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Dynamic Resource Allocation and Computation
Offloading for IoT Fog Computing System

Zheng Chang, Senior Member, IEEE, Liqing Liu, Xijuan Guo, and Quan Sheng

Abstract—Fog computing system is able to facilitate
computation-intensive applications and emerges as one of the
promising technology for realizing the Internet of Things (IoT).
By offloading the computational tasks to the fog node (FN) at
the network edge, both the service latency and energy consump-
tion can be improved, which is significant for industrial IoT
applications. However, the dynamics of computational resource
usages in the FN, the radio environment and the energy in
the battery of IoT devices make the offloading mechanism
design become challenging. Therefore, in this paper, we propose
a dynamic optimization scheme for the IoT fog computing
system with multiple mobile devices (MDs), where the radio
and computational resources, and offloading decisions, can be
dynamically coordinated and allocated with the variation of
radio resources and computation demands. Specifically, with the
objective to minimize the system cost related to latency, energy
consumption and weights of MDs, we propose a joint computation
offloading and radio resource allocation algorithm based on
Lyapunov optimization. Through minimizing the derived upper
bound of the Lyapunov drift-plus-penalty function, we divide the
main problem into several sub-problems at each time slot and
address them accordingly. Through performance evaluation, the
effectiveness of the proposed scheme can be verified.

Index Terms—Fog computing; Edge computing; Dynamic com-
putation offloading; Lyapunov optimization; Energy harvesting;
Resource allocation

I. INTRODUCTION

A. Background

Nowadays, wireless network is able to provide conve-
nient and reliable connections almost anywhere and anytime.
Meanwhile, the emerging Internet of Things (IoT) paradigm
boosted by the advanced mobile technologies, is able to
provide ubiquitous coverage and information exchange with
little human intervention. It is expected that IoT paradigm
is able to enable various "smart" applications such as smart
city and smart grid. However, due to lack of computational
resources and the limitation of battery of the mobile devices
(MDs) in the IoT, the gap between demand for complex
application and computing capability is gradually increasing.
In fact, many latency-sensitive and computational-intensive
mobile applications, such as image processing and mobile
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gaming, may have degraded performance when they are purely
executed on MDs [1].

Bearing in mind the aforementioned problems, mobile cloud
computing (MCC), including central cloud and fog/edge cloud
computing, attracts many attentions recently as one of the
solution. In MCC, by offloading computational tasks to the
distant cloud and executing them in the cloud, the system
energy consumption and latency are able to be improved [2],
[3]. In MCC, although the central cloud has huge storage
space and rich computational resources, the cloud centers are
usually remotely located from the end-users. When connecting
with cloud center, the transmission link may be unreliable and
also causes long latency. Therefore, the distant cloud center is
not desirable for latency-sensitive applications in many cases
[4]. Among all different types of MCC technologies, fog/edge
computing system, emerges to provide distributed and per-
vasive computation services for the MDs, and especially for
the industrial IoT applications with stringent requirements of
latency and reliability [5]- [10]. Fog computing is able to bring
both computational and radio resources closer to the MDs,
which can improve the scalability from both two perspectives.

Offloading the computation tasks is a promising effective so-
lution for resource-limited MDs to execute the computational-
intensive tasks. By offloading the tasks to and receiving results
from the computing center, the MDs are able to fully enjoy
the complex mobile applications with improved Quality of
Experience (QoE), such as service latency experience, and
reduced energy consumption. However, for battery-powered
MDs, the Quality of Service (QoS), such as throughput or
energy consumption of the mobile applications may be de-
graded due to insufficient energy supply. In addition, due to
the limitations of the MDs on size and location, etc, frequent
recharging for providing energy supply is not practical in many
cases. In this aspect, a promising technology, namely Energy
harvesting (EH), which can enable the devices to harvest
energy from environment [11], [12] is considered to resolve
these issues. By EH from various energy sources, the life
time of the MDs can be prolonged and self-sustaining can
be expected [13], [14].

As the computing capability of the fog node (FN) is not
comparable to the traditional cloud center and one FN only
serves a relative small area where the radio resource is also
limited, the offloading decisions of the MDs may have a sig-
nificant impact on the QoS. Accordingly, the usage of the radio
resources, such as transmit power and frequency spectrum, and
the harvested energy should be carefully designed and opti-
mized in line with the offloading decisions. In addition, as the
radio environment and the demand for computational resources
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vary in a fast speed, dynamic scheduling and optimization
are more preferred compared to static optimization schemes.
However, because of randomness of radio environment, energy
harvesting process and computation demands, realizing the
dynamic optimization is challenging. In this paper, the main
objective is to overcome the obstacles and provide dynamic
resource allocation and computation offloading schemes for
EH-enabled IoT fog computing system.

