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Abstract 15 

Cyanobacteria generate energy from photosynthesis and produce various secondary metabolites with 16 

diverse commercial and pharmaceutical applications. Unique metabolic and regulatory pathways in 17 

cyanobacteria present new challenges for researchers to enhance their product yields, titers, and rates. 18 

Therefore, further advancements are critically needed to establish cyanobacteria as a preferred 19 

bioproduction platform. Metabolic flux analysis (MFA) quantitatively determines the intracellular 20 

flows of carbon within complex biochemical networks, which elucidate the control of metabolic 21 

pathways by transcriptional, translational, and allosteric regulatory mechanisms. The emerging field 22 

of systems metabolic engineering (SME) involves the use of MFA and other omics technologies to 23 

guide the rational development of microbial production strains. This review highlights the potential 24 

of MFA and SME to optimize the production of cyanobacterial secondary metabolites and discusses 25 

the technical challenges that lie ahead. 26 
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Introduction 30 

Among contemporary global issues, environmental protection is of primary importance for the 31 

sustained prosperity and progress of mankind. Excessive exploitation of natural resources and 32 

overdependence on fossil fuels have resulted in growing concerns over global warming, food 33 

insecurity, disease outbreaks, the energy crisis, and many other environmental issues. Therefore, 34 

alternative manufacturing approaches that are economically viable, carbon neutral, and 35 

technologically feasible are urgently required to meet sustainability goals [1,2]. The potential of 36 

microbial bioproduction for long-term economic expansion has been realized in the past few decades 37 

[3,4]. In particular, photosynthetic microbes such as cyanobacteria have shown tremendous potential 38 

to produce biofuel, bioplastic, and other industrial products [5,6]. Cyanobacteria require fewer 39 

resources for growth (e.g., atmospheric carbon dioxide, water, sunlight, and minimal nutrients), 40 

which provides economic and sustainability advantages over heterotrophic microbes [6]. The recent 41 

discovery of fast-growing cyanobacteria makes them comparable to heterotrophic bacteria in terms 42 

of doubling time and concomitant production. Unlike higher plants, they do not require arable land, 43 

and owing to their prokaryotic genome, they are more amenable to engineering than eukaryotic algae 44 

[7].  45 

Cyanobacterial metabolism has evolved to support diverse and complex functions and can be 46 

divided into primary metabolism and secondary metabolism (Figure 1). Primary metabolism involves 47 

essential biochemical pathways that are required for the survival and growth of the organism. In 48 

cyanobacteria, primary metabolism involves the conversion of inorganic carbon dioxide and water 49 

into organic compounds (e.g., carbohydrates, proteins, lipids, and nucleic acids) using the process of 50 

photosynthesis to produce energy (ATP) and reducing power (NADPH) [8]. On the other hand, 51 

secondary metabolism refers to the production of specialized metabolites that are not essential for the 52 

basic functions of the cell but provide the organism with selective advantages in terms of survival, 53 

growth, and defense [9,10]. Cyanobacteria produce a variety of secondary metabolites that include 54 

terpenoids, flavonoids, polyketides, scytonemins, mycosporines, etc. In particular, many bloom-55 

forming cyanobacteria produce a large variety of cyanotoxins in response to the combined pressures 56 

of climate change driven abiotic and biotic stresses with high ecological and human health risks 57 

[11,12]. The structural information and bioactivities of many such compounds can be accessed from 58 

CyanoMetDB, an open-access database dedicated to cyanobacterial secondary metabolites [13]. 59 

 .  60 
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Metabolic flux analysis (MFA) enables the quantification of metabolic fluxes (see Glossary) 61 

within biochemical pathways, allowing the assessment of production and consumption rates of 62 

metabolites within an organism. MFA is one of the core metabolic engineering tools that has been 63 

continuously developed and widely applied to rigorously investigate cell metabolism and quantify 64 

the carbon flux distribution in central metabolic pathways [14]. MFA produces detailed flux maps 65 

that represent an integrated readout of the cellular phenotype resulting from transcriptional, 66 

translational, and allosteric regulatory mechanisms. However, the metabolic study of cyanobacteria 67 

is complicated by several factors. For example, light harvesting, carbon fixation, and other metabolic 68 

functions are spatially distributed within the cell. Moreover, dynamic regulatory mechanisms that 69 

respond to light availability and naturally oscillate with the diurnal cycle further complicate the study 70 

of metabolic flux. In addition, flux analysis under photoautotrophic conditions typically requires 71 

dynamic 13CO2 labeling experiments and isotopically nonstationary MFA (INST-MFA), which are 72 

more experimentally and computationally demanding than the steady-state MFA experiments used 73 

to characterize heterotrophic metabolism [5,10].  74 

MFA belongs to a broader discipline called systems metabolic engineering (SME), which 75 

integrates systems biology and synthetic biology with traditional metabolic engineering [3][4]. SME 76 

has been increasingly applied to identify gene targets for engineering the primary metabolism of 77 

cyanobacterial hosts for the production of various chemicals serving as potential biofuels and 78 

bioplastics [14,15]. So far, however, MFA and other SME approaches have not been widely used for 79 

investigating secondary metabolism.  80 

Metabolic engineering of secondary metabolism in cyanobacteria  81 

Cyanobacteria have shown great promise as biocatalysts for the direct conversion of CO2 into 82 

commercial chemicals such as biofuels and bioactive compounds [4]. In order to create cyanobacterial 83 

strains with the ability to convert specific central metabolites into desired end products, several 84 

primary metabolic pathways have been engineered by either de-regulating genes or introducing 85 

heterologous genes [5]. Metabolic engineering has also been used in model species such 86 

as Synechocystis sp. PCC 6803, Synechococcus elongatus PCC 7942, and Synechococcus sp. PCC 87 

