−
2n:

∆−
2n,m = 4V̄ νν

ll , (8)

while in a similar way one can obtain:

∆+
2n,m = 4V̄ νν

hh . (9)

This means that under the action of a pure-
monopole force and assuming a naive filling of the
proton and neutron orbits, there is no expected
variation of ∆+

2n or ∆−
2n with proton number. This

is also at odds with what is observed experimen-
tally. Both the global trends of the empirical shell
gap ∆2n and those of its variants ∆±

2n call for a
treatment of the residual interaction beyond the
monopole trends.

4 Effect of pairing and of the
proton-neutron quadrupole
interaction

Unlike the monopole interaction discussed in the
previous section, the dependence on Z and N
of the binding energy stemming from the pairing
and the quadrupole proton-neutron interaction is
more difficult to quantify exactly. For the pair-
ing energy, a qualitative view can be gathered
from the seniority model for a single degenerate
shell, which yields an analytical expression. For
the quadrupole correlation energy, an analytical
expression valid in the vicinity of closed shells can
be obtained using perturbation theory.

Such a study was performed in [25] and applied
to the description of the excitation energies of
intruder 0+ states. Later on, a similar approach
was integrated in a broader study using the
Interacting Boson Model (IBM) of the impact
of pairing and quadrupole correlations on the
trends of ground-state binding energies [26, 27],
as well as of the phenomenon of nuclear phase
transitions [28–30]. In particular, it was shown
in this work that the energy contribution from
the quadrupole proton-neutron interaction can
be recast as a renormalization of the monopole-
pairing interaction between like nucleons [26] and
that a monopole pairing interaction leads to a dif-
ferent evolution of the pairing energy along an
isotopic chain than a zero-range delta interaction,
despite the fact they have similar spectroscopic
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properties [31]. The approach of [25] has been
often used to explain the mechanism behind the
emergence of shape coexistence in the vicinity of
closed shells [32, 33] and has already been applied
to describe the excitation energies of intruder 0+

states in the 78Ni region [34], which will also be a
focus of this work.

In the following, we will briefly apply the same
technique to the study of empirical shell gaps.
First of all, the pairing energy in the ground state
of even-N identical nucleons in a single j shell is
derived in the seniority model to be [25–27]:

Epair(N) = −G

4
(2j + 1−N + 2)N, (10)

where G is the pairing interaction strength (a pos-
itive value) and it was considered that the ground
state corresponds to the seniority ν = 0.

It is clear that the proton pairing energy will
not give a contribution to the neutron shell gap
in any of the discussed variants ∆2n or ∆±

2n,
because it has no dependence on the neutron num-
ber. There will however be a contribution from
the neutron pairing energy. The detailed expres-
sions for the involved binding energies are given
in the Appendix, but it is straightforward to show
that for the schematic model discussed so far, the
pairing contribution to ∆2n, assuming an equal
neutron pairing strength G for both the lower and
the higher shells is:

∆2n,pair = −G(jl + jh − 1), (11)

which is always a negative contribution. This is
because the open-shell nuclei always have more
binding from pairing than the closed-shell ones.
Similarly, for the shifted gaps one obtains:

∆±
2n,pair = 2G, (12)

which is a positive contribution.
With Eqs. (11) and (12) one obtains the result

that the pairing interaction simply offsets the shell
gap by a constant value, downward for ∆2n and
upward for ∆±

2n, therefore the pairing interaction
cannot be responsible for the trends shown in
Figs. 2 and 3.

To express the contribution of the quadrupole
proton-neutron interaction, we will follow the per-
turbative approach derived in [25, 26]. The oper-
ator of the quadrupole proton-neutron interaction

is given by:

VQQ = k̄Q̂π · Q̂ν , (13)

where the dot product represents the tensor prod-
uct of rang zero and k̄ is the quadrupole inter-
action strength. Following [25, 26], the binding
energy from this interaction, in lowest order of per-
turbation theory and for the simple case of a single
proton orbit jk and a single neutron orbit jl, is :

EQ =
2k̄2

5∆Ekl
F (Np, jk)F (Nn, jl)X

π
kX

ν
l , (14)

where by EQ we understand EQ(Z0 + Np, N0 +
Nn) and the X terms are matrix elements of the
quadrupole operator:

