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A B S T R A C T

Vector database management systems have emerged as an important component in modern data management,
driven by the growing importance for the need to computationally describe rich data such as texts, images
and video in various domains such as recommender systems, similarity search, and chatbots. These data
descriptions are captured as numerical vectors that are computationally inexpensive to store and compare.
However, the unique characteristics of vectorized data, including high dimensionality and sparsity, demand
specialized solutions for efficient storage, retrieval, and processing. This narrative literature review provides an
accessible introduction to the fundamental concepts, use-cases, and current challenges associated with vector
database management systems, offering an overview for researchers and practitioners seeking to facilitate
effective vector data management.
1. Introduction

It is increasingly common that rich, unstructured data such as
large texts, images and video are not only stored, but given seman-
tics through a process called vectorization (Wang et al., 2021) which
captures the features of the data object in a cost-effectively processed
numerical vector such as �⃗� = [6, 7]. The vectors are n-dimensional,
and consist of natural, real, or complex numbers, where one number
represents a feature or a part of a feature. The features that form a
vector can range from simple, such as the number of actors in a stage
play, to complex, such as textures identified in an image by a neural
network (Gasser, Rossetto, Heller, & Schuldt, 2020), where number
3 may correspond to texture of human skin, while number 10 may
correspond to the texture of a cat’s fur. In contrast to traditional data
models such as relational, where queries often take forms such as ‘‘find
the orders of a specific user ’’ or ‘‘find the products that are on sale’’, vector
queries typically search for similar vectors using one or several query
vectors. That is, queries take forms such as ‘‘find ten most similar images
of cats that look like the cat in this image’’ or ‘‘find the most suitable
restaurants for me given my current position’’.

Managing vector data has gained increased popularity, partly due to
applications such as reverse image search, recommender systems, and
chatbots, and this trend is on the rise (Li, 2023). Consequently, efficient
management of data requires a dedicated database management system

✩ The manuscript contains original research and has not been submitted elsewhere. The manuscript has been published as a non-peer-reviewed preprint in
arXiv (https://arxiv.org/abs/2309.11322).

E-mail address: toni.taipalus@jyu.fi.

(DBMS). A