7002 to increase the production of secondary metabolites (see Box 1) [16]. A number of studies have 88 

engineered cyanobacteria for production of terpene products, including isoprene [17, 18], limonene 89 

[19], farnesene [20], squalene [21], and astaxanthin [22], which have various applications as 90 

cosmetics, pharmaceuticals, and potential petrochemical replacements. These efforts typically 91 
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involve overexpressing enzymes in the native methylerythritol phosphate (MEP) pathway and/or 92 

knocking down enzymes in competing pathways. Other studies have focused on enhancing 93 

production of secondary products that serve as photoprotectants (e.g., mycosporine-like amino acids 94 

(MAAs) or storage polymers (e.g., polyhydroxyalkanoates (PHAs)). A study in Synechocystis sp. 95 

PCC 6803, found that production of shinorine-an MAA that protects against the harmful effects of 96 

UV radiation—can be increased up to 10 times (2.37 ± 0.21 mg/g dry biomass weight) by introducing 97 

the shinorine gene cluster from the filamentous cyanobacterium Fischerella sp. PCC 9339. Integrated 98 

transcriptional and metabolic profiling helped to identify the rate-limiting steps in the heterologous 99 

production pathway [23]. Koch et al. constructed a PHA-overproducing strain by deleting a 100 

regulatory protein (PirC/Sll0944) in Synechocystis sp. PCC 6803 that conferred a higher activity of 101 

phosphoglycerate mutase and resulted in increased poly-hydroxybutyrate (a promising bioplastic) 102 

accumulation under nitrogen and phosphorus depleted conditions [24,25]. However, the final product 103 

titers of secondary metabolites achieved in cyanobacterial cultures are typically in the mg/L range, 104 

which is too low for scalable commercial production. Therefore, there is a critical need to apply MFA 105 

(13C-MFA and INST-MFA) and other systems biology strategies to improve production rates and 106 

final titers of these secondary metabolites by identifying bottleneck reactions that limit pathway flux. 107 

Why metabolic flux analysis of cyanobacterial secondary metabolism is important? 108 

MFA is an effective method for determining metabolic fluxes in vivo by applying a stoichiometric 109 

model of the biochemical reaction network to derive a comprehensive set of metabolite mass balances 110 

that can be used to calculate a unique flux solution from a limited set of measurements. Flux 111 

information obtained from MFA has been effectively applied to (i) characterize new host organisms, 112 

(ii) identify wasteful pathways that limit product yield, and (iii) identify metabolic bottlenecks that 113 

restrict production rate [26]. By quantifying fluxes at each major node of the metabolic network and 114 

determining how these fluxes become re-routed in response to targeted genetic or environmental 115 

perturbations, fundamental insights about network regulation can be obtained to guide further rounds 116 

of metabolic engineering. 117 

Additionally, within secondary metabolism, it is crucial to identify and quantify the main 118 

competitive branch points that lead flux away from the secondary metabolites of interest. In this 119 

manner, the ‘wasteful fluxes’ leading to undesired side products can be pinpointed and subjected to 120 

metabolic engineering to improve product yield [34]. When applied in this way, MFA provides a 121 

platform for systematically identifying and removing metabolic bottlenecks, wasteful pathways, and 122 
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futile cycles that restrict the production of desired secondary metabolites. Furthermore, MFA 123 

provides fundamental insights into how metabolic flux is natively regulated in cyanobacteria, and 124 

how the existing control circuitry can be co-opted or disrupted in order to divert flux into non-native 125 

sink pathways. Finally, metabolic engineering of secondary metabolism can also improve the 126 

function or fitness of the host organism under industrially relevant cultivation conditions. A major 127 

reason for performing MFA in cyanobacteria is to quantify fluxes that supply the key intermediary 128 

precursors of secondary metabolites. For example, flux estimation at the phosphoenolpyruvate (PEP) 129 

and pyruvate nodes is critical for determining the amount of fixed carbon directed towards shikimate 130 

(the precursor for aromatic amino acids, alkaloids and MAAs) versus the TCA cycle. Similarly 131 

quantifying the flux around the acetyl-CoA node is important for determining the carbon directed 132 

towards fatty acids versus TCA cycle. Hasunuma et. al., (2019) applied 13C labeling based 133 

metabolomics to understand the flux distribution in an astaxanthin producing recombinant strain of 134 

Synechococcus sp. PCC 7002. 13C labeling of metabolites indicate higher flux distribution in the 135 

Calvin cycle and glycolysis due to overexpression of astaxanthin biosynthetic genes, and suggesting 136 

the role of central metabolism and MEP pathway to enhance the astaxanthin biosynthesis [27]. Based 137 

on dynamic 13C labeling experiments and metabolite profiling, the MEP pathway in Synechococcus 138 

elongatus PCC 7942 was engineered (by overexpression of isopentenyl pyrophosphate isomerase), 139 

which resulted in the direct production of 1.26 g L−1 of isoprene from CO2 [28]. Another study 140 

presented a feasible strategy to engineer Synechocystis sp. PCC 6803 for photosynthetic production 141 

of the isoprenoid limonene. Based on metabolic engineering strategies (genome-scale modeling and 142 
13C MFA) the pentose phosphate pathway (PPP) genes ribose-5-phosphate isomerase and ribulose-143 