Xπ
k =

[
⟨(jk)2; 0+∥Qπ∥(jk)2; 2+⟩

]2
,

Xν
l =

[
⟨(jl)2; 0+∥Qν∥(jl)2; 2+⟩

]2
. (15)

and we have made for compactness the following
notation:

Np(2jk + 1−Np)

2(2jk − 1)
= F (Np, jk), (16)

The term Xπ
k should be independent of the neu-

tron shell which is being filled, while the term Xν
l

becomes Xν
h when neutrons are filling the upper

shell. The factor ∆Ekl is the energy denominator
of the perturbation-theory expansion and it too
depends on the neutron shell which is being filled.
It is a negative quantity, which also gives the sign
of EQ.

With Eq. (14) one can compute the effect
of the quadrupole residual interaction on the
trends of the ground-state binding energy around
doubly magic nuclei, where lowest order pertur-
bation theory is more accurate. In particular,
one can compute the binding-energy gain due to
the proton-neutron quadrupole interaction for the
three variants of ∆2n. The detailed calculations
for the involved binding energies are again given
in the Appendix, while here we limit ourselves to
presenting the final results:

∆2n,Q =
2k̄2

5
F (Np, jk)X

π
k

[
Xν

l

∆Ekl
+

Xν
h

∆Ekh

]
,

∆−
2n,Q =

2k̄2

5∆Ekl
F (Np, jk)X

π
kX

ν
l

(
− 4

2jl − 1

)
,
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∆+
2n,Q =

2k̄2

5∆Ekh
F (Np, jk)X

π
kX

ν
h

(
− 4

2jh − 1

)
.

(17)

Equation (17) shows that the quadrupole
proton-neutron interaction brings a negative con-
tribution to ∆2n and a positive contribution to
∆±

2n (due to the negative sign of the ∆E terms),
both varying with the number of valence protons
as F (Np, jk), a quadratic function of Np which
peaks at the middle of the jk shell. The fact
that the same factor gives the Np dependence of
both ∆2n,Q and ∆±

2n,Q determines a correlation
between the two quantities, with the former reach-
ing a maximum and the latter reaching a minimum
for a closed proton shell.

By using Eq. (4), we can now express the
values of ∆2n and ∆±

2n considering all contribu-
tions from the monopole, pairing and quadrupole
interactions:

∆2n =2∆+ 2Np(V̄
πν
kh − V̄ πν

kl ) + V νν

− 2k̄2

5
F (Np, jk)X

π
k

[
Xν

l

|∆Ekl|
+

Xν
h

|∆Ekh|

]
,

∆−
2n =4V̄ νν

ll + 2G+
2k̄2

5|∆Ekl|

×
(

4

2jl − 1

)
F (Np, jk)X

π
kX

ν
l ,

∆+
2n =4V̄ νν

hh + 2G+
2k̄2

5|∆Ekh|

×
(

4

2jh − 1

)
F (Np, jk)X

π
kX

ν
h , (18)

where we have also made the quadrupole terms
explicitly positive in order to clearly illustrate in
the formula whether they give a negative or a posi-
tive contribution. The term V νν = −(4jl−1)V̄ νν

ll +
2(2jl+1)V̄ νν

lh + V̄ νν
hh −G(jl+ jh−1) groups all the

monopole neutron-neutron interactions in Eq. (7)
that do not depend on Np and the contribution of
the pairing interaction.

Coming back to the expression of the usual
shell gap ∆2n, we remark again that the
2Np(V̄

πν
kh − V̄ πν

kl ) term originating in the monopole
interaction can determine a peak at the cross-
ing of a proton magic number if the difference
V̄ πν
kh − V̄ πν

kl is negative, which is not generally
true. In addition, this term does not explain a

correlation between the ∆2n and ∆±
2n, as it is

only present in the expression of ∆2n. On the
other hand, the term originating in the quadrupole
proton-neutron interaction has the correct sign
irrespective of the specific shell configuration and
produces the experimentally observed correla-
tion with ∆±

2n. This is in agreement with the
already mentioned conclusions of Bender et al.
[3, 13] which describe the phenomenon of mutu-
ally enhanced magicity by the effect of BMF
quadrupole correlations.