B. Related Work

Most of the researches on the offloading problem con-
centrate on designing different and effective static schemes
for traditional MDs through optimizing the MD’s execution
decision, radio resource, and/or computational resource [2]–
[10]. Considering a fog computing system, the authors of
[5] apply queuing theory to investigate the delay, energy
consumption, and payment cost of offloading process. Based
on the derived theoretical expressions, the authors formulate
a multi-objective optimization problem minimizing the cost
functions. The problems are addressed by finding the offload-
ing decision and power allocation. In [7], the authors explore
the tradeoff between delay and energy consumption in the
fog-cloud hybrid computing system. The associated workload
allocation problem is addressed accordingly. In [9], the authors
propose an optimization framework of offloading to optimize
the task allocation decision and the computational resource
allocation.

Meanwhile, EH is considered to provide an energy effi-
cient solution for the communication systems due to its self-
sustainable nature [11]– [13]. Investigating the impact of EH
in cloud computing system has also attracted many interests.
In [11], a local data dissemination architecture is investigated
combining social networking with EH characteristics. The
authors of [12] consider a wireless power transfer (WPT)-aided
MCC system, and present a solution for computational and
resource allocation to enable computation offloading in such a
system. In [13], the authors utilize the Markov chain analysis,
and present the design of EH D2D network by modeling
the status of harvested energy. It is also worth mentioning
that the research of dynamic computation offloading in a fog
computing with EH devices does not receive equal attention.
The authors of [14]– [19] have studied the WPT-aid edge com-
puting system. In [14], the authors study an edge computing
system with EH technologies and investigate the computa-
tion offloading problem. The dynamic computation offloading
algorithm is proposed to address the formulated problem.
In [15], the authors propose nonorthogonal multiple access
(NOMA)-enabled computation offloading scheme to minimize
the delay, where the MTs offload computation requests to an
edge node based on the NOMA transmission. The authors of
[16] and [17] the authors investigate the problem of energy
consumption and energy-delay tradeoff in an MEC system
with multiple EH devices. In [18], the authors utilize the
learning-based scheme for addressing the dynamic offloading
problems in edge computing system with EH devices. In [18],
the authors utilize the learning-based scheme for addressing
the dynamic offloading problems in edge computing system

with EH devices. In [19], the authors consider unmanned
aerial vehicle (UAV)-enabled MEC WPT system and propose
efficient scheme to maximize the computation rate.

C. Contribution

As the decisions will be coupled in different time slots,
it is challenging to design the resource allocation and com-
putation offloading policies in the considered fog computing
system. Inspired by the aforementioned observations, we aim
to introduce a dynamic subcarrier allocation, power allocation
and computation offloading scheme to minimize the system
execution cost via Lyapunov optimization. In order to address
confronted challenges, major contributions of this work are
summarized as follows:

1) We consider a general fog computing system with mul-
tiple MDs equipped with EH capability, an Access Point
(AP) and a FN. In particular, we consider different queue
models to provide thorough analysis on the delay and
energy consumption performance. At the FN, a M/G/1
queue is assumed and at the MD, a M/M/1 queue is
considered.

2) With the derived analytical results, we are able to formu-
late the system cost consisting of service latency, energy
consumption, and the weight/priority of each MD. With
the objective to minimize the formulated system cost, the
offloading strategy, the transmit power, and the subcarrier
assignment are jointly optimized in the proposed resource
allocation and offloading scheme.

3) Due to the stochastic nature of the request arrival, the
amount of harvested energy and the radio channel, we
propose to leverage the advantages of Lyapunov opti-
mization to design an online dynamic algorithm. By
minimizing the upper bound of the Lyapunov drift-plus-
penalty function from the perspective of different decision
variables, the initial problem is divided into several
simple sub-problems with low-complexity and addressed
accordingly.

D. Organization

The reminder of this paper is organized as follows. We
present the system model in Sec. II. In Sec. III the problem is
formulated. In Sec. IV, we propose to leverage the advantages
of Lyapunov optimization to propose dynamic algorithm to
address the formulated problem. The simulation study is
conducted in Sec. V. Sec. VI concludes the paper.

II. SYSTEM MODEL

The fog computing system consists of N single-core MDs,
one AP and one FN, as presented in Fig. 1. The set of MDs is
denoted as N = {1, 2, · · · , N}. For executing an application,
each MD has a series of homogeneous service requests. At
each MD, a first-in-first-out (FIFO) queue is considered for
storing arriving requests, and the radio interface is used to
establish the wireless connection. As a single processor is
assumed, the process queue at the MD is assumed as a
M/M/1 queue [25]. The MDs are with EH capability which
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Fig. 1. IoT fog computing system model