5-phosphate 3-epimerase were overexpressed, and a geranyl diphosphate synthase from Abies 144 

grandis (a conifer plant) was expressed to generate a limonene overproducing strain that accumulated 145 

a final titer of 6.7 mg L-1 [29]. Nirati et al. (2022) applied steady state 13C-MFA to compare the carbon 146 

flux distribution between glucose-tolerant wild-type vs isoprene-producing recombinant 147 

Synechocystis sp. PCC 6803. Study pointed out striking difference in the Calvin cycle, glycogen 148 

metabolism (high in wild type) and anaplerotic pathway activity (high in recombinant strain) through 149 

phosphoenolpyruvate carboxylase and malic enzyme and thus suggested a possible role of ATP and 150 

NADPH in regulating the flux distribution in recombinant strain [30].Another example is the use of 151 

MFA to calculate fluxes around the 2-oxoglutarate (2OG) node, an important branch point for both 152 

carbon (C) and nitrogen (N) metabolism [31]. This C/N balance is key to cyanobacterial bloom 153 

formation and cyanotoxin production, and an imbalance in C/N metabolism alters the tradeoff 154 

javascript:;
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between primary and secondary metabolism resulting in cyanotoxin production [32,33]. MFA 155 

provides a quantitative depiction of overlapping C/N metabolic networks, which can link genome 156 

profiling to phenome analysis and reveal the pathways associated with bloom formation.  157 

Genome-scale metabolic modeling and flux balance analysis 158 

Genome-scale metabolic models (GSMs) predicting global metabolic flux distributions under given 159 

genetic and environmental conditions are important systems biology tools for metabolic engineering 160 

and strain development [35]. A GSM is a large-scale stoichiometric model that describes all the 161 

metabolic pathways using gene-protein-reaction associations experimentally and/or theoretically 162 

characterized through stoichiometric coefficients and mass balances of participating metabolites, 163 

simulated using mathematical optimization [36,37].  164 

GSMs are based on stoichiometric relationships between biochemical reactions in a metabolic 165 

network and use linear programming to predict the metabolic fluxes in the network under different 166 

conditions [38]. GSMs are typically constructed using genome annotations and metabolic pathway 167 

databases and can include thousands of reactions and metabolites. GSMs provide a comprehensive 168 

view of the metabolic network and can be used to predict the behavior of the network under different 169 

environmental conditions. However, GSMs do not account for the kinetics of individual reactions 170 

and do not capture the dynamics of metabolic pathways [38]. This can limit their accuracy in 171 

predicting the behavior of cells under non-steady-state conditions or in response to external 172 

perturbations. In contrast, kinetic models are based on the detailed kinetic equations that govern 173 

individual biochemical reactions in a metabolic network and can account for the dynamics of 174 

metabolic pathways and the kinetics of individual reactions [39]. Kinetic models typically involve a 175 

large number of parameters, which can be difficult to measure experimentally. Kinetic models 176 

provide a more detailed and accurate description of the metabolic network and can be used to predict 177 

the behavior of cells under non-steady-state conditions or in response to external perturbations. 178 

However, the computational cost of simulating kinetic models can be high, and the models can be 179 

difficult to validate due to the large number of parameters involved [39]. Broddrick et al. (2016) 180 

manually curated and experimentally validated a GSM of Synechococcus elongatus PCC 7942 and 181 

discovered unique metabolic characteristics, such as the importance of a truncated, linear TCA 182 

pathway. They also highlighted poorly understood areas of metabolism as exemplified by knowledge 183 

gaps in nucleotide salvage [35]. Janasch et al. (2019) created a kinetic model of the CBB cycle of 184 

Synechocystis sp. PCC 6803 to investigate its stability and underlying control mechanisms [40]. 185 
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These modeling approach relies on the assumption of a pseudo-steady state, which is best applied to 186 

simulating primary metabolism during exponential growth phase. Importantly, the GSM enables the 187 

prediction of metabolic flux values for the entire network of metabolic reactions using optimization 188 

techniques such as flux balance analysis (FBA) based on linear programming [41].  189 

FBA is a widely used constraint-based approach for studying biochemical networks, in 190 

particular genome-scale reconstructions, or gap filling of possibly missing reactions in existing 191 

GSMs. FBA calculates the flow of metabolites through the metabolic network, thereby making it 192 

possible to predict the growth rate of an organism or the rate of production of a biotechnologically 193 

important metabolite based on a limited number of empirically derived constraints (Figure 2). FBA 194 

calculations and simulations use constraint-based reconstruction and analysis (COBRA) methods 195 

which can be performed using many available tools [42,43]. Metabolic questions that can be best 196 

addressed with GSM and FBA include, but are not limited to (i) prediction of the most efficient 197 

pathway that leads to the maximal product yield of a target compound and (ii) optimization of 198 

precursor supply and intracellular redox balances, typically through prediction of the effects of gene 199 

knockouts and over-expressions [44]. GSMs also serve as a platform for the integration and analysis 200 

of meta-omics and maintenance energy (ATP) turnover data [45]. As next generation sequencing 201 

tools and relevant meta-omics analyses continue to evolve, the quality and application scope of GSMs 202 

have also expanded accordingly, and together they have contributed to a better understanding of 203 

metabolism in innumerable organisms.  204 

Due to its inability to predict changes in metabolite concentrations and its lack of kinetic 205 

parameters, FBA has certain limitations. Furthermore, it often suffers from incomplete annotation of 206 

