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Abstract 

Herbal medicines are usually marketed as natural products with multiple beneficial health claims. 

However, several studies have established that these products are usually adulterated with 

pharmaceuticals to increase their treatment effectiveness. Adulterating herbal products with 

pharmaceuticals can result in adverse herb-drug interactions, undermining their safety. Therefore, 

it is important to routinely analyse herbal products to determine if they have been adulterated with 

pharmaceuticals. A liquid chromatography coupled with tandem mass spectroscopy (LC-MS/MS) 

method was developed and validated for simultaneous identification and quantification of four 

commonly used antidiabetics – metformin (MET), gliclazide (GLZ), glibenclamide (GLC), and 

glimepiride (GLP) – in herbal medicines. Chromatographic separation of these analytes was done 

using a C-18 column and a gradient elution program of 0.1% formic acid in acetonitrile. The 

developed method showed detection limits and quantification limits ranging from 2.86 to 7.67 
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ng/mL and 8.64 to 23.24 ng/mL, respectively. The accuracy was above 80% for all analytes except 

MET (52%). This method was then applied to analyse 24 powdered herbal drugs sourced from the 

Kenyan market to check for adulteration. MET was detected in 17% of the samples, with 

concentrations ranging from 900 ng/g to 1969 ng/g. GLC, GLZ, and GLP were not detected in any 

sample. This method can therefore be used to analyse antidiabetic herbal medicines for 

adulteration using the four pharmaceuticals. 

Keywords: LC-MS/MS; MRM; ESI; Adulteration; Antidiabetic Herbal Medicines.  
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1 Introduction 

The number of diabetic patients is on the rise globally [1]. As a result, a huge increase in the 

number of diabetic patients using herbal drugs to treat their illnesses is being experienced as 

patients seek safer treatment options with fewer side effects compared to conventional 

pharmaceuticals [2]. However, these drugs may be unsafe as several studies have reported that 

antidiabetic herbal drugs are commonly adulterated with synthetic oral antidiabetic drugs leading 

to adverse patient events [3]–[6]. Antidiabetic drugs commonly used to adulterate herbal medicines 

include metformin (MET), gliclazide (GLZ), glibenclamide (GLC), rosiglitazone, glimepiride 

(GLP), nateglinide, phenformin, and repaglinide [6]–[9]. Therefore, it is critical to analyse 

antidiabetic herbal medicines for adulteration using antidiabetic pharmaceuticals to promote 

patient safety. 

A wide range of analytical techniques has been utilized to identify and quantify pharmaceuticals 

used to adulterate herbal remedies, including capillary electrophoresis, infrared spectroscopy, 

high-performance liquid chromatography (HPLC), and thin layer chromatography [10]–[15]. 

Hyphenated techniques, particularly HPLC coupled with tandem mass spectroscopy (LC-MS/MS) 

or mass spectroscopy (LC-MS) are most commonly used to analyse for adulteration of herbal 

products because they meet the majority of the essential requirements of analysis for food samples 

and herbal products [7].  Notably, LC-MS/MS allows for a wide range of potential adulterants to 

be analysed and quantified simultaneously in one run using multiple reaction monitoring (MRM) 

because this technique has high selectivity and sensitivity for pharmaceuticals [16]–[20].  

The World Health Organization (WHO) estimates that about 80% to 90% of Africans rely on 

herbal medicine to treat their illnesses [21]. The situation is similar in Kenya, especially in rural 

areas where communities heavily rely on herbal remedies for their primary healthcare needs 
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because of their accessibility and affordability [22]. However, no strong regulatory mechanisms 

exist to evaluate herbal medicines sold in the country for their effectiveness and safety [23]. 

Therefore, it is likely that these herbal remedies are being adulterated with pharmaceuticals 

without the knowledge of patients and regulatory bodies. As such, this study aims to develop and 

validate a rapid, simple, selective, and sensitive LC-MS/MS method to identify and quantify 

adulterants in herbal products, and then apply it to antidiabetic herbal medicines sold in Nairobi 

and Uasin Gishu Counties, Kenya. To the best of our knowledge, no similar study has been 

conducted in Kenya that focuses on adulteration in antidiabetic herbal products. GLZ, GLC, GLP, 

and MET are listed as essential antidiabetic medicines by the Ministry of Health, Kenya, and hence 

were chosen as the analytes for this study [24].  

2 Materials and Methods 

2.1 Reagents and Chemicals 

HPLC grade formic acid, acetonitrile, and methanol were purchased from Merck (Germany). 