TABLE I
SUMMARY OF THE KEY NOTATIONS

Notations Meanings
N the set of MDs in the system
N the total number of MDs in the system
T the set of time slots
T the total number of time slots in the system
τ the length of each time slot
K the set of subcarriers
K the total number of subcarriers
Ai (t) the requests arrival rate for MD i at time slot t
θi the data size of request for MD i
lMi (t) the workload of MD i at time slot t
uMi the computing capability of MD i
fi (t) the CPU-cycle frequency of MD i at time slot t
ki the switched capacitance of MD i
W the subcarrier bandwidth
N0 the noise power spectral density at the receiver of the FN
hi,k (t) the channel gain for MD i on subcarrier k at time slot t
pi,k (t) the transmission power of MD i on subcarrier k at time

slot t
pi,max the maximum transmission power of MD i
ρi,k (t) the subcarrier assignment indicator for MD i at time slot

t
uF the service rate in the FN
lF (t) the workload of the FN at time slot t
ei (t) the harvested energy for MD i at time slot t
emax
i (t) the maximum harvested energy for MD i at time slot t
B̂i (t) the total energy for MD i at time slot t
µi the punishment for per dropped task for MD i
ωi the weight factor of MD i
αi the weight of task dropping punishment for MD i

enables the MD to obtain energy supply from the environment,
and the harvested energy is used for local task execution
and wireless data transmission. The AP is responsible for
receiving requests from the MD and delivering the requests
to the FN for further processing. The process queue of FN
is modelled as a M/G/1 queue [25]. The MD offloads (part
of) the computation requests to the FN to enjoy a higher level
of quality of computation experience. The time is slotted and
the length of each time slot is τ . The time slot set is denoted
as T = {0, 1 · · · , t, · · · , T − 1}. To improve the readability,
Table 1 list the key notations.

A. Local Execution Model

The computation requests generated by MD i, i ∈ N are
assumed to follow Poisson process with an average arrival
rate Ai (t) and within [Ai,min, Ai,max]. Each request is of data

size θi. For MD i, some of the computation requests may be
locally executed and the rest will be offloaded to the FN. It
is worth mentioning that some of the computation requests
have to be dropped when neither of these modes is feasible.
The decision of MD i at time slot t is modeled as Ψi(t) =[
ϕMi (t) , ϕFi (t) , ϕDi (t)

]
, where ϕMi (t)+ϕFi (t)+ϕDi (t) = 1.

ϕMi (t) represents the portion that the requests are executed at
the MD i at time slot t, ϕFi (t) denotes the portion that the
requests are offloaded to the FN, and ϕDi (t) expresses the
portion that the requests are dropped.

We denote uMi as the computing capability of MD i which
depends on CPU Cycle of the MD. Moreover, lMi (t) denotes
the normalized workload on the MD i at time slot t. For
example, lMi (t) = 0 indicates at time slot t, the CPU is
totally idle. Then, the average response time DM

i (t) for local
execution of MD i at time slot t is expressed as follows [20]:

DM
i (t) =

1

uMi
(
1− lMi (t)

)
− ϕMi (t)Ai (t)

. (1)

Assume that the available computing capability of MD i is
uMi

(
1− lMi (t)

)
and the corresponding CPU-cycle frequency

is denoted as fi(t) at time slot t. As shown in [12], under the
assumption of a low CPU voltage, the power consumption of
CPU is kif3i , where ki is a constant depending on the switched
capacitance of MD, and fi is the CPU-cycle frequency. Thus,
the energy consumption EMi (t) of MD i for local execution
is given as

EMi (t) =kif
3
i (t)DM

i (t)

=
kif

3
i (t)

uMi
(
1− lMi (t)

)
− ϕMi (t)Ai (t)

.
(2)

Nevertheless, if some of the requests cannot be executed,
they have to be dropped. We define a cost coefficient µi for
the task drop, and accordingly the punishment for MD i at
time slot t is denoted as

CDi (t) = µiϕ
D
i (t)Ai(t)τ. (3)

B. Uplink Transmission

The wireless network is assumed to be Orthogonal Fre-
quency Division Multiplexing (OFDM)-based. The set of
the subcarrier is denoted as K= {1, 2 · · · , k, · · · ,K}, where
|K| = K. We assume the channels are independent and
identically distributed block fading during time slots. Let W
denotes the channel bandwidth, N0 denotes the noise power
spectral density at the AP, hi,k(t) denotes the channel gain
and pi,k(t) denotes the transmit power of MD i on subcarrier
k at time slot t which cannot exceed its maximum value of
pi,max. We define ρi,k(t) ∈ {0, 1} as the subcarrier assignment
indicator, where ρi,k(t) = 1 indicates that the subcarrier k is
used by MD i at time slot t. Otherwise, ρi,k(t) = 0. In this
work, we consider one subcarrier can only be allocated to one
MD. Therefore, there is no interference effect among the MDs.
Correspondingly, the data rate ri,k(t) of MD i on subcarrier
k in the uplink is expressed as follows:

ri,k (t) =ρi,k (t)W log2

(
1 +

pi,k (t)hi,k (t)