the proteins in a genome. Several reactions may be predicted to have zero fluxes from FBA due to 207 

the inadequate nature of annotation since the reactions involving metabolites downstream or upstream 208 

of these reactions may not have been identified, thus leaving metabolic gaps. Except in some modified 209 

forms, FBA does not account for regulatory effects such as activation of enzymes by protein kinases 210 

or regulation of gene expression, so predictions by FBA may not always be accurate. Manual 211 

reconstruction of GSMs is a time-consuming procedure, in which a large number of gene-protein-212 

reaction associations and many other sources of data and information must be considered. Significant 213 

progress has been made to automate the GSM reconstruction procedure including, but not limited to, 214 

better annotation of genome sequences, standardization and cross-referencing of different metabolic 215 

databases, and improved algorithms for detecting and filling metabolic gaps. Several software 216 
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programs for automatic GSM reconstruction have been developed and were described previously 217 

[36]. 218 

 A number of GSMs of cyanobacteria have been presented in the last decade (reviewed in 219 

[16][44]), but they are still underrepresented in comparison to heterotrophic microorganisms. Also, 220 

>300 cyanobacterial genomes have been sequenced [46]; however, the construction of GSMs for non-221 

model species is limited, and reconstructions and refinements of GSMs have only been performed 222 

for model species. Accurate modeling of cyanobacterial metabolism requires a new level of 223 

information, including modeling the processes of light harvesting and electron transport through a 224 

variety of possible pathways [47,48]. Furthermore, now that many BGCs can be effectively detected 225 

in cyanobacteria using genome mining [49,50] and bioinformatics programs (e.g., antiSMASH) [51], 226 

incorporating their corresponding biosynthetic reactions into metabolic models becomes an important 227 

task. The biosynthetic reactions for several clusters have been characterized, but the majority have 228 

not. More comprehensive information on secondary metabolite biosynthetic reactions would help to 229 

systematically evaluate the production capacity of secondary metabolites using metabolic models. 230 

GSMs will be more useful in metabolic engineering of secondary metabolism if they are expanded 231 

by incorporating more experimental meta-omics datasets and gap-filling model parameters. GSMs 232 

for modeling secondary metabolism should be further developed for rational engineering to enhance 233 

the production of secondary metabolites. In synthetic biology, GSM and MFA can be used to guide 234 

genome-scale engineering by providing insights into the metabolic pathways and enzymes that are 235 

critical for achieving a specific metabolic goal. MFA can be used to identify the metabolic pathways 236 

and enzymes that need to be modified or engineered in order to redirect the flux of metabolites 237 

towards a desired product or pathway. This information can be used to design and engineer synthetic 238 

metabolic pathways that can produce high-value metabolites. In addition, MFA can be used to 239 

identify the metabolic trade-offs and limitations that can arise from genome-scale engineering. 240 

Metabolic Flux Analysis: 13C-MFA and INST-MFA 241 

MFA is another model-based analysis approach that can be used to calculate metabolic fluxes. In 242 

MFA, metabolic fluxes are estimated from experimentally measured rates, such as substrate uptake 243 

rate, oxygen uptake rate, growth rate and product secretion rates, subject to stoichiometric constraints 244 

(Figure 3). MFA differs from FBA in that there is no assumption regarding the optimal performance 245 

of the cell. As such, MFA can be used to quantify fluxes for cells grown under industrially relevant 246 

growth conditions, e.g., during nutrient limitation or in the presence of growth-inhibitory compounds, 247 
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which is currently beyond the scope of most FBA-based techniques. In MFA, the flow of metabolites 248 

through a network model is calculated by solving a least-squares regression problem to minimize the 249 

sum of squared residuals (SSR) between model-simulated and experimentally determined 250 

measurements. An important application of MFA includes determining the yields of key cellular 251 

cofactors such as ATP, NADH, and NADPH under different growth conditions [52]. This can provide 252 

valuable insights into the flow of energy and electrons. The main limitation of MFA is that it uses 253 

simplified and context-specific metabolic network models for analysis because external rate 254 

measurements generally don’t provide enough constraints to estimate fluxes for all known 255 

intracellular pathways. For example, measuring oxygen uptake rate and carbon dioxide production 256 

rate during heterotrophic growth often doesn’t provide independent constraints, since these two rates 257 

can be calculated from other measured rates through the electron balance and carbon balance, 258 

respectively [14]. Thus, in order to apply MFA in practice, some pathways must be neglected from 259 

the network model to ensure that there are enough measurements to precisely estimate the fluxes of 260 

the remaining selected pathways in the model. 261 

 An alternative to model simplification is to obtain additional measurements from stable 262 

isotope labeling experiments, which can provide detailed information on the path of carbon flow 263 

within intracellular networks. MFA based on stable isotope measurements typically relies on two 264 

possible approaches: isotopic stationary metabolic flux analysis, or 13C-metabolic flux analysis (13C-265 

MFA) and isotopically nonstationary metabolic flux analysis (INST-MFA) (Figure 3). Both 13C-MFA 266 

and INST-MFA offer a better understanding of cyanobacterial biosynthetic pathways and the 267 

metabolic flux changes that occur in response to their modulation, which can be used to guide further 268 

metabolic engineering efforts as reviewed previously [7]. Tracer substrates can be labeled with 2H, 269 
13C, 15N, 17O, or 18O, but so far the most widely used stable isotope is 13C because every bioorganic 270 

molecule contains carbon atoms that are transferred and rearranged due to biochemical reactions [7]. 271 