We note that the assumptions made in this
analysis break down far from doubly magic
nuclei, where the perturbative and the single-shell
approach are no longer correct. A more realistic
approach would take into account the occupation
of several subshells by the valence protons and
neutrons, which would smooth out the quadratic
behavior of the quadrupole energy, in agreement
with what is observed experimentally. This simpli-
fied approach is however enough in order to give a
qualitative explanation of the observed trends of
the empirical shell gap.

In order to better illustrate the trends result-
ing from the different contributions discussed in
this section, in Fig. 4 we present the two-neutron
empirical shell gap obtained in the simplified
model built on the level scheme of Fig. 1. Both
the normal ∆2n and the shifted variant ∆−

2n are
shown.

The total binding energy is calculated as the
sum of the three contributions in Eq. (3) (see
red circles) and each contribution is calculated
as discussed in this section. The plot thus illus-
trates the results of Eq. (18). The abscissa of the
plot shows the number of valence protons and the
number of neutrons considered is 2jl + 1, thus cor-
responding to a closed neutron shell. The zero on
the abscissa corresponds to a proton shell closure
and thus a doubly magic nucleus. The parame-
ters of the model are loosely based on fits to the
78Ni region, with a Z0 = 28 and N0 = 40 pro-
ton/neutron cores, respectively. Because a long
proton shell is required for observing the trends,
the jk of the proton orbit is nevertheless consid-
ered to be jk = 9/2, as if the f5/2 and p3/2 orbits
between Z = 28 and Z = 38 formed only one
degenerate shell. This simplification is for illustra-
tion purposes only. The proton-neutron monopole
interactions are fixed based on the slopes of the
one-neutron separation energies along N = 49 and
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Fig. 4 Trends of the two-neutron empirical shell gap with
proton number in its normal ∆2n (filled symbols) and
shifted ∆−

2n variant (open symbols) for an illustrative ana-
lytical model built on the simple valence space of Fig. 1
(considering the total angular momentum of the proton
orbital jk = 9/2) and defining the total binding energy
as the sum of monopole Eq. (6), pairing, Eq. (10) and
quadrupole contributions, Eq. (14), added as shown in
Eq. (3). The different curves give the trends corresponding
to only monopole (black), monopole + pairing (blue) and
full monopole + pairing + quadrupole contributions (red).

N = 51. The neutron-neutron and proton-proton
monopole matrix elements are fixed for simplicity
to 0.05 MeV for nucleons in the same shell and
0 for nucleons across the shell gap. The former
are average values of typical monopole matrix ele-
ments for like nucleons. The pairing interaction G
is fixed to a unique value (for both protons and
neutrons) of 0.25 MeV, while the k strength of
the quadrupole interaction is fixed to -0.15 MeV.
Finally, the parameters of the perturbative expan-
sion |∆E| are fixed to 2.5 MeV and the Xπ and
Xν squared integrals are fixed to values ≈ 11, as
calculated in [26, 35].

Figure 4 presents, apart from the trends of the
empirical shell gap from the sum of monopole,
pairing and quadrupole contributions, also the
trends from only the monopole or only the
monopole plus pairing terms. The figure confirms
that the monopole interaction leads to a mono-
tonic trend in ∆2n and a flat trend in ∆−

2n (black
points), while the pairing interaction only shifts
the two trends (downward for ∆2n and upward for
∆−

2n). It is only the quadrupole interaction that
adds the quadratic dependence, producing a local
maximum at the proton shell closures (0 and 10
on the axis) for ∆2n, corresponding to local min-
ima in ∆−

2n. The particular fitting of monopole

proton-neutron interactions (appropriate to the
78Ni region) also leads to a situation where the
monopole interaction by itself cannot produce the
phenomenon of locally enhanced magicity at 0
valence protons, however the local enhancement
emerges naturally from the quadratic contribution
of the quadrupole interaction.