N0W

)
. (4)
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In this work, to avoid transmission interference, we consider
one subcarrier can only be assigned to one MD , while one
MD can be assigned several subcarriers. The total uplink data
rate of MD i is denoted as follows:

Ri(t) =
∑
k∈K

ρi,k (t)W log2

(
1 +

pi,k (t)hi,k (t)

N0W

)
. (5)

Correspondingly, the uplink transmission time Dup
i (t) is given

as

Dup
i (t) =

pFi (t)Ai (t) θiτ

Ri,k (t)

=
ϕFi (t)Ai (t) θiτ∑

k∈K
ρi,k (t)W log2

(
1 +

pi,k(t)hi,k(t)
N0W

) . (6)

Then, the energy consumption Eupi (t) of the transmission
is expressed as

Eupi (t) =
∑
k∈K

ρi,k (t) pi,k (t)Dup
i (t)

=
∑
k∈K

ρi,k (t) pi,k (t)ϕFi (t)Ai (t) θiτ∑
k∈K

ρi,k (t)W log2

(
1 +

pi,k(t)hi,k(t)
N0W

) . (7)

C. Fog Execution Model

The FN connecting to the AP can process the offloaded
requests and execute the computation task. We consider the
connection between the FN and AP is fiber-based with large
enough bandwidth and the transmission time from the AP to
FN is ignored. We denote the service rate of the FN as uF .
The pending requests of the MDs are pooled together with a
total rate Atotal(t). Therefore, Atotal(t) is given as follows:

Atotal (t) =
∑
i∈N

ϕFi (t)Ai (t). (8)

The normalized workload of the FN is denoted as lF (t), and
it presents the occupied portion of each server and lF (t) < 1.
The average response time DF (t) is [21]

DF (t) =

2uF
(
1− lF (t)

)
−
( ∑
i∈N

Ai (t) ϕ
F
i (t)

)

2uF (1− lF (t))

[
uF (1− lF (t))−

( ∑
i∈N

Ai (t) ϕFi (t)

)] .
(9)

After the task is executed at FN, the obtained result is sent to
the MDs via AP. Similarly to [6], [7], the energy consumption
of the MDs for receiving the results are neglected. This is
mainly due to the fact that the data size of the outcome is
generally smaller than the one of input.

D. Energy Harvesting Model

A successive energy packet arrival model is used for ana-
lyzing the EH process. The arrival of energy packet follows
a Poisson process with an average arrival rate ei(t), and
0 < ei(t) ≤ emax

i (t) where emax
i (t) is the maximum energy

arrival rate at time slot t. The harvested energy is stored in
the battery and will be available for further actions. We denote
the energy level of the battery of MD i at the beginning of
time slot t as B̂i(t). For simplicity, we only consider the
energy consumption for local computation and transmission.
The energy consumption Ei,total(t) of MD i consists of two
parts:

Ei,total (t) = EMi (t) + Eupi (t) , (10)

where EMi (t) is the energy consumption for local processing
and Eupi (t) is energy consumption for delivering the requests.
Note that Ei,total(t) cannot exceed the battery level, i.e.,

Ei,total (t) ≤ B̂i (t) . (11)

The energy harvested at time slot t should be used for the next
time slot t+ 1, i.e., the battery evolves as follows,

B̂i (t+ 1) = B̂i (t)− Ei,total (t) + ei (t) . (12)

III. PROBLEM FORMULATION

With the above analysis, the total execution cost compro-
mises of the execution time and the punishment cost for task
dropping. The execution time Di(t) at time slot t is derived
as follows:

Di(t) = ϕMi (t)DM
i (t) + ϕFi (t)

(
Dup
i (t) +DF (t)

)
. (13)

Consequently, the execution cost for MD i can be formu-
lated as

ECi (t) = Di (t) + αiC
D
i (t) , (14)

where αi is the weight factor of dropping cost. The total
weighted execution cost of the system is denoted as Γtotal(t),
which is given as

Γtotal (t)

=
∑
i∈N

ωi
[
ϕMi (t)DM

i (t) + ϕFi (t)
(
Dup
i (t) +DF (t)

)
+ αiC

D
i (t)

]
,

(15)
where ωi is the weight factor, which reflects the relative
importance of MD i in the set. Then we derive the average
execution cost Φ (t) of the fog computing system during T
time slots, which is given in (16).

At time slot t, the system decision is denoted
as V(t) =

[
ϕ(t),ρ(t),pup(t)

]
, ∀t ∈ T , where

ϕ(t) = [ϕ1(t), · · · ,ϕi(t), · · · ,ϕN (t)] are execution
strategies for all the MDs at time slot t and
ϕi(t) =

[
ϕMi (t), ϕFi (t), ϕDi (t)

]
is the execution strategy

for MD i at time slot t. ρ(t)= [ρ1(t), · · · ,ρi(t), · · · ,ρN (t)]
is the subcarrier assignment indicator of the MDs at
time slot t. ρi(t)= [ρi,1(t), · · · , ρi,k(t), · · · , ρi,K(t)] is
the subcarrier assignment vector for MD i at time slot
t. pup(t) = [p1(t), · · · ,pi(t), · · · ,pN (t)] is the uplink
transmit power matrix for all the MDs at time slot t and
pi(t)= [pi,1(t), · · · , pi,k(t), · · · , pi,K(t)] is the set of transmit
power for MD i.