The activity of most biochemical pathways can be assessed through monitoring the rates and patterns 272 

of isotope enrichment in downstream metabolites following supplementation of a 13C-labeled 273 

substrate. This is the foundation of 13C-MFA and is a powerful method for characterizing in vivo 274 

metabolism [53]. In 13C-MFA, one or more tracer experiments are performed where live cell cultures 275 

are fed with 13C-labeled substrates (e.g. [1,2-13C] glucose) until the 13C enrichment patterns of 276 

measured intracellular metabolites and macromolecules (e.g., proteins, RNA and glycogen) fully 277 

equilibrate. Labeling patterns and steady-state carbon mass isotopomer distributions (MIDs) are then 278 
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quantified for various cellular metabolites using analytical techniques such as mass spectrometry 279 

(MS) and/or nuclear magnetic resonance (NMR). The elementary metabolite unit (EMU) framework 280 

is the most widely used approach for modeling isotopic labeling in 13C-MFA and is at the core of 281 

several major software packages [52,54].  282 

 13C-MFA has been widely applied in heterotrophic or mixotrophic cyanobacterial cultures to 283 

identify the metabolic pathway dependencies involved in the production of specific biochemicals [7, 284 

5]. In contrast, autotrophic cyanobacterial cultures assimilate carbon solely from CO2 and therefore 285 

produce a uniform steady-state 13C-labeling pattern in all metabolites when labeled with 13CO2. These 286 

steady-state patterns do not depend on fluxes, making conventional steady-state 13C-MFA ineffective 287 

for quantifying autotrophic metabolism. However, the transient patterns of 13CO2 labeling are 288 

sensitive to fluxes and can be used to estimate flux values with INST-MFA, which does not rely on 289 

isotopic steady state assumptions. INST-MFA treats the metabolic network as a dynamic system and 290 

offers a number of unique advantages over 13C-MFA. First, it can be applied to estimate fluxes in 291 

autotrophic systems, which consume only single-carbon substrates. Second, INST-MFA is suitable 292 

for systems that label slowly due to the presence of large intermediate pools or pathway bottlenecks. 293 

Last, it offers increased measurement sensitivity to estimate reversible exchange fluxes and 294 

metabolite pool sizes, which represents a potential framework for integrating metabolite analysis with 295 

MFA [52]. 13C-MFA and INST-MFA are now established techniques that are routinely applied in 296 

metabolic engineering to quantify metabolic fluxes. Many procedures and protocols have been 297 

optimized and standardized for these techniques in the past decade. Recent papers have compiled 298 

comprehensive step-by-step protocols and troubleshooting guidelines for conducting high-resolution 299 

MFA studies [14,55]. Fluxes are estimated using software, and the most commonly used software 300 

tools for MFA have been reviewed previously [55,56].  301 

In recent years, machine learning (ML) and artificial intelligence (AI) have been increasingly 302 

used in conjunction with metabolic analysis [57,58]. ML and AI algorithms can be used to analyze 303 

large and complex datasets generated from MFA and FBA experiments and to predict the metabolic 304 

fluxes and behaviors of cells under different conditions. For example, ML algorithms can be trained 305 

to analyze the expression levels of genes and enzymes in a metabolic network and predict the 306 

metabolic flux distribution based on this information. AI can also be used to optimize the predictions 307 

of FBA models by incorporating COBRA for more accurate and realistic predictions of metabolic 308 

fluxes in cells. Another application of ML and AI in MFA and FBA is the identification of key 309 
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metabolic pathways and enzymes that are critical for the growth and survival of cells under different 310 

conditions [59,60]. ML algorithms can be used to analyze large datasets of gene expression and 311 

enzyme activity and to identify the most important metabolic pathways and enzymes that are 312 

associated with specific cellular functions or phenotypes.   313 

Analytical considerations for large-scale metabolomics and fluxomics 314 

Metabolomics and fluxomics provide holistic information on cellular metabolism. Both approaches 315 

can be simultaneously applied to gain complementary information on complex metabolic pathway 316 

activities and how they are regulated in vivo [52,61]. Unlike metabolites, fluxes are not physical 317 

entities and thus cannot be measured directly but can be determined from other measurements. 318 

Metabolomics and fluxomics typically require the characterization and quantitative analysis of a 319 

variety of metabolites (e.g., amino acids, lipids, nucleotides, carbohydrates, organic acids, and 320 

secondary metabolites). Thus, many sample analysis workflows, measurement techniques, and 321 

software tools are shared between these two platforms. The physical and chemical properties of 322 

metabolites are diverse and are often distributed over a wide range of concentrations inside cells [14]. 323 

Metabolomics and fluxomics capabilities have advanced due to the continuous improvement of 324 

analytical tools for measuring primary and secondary metabolites. Typically, metabolite 325 

measurements for 13C-MFA and INST-MFA comprise five basic steps that are summarized in Figure 326 

4. Selection of appropriate sample harvesting, quenching (to preserve the in vivo metabolic state), 327 

extraction, derivatization, cleanup, as well as adaptation of suitable analytical (MS and NMR) 328 

instrumentation and data analysis tools, are critical for achieving precise quantitation of the 329 

abundance and isotope enrichment of intracellular metabolites  [62]. Although these technologies are 330 

transferable across different organisms, adapting these protocols and selecting appropriate 331 

instruments tends to be organism- and hypothesis-specific [56]. The above steps are further 332 

complicated when applied to photoautotrophic suspension cultures because they require rapid 333 

separation of liquid culture media from cellular biomass prior to metabolite extraction, while avoiding 334 

possible artefacts that can arise due to unintended culture shading or incomplete sample quenching 335 