Ultrapure water was obtained from a Milli-Q water apparatus. Analytical standards of MET (>99% 

purity) were provided by Kenya Medical Research Institute (KEMRI) while those of GLZ (>99% 

purity), GLC (>99% purity), and GLP (>99%) were provided by Cosmos Limited, Kenya.  

2.2 Sample Collection 

Herbal samples were randomly purchased from herbal clinics, herbal product manufacturers, 

herbalists, and local retailers (supermarkets, nutrition stores, and street vendors) in Uasin Gishu 

and Nairobi Counties, Kenya. Nairobi County was chosen for this study because it is a 

cosmopolitan area with many communities with diverse cultures and customs; thus, many herbal 

products end up here. Uasin Gishu County has a wealth of ethnobotanical knowledge; hence, most 

of the local herbal products sold in the country are sourced from this region. Ethical clearance was 
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granted by KEMRI Independent Scientific and Ethical Review Unit (SERU): 

(KEMRI/SERU/CTMDR/CSC068/3566).  

2.3 Preparation of Standard Solutions 

Individual stock solutions were prepared by dissolving accurately weighted standards in methanol 

to make 1 mg/mL concentration. These stock solutions were refrigerated at -20 ℃, awaiting further 

analysis. A mixed standard solution (0.02 mg/mL) was prepared in methanol and refrigerated at -

20 ℃. Working standard solutions were prepared by diluting the mixed standard solution with the 

initial mobile phase composition (5% acetonitrile) to concentrations of 5 – 250 ng/mL.  

2.4 LC-MS/MS Instrumentation and Optimization of Operating Conditions 

A Waters Alliance 2975 LC system (LC, Milford, MA, USA) coupled to a Waters Quattro Micro 

mass spectrometer (Micromass, UK) was used. The system was operated using Masslynx 4.1 

software. Separation was conducted on an XbridgeTM C18 column (3.5 μm * 2.1 mm * 100 mm) 

fitted with a Vanguard ® pre-column (2.1 mm * 5 mm). The collision and desolvation gases were 

argon and nitrogen, respectively. The source temperature was set at 120 ℃ while the desolvation 

temperature was set at 350 ℃. The cone and desolvation gas flow rates were 50 and 700 L/min, 

respectively. The mass spectrometer was operated in the MRM mode. 

MS parameters were optimized using direct infusion, whereby a syringe pump was used to inject 

400 ng/mL standard solutions directly into the mass spectrometer. For each standard, both the 

negative and positive electrospray ionization (ESI) modes were tested. The most abundant m/z for 

each compound was chosen as the precursor ion, and the intensity of the resultant signal was 

optimized by changing the cone voltage. The cone voltage with the most intense signal was 

selected. The collision energies were optimized for each transition, and the two most intense 

product ions were chosen for qualification and quantification.  
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For the organic mobile phase, acetonitrile and methanol acidified with 0.1% formic acid were 

tested to determine which gave better chromatographic separation. Different compositions of the 

mobile phase were evaluated to improve chromatographic separation. Different separation 

temperatures (30 ℃ to 40 ℃) and flow rates (0.35 mL/min to 0.45 mL/min) were tested to optimize 

peak shapes, chromatographic resolution, and analysis time. 

2.5 Sample Preparation Optimization 

The sample preparation process involved three key steps: extraction, evaporation, and filtration. 

The absolute recoveries for each step and the entire process were evaluated to determine the 

optimal conditions. The absolute recoveries were determined by comparing the mean peak area of 

the spiked blanks (50 ng/mL) with that of the neat standards of similar concentration, as shown in 

equation 1[25]. A previously-analysed herbal product with no detectable levels of the targeted 

pharmaceuticals was used as the blank sample. 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) =
𝑚𝑒𝑎𝑛 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎𝑠𝑝𝑖𝑘𝑒𝑑 𝑏𝑙𝑎𝑛𝑘 

𝑚𝑒𝑎𝑛 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑛𝑒𝑎𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
∗ 100      (1) 

2.6 Method Validation 

The performance of the developed method was validated with reference to the International 

Council for Harmonization (ICH) guidelines for analytical techniques [26].  

Linearity was determined by constructing calibration curves and determining the coefficient of 

determination for all the analytes [27]. Accuracy was calculated by comparing the peak area of the 

blank spiked to 50 ng/mL prior to extraction to that of the neat standard of a similar concentration. 

Precision was determined by making three consecutive injections of the mixed standard solution 

at 10 ng/mL, 100 ng/mL, and 200 ng/mL and calculating the relative standard deviation (RSD) of 

the mean peak areas obtained. 
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 The LOD was calculated as three times the ratio of the blank’s standard deviation, approximated 

using the y-intercept’s standard deviation, to the slope of the calibration curve [28]. The LOQ was 

calculated as ten times the ratio of the blank’s standard deviation to the slope of the calibration 

curve. The matrix effect was measured by comparing the mean peak area of the blank extract 

spiked to a concentration of 50 ng/mL after filtration to that of the neat standard of similar 

concentration [29].  

2.7 Data analysis 

Microsoft Windows Excel 2019 was used in data entry and analysis. An independent two-tailed 

t-test was performed to compare the experimental values for the conditions tested during the 

sample optimization process. A confidence interval of 95% (p= 0.05) was used. 

3 Results and Discussion 

3.1 Optimized LC-MS/MS operating conditions 

The optimal mobile phase was made up of 0.1% formic acid in ultrapure water as solvent A, and 

0.1% formic acid in acetonitrile as solvent B. 0.1% formic acid in acetonitrile had sufficient analyte 

retention, adequate response, and ideal peak shapes for all the antidiabetics, except MET that had 

a slightly broad peak as illustrated in Fig. 1. Conversely, methanol as the organic mobile phase 

resulted in a broader peak for MET and insufficient response for the other analytes, consistent with 

the findings of similar studies [29, 30].  

The separation was conducted at a flow rate of 0.40 mL/min and temperature of 40 ℃, as the peaks 

were better resolved for all the analytes. The following gradient program was used: 0-0.5 min (5% 

B); 0.5-1.5 min (increase to 30% B); 1.5-2.0 min (increase to 40% B); 2.0-6.0 min (increase to 

60% B); 6.0-7.0 min (60% B); 7.0-8.0 min (decrease to 40% B); 8.0-9.0 min (40% B); 9.0-9.5 min 

(5% B); 9.5-10.0 min (5% B).  
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The total ion chromatograms (TIC) obtained under these LC conditions for each analyte at 50 

ng/mL are shown in Fig. 1. 

 

Fig. 1 TIC for the chosen antidiabetics (1 - MET, 2 - GLZ, 3 - GLC, and 4 - GLP) 

The MS/MS conditions were also optimized for each analyte. The positive ESI mode was used 

because it gave optimal results for all the analytes. The MRM transitions for each analyte were 

optimized, as shown in Table 1.  

Table 1 Optimized MRM parameters for the 4 antidiabetics 

Compound 

Name 

Structure Precursor 

ion 

Product 

ion 

Cone 

voltage 

(V) 

Collision 

energy 

(eV) 

MET 

 

130 71q 

60 

23 22 

24 

GLZ 

 

324 127q 

110 

30 28 

28 

GLC 

 

494 369q 

169 

22 20 

38 
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GLP 

 

491 352q 

126 

22 17 

39 

q Indicates the product ion used for quantification 

3.2 Optimization of the sample preparation steps 

3.2.1 Extraction step 

Different concentrations of 20 mL of methanol in ultrapure water (30%, 60%, 90%) were used to 

extract 2 g of the blank sample spiked to a final analyte concentration of 50 ng/mL using the mixed 

standard solution. The extraction was conducted using a shaker at 200 rpm and a sonicator for 20 

minutes, and the absolute recoveries compared, as shown in Fig. 2. 90% methanol as the extraction 

solvent using a sonicator compared to a shaker significantly enhanced the absolute recoveries for 

GLC (73.4% vs 47.5%, p=0.03) and GLP (78.1% vs 27.9%, p=0.002). It also enhanced the 

absolute recoveries of MET (52.0% vs 42.4%, p=0.11) and GLZ (129.7% vs 125.2%, p=0.72), but 

the increases were not statistically significant. Although the absolute recoveries of GLZ were the 

highest, they were within the acceptable range of 70% to 130% for routine analysis of products 

with complex matrices, such as herbal products [32]. One possible explanation of the absolute 

recoveries of GLZ being so high is the presence of matrix influences, particularly ion enhancement, 

as GLZ is the only analyte in the study whose matrix effect was above 100%. Similar studies on 

GLZ have reported high recoveries [3], [33-34]. Hence, it is recommended that the pre-and post-

spiking approach is used when optimizing the sample preparation process to ensure that the method 

accounts for matrix influences. As for MET, several studies have reported low recoveries for it 

due to its high polarity [30], [38]. 
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Varying concentrations of formic acid (0.05% and 0.02% formic acid) were added to improve the 

absolute recoveries of MET.  However, the addition of formic acid to the extraction solvent 

reduced the extraction efficiency of the extraction solvent for all the analytes, as shown in Fig. 3. 

Using 90% methanol with 0.05% formic acid as the extracting solvent compared to using 90% 

methanol only significantly reduced the absolute recoveries of MET (42.7% vs 52.0%, p=0.03), 

GLZ (104.4% vs 129.7%, p=0.04), GLC (40.9% vs 73.4%, p=0.01), and GLP (26.9% vs 78.1%, 

p=0.001). Similarly, but to a greater extent, using 90% methanol with 0.02% formic acid as the 

extracting solvent compared to using 90% methanol only significantly reduced the absolute 

recoveries of MET (42.0% vs 52.0%, p=0.03), GLZ (97.4% vs 129.7%, p=0.02), GLC (11.3% vs 

Fig. 2 Absolute recoveries for the entire sample preparation process (A, B and C using a 

sonicator for extraction with 30%, 60% and 90% methanol as the extraction solvent, 

respectively; and D, E and F using a shaker for extraction with 30%, 60%, and 90% methanol 

as the extraction solvent, respectively) 
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73.4%, p<0.001), and GLP (9.1% vs 78.1%, p<0.001). This effect can be attributed to formic acid 

lowering the pH of the extraction solvent, which subsequently reduced the solubility of the 

analytes. GLZ, GLC, and GLP are sulfonylurea drugs; thus, their solubility is poor in weakly acidic 

media because they are weakly acidic [31-32]. As such, sonicating the samples with 90% methanol 

for 20 mins was determined to be the optimal conditions for extracting the selected analytes.  

 

 

 

 

 

 

 

 

3.2.2 Evaporation step 

Since 90% methanol was used to extract the blank herbal sample, switching this organic solvent 

with an aqueous solvent was necessary to optimize chromatographic separation[38]. 

Consequently, the extraction solvent was evaporated to near dryness under a gentle nitrogen stream 

at 40ºC in a nitrogen evaporator (N-EVAPTM111, model 5085, USA) before the aqueous solvent 

was added. The absolute recoveries for the analytes were calculated in this step to determine the 

effectiveness of this solvent-switching process. The blank sample was spiked with the mixed 

standard solution to a final analyte concentration of 50 ng/mL after extraction but before 

evaporation, and its mean peak areas compared to that of the neat standards of the same 
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Fig. 3 Effect of adding formic acid to the extraction solvent (A =0.05%; B = 0.02%; and C = No 

formic acid) 
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concentration to get the absolute recoveries for this evaporation step. The absolute recoveries were 

68% for MET, 107% for GLZ, 96% for GLC, and 80% for GLP. 

3.2.3 Filtration step 

Samples need to be filtered using a 0.22-micron filter before they are injected into the LC for 

analysis to protect the column from damage, prolonging its lifetime [39]. However, some studies 

have reported the adsorption of pharmaceutical compounds on the filter [40]–[42]. Hence, the 

absolute recoveries for the 0.22-micron cellulose and PTFE filters were calculated to determine 

their potential to adsorb the four antidiabetics, as illustrated in Fig. 4. The 0.22-micron PTFE filter 

compared to the 0.22-micron cellulose filter significantly enhanced the recoveries of GLZ (108% 

vs 58%, p<0.001), GLC (88% vs 4%, p<0.001), and GLP (74% vs 7%, p<0.001). Several studies 

have established cellulose materials have a high adsorption capacity for sulfonylurea drugs and 

herbicides [43], [44]. Hence, the 0.22-micron PTFE filter was used.  

 

 

 

 

 

 

 

3.2.4 Optimized Sample Preparation Process 

The optimized sample preparation process was as follows. About 2 grams of the powdered sample 

were weighed into a 50-mL centrifuge tube and vortexed for 2 mins for a uniform composition. 

The sample was then dissolved in 90% methanol in a ratio of 1:10 and vortex-mixed for 1 min, 

Fig. 4 Absolute recoveries for filtration step (A = 0.22-micron cellulose filter and B = 

0.22-micron PTFE filter) 
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followed by sonication for 20 minutes before centrifuging at 4500 rpm for 5 min. 1 mL of the 

supernatant was transferred into a 10 mL vial, and the extraction solvent evaporated to almost 

dryness under a gentle stream of nitrogen gas at room temperature. It was then reconstituted to 1 

mL using Milli-Q water, transferred into a 1.5 mL Eppendorf tube and centrifuged at 15000 rpm 

for 5 minutes. One mL of the supernatant was filtered using a 0.22-micron PTFE syringe filter and 

diluted ten times using Milli-Q water. One mL of the filtrate was then placed in an HPLC vial, and 

10 µL of it was injected in triplicate into the LC system for analysis. 

3.3 Method Validation 

Linearity calibration curves in 5 – 200 ng/mL range were determined for GLP and GLC and 5 – 

250 ng/mL for MET and GLZ, as shown in supplementary file 1. The coefficients of determination 

(r2) were  0.9981, 0.9997, 0.9978, and 0.9985 for MET, GLZ, GLC, and GLP, respectively, 

indicating good linearity as they were within the acceptable limits of >0.990 [28]. The LOQs and 

LODs for all the compounds are indicated in Table 2. The accuracy for the analytes, expressed as 

mean absolute recovery, was at least 80% for all the analytes, except for MET (52%). The accepted 

level of variation for accuracy recommended by most of the guidelines is ± 20% [45]. However, 

several studies have also reported low accuracies for MET due to its high polarity [30], [38]. The 

precision ranged between 8.5% and 16.1%, with the lowest variability at the highest concentration 

level and vice versa. All the obtained precision values were below the accepted level of variation 

(15 to 20%) [45]. The matrix effect for each analyte can be found in Table 2. Only GLZ had a 

matrix effect of over 100%, indicating ion enhancement. The other analytes – MET, GLC, and 

GLP – had a matrix effect of less than 100%, indicating ion suppression.  
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Table 2 Method validation for all the analytes 

Compound Linear 

regression 

Linear 

range 

(ng/mL) 

r2 Accuracy 

(%) 

LOD 

(ng/mL) 

LOQ 

(ng/mL) 

Matrix 

effect 

(%) 

MET y = 

106.42x + 

216.18 

5 - 250 0.9981 52.00 7.67 23.24 68.41 

GLZ y = 

272.55x – 

148.29 

5 -250 0.9997 129.66 2.84 8.62 106.96 

GLC y = 

122.48x – 

285.81 

5 - 200 0.9978 79.64 7.11 21.63 96.08 

GLP y = 

123.68x – 

263.89 

5 - 200 0.9985 81.76 5.96 18.07 79.97 

 

3.4 Application of validated method to herbal medicines 

After the method was validated, it was used to analyse 24 herbal drugs purchased from Nairobi 

and Uasin Gishu Counties, Kenya for possible adulteration. GLZ, GLC, and GLP were not 

detected in any of the analysed samples. MET was detected in 17 % of the samples (n = 4) at 

concentrations shown in Table 3.  

Table 3 Concentrations (mean ±SD) of MET in sampled herbal products (n = 4) 

Sample No.  Concentration (ng/g)  

Sample 5  1781 ± 116  

Sample 10  1969 ± 86  

Sample 18  1385 ± 174  

Sample 22  903 ± 265  
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Several studies have reported adulteration of herbal drugs with MET [4], [6], [8], [9]. GLZ, GLC, 

and GLP were not detected in any sample. MET is readily available nationwide because it is the 

least costly antidiabetic [46]–[48], which could explain why it was the only antidiabetic detected 

in the samples. Adulterating herbal products with MET is dangerous because of its high potential 

for adverse drug-herb interactions. Mild hypoglycaemia has been reported in diabetic patients 

taking MET with herbal products, including melatonin, ginseng, salvia, gobo, and nopal [49], [50]. 

Additionally, some herbs, including Gymnema sylvestre, reduce the MET’s bioavailability when 

taken together, leading to increased blood glucose levels [51].  

4 Conclusion   

A rapid LC-MS/MS method was developed, validated, and applied to simultaneously detect four 

common antidiabetic medications present as adulterants in herbal products. This method showed 

high precision, accuracy, linearity, and sensitivity. Therefore, this method can be used to monitor 

antidiabetic herbal drugs for adulteration using these four antidiabetic pharmaceuticals. The 

presence of metformin in 17% of the samples shows that herbal medicines in the country are being 

adulterated without the knowledge of the public and regulatory bodies. As such, this study 

recommends routinely testing herbal products in the country for possible adulteration using 

pharmaceuticals. The method should also be expanded to include other classes of drugs that have 

been reported as common adulterants in literature.  
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