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A PARALLEL DOMAIN DECOMPOSITION METHOD FOR THE
HELMHOLTZ EQUATION IN LAYERED MEDIA\ast 

ERKKI HEIKKOLA\dagger , KAZUFUMI ITO\ddagger , AND JARI TOIVANEN\S 

Abstract. An efficient domain decomposition method and its parallel implementation for the
solution of the Helmholtz equation in three-dimensional layered media are considered. A modified
trilinear finite element discretization scheme is applied to the equation system leading to fourth-order
phase accuracy and thereby reducing the pollution error considerably. The resulting linear system
is solved with the GMRES method using a multiplicative nonoverlapping domain decomposition
preconditioner with layers defining the subdomains. This right preconditioner is constructed by
embedding each layer into a rectangular domain and by employing a fast direct solver. Due to
the construction of the preconditioner the iterations can be reduced to a subspace corresponding to
the interfaces between the layers. Numerical experiments with several test cases demonstrate the
effectiveness and scalability of the proposed method and ability to solve large-scale problems with
up to billions of unknowns.

Key words. Helmholtz equation, domain decomposition method, preconditioned iterative
method, ultrasonic tomography, geological survey
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1. Introduction. The modeling of acoustic waves in medical acoustics or seis-
mic imaging requires the solution of the Helmholtz equation in heterogeneous media.
Potential application examples for an efficient Helmholtz solver with variable parame-
ters are ultrasound waveform tomography and the full waveform inversion procedure,
which involve inverse problems related to the material parameters in the Helmholtz
equation [21, 27, 31]. The computationally most demanding component of such pro-
cedures is a solver for the forward problem.

This article considers an efficient numerical method to solve the Helmholtz equa-
tion in layered media with piecewise constant speed of sound. Numerous formulations
and numerical methods have been introduced for the solution of the Helmholtz equa-
tion during the past decades, and some of the recent approaches are reviewed, for
example, in [6, 33]. Our method is based on a domain decomposition preconditioner
for the iterative solution of the discrete equations arising from finite element dis-
cretization.

The finite element discretization of the Helmholtz equation leads to indefinite,
complex-valued, and large-scale linear system of equations, which is challenging to
solve [6]. The number of nodes per wavelength needs to be suffiently high to achieve
reasonable accuracy, and the accuracy is deteriorated with increasing frequency by
the pollution effect [13]. The linear systems to be solved in practical applications
often involve billions of unknowns the solution of which requires parallelization of
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algorithms and massively parallel computers [30]. Furthermore, standard iterative
methods for Helmholtz problems convergence slowly without a good preconditioner.
Therefore, the simulation of high-frequency waves is often limited by computational
resources.

Research work on efficient solvers for the Helmholtz equation with variable coeffi-
cients has concentrated on various preconditioning techniques, which are often based
on domain decomposition methods, multigrid methods, and fast direct solvers. By
fast direct methods, we mean direct solution methods based on FFT or cyclic reduc-
tion, for example, which require order of m logm or m(logm)2 operations to solve a
system with m unknowns. For Helmholtz problems in layered media such techniques
have been studied by Plessix and Mulder in [22]. They applied tensor product form
preconditioners with fast direct solvers and obtained good efficiency for low-frequency
problems. However, the performance of the method deteriorated with increasing fre-
quency. Ito and Toivanen used a similar approach succesfully for a problem with
almost perfectly layered media [17]. Larsson and Holmgren introduced a domain
decomposition preconditioner employing a fast direct solver and demonstrated some
parallel computations [20]. An effective multigrid preconditioner for geological survey
problems was developed by Erlangga, Oosterlee, and Vuik [7]. More recently, Engquist
and Ying introduced a new type of preconditioner based on perfectly matched layers,
named the sweeping preconditioner [5]. Similar methods have been proposed for the
Helmholtz equation also by Stolk [29] as well as Eslaminia and Guddati [8]. Also the
polarized traces method [32] by Zepeda-N\'u\~nez and Demanet belongs to this class of
methods. These new preconditioning techniques based on domain decomposition for
the Helmholtz equation have been reviewed in the article [10].

In this work, we introduce a multiplicative nonoverlapping domain decomposi-
tion preconditioner for the iterative solution of the Helmholtz equation in layered
media with layers defining the subdomains. This right preconditioner and method
was originally introduced for two-dimensional problems in [15]. Here we extend the
same idea to three-dimensional problems and develop a parallel implementation of
the method. Furthermore, the finite element discretization of the equation is here
performed with modified trilinear elements leading to fourth-order phase accuracy
and thereby reducing the pollution error considerably [11].

Each layer is embedded into a rectangular domain, and the preconditioner is
based on employing a fast direct solver separately in each rectangle. With constant
wave number in each layer, the preconditioner can be constructed such that all rows
of the system matrix and the preconditioner corresponding to the interior of the layer
coincide. Due to this fact, the iterative solution with the GMRES method [26] can be
reduced to a subspace corresponding to the layer interfaces and their neighboring grid
points. This essentially reduces the memory consumption. The solution procedure can
be considered as a preconditioned iterative method in a subspace [16, 18]. Numerical
tests in a parallel environment demonstrate the effectiveness of the method. The
number of required GMRES iterations depends fairly weakly on the frequency with
logarithmic growth with respect to the frequency in the most challenging case.

The paper is organized as follows. The mathematical problem is formulated in
section 2. Construction of the discrete system of equations with the modified quad-
rature rule is described in section 3. The domain decomposition preconditioner for
the discrete equations is considered in section 4 with the subdomain precondition-
ers introduced in subsection 4.2. Implementation and parallelization of the iterative
solution procedure in a subspace is described in section 5. The parallel performance
of the method is studied with three test cases from medical physics and geophysics.
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Results of the numerical experiments are reported in section 6. The conclusions follow
in section 7.

2. Mathematical formulation. We consider the propagation of time-harmonic
acoustic waves in unbounded and layered three-dimensional fluid media. The
unbounded fluid domain is confined into a rectangular domain \Pi . A schematic two-
dimensional illustration of the modeled fluid domain consisting of four horizontal
layers is given in Figure 2.1. The number of layers, denoted by L, is not limited and
the interfaces between the layers \Omega j are not restricted to be planar:

(2.1) \Pi =

L\bigcup 
j=1

\=\Omega j .

In each layer \Omega j , the pressure variations p satisfy the Helmholtz equation

(2.2)  - \nabla \cdot 
\biggl( 

1

\rho j
\nabla p
\biggr) 
 - 
k2j
\rho j
p = g in \Omega j ,

where kj =
\omega 
cj

is the wave number, \omega the angular frequency, and cj and \rho j the constant

speed of sound and density in layer j. The function g corresponds to the sound source.
On the truncation boundaries \partial \Pi we impose the second-order absorbing boundary
condition introduced in [1] to minimize spurious reflections. Mathematical analysis
on the existence, uniqueness, stability, and regularity of the solutions to Helmholtz
problems of type (2.2) is given in [3] in the case with the first-order absorbing boundary
condition.

Fig. 2.1. Illustration of a layered domain with four layers.

In the three-dimensional case, the boundary \partial \Pi consists of six rectangular faces
denoted by \Gamma \pm j , j = 1, 2, 3, whose outward normal directions are the coordinate
directions \pm xj , respectively. Then, the second-order boundary conditions on the
faces are of the form

(2.3) \pm 1

\rho 

\partial p

\partial xj
 - ikp

\rho 
 - i

2k\rho 

\sum 
1\leq l \not =j\leq 3

\partial 2p

\partial x2l
= 0.
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The condition on the edge between the faces \Gamma \pm m and \Gamma \pm l, denoted by \Gamma (\pm m,\pm l), is
given by

(2.4)  - 3k2p

2\rho 
 - ik

\rho 

\biggl( 
\pm \partial p

\partial xm
\pm \partial p

\partial xl

\biggr) 
 - 1

2\rho 

\partial 2p

\partial x2j
= 0, j \not = m, l,

while the conditions on the eight corners are

(2.5)  - 2ikp

\rho 
+

3\sum 
l=1

\pm 1

\rho 

\partial p

\partial xl
= 0.

The sets of edges and corners of \partial \Pi are denoted by \Phi and \Psi .
For the weak formulation of the equations (2.2) with the boundary conditions

(2.3), (2.4), and (2.5) we introduce the space V :

(2.6) V =
\bigl\{ 
v \in H1(\Pi ) : v| \partial \Pi \in H1(\partial \Pi ), v| \Gamma (m,j)

\in H1(\Gamma (m,j)) \forall \Gamma (m,j) \in \Phi 
\bigr\} 
.

Then the weak formulation is given as follows: Find p \in V such that

(2.7)

\int 
\Pi 

\biggl( 
1

\rho 
\nabla p \cdot \nabla q  - k2

\rho 
pq

\biggr) 
dx - i

k

\rho 

\int 
\partial \Pi 

pq ds

+
i

2k\rho 

3\sum 
j=1

\sum 
l \not =j

\Biggl( \int 
\Gamma j

\partial p

\partial xl

\partial q

\partial xl
ds+

\int 
\Gamma  - j

\partial p

\partial xl

\partial q

\partial xl
ds

\Biggr) 

+
3

4\rho 

\sum 
\Gamma (m,j)\in \Phi 

\int 
\Gamma (m,j)

pq dl  - 1

4k2\rho 

\sum 
\Gamma (m,j)\in \Phi 

\int 
\Gamma (m,j)

\partial p

\partial xn

\partial q

\partial xn

\bigm| \bigm| \bigm| \bigm| 
n \not =m,j

dl

+
i

2k\rho 

\sum 
x\in \Psi 

p(x)q(x) =

\int 
\Pi 

gq dx

for all q \in V .

3. Finite element discretization. The finite element discretization of (2.7) is
performed with hexahedral elements and trilinear basis functions. A uniform hexahe-
dral mesh with n1 \times n2 \times n3 nodes and the grid step size h is first generated into the
domain \Pi . The mesh nodes are not shifted to match the layer interfaces, and each
element is assigned to a certain layer depending on the location of the center point
of the element. Therefore, the discretization gives a staircase approximation to the
layer interfaces as illustrated in Figure 3.1.

More precisely, let us denote the set of element midpoints by M . Then, the
discretized subdomains \^\Omega j are defined by

(3.1) \^\Omega j =
\bigcup 

c(x1,x2,x3)=cj

(x1,x2,x3)\in M

3\prod 
i=1

\biggl[ 
xi  - 

h

2
, xi +

h

2

\biggr] 
.

The linear system of equations arising from the finite element discretization of
(2.7) can be assembled from the elementwise stiffness and mass matrices. Usually
the integrations required to compute these matrices are transformed into a simple
reference element which for hexahedral elements is [ - 1, 1] \times [ - 1, 1] \times [ - 1, 1]. We
denote by \^N(\xi ) \in \BbbR 8 the vector-valued function giving the values of the Lagrangian
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DOMAIN DECOMPOSITION FOR THE HELMHOLTZ EQUATION C509

Fig. 3.1. An orthogonal grid in domain \Pi for the two-dimensional example case. Approxima-
tion of the interface between the layers \Omega 1 and \Omega 2 is shown with a red line.

basis functions associated with the corners of the reference element. The mapping
from the reference element to the actual element \Omega e is denoted by x(\xi ) and its Jacobian
by J(\xi ), where \xi is a point in the reference element. With this notation, the local
mass and stiffness matrices of \Omega e can be represented in the form

(3.2)

Me =

\int 1

 - 1

\int 1

 - 1

\int 1

 - 1

\^N(\xi )T \^N(\xi ) detJ(\xi ) d\xi 1 d\xi 2 d\xi 3,

Ke =

\int 1

 - 1

\int 1

 - 1

\int 1

 - 1

\^G(\xi )T \^G(\xi ) det J(\xi ) d\xi 1 d\xi 2 d\xi 3,

where G(\xi ) = (J(\xi )T ) - 1\nabla \^N(\xi ).
Typically the matrices in (3.2) are evaluated numerically using the Gauss quad-

rature

(3.3)

\int 1

 - 1

\int 1

 - 1

\int 1

 - 1

\psi (\xi ) d\xi 1 d\xi 2 d\xi 3 =

nq\sum 
j=1

Wj\psi (\xi 
j),

where nq is the number of Gauss points, Wj are the weight coefficients, and \xi j are
the local coordinates of Gauss points. The most commonly used choices for trilinear
elements are the Gauss rule (nq = 8, Wj = 1, \xi j = (\pm 1/

\surd 
3,\pm 1/

\surd 
3,\pm 1/

\surd 
3)) and

the Gauss--Lobatto rule (nq = 8, Wj = 1, \xi j = (\pm 1,\pm 1,\pm 1)), which both provide
similar accuracy with respect to the mesh size h. A major drawback of the traditional
discretization is that it leads to a dispersion error, which can accumulate significantly
if the domain is large in terms of wavelengths. This dispersion error is also called the
pollution error [13].

Guddati and Yue studied a generalized integration rule of the form (3.3) with
weights Wj = 1 and points \xi j = (\pm \alpha ,\pm \alpha ,\pm \alpha ) [11]. They observed that with the

integration points \alpha =
\sqrt{} 

2/3 the dispersion error is reduced by an order of magni-
tude. With the conventional integration rules the discrete wavelength is second-order
accurate with respect to the number of nodes per wavelength, but with the modified
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rule it becomes fourth-order accurate. This has been shown using a Taylor expansion
with respect to the wave number in [11]. This discretization technique has previously
been applied to Helmholtz problems in [17, 14, 8]. Alternatively dispersion minimiz-
ing schemes described in [28] can be used after expressing them in the tensor product
form considered in subsection 4.2

4. Construction of the preconditioner. We obtain the following system of
linear equations from the finite element discretization:

(4.1) Ax = b.

For the iterative solution of this system we introduce a right preconditioner matrix B
and solve iteratively the system

(4.2) AB - 1v = b

instead of the original system (4.1). We apply the GMRES method as the iterative
solution procedure [26]. After obtaining v the solution x of the original system is
given by Bx = v.

4.1. Domain decomposition. In order to define the matrix B, we denote by
Rj the restriction operator into the subdomain \^\Omega j . Multiplication of a vector by Rj

results in a vector containing only the components associated with the subdomain
\^\Omega j and its boundary. The subdomain preconditioners Bj for each subdomain \Omega j

are defined later in subsection 4.2. Then, the matrix B is a multiplicative domain
decomposition preconditioner given by the recursive formula:

(4.3)

P - 1
1 = RT

1 B
 - 1
1 R1,

P - 1
j = P - 1

j - 1 +RT
j B

 - 1
j Rj (I  - AP - 1

j - 1), j = 2, . . . , L,

B = PL.

Multiplication of a vector x by the inverse of the preconditioner B can thus be per-
formed by the following sequence, which goes through the L layers of the domain:

(4.4)

y(1) = RT
1 B

 - 1
1 R1 x,

y(2) = y(1)  - RT
2 B

 - 1
2 R2 (x - Ay(1)),

...

y(L) = y(L - 1)  - RT
L B

 - 1
L RL (x - Ay(L - 1)) = B - 1x.

4.2. Subdomain preconditioners. The subdomain preconditioners are based
on embedding each layer into a rectangular domain and on employing a fast direct
solver separately in each rectangle. We first define for each subdomain \^\Omega j the mini-
mum and maximum coordinate values:

(4.5) xji,min = argmin
(x1,x2,x3)\in \^\Omega j

xi, xji,max = argmax
(x1,x2,x3)\in \^\Omega j

xi, i = 1, 2, 3.

Then, the values

(4.6) xi,min = min
j=1,...,L

xji,min, xi,max = max
j=1,...,L

xji,max, i = 1, 2, 3,
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give similar bounds for the domain \Pi , and we can define rectangular extensions of \^\Omega j

by

(4.7) \Theta j =

3\prod 
i=1

\Bigl[ 
max\{ xji,min  - Qh, xi,min\} ,min\{ xji,max +Qh, xi,max\} 

\Bigr] 
,

where Q is a nonnegative integer. The construction of these extended domains for the
two-dimensional example case are illustrated in Figure 4.1, which shows the domains
\Theta j highlighted in red. We denote the number of nodes in the extended domain \Theta j in

the coordinate directions x1, x2, and x3 by nj1, n
j
2, and n

j
3, respectively.

Fig. 4.1. The extended domains \Theta j for the four subdomains \Omega j in the two-dimensional example
case.

The subdomain preconditioner Bj is based on the Helmholtz equation (2.2) in
the extended domain \Theta j with the second-order absorbing boundary conditions (2.3),
(2.4), and (2.5) on the boundaries \partial \Theta j . We discretize this equation using the same
orthogonal mesh as described in section 3, which leads to a matrix of the block form

(4.8) Cj =

\biggl( 
Cj,dd Cj,de

Cj,ed Cj,ee

\biggr) 
with the degrees of freedom corresponding to the subdomain \^\Omega j numbered first (sub-

script d) and the degrees of freedom corresponding to the extension \Theta j \setminus \^\Omega j numbered
second (subscript e). The preconditioner Bj is now defined as the Schur complement
matrix

(4.9) Bj = Cj,dd  - Cj,de C
 - 1
j,ee Cj,ed.

Solutions to linear systems of the form Bjyj = xj can be obtained as the first block
of the solution to larger systems

(4.10) Cjy =

\biggl( 
Cj,dd Cj,de

Cj,ed Cj,ee

\biggr) \biggl( 
yj
ye

\biggr) 
=

\biggl( 
xj
0

\biggr) 
.

By renumbering the degrees of freedom appropriately the block tridiagonal matrix
Cj can be represented in the tensor product form

(4.11) Cj = Aj
1 \otimes M j

2 \otimes M j
3 +M j

1 \otimes Aj
2 \otimes M j

3 +M j
1 \otimes M j

2 \otimes Aj
3  - 

k2j
\rho j
M j

1 \otimes M j
2 \otimes M j

3 .

Linear systems with such matrices can be solved efficiently with fast direct methods
such as the cyclic reduction method [12, 25]. The tridiagonal nji \times n

j
i matrices Aj

i and

M j
i , i = 1, 2, 3, are the stiffness and mass matrices for one-dimensional problems in the

three coordinate directions with special terms on the boundaries due to the absorbing
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boundary condition. We note that the computational efficiency of the subdomain
preconditioner Bj deteriorates when the extended domain \Theta j is large compared to

the subdomain \^\Omega j . For example, elongated submains can lead to this kind of case.
By applying the general Gauss quadrature rule (3.3) with the integration points

\xi j = (\pm \alpha ,\pm \alpha ,\pm \alpha ) the one-dimensional stiffness and mass matrices are of the form

(4.12) Aj
l =

1

h\rho j

\left(       
1 - i

hkj

2  - 1
 - 1 2  - 1

. . .
. . .

. . .

 - 1 2  - 1

 - 1 1 - i
hkj

2

\right)       
and

(4.13) M j
l =

h(1 + \alpha 2)

2

\left(       
d q
q 1 q

. . .
. . .

. . .

q 1 q
q d

\right)       ,

where d = 1
2 + i

hkj(1+\alpha 2) and q = 1
2
1 - \alpha 2

1+\alpha 2 . The quadrature rule leading to reduced

dispersion error is achieved by \alpha =
\sqrt{} 
2/3.

5. Iterative solution method.

5.1. Iterations on a subspace. The GMRES method for the preconditioned
system (4.2) approximates the solution v by minimizing the norm of the residual with
respect to a sequence of Krylov subspaces [26]. On the jth iteration the approximation
vj minimizes the norm of AB - 1vj  - b in the Krylov subspace

(5.1) span
\bigl\{ 
b, AB - 1b, (AB - 1)2b, . . . , (AB - 1)j - 1

\bigr\} 
.

We can see by induction that the vectors in the Krylov subspace belong to X =
span\{ b\} + range(A - B) [15, 17].

Due to the construction of the preconditioner most of the rows in matrices A and
B coincide. Only the rows corresponding to the interfaces between the layers and
their neighboring grid points are different from each other. In the three-dimensional
case, the number of such rows is of order m2/3 with m = n1 \times n2 \times n3 being the
dimension of the linear system (4.1). Furthermore, we assume that the vector b has
at most \scrO (m2/3) nonzero entries, which allows us to conclude that dimension of the
subspace X is \scrO (m2/3). This observation can be exploited in the implementation of
the GMRES iterations to reduce the memory usage and computational work signif-
icantly. More precisely, the memory requirement is reduced by the factor \scrO (m1/3)
while the computational cost of matrix-vector operations are reduced by the factor
\scrO (jm1/3), where j is the number of GMRES iterations.

5.2. Partial solution technique. During the iterative solution it is necessary
to solve linear systems with the subdomain preconditioners Bj , which require the
solution of larger systems of the form (4.10). The dimension of these systems is
\scrO (m). The right-hand-side xj is a sparse vector with nonzero components only near
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the subdomain interfaces and only the corresponding components are required from
the solution yj . The solution of such systems with matrices of tensor product form can
be performed with a specialized procedure called the partial solution algorithm [2, 19].
It allows us to solve the linear systems (4.10) in \scrO (m logm) arithmetical operations
as opposed to \scrO (m log2m) required by fast direct methods which do not exploit the
sparsity structure. The computational cost of this method is discussed in more detail
after presenting it in the following. The method can be implemented such that the
memory consumption is only \scrO (m2/3). Note that storing the matrix Cj defining Bj

in (4.9) as a generic sparse matrix would require \scrO (m) floating point numbers. For
comparison forming the factorization with the nested dissection method for Cj would
require O(m4/3) floating point numbers and O(m2) arithmetical operations [4]. Thus,
the partial solution algorithm offers huge memory and computational saving for these
problems having very specific structure.

The partial solution technique requires the diagonalization of the matrices Aj
1

andM j
1 in the tensor product form (4.11). This is achieved by solving the generalized

eigenvalue problem

(5.2) Aj
1wl = \lambda lM

j
1wl,

where (\lambda l, wl) is the lth eigenpair and the vectors wl satisfy the condition

(5.3) wT
l M

j
1wk = \delta lk, l, k = 1, . . . , nj

1.

The properties of this eigenvalue problem have been studied in [9] and a solution pro-
cedure for this problem is described in [12]. The computational cost of this procedure
is \scrO ((nj1)

2) = \scrO (m2/3).
If we now define the matrices

(5.4)
\Lambda = diag\{ \lambda 1, . . . , \lambda nj

1
\} ,

W = [w1 . . . wnj
1
]

and denote the nji \times nji identity matrix by Iji we can transform the tensor product
matrices Cj into a block-diagonal form

\^Cj = (WT \otimes Ij2 \otimes Ij3)Cj (W \otimes Ij2 \otimes Ij3)(5.5)

= \Lambda \otimes M j
2 \otimes M j

3 + Ij1 \otimes Aj
2 \otimes M j

3 + Ij1 \otimes M j
2 \otimes Aj

3  - 
k2j
\rho j
Ij1 \otimes M j

2 \otimes M j
3 .

Linear systems of the form Cjy = x can then be solved using Algorithm 5.1. We
denote a diagonal matrix with diagonal components corresponding to the solution
subspace equal to 1 and all other components equal to 0 by Sj and we define the

nj2n
j
3 \times nj2n

j
3 block tridiagonal matrices

(5.6) \^Cl
j = \lambda lM

j
2 \otimes M j

3 +Aj
2 \otimes M j

3 +M j
2 \otimes Aj

3  - 
k2j
\rho j
M j

2 \otimes M j
3 , l = 1, . . . , nj

1.

Computing one \^x in Algorithm 5.1 requires \scrO (m2/3) operations as x has \scrO (m2/3)
nonzero entries. For solving the two-dimensional problem with \^Cl

j the fast direct
method called the partial solution variant of the cyclic reduction method can be used.
It has been considered in [12, 25] and it requires \scrO (nj2n

j
3 log n

j
2) = \scrO (m2/3 logm)
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Algorithm 5.1. Partial solution method.

Set y = 0
for l = 1, . . . , nj

1 do

\^x = (wT
l \otimes Ij2 \otimes Ij3)x

\^Cl
j \^u = \^x

y = y + Sj(wl \otimes Ij2 \otimes Ij3)\^u
end for

operations. As the diagonal matrix Sj has \scrO (m2/3) nonzero entries computing the

term Sj(wl \otimes Ij2 \otimes Ij3)\^u requires \scrO (m2/3) operations. As all the above steps are

performed nj1 = \scrO (m1/3) times the computational cost of Algorithm 5.1 is \scrO (m logm)
operations.

5.3. Parallel implementation. The parallel implementation of the precondi-
tioned GMRES method is performed using the MPI library. It is based on distributing
the following matrices and vectors equally among the processors:

\bullet columns of the finite element matrix A in (4.1),
\bullet components of the basis vectors of the Krylov subspace (5.1),
\bullet eigenvectors wm of (5.2).

It is then straightforward to distribute the matrix-vector operations related to the
matrix A and Krylov subspace vectors among the processors. The partial solution al-
gorithm Algorithm 5.1 is parallelized according to the distribution of the eigenvectors
wm. Each processor computes the part of y corresponding to its eigenvectors, and the
global solution is finally distributed to all processors by an allreduce-operation.

6. Experimental results.

6.1. Test cases. We define three schematic test cases, which correspond to ap-
plications in geophysics and ultrasonic imaging. The first test case involves four planar
layers of varying thickness corresponding to the characterization of marine sediments
[23]. The second test case is a three-dimensional wedge problem with three layers.
A similar test case has been considered also in [24]. The third test case imitates a
typical setting in the ultrasonic tomography of breast tissue [21, 27]. The numeri-
cal expriments with the three test cases were performed in the Sisu supercomputer
managed by the CSC-IT Center for Science. Sisu is a massively parallel processor
supercomputer produced by Cray, Inc., belonging to the XC40 family. In each test
case, the GMRES iterations for the preconditioned system (4.2) are terminated when
the norm of the residual is reduced by a factor of 10 - 6.

In the first test case the rectangular domain \Pi is given by

(6.1) \Pi = [0, 20] m\times [0, 20] m\times [0, 20] m,

and it is divided into four layers along the x3-coordinate. A cross section of the
domain along the plane x2 = 10 is shown on the left in Figure 6.1. The thicknesses
of the layers is h1 = 8 m and h2 = h3 = h4 = 4 m. Material parameters in the four
layers are given by

(6.2)

c1 = 1500 m/s, \rho 1 = 1000 kg/m3,

c2 = 1600 m/s, \rho 2 = 1300 kg/m3,

c3 = 1725 m/s, \rho 3 = 1800 kg/m3,

c4 = 2200 m/s, \rho 4 = 2000 kg/m3,
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Fig. 6.1. On the left: Cross section of the first test domain with four planar layers. On the
right: Illustration of the three-dimensional wedge geometry with the source point indicated by a red
dot.

and the frequencies of the considered time-harmonic problem are 2.5 and 5 kHz. The
source term g of the equation is defined by a point source located at x1 = x2 = 10,
x3 = 0.

In the second test case the rectangular domain \Pi is given by \Pi = [0, 1000]3 m3

and the three layers are separated by the two planes

(6.3)
x3 = 0.1x1 + 0.2x2 + 0.6,

x3 =  - 0.2x1  - 0.15x2 + 0.4.

Material parameters in the three layers are given by

(6.4)

c1 = 833 m/s, \rho 1 = 900 kg/m3,

c2 = 1000 m/s, \rho 2 = 1000 kg/m3,

c3 = 500 m/s, \rho 3 = 1100 kg/m3,

and the frequency of the considered time-harmonic problems varies between 10 and
80 kHz. There is a point source at x1 = x3 = 0.5, x2 = 0.

In the third test case, domain \Pi is given by \Pi = [0, 0.1]3 m3, and there are five
separate layers as illustrated in Figure 6.2. The planar bottom layer \Omega 5 corresponds
to muscle tissue and its thickness is 1 cm. The domain \Omega 4 represents fibroglandular
tissue of breast and it is defined as an ellipsoid with diameter 3 cm in the x1- and
x2-directions and diameter 1.5 cm in the x3-direction. The domain \Omega 3 (fat tissue) is
limited by a hemisphere of radius 3.75 cm and the muscle layer \Omega 5. The skin layer \Omega 2

is located between two hemispheres of radius 3.75 and 4 cm. The rest of the domain
\Pi contains water (layer \Omega 1). Material parameters in the five layers are given by [21]

(6.5)

c1 = 1510 m/s, \rho 1 = 995 kg/m3 (water),

c2 = 1537 m/s, \rho 2 = 1200 kg/m3 (skin),

c3 = 1430 m/s, \rho 3 = 928 kg/m3 (fat),

c4 = 1510 m/s, \rho 4 = 1020 kg/m3 (fibroglandular),

c5 = 1580 m/s, \rho 5 = 1041 kg/m3 (muscle),

and the frequencies of the considered ultrasonic problem are 250 and 500 kHz. There
is a point source at x1 = x3 = 0.05, x2 = 0.
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Fig. 6.2. On the left: Cross section along the xz-plane of the third test geometry. On the right:
Cross section of the third test geometry along the plane x3 = 3.25.

6.2. Results in one compute node. The Sisu supercomputer contains several
computing nodes, each containing two 12-core Intel (Xeon) Haswell processors. In the
first set of tests, the second and third test problems (wedge and muscle layers) were
used to study the scalability of the parallel implementation within one node. The grid
step size h was chosen according to the minimal wavelength of the problem such that
there were at least 20 nodes per wavelength, that is, cmin

f h = 20 with f = \omega 
2\pi . The size

of the corresponding linear system (4.1) is denoted by m.
The parallel efficiency of a particular case was evaluated by comparing the total

execution time to the case with lowest number of cores. The ratio of these execution
times was multiplied by the ratio of the number of cores. Value 1 would indicate
perfect scalability.

Tables 6.1 and 6.2 show the results with increasing number of cores in one node.
The parallel efficiency is reduced with increasing number of cores, and with 8 cores
the efficiency is still relatively good. Therefore, in the subsequent tests the number
of cores per node is fixed at 8 and only the number of nodes is increased.

Table 6.1
Test results with the wedge problem using one compute node.

f Size of linear Number of Number of Total Parallel
(kHz) system, m cores iterations time (s) efficiency
10 6.5e7 1 19 558.5 1.00

2 286.0 0.98
4 155.2 0.90
8 85.3 0.82
12 71.7 0.65
16 53.6 0.65
20 45.1 0.62
24 38.4 0.61

20 5.1e8 4 23 1528.2 1.0
8 840.0 0.91
12 674.6 0.76
16 509.5 0.75
20 415.7 0.74
24 350.1 0.73
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Table 6.2
Test results with the third problem (muscle layers) using one compute node.

f Size of linear Number of Number of Total Parallel
(kHz) system, m cores iterations time (s) efficiency
250 4.3e7 1 37 690.1 1.0

2 358.7 0.96
4 201.4 0.86
8 120.2 0.72
12 104.6 0.55
16 81.4 0.53
20 69.3 0.50
24 62.4 0.46

500 3.4e8 4 27 1183.9 1.0
8 684.2 0.87
12 566.0 0.70
16 440.2 0.67
20 365.6 0.65
24 317.7 0.62

6.3. Strong scalability of the parallel implementation. In the second set
of tests, the first and third test problems were used to study the strong scalability
of the parallel implementation. This means that the size of the system is kept fixed
while the number of nodes is increased. The number of cores per node was fixed at 8
as indicated by the results of subsection 6.2. The parallel efficiency was evaluated by
comparing the total execution time to the previous case with half the number of cores.
Value 2 would indicate perfect scalability. For the third test problem, the number of
GMRES iterations drops when the frequency is increased.

Table 6.3 shows the results with increasing number of nodes for the first test case
with planar layers. Here, the the grid step size h was chosen such that there were
at least 20 nodes per wavelength, that is, cmin

f h = 20. For the first test problem, the
number of GMRES iterations seems to be nearly independent of the frequency.

Table 6.4 shows the results with increasing number of nodes for the third test case
(muscle layers). The number of grid steps per wavelength was at least 20. Illustration
of the real and imaginary parts of the solution with frequency f = 500 kHz is given
in Figure 6.3.

Table 6.3
Results with the first test problem using increasing number of compute nodes.

f Size of linear Number of Number of Number of Total Speed-up
(kHz) system, m nodes cores iterations time (s)
2.5 3.0e8 1 8 11 171.3

2 16 91.8 1.87
4 32 51.2 1.79
8 64 31.6 1.62
16 128 22.3 1.42
32 256 15.6 1.45

5 2.4e9 1 8 12 1584.0
2 16 839.8 1.89
4 32 445.3 1.89
8 64 247.5 1.80
16 128 152.9 1.62
32 256 98.4 1.55
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Table 6.4
Results with the third test problem using increasing number of compute nodes.

f Size of linear Number of Number of Number of Total Speed-up
(kHz) system, m nodes cores iterations time (s)
250 4.3e7 1 8 37 120.2

2 16 66.8 1.80
4 32 41.1 1.63
8 64 28.9 1.42
16 128 24.3 1.19
32 256 22.0 1.10

500 3.4e8 1 8 27 684.2
2 16 368.5 1.86
4 32 208.3 1.77
8 64 126.9 1.64
16 128 91.0 1.39
32 256 66.8 1.36

Fig. 6.3. Real (left) and imaginary (right) parts of the solution to the third test problem with
the frequency 500 kHz.

6.4. Weak scalability of the parallel implementation. In the third set of
tests, the second test problem was used to study the weak scalability of the parallel
implementation, which means that the size of the linear system and the number of
nodes are increased simultaneously. If the scalability were perfect, doubling of the
system size and the number of nodes would keep the total time unchanged. The
solution of the subdomain preconditioners is, however, not completely parallelized
and requires \scrO (m logm) operations. Also the number of iterations to solve the linear
system increases with system size, and therefore perfect scalability cannot be achieved.
However, by dividing the total execution time by the number of iterations and by the
time to solve one subdomain preconditioner we can evaluate the efficiency of the
parallel part of the method.

Table 6.5 shows the results with increasing system size and number of nodes for
the second test case (wedge). The number of cores per node was again fixed at 8. The
grid step size h was chosen such that there were at least 10 nodes per wavelength and
the frequency was increased from 10 to 80 kHz. The ratio of the total time with the
product of the number of iterations and time to solve one subdomain preconditioner
remains almost constant, which indicates that the parallel part of the method is
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Table 6.5
Test results with the wedge problem using increasing system size and number of compute nodes.

f Size of linear Number of Number of Total Ratio
(kHz) system, m nodes iterations time (s)
10 8.1e6 1 19 9.42 74.0
20 6.4e7 2 23 54.40 71.7
40 5.1e8 4 29 296.10 72.9
80 4.1e9 8 39 1808.40 70.3

Fig. 6.4. Real (left) and imaginary (right) parts of the solution to the second test problem with
the frequency 40 kHz.

scalably parallelized. The real and imaginary parts of the solution p to the second
test problem with frequency f = 40 kHz are illustrated in Figure 6.4. With respect
to the frequency f the number of iterations is roughly proportional to log f .

7. Conclusions. An efficient domain decomposition based preconditioner for
the finite element solution of the Helmholtz equation in three-dimensional layered
media was considered. The discretization accuracy was improved by using a mod-
ified discretization scheme leading to fourth-order phase accuracy. Computational
efficiency is achieved by using a fast direct solver for subdomain preconditioning, by
the reduction of the iteration in a subspace, and by the good conditioning of the
preconditioned system. An efficient parallel implementation was introduced for the
iterative method, and numerical experiments with realistic test cases demonstrate the
efficiency of the method. The experiments show the ability to solve problems with up
to billions of unknowns.

Acknowledgment. The computational experiments of the article were performed
using the computational resources of the CSC-IT Center for Science Ltd.
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