[62].  336 

Concluding Remarks and Future Perspectives  337 

Cyanobacteria are potential hosts for biotechnological and industrial applications. However, 338 

cyanobacteria have more complex energy generation and distribution processes because they are 339 
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photoautotrophic, and non-intuitive regulatory inputs such as redox state and circadian rhythms 340 

should be considered when manipulating their metabolic networks. Several systems metabolic 341 

engineering tools have already been established and successfully employed for engineering primary 342 

metabolism in cyanobacteria. FBA and MFA provide complementary tools for metabolic engineering 343 

of primary metabolic pathways, and these tools and strategies could be extended for engineering 344 

secondary metabolism. Engineering strains for production of secondary metabolites involves unique 345 

considerations because the BGCs of secondary pathways encode a complex and poorly characterized 346 

system in cyanobacteria, and therefore optimization of secondary metaboliteproduction requires 347 

systematic analysis before actual metabolic engineering can occur. For the optimal production and 348 

potential commercialization of secondary metabolites, researchers need to have a better 349 

understanding of the working mechanisms of BGCs and secondary metabolic pathways (see Box 2). 350 

The function, distribution, and regulation of enzymes in secondary pathways and their relationship to 351 

primary metabolism remain largely unknown. Quantifying fluxes in primary metabolic processes that 352 

produce secondary metaboliteprecursors would be highly advantageous. With the help of 353 

metabolomics-assisted MFA, the flux distribution at key metabolic nodes in intermediary metabolism 354 

can be examined, identifying fluxes that lead to futile or wasteful pathways and determining how 355 

competing pathways regulate flux in wild-type and engineered strains under various physiological 356 

conditions. Such information can aid in understanding how environmental and genetic factors impact 357 

primary metabolism and, in turn, the production of the building blocks for secondary metabolic 358 

pathways. INST-MFA has identified new strategies for the overproduction of terpenoid (limonene) 359 

products in Synechococcus PCC 7002 by revealing differential flux through pyruvate biosynthesis 360 

pathways. The results of INST-MFA imply that ATP:NADPH ratios are crucial for the formation of 361 

limonene since they demonstrate metabolite channeling in the amphibolic loop including PEP 362 

carboxylase, malate dehydrogenase, and malic enzyme [63].  363 

 Furthermore, there is a need to investigate, identify and develop non-model strains that exhibit 364 

unique capabilities for secondary metaboliteproduction. Processes of systems metabolic engineering 365 

need to be applied at an early phase of strain development (e.g., genome mining and host selection). 366 

This will facilitate the introduction of state-of-the-art synthetic biology tools to enhance secondary 367 

metabolite production, which were initially developed for model organisms. Secondary 368 

metaboliteproduction involves tight coordination between carbon (C) and nitrogen (N) metabolism; 369 

therefore, novel tracing experiments should be designed and applied to analyze both C/N metabolism 370 
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simultaneously by feeding both 13C and 15N tracers for qualitative determination and quantitative 371 

estimation of metabolic fluxes in secondary metabolic pathways. Here, we propose the combination 372 

of 13C and 15N-labeled tracers to interrogate carbon and nitrogen metabolism within a single 373 

experiment to gain better insight into the secondary metabolism of cyanobacteria. These flux 374 

estimations demand new analytical (MS and NMR) tools to characterize and estimate the labeling 375 

and abundance of secondary metabolites. Such stable isotope-based MFA studies allow quantitative 376 

estimation of C and N flows from feedstocks to the central metabolic pathways and further into the 377 

secondary pathways and desired end products. However, the diverse chemical nature of secondary 378 

metabolites is highly challenging for current analytical tools. Therefore, new extraction protocols and 379 

high-throughput MS and NMR methods should be developed for the accurate estimation of a diverse 380 

range of secondary metabolites.  381 
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Box 1. Secondary metabolism and metabolites in cyanobacteria 552 

Secondary or specialized metabolism involves biochemical pathways that fulfill a multitude of 553 

functions for the growth and survival of cyanobacteria in nature. Typically, secondary metabolic 554 

pathways are fueled by primary metabolism (glycolysis, TCA cycle, shikimate pathway, etc.) and 555 

often produce precursors for the synthesis of diverse secondary metabolites (Figure 1) [13,64]. 556 

secondary metabolites are low-molecular-mass organic molecules, usually produced during the late 557 

stationary phase (idiophase), which are not essential for growth, development, or reproduction (in 558 

contrast to primary metabolites such as lipids, amino acids, carbohydrates, and nucleic acids) [65]. 559 

secondary metabolites are frequently produced in response to stress conditions and provide adaptive 560 

benefits to organisms by giving them a competitive advantage in their natural environment [65,66]. 561 

Many secondary metabolites are ribosomally synthesized and post-translationally modified 562 
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peptides (RiPPs), which are encoded by specific biosynthetic gene clusters (BGCs) [65,67]. BGCs 563 

encode core biosynthetic enzymes (e.g., polyketide synthase and non-ribosomal peptide synthetase) 564 

responsible for creating and modifying intermediate metabolites, as well as regulatory transcription 565 

factors and transporters that control the trafficking of these metabolites and necessary precursors [49]. 566 

Cyanobacterial genomes are naturally rich in  BGCs, enabling cyanobacteria to produce a wide 567 

diversity of natural products such as terpenes, alkaloids, polyketides, and non-ribosomal peptides 568 

(NRPs) (Figure 1) that have bioactive properties with various commercial and pharmaceutical uses 569 

such as antibacterial, antifungal, anticancer, antituberculosis, immunosuppressive, anti-570 

inflammatory, and antioxidant treatments [13,68]. 571 

 A number of cyanobacterial species also produce cyanotoxins for defense [12] or as 572 

protectants, and MAAs for mitigating photodamage and oxidative stress [68,69]. Many studies have 573 

shown that cyanobacteria produce omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and 574 

docosahexaenoic acid (DHA), which are known to prevent inflammatory cardiovascular diseases and 575 

are used as dietary supplements [70][71]. The use of marine cyanobacteria in cosmetics, 576 

cosmeceutical formulations and thalassotherapy provides many benefits, including the maintenance 577 

of skin structure and function, due to the presence of bioactive components. These same compounds 578 

confer protection to cyanobacterial cells against external environmental conditions. 579 

Polyhydroxyalkanoates (PHAs) are polyesters produced by many cyanobacterial strains, that can 580 

be used as a substitute for non-biodegradable plastics [72,73]. Although the valuable properties of 581 

secondary metabolites have long been recognized, knowledge about their potential human and 582 

ecotoxicological risks is still at an early stage. In addition, upscaling secondary metabolite production 583 

requires a deeper understanding of cyanobacterial metabolism in order to develop efficient host 584 

strains and cultivation systems. 585 

Box 2. Important questions related to control of secondary metabolism in cyanobacteria 586 

1. What are the genetic and metabolic components that impede carbon fixation and 587 

diversion of metabolic flux into high-value secondary metabolites? 588 

2. What processes control the shift from primary to secondary metabolism that occurs when 589 

growth rate slows? 590 

3. How is the trade-off between primary and secondary metabolism altered by the C/N 591 

balance, and how does the C/N ratio affect the formation of cyanobacterial blooms and 592 

cyanotoxins production in natural water reservoirs? 593 
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4. What are the critical branch points that control distribution of flux into desired secondary 594 

metabolites and away from undesired products, and how are these flux ratios regulated? 595 

Glossary 596 

Biosynthetic gene clusters: A physically clustered group of two or more genes in a particular genome 597 

that together encode a biosynthetic pathway for the production of a specialized metabolite (including 598 

its chemical variants). 599 

Cyanotoxins: A diverse group of toxic compounds (e.g., microcystins) produced by harmful 600 

cyanobacterial blooms, which include liver toxins, nerve toxins, and skin toxins with human and 601 

animal health hazards. 602 

Constraint-based reconstruction and analysis (COBRA): Systems biology approach used to build 603 

and simulate metabolic networks using mathematical representations of biochemical reaction, gene-604 

protein reaction association, and physiological and biochemical constraints. 605 

Flux balance analysis (FBA): Powerful approach for the constraint-based analyses of (genome-606 

scale) metabolic networks, to identify optimal steady-state flux distributions and metabolic 607 

capabilities of biochemical networks. 608 

Genome-scale metabolic model (GSM): A mathematical model that represents all known metabolic 609 

reactions of a biological system and computationally describes gene-protein-reaction associations for 610 

all metabolic enzymes in an organism, and can be simulated to predict metabolic fluxes for various 611 

systems-level metabolic studies. 612 

Isotopically nonstationary Metabolic Flux Analysis (INST-MFA): Provides an important new 613 

platform for mapping carbon fluxes that is especially applicable to autotrophic organisms, industrial 614 

bioprocesses, high-throughput experiments, and other systems that are not amenable to steady-state 615 
13C MFA experiments. 616 

Metabolic flux: The rate at which molecules (metabolites) move through a specific metabolic 617 

pathway at steady state. 618 

Mycosporine-like amino acids (MAAs): A large family of small (<400 Da), water-soluble, colorless 619 

multipurpose secondary metabolites with high molar extinction coefficient, which serve as UV-B 620 

sunscreens.. 621 
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Non-ribosomal peptides: Therapeutically important and biologically active secondary metabolites 622 

synthesized via multidomain mega-enzymes named nonribosomal peptide synthetases (NRPSs) 623 

without cell ribosomal machinery or messenger RNA. 624 

Polyhydroxyalkanoates (PHAs): A family of biodegradable polyesters that are produced by an 625 

extensive variety of microorganisms synthesized under unbalanced growth for intracellular carbon 626 

and energy storage purposes, and as a survival mechanism. 627 

Ribosomally synthesized and post-translationally modified peptides (RiPPs): A major class of 628 

natural products with a high degree of structural diversity, and an associated wide range of biological 629 

activities from antimicrobial to antiallodynic. 630 

Systems metabolic engineering (SME): A multidisciplinary approach that combines traditional 631 

metabolic engineering with systems biology, synthetic biology, and evolutionary engineering.  632 

 633 
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Figure 1. Primary and secondary metabolic pathways in cyanobacteria. Cyanobacteria fix carbon 634 

through the Calvin-Benson-Bassham (CBB) cycle and fuel the glycolysis. Together with glycolysis 635 

and the oxidative pentose phosphate pathway (PPP), the tricarboxylic acid (TCA) cycle is one of the 636 

three most important pathways of central carbohydrate metabolism which produces precursors and 637 

intermediates for a variety of secondary metabolites (alkaloids, polyamines, cyanotoxins, tetrapyrrole 638 

pigments etc.) through several unusual i.e., shikimate, acetate, MEP pathways. Cyanobacteria balance 639 

their carbon and nitrogen for normal growth, development, and reproduction.Different forms of 640 

inorganic nitrogen can be used by cyanobacteria and are assimilated in the form of ammonium (NH4+) 641 

through the glutamine synthetase-glutamine oxoglutarate aminotransferase/glutamate synthase (GS-642 

GOGAT) cycle using 2-oxoglutarate (2-OG) as a carbon skeleton. Glutamate (Glu) and glutamine 643 

(Gln), the two amino acids produced from the GS-GOGAT cycle, are also important nitrogen donors 644 

for the synthesis of a variety of nitrogen-containing secondary metabolites. Abbreviations: 3PG: 3-645 

phosphoglycerate, Arg: arginine, Asp: aspartate, Asn: asparagine, CA: citrate, Chl: chlorophyll, E4P: 646 

erythrose-4-phosphate, F6P: fructose-6-phosphate, F16P: fructose-1,6-bisphosphate, Fum: fumarate, 647 

GABA: gamma-aminobutyric acid; G1P: glucose-1-phosphate, G6P: glucose-6-phosphate, GAP: 648 

glyceraldehyde-3-phosphate, His: histidine, Ile: isoleucine, IPP: isopentenyl pyrophosphate; ICA: 649 

isocitrate, IAA: indole acetic acid, MAAs: mycosporine-like amino acids, Leu: leucine, Lys: lysine, 650 

Mal: malate, MEP: methylerythritol-phosphate, Met: methionine, , NRPs: nonribosomal peptides, 651 

OAA: oxaloacetate, Orn: ornithine, PEP: phosphoenolpyruvate, Phyb: phycobilin, Phyc: 652 

phycocyanin, Phe: phenylalanine, PKs: polyketides, , Pro: proline, Put: putrescine, R5P: ribulose-5-653 

phosphate, RuBP: ribulose-1,5-bisphosphate, S7P: sedoheptulose-7-phosphate, Ser: serine, SSA: 654 

succinic semialdehyde, Suc: succinate, Thr: threonine, Trp: tryptophan, Tyr: tyrosine, Val: valine, 655 

X5P: xylulose-5-phosphate. 656 

https://www.biologyonline.com/dictionary/glyceraldehyde-phosphate
https://en.wikipedia.org/wiki/Ribulose-1,5-bisphosphate
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 657 

Figure 2. Illustration of the species- and context-specific genome-scale metabolic model (GSM) 658 

curation and reconstruction process. The reconstruction approach combines a draft ortholog-GSM 659 

derived from the existing template models using RAVEN, Model SEED, or Merlin packages. To 660 

curate a species- and context-specific GSM, the metabolic networks are extracted from KEGG, 661 

BRENDA, or BiGG databases and can be further refined with existing transcriptome data. A 662 

schematic workflow of FBA applied to large-scale metabolic network model involves (i) converting 663 

the GSM into mathematical equations, (ii) estimating metabolic fluxes based on a hypothesized 664 

metabolic objective function, and (iii) interpreting the solution to identify metabolic pathways for 665 

metabolic engineering. 666 
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 667 

Figure 3. The overall framework of metabolic flux analysis (MFA) in cyanobacteria. MFA of 668 

heterotrophic and/or autotrophic metabolism in cyanobacteria is classified as 13C-MFA (steady state) 669 

or INST-MFA (nonstationary/transient state) isotope-labeling approaches. Flux estimation is based 670 

on fitting experimental data, consisting of external rates and isotope labeling patterns, to a core or 671 

simplified metabolic network model. Statistical analysis is performed by automated software tools 672 

(e.g., INCA, Metran), which perform MFA calculations by minimizing the sum-of-squared residuals 673 

(SSR) between simulated and experimental measurements and automatically provide several 674 

statistical metrics that can be used to assess goodness-of-fit and quantify accurate 95% confidence 675 

intervals for the estimated fluxes. 676 
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 677 

Figure 4. Comprehensive step-by-step protocols for conducting high-resolution 13C-MFA and 678 

INST-MFA studies. Exponentially growing wild-type (WT) and/or genetically modified (mutant) 679 

cells are fed stable isotopes (13C and/or 15N tracers) in a culture flask or bioreactor. Cell cultures are 680 

sampled at multiple time points and immediately mixed with a pre-chilled quenching solution, such 681 

as ice-cold phosphate buffered saline (PBS) or −20°C methanol (MeOH), and instantly placed in an 682 

ice bath. Subsequently, cells are harvested by centrifugation, flash frozen in liquid nitrogen, and 683 

stored at −80°C until metabolite extraction. Metabolites are extracted with a suitable solvent mixture 684 

(i.e., chloroform/methanol) and phase separated for polar and nonpolar primary and secondary 685 

metabolites. Extracted metabolites are thoroughly dried or vacuum evaporated to remove the 686 

extraction solvent. For gas chromatography-mass spectrometry (GC-MS) analysis, dried metabolites 687 

are converted to either tert-butyldimethylsilyl (TBDMS) or trimethylsilyl (TMS) derivatives, while 688 

for liquid chromatography-mass spectrometry (LC-MS) or nuclear magnetic resonance (NMR), 689 

metabolites are dissolved in a compatible solvent prior to analysis, identification, and quantification. 690 

Isotope-labeled metabolite measurements are incorporated into mathematical analysis tools (e.g., 691 

INCA) for data modeling and flux estimation. 692 
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