5 Comparison to
state-of-the-art models

In order to compare experimental data to realistic
nuclear models, in Fig. 5 we show the experi-
mental ∆−

2n values of the N = 50 isotones from
the AME2016 [20] and [18] and we present for
comparison also theoretical values obtained in
the shell-model and the beyond-mean-field frame-
works. One notices that the latest value mea-
sured by ISOLTRAP for Cu (Z = 29) continues
the downward trend towards 78Ni, supporting its
doubly-magic character.

28 30 32 34 36 38 40 42 44
Proton number

0.0

0.5

1.0

1.5

2.0

2.5

2n
 (M

eV
)

AME2016
ISOLTRAP 2017

JUN45
SLy4 GCM

Fig. 5 Experimental ∆−
2n values for the N = 50 isotones

compared to theoretical models. The data are from the
AME2016 [20] and the ISOLTRAP work on n-rich cop-
per isotopes [18]. The theoretical results represented with
red circles are from shell-model calculations using the full
JUN45 interaction [36]. The results represented with blue
squares are self-consistent mean-field calculations of [13],
using the beyond-mean-field framework based on the gen-
erator coordinate method.

The shell model calculations are performed
using the Antoine code [23, 37] (and veri-
fied with the NuShellX@MSU code [38]) and
the JUN45 interaction [36], which spans for
both protons and neutrons the valence space
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1f5/2,2p3/2,2p1/2,1g9/2. No valence-space restric-
tions or truncations are applied. The theoretical
curve of Fig. 5 shows a good agreement to experi-
ment, confirming that the features of ∆−

2n can be
reproduced if multipole valence-space correlations
are allowed.

The BMF calculations presented in Fig. 5 are
the ones of [13], using a symmetry-restored gen-
erator coordinate method (GCM). This approach
allows including not only the correlation energy
from static quadrupole deformation, but also
the one resulting from quadrupole shape fluctu-
ations. One notices again a good comparison to
experiment, underlining the fact that the BMF
approach of [13] does not only describe the mutu-
ally enhanced magicity in the normal shell gap,
but also the finer effect observed in the shifted one.

Conclusions

In this work, we reanalysed the global trends of
the two-nucleon empirical shell gap in the vicinity
of doubly magic nuclei, in particular the phe-
nomenon of mutually enhanced magicity. We have
defined a version of the two-nucleon empirical
shell gap shifted by two neutrons/protons along
the computation axis, called ∆±

2n and ∆±
2p. We

have illustrated that the trends of this filter with
respect to the complementary nucleon number are
well correlated to those of the regular empiri-
cal shell gap (∆2n and ∆2p) but exhibiting local
minima where the local maxima of the latter are
found. The new filter can prove useful to study
the evolution of a magic number when not enough
data are available to compute the regular shell
gap, as in the case of [18].

The explanation of the phenomenon of mutu-
ally enhanced magicity, given in [12] in terms
of the monopole Hamiltonian, was revisited. We
show that the monopole interactions cannot alone
explain the apparent universality of the phe-
nomenon and cannot at all explain the trends
of shifted shell gap. We show following the work
of [25–27] that the inclusion of the quadrupole-
quadrupole interaction is necessary and allows
explaining the local maxima/ minima in the regu-
lar/shifted shell gap, respectively, as well as their
anti-correlation. We illustrate this for the case of
∆−

2n at N = 50 using the shell-model [23, 36–38]
and the beyond-mean-field [13] approaches.

It is apparent from this work that the trends
of the mass surface possess more features than
the well established signatures of nuclear-structure
phenomena. High-precision mass measurements
are thus necessary in order to supply nuclear mod-
els with the full set of phenomena that binding
energies are sensitive to.

Acknowledgments. The authors would like to
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of the theoretical aspects involved in the prepara-
tion of the manuscript.