Therefore, the problem is formulated in the following,

min
V (t)

Φ (t) , (17)
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Φ (t) = lim
T→+∞

1

T

∑
t∈T

Γtotal (t)

= lim
T→+∞

1

T

∑
t∈T

∑
i∈N

ωi
[
ϕMi (t)DM

i (t) + ϕFi (t)
(
Dup
i (t) +DF (t)

)
+ αiC

D
i (t)

]
.

(16)

s.t.

ϕMi (t) +ϕFi (t) +ϕDi (t) =1, 0 ≤ ϕMi (t) , ϕFi (t) , ϕDi (t) ≤ 1; (18a)

ϕMi (t)Ai (t)− uMi
(
1− lMi (t)

)
< 0; (18b)

∑
i∈N

ϕFi (t)Ai (t)− uF
(
1− lF (t)

)
< 0; (18c)

0 < pi,k (t) < pi,max; (18d)

∑
i∈N

ρi,k (t) ≤ 1, ρi,k ∈ {0, 1} ; (18e)

Ei,total (t) ≤ B̂i (t) ; (18f)

i ∈ N , t ∈ T , k ∈ K. (18g)

As we can see, the decisions are coupled among different
time slots due to the constraints (18f), which makes the prob-
lem hard to be tackled. As presented in [24], by introducing
a reasonable upper bound Emax

i (t) and a non-negative lower
bound Emin

i (t) of the battery, the coupling effect is eliminated.
Correspondingly, we are able to modify the problem as

P1 : min
V (t)

Φ (t)

(18a)− (18e), (18g), (19)

Ei,total (t) ∈
[
Emin
i (t) , Emax

i (t)
]
. (20)

As proved in [14], when Emin
i approaches 0, the optimal

solution of P1 will be the same as the original problem. For P1,
a stochastic optimization problem is formulated with decision
variables of the execution strategy, the uplink transmit power
and the subcarrier assignment. In general, by addressing the
deterministic per-time slot problem, we can obtain the total
optimal decisions in a stochastic manner.

IV. PROPOSED SOLUTION

In this section, we will propose a dynamic algorithm based
on Lyapunov optimization to solve the formulated problem.
Lyapunov optimization is considered as an efficient tool to
design online control algorithm without requiring any prior
knowledge [22]–[24]. However, as the battery level is tempo-
rally correlated, the decision sets in different time slots are not
independent and identically distributed. Therefore, we advo-
cate the weighted perturbation method [27] to solve this issue.
We first define the perturbation parameter χ, and a virtual
energy queue Bi(t) = B̂i(t)− χ. The perturbation parameter

χi is a bounded constant satisfying χi ≥ Emax + ναi/Emin,
where Êmaxi is related to higher bound of the energy Emaxi

and CPU-cycle [27]. Then, in order to present the proposed
solution, the Lyapunov function is defined as follows:

L (B (t)) =
1

2

∑
i∈N

Bi
2 (t), (21)

where B(t)= [B1(t), · · · , Bi(t), · · ·BN (t)]. Thus, the condi-
tional Lyapunov drift can be expressed as

∆ (B (t)) =E [L (B (t+ 1))− L (B (t)) |B (t) ] . (22)

The Lyapunov drift-plus-penalty function can be given as
follows:

∆ν (B (t)) = ∆ (B (t)) + νE [Γtotal (t) |B (t) ] , (23)

where ν ∈ (0,+∞) is a control parameter. Then we will find
an upper bound of ∆ (B (t)) under any feasible set of V (t),
which can be found in the following lemma.

Lemma 1. For any feasible set of V (t), which satisfies (19)
and (20), the Lyapunov drift-plus-penalty function ∆ν (B (t))
is upper bounded, i.e.,

∆ν (B (t)) ≤ κ+
∑
i∈N
{Bi (t) [ei (t)− Ei,total (t)]}

+ νE [Γtotal (t) |B (t) ] ,

(24)

where κ is a constant, and it is denoted as

κ =
∑
i∈N

[
(emax
i (t))

2
+ (Emax

i (t))
2

2

]
. (25)

Proof. See the Appendix A.

The key idea of the proposed algorithm is to minimize the
upper bound of ∆ν (B (t)) in the right-hand side of (24).
The proposed algorithm is displayed in Algorithm 1. In this
algorithm, by solving a deterministic per-time slot problem,
the formulated problem is able to be addressed.

Due to the high complexity of the the considered problem, in
the next subsection, we will divide it into several sub-problems
to obtain the optimal system decision.

A. Optimal Offloading Strategy

Firstly, we seek the optimal offloading strategy at each time
slot t, while taking the other pending variables as constants.
Then the problem is translated into the following sub-problem
SP1, which is

min
p(t)

∑
i∈N
−Bi (t)Ei,total (t) + ν

∑
i∈N

ωi
[
Di (t) + αiC

D
i (t)

]
(26)
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Algorithm 1 Proposed online algorithm
Step 1: At the beginning of the time slot t, obtain B (t).
Step 2: Through solving the following problem P2, determine
the system decision set V (t) =

[
ϕ (t) ,ρ (t) ,pup (t)

]
that can

minimize P2:

min
V (t)

∑
i∈N
{Bi (t) [ei (t)− Ei,total (t)]}+νE [Γtotal (t) |B (t)|]

s.t. (19), (20)
Step 3: Sset t = t+ 1, update B (t) according to (21), repeat
Step 1 and Step 2, until obtain the system decisions of all the
time slots.

s.t.
(18a)− (18e), (18g), (20).

It can be found that (18c) is a coupled constraint, which
includes various offloading decision variables of different
MDs. Similarly to the ones in [25], we can formulate the
proposed problem as a Generalized Nash Equilibrium Problem
(GNEP). The exponential penalty function method is applied
to transform the original GNEP into a classical NEP and
address it by semi-smooth Newton method with Armijo line
search. The semi-smooth Newton algorithm, with strong sys-
tem computing power, inherits many excellent features from
the classic Newton algorithm. Through determining step size
of the Newton direction with the linear searc strategy, it avoids
the sensitivity of the algorithm to initial values. Thus the local
convergence becomes global convergence. The proof can be
found in Appendix of [25]. Consequently, in the following,
we will address the transmit power and subcarrier allocation
problems.

B. Power and Subcarrier Allocation

Similarly, the optimal transmit power pup (t) and subcar-
rier assignment matrix ρ(t) can be obtained by solving the
following sub-problem SP2 through removing some irrelevant
parameters from P2, which is denoted as follows:

min
{ρ(t),pup(t)}

∑
i∈N
−Bi (t)Eupi (t) + ν

∑
i∈N

ωiϕ
F
i (t)Dup

i (t) ,

(27)
s.t.

0 < pi,k (t) < pi,max; (28a)

∑
i∈N

ρi,k (t) ≤ 1, ρi,k ∈ {0, 1} ; (28b)

Eupi (t) < Emax
i (t) . (28c)

By substituting the specific expressions of Eupi (t) and
Dup
i (t) into the above problem, we can get an equal form

of SP2, as shown in SP2′.
The constraints are the same as those in (28). It can be

found that SP2′ is a mixed-integer programming problem. To

Algorithm 2 Subcarrier assignment algorithm
1: Input:

At beginning of time slot t, obtain Ψ (t), hi,k (t),K1 (t),
K2 (t), and h̃i (t);

2: Obtain the total number of subcarriers:
Obtaining the optimal solution {n∗i (t) , p̃∗i (t)} of the
SP2′′;

3: Subcarrier allocation:
4: while Ñ 6= ∅, do
5: (1) Let ρk′,n′ = 1, where {i′, k′} = arg max

i′∈N,k′∈K
ψi,k,t;

(2) Update sets:
Zi′ (t) = Zi′ (t)∪{k′},K1 (t) = K1 (t)∪{k′}, K2 (t) =
K2 (t) \ {k′};
(3) if |Zi′ (t)| = ñ∗i′ (t), then Ñ = Ñ \ {i′};

6: end while
7: Transmit power allocation

Obtaining the optimal solution of SP2′′′.
8: return

{
ρ∗i,k (t) , p∗i,k (t)

}

address such a problem, we introduce an average offloading
priority function [26], and it is defined as follows:

ψi,k,t (ωi, τ, hi,k (t)) =


ωiN0W
hi,k(t)

[vi (t) ln vi (t)− vi (t) + 1] ,

if vi (t) ≥ 1;
0, if vi (t) < 1;

(30)
where the constant vi (t) is defined as vi (t) =

Whi,k(t)τc0
N0 ln 2 and

c0 is a pre-defined constant. Specifically, with the defined aver-
age offloading priority function ψi,k,t (ωi, τ, hi,k (t)) (for sim-
plify, we assume that any two values of ψi,k,t (ωi, τ, hi,k (t))
are not the same), we denote the offloading priority order as
Ψ (t) at time slot t, which is composed by {ψi,k,t} , i ∈ N , k ∈
K, and displayed in the descending manner. We denote the sets
of assigned and unassigned subcarriers as K1 (t) and K2 (t) at
the beginning of time slot t. The average channel gain h̃i (t)
is defined as h̃i (t) =

∑
k∈K2(t)

hi,k (t)/|K2 (t)|, where |K2 (t)| is

the number of unassigned subcarriers during the time slot t.
For each MD, such as MD i, the assigned subcarrier set

is denoted as Zi (t) during the time slot t, initialized as
Zi (t) =∅. Additionally, the subcarrier assignment indicators
are set as {ρi,k (t) = 0} at the beginning of time slot t.
By these definitions, we proposed a subcarrier allocation
algorithm, which is shown in Algorithm 2.

In the proposed algorithm, finding the optimal power alloca-
tion involves addressing SP2′′ where ni (t) is the total number
of subcarriers that allocated to MD i. We can also find that
SP2′′ is a mixed integer programming problem including a
integer constraint (32a). The problem can be addressed with
semi-smooth Newton method, which is similar to the one in
[25]. Then by the branch-and-bound procedure, we can obtain
the integer solution n∗i (t).

We denote the set of MDs that still require subcarriers
as Ñ , where Ñ= {i |n∗i (t) > 0}. We allocate subcarriers for
each MD according to the highest offloading priority principle.
After searching for the highest offloading priority ψi′,k′,t over
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SP2′ : min
{ρ(t),pup(t)}

∑
i∈N
−Bi (t)

∑
k∈K

ρi,k (t) pi,k (t)ϕFi (t)Ai (t) θiτ∑
k∈K

ρi,k (t)Blog2

(
1 +

pi,k(t)hi,k(t)
N0W

)

+ ν
∑
i∈N

ωiϕ
F
i (t)

 ϕFi (t)Ai (t) θiτ∑
k∈K

ρi,k (t)W log2

(
1 +

pi,k(t)hi,k(t)
N0W

)


(29)

SP2′′ : min
{ni(t),p̃i(t)}

∑
i∈N

−Bi (t) p̃i (t)ϕFi (t)Ai (t) θiτ

Blog2

(
1 + p̃i(t)h̃i(t)

N0W

) +
νωi
[
ϕFi (t)

]2
Ai (t) θiτ

ni (t)W log2

(
1 + p̃i(t)h̃i(t)

N0W

)
 (31)

s.t. ∑
i∈N

ni (t) ≤ |K2 (t)| (32a)

p̃i (t) ≤ pi,max (32b)

p̃i (t)ϕFi (t)Ai (t) θiτ

W log2

(
1 + p̃i(t)h̃i(t)

N0W

) ≤ Emax
i (t) (32c)

unassigned subcarriers K2 (t) for the remaining offloading-
required users Ñ and then allocates subcarrier k′ to user i′.
Such a sequential subcarrier assignment follows the descend-
ing offloading priority order. Then the remaining sets can be
updated until all subcarriers are assigned. At last, the optimal
transmit power for MD i over the assigned subcarriers Zi (t)
is obtained by minimizing the problem SP2′′′ at time slot t,
i.e.

SP2′′′ :

min
pi,k′ (t),k′∈Zi(t)

∑
k′∈Zi(t)

−Bi (t) pi,k′ (t)ϕFi (t)Ai (t) θiτ∑
k′∈Zi(t)

W log2

(
1 +

pi,k′ (t)hi,k′ (t)

N0W

)
+

νωi
(
ϕFi (t)

)2
Ai (t) θiτ∑

k′∈Zi(t)

W log2

(
1 +

pi,k′ (t)hi,k′ (t)

N0W

) ,
(33)

s.t.
0 < pi,k′ (t) ≤ pi,max, k

′ ∈ Zi (t), (34a)∑
k′∈Zi(t)

pi,k′ (t)ϕFi (t)Ai (t) θiτ∑
k′∈Zi(t)

W log2

(
1 +

pi,k′ (t)hi,k′ (t)

N0W

) ≤ Emax
i (t) ,

(34b)
which equals to

min
pi,k′ (t),k′∈Zi(t)

−c1

( ∑
k′∈Zi(t)

pi,k′ (t)

)
+ c2∑

k′∈Zi(t)

W log2

(
1 +

pi,k′ (t)hi,k′ (t)

N0W

) (35)

where c1 and c2 are constants, which are denoted as follows:

c1 = Bi(t)ϕ
F
i (t)Ai (t) θiτ,

c2 = νωi
(
ϕFi (t)

)2
Ai (t) θiτ

(36)

We can see that the formulated problem SP2′′′ is similar
with the problem investigated in [5]. Then, we can solve it
with Interior Point Method (IPM), the details of which can be
found in [5] (Alg. 1 in Sec. VI ).

The presented solution involves two subproblems, namely,
the offloading strategy and the radio resource (subcarrier
and power) allocation, and they are hierarchically intercon-
nected. Convergence is guaranteed since in each sublayer,
the presented solution is able to obtain optimal solution with
guaranteed convergence, respectively.

V. PERFORMANCE EVALUATIONS

In this section, we have conducted simulations to examine
and illustrate the proposed resource allocation and computa-
tion offloading scheme The simulation parameters are similar
to the ones used in [5] and [25].

First, we change the number of subcarriers and plot the
average execution cost assuming 6 MDs in Fig. 2. We also
compare our propose scheme with the other two schemes,
namely equal allocation and random allocation, to show the
impact of the proposed subcarrier allocation scheme. It can be
observed that with the proposed optimal subcarrier allocation
strategy, the average execution cost of the system is the
smallest among all three schemes. Moreover, as shown in this
figure, when the numebr of subcarriers in the system increases,
the average execution cost becomes smaller, as the MDs have
sufficient choices to offload the requests to the FN to reduce
the execution time. In this way, the number of dropped requests
would also be reduced.

Then we plot the execution cost of the system with the
increasing number of MDs in the system, when the number
of subcarriers is fixed in Fig. 3. First, it can be observed
when the number of MDs in the system becomes larger, the
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Fig. 2. Execution cost vs. number of subcarriers

Fig. 3. Execution cost vs. number of MDs

average execution costs are increased. Such a phenomenon
indicates that the execution time and/or the punishment cost
are degraded with the increasing number of MDs under the
condition of fixed number of subcarriers. As more and more
users compete for the radio and computational resources with
each other, longer transmission time and fog execution time
can be induced. Thus, more requests have to be executed
locally or even dropped, which leads to a larger execution cost.
In addition, we have compared our work with computation
resource allocation scheme in [24]. We have implemented the
subcarrier allocation but no power allocation. It can be found
that our proposed one outperforms all the three schemes.

VI. CONCLUSION

In this paper, a resource allocation and computation offload-
ing scheme is proposed for fog computing system with mul-
tiple EH MDs. Based on Lyapunov optimization, a dynamic
algorithm is presented to solve the considered problem over
consecutive time slots. To address the formulated problem, we

divide the original problem into three sub-problems. Specif-
ically, through transforming the original simplified problem
into a GNEP and solving it with semi-smooth Newton algo-
rithm, we can obtain the optimal offloading strategy. Then, we
derive the optimal subcarrier assignment scheme, and further
obtain the optimal transmit power with IPM algorithm. With
such a process, the average execution cost of the fog comput-
ing system can be minimized. The performance evaluations
are presented to illustrate the effectiveness of the proposed
scheme and demonstrate the superior performance over the
existing schemes.

As one future research direction, we are going to investigate
the interplay of the cloud center and fog node, where the fog
node can further offload the data to the cloud center if it does
not have enough computational resources. In addition, we will
also extend the work to the scenario with multiple fog nodes,
where the association between the fog nodes and MDs will be
studied.

APPENDIX A
As we have Bi (t+ 1) = Bi (t) − Ei,total (t) + ei (t), by

squaring both sides, we can obtain:

Bi
2 (t+1) =[Bi (t) + ei (t)− Ei,total (t)]2

=Bi2 (t) +[ei (t)− Ei,total (t)]2

+2Bi (t) [ei (t)− Ei,total (t)]

≤Bi2 (t) +e2i (t) +E2
i,total (t) + 2Bi (t) [ei (t)− Ei,total (t)]

By moving the expression Bi2 (t) to the left-hand side, we
can obtain:

Bi
2 (t+1)−Bi2 (t)

≤ ei2 (t) + E2
i,total (t) +2Bi (t) [ei (t)− Etotal (t)] .

By summing up the inequalities for i = 1, 2, · · · , i, · · · , N ,
we can obtain:

1

2

∑
i∈N

(
Bi

2 (t+ 1)−Bi2 (t)
)

≤ 1

2

∑
i∈N
{ei2 (t) + E2

i,total (t) +2Bi (t) [ei (t)− Etotal (t)]}

As 0 < ei (t) ≤ emax
i (t), Ei,total (t) ≤ Ei,max (t), so

we can obtain e2i (t) ≤ (emax
i (t))

2, E2
i,total (t) ≤ E2

i,max (t).
Thus, we have

∆ (B (t))

=E [L (B (t+ 1))− L (B (t)) |B (t) ]

=
1

2

∑
i∈N

(
Bi

2 (t+1)−Bi2 (t)
)

≤1

2

∑
i∈N

{
(emax
i (t))2 + E2

i,max (t) +2Bi (t) [ei (t)− Ei,total (t)]
}

=
∑
i∈N

{
(emax
i (t))2 + E2

i,max (t)

2
+Bi (t) [ei (t)− Ei,total (t)]

}
So we can obtain:

∆ν (B (t))

= ∆ (B (t)) + νE [Γtotal (t) |B (t) ]

≤
∑
i∈N

{
(emax
i (t))2 + E2

i,max (t)

2
+Bi (t) [ei (t)− Ei,total (t)]

}
+ νE [Γtotal (t) |B (t) ]
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