Appendix A

In this Appendix we present detailed expres-
sions for the binding-energy terms appearing in
the different equations for ∆2n and ∆±

2n, when
considering the monopole Hamiltonian or the pair-
ing and quadrupole-quadrupole residual interac-
tions. We will denote these energies as Em(Z,N),
Epair(Z,N), EQ(Z,N), respectively, and express
the nucleon numbers with respect to a doubly
magic nucleus (Z0, N0) as:

E(Z,N) = E(Z0 +Np, N0 +Nn), (A1)

with Nn either positive or negative and Np only
positive in the simplified model space. Finally, for
compactness we will drop the Z0 and N0 from
every function E(Z0 + Np, N0 + Nn) and cast
Np, Nn as superscripts, giving ENp,Nn . This sim-
plification will be systematically applied to all
binding-energy contributions given below.

With this convention and using Eq. (6), one
can write at the monopole level the energies of the
nuclei used to compute the different variants of
the empirical shell gap:

ENp,−4
m =(2jl − 3)ϵνl +Npϵ

π
k +Np(2jl − 3)V̄ πν

kl

+ (jl − 2)(2jl − 3)V̄ νν
ll

+
Np(Np − 1)

2
V̄ ππ
kk

ENp,−2
m =(2jl − 1)ϵνl +Npϵ

π
k +Np(2jl − 1)V̄ πν

kl

+ (jl − 1)(2jl − 1)V̄ νν
ll

+
Np(Np − 1)

2
V̄ ππ
kk

ENp,0
m =(2jl + 1)ϵνl +Npϵ

π
k +Np(2jl + 1)V̄ πν

kl

+ jl(2jl + 1)V̄ νν
ll
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+
Np(Np − 1)

2
V̄ ππ
kk

ENp,2
m =(2jl + 1)ϵνl + 2ϵνh +Npϵ

π
k + 2NpV̄

πν
kh

+Np(2jl + 1)V̄ πν
kl + jl(2jl + 1)V̄ νν

ll

+ V̄ νν
hh + 2(2jl + 1)V̄ νν

lh

+
Np(Np − 1)

2
V̄ ππ
kk

ENp,4
m =(2jl + 1)ϵνl + 4ϵνh +Npϵ

π
k + 4NpV̄

πν
kh

+Np(2jl + 1)V̄ πν
kl + jl(2jl + 1)V̄ νν

ll

+ 6V̄ νν
hh + 4(2jl + 1)V̄ νν

lh

+
Np(Np − 1)

2
V̄ ππ
kk (A2)

For the seniority-type pairing interaction, we
will only give below the values of the neutron
pairing energy. The reason is that in Eq. (11) we
present the neutron empirical shell gap, which is
computed using nuclei having the same number
of protons and hence (in the presented model)
the same proton pairing energy, which cancels
out. Thus, Eq. (10) leads to the following neutron
pairing energies:

E
Np,−4
pair = −3

2
Gl(2jl − 3),

E
Np,−2
pair = −Gl(2jl − 1),

E
Np,0
pair = −1

2
Gl(2jl + 1),

E
Np,2
pair = −1

2
Gl(2jl + 1)− 1

2
Gh(2jh + 1),

E
Np,4
pair = −1

2
Gl(2jl + 1)−Gh(2jh − 1), (A3)

where we have allowed for the pairing interac-
tion in the lower neutron shell Gl to be different
from the one in the higher shell Gh. One should
note that a contribution from the pairing interac-
tion remains even when the lower neutron shell is
completely full.

With Eqs. (14) and (16), it is also possible to
compute the energies of the same nuclei by consid-
ering only the quadrupole-quadrupole part of the
nuclear Hamiltonian.

E
Np,−4
Q =

2k̄2

5∆Ekl
F (Np, jk)

2(2jl − 3)

2jl − 1
Xπ

kX
ν
l ,

E
Np,−2
Q =

2k̄2

5∆Ekl
F (Np, jk)X

π
kX

ν
l ,

E
Np,0
Q = 0,

E
Np,2
Q =

2k̄2

5∆Ekh
F (Np, jk)X

π
kX

ν
h ,

E
Np,4
Q =

2k̄2

5∆Ekh
F (Np, jk)

2(2jh − 3)

2jh − 1
Xπ

kX
ν
h .

(A4)

In this case, contrary to the pairing interac-
tion, the quadrupole interaction energy vanishes
both for an empty and for a full neutron shell,
therefore above the shell gap only the quadrupole-
quadrupole interaction of neutrons in jh plays a
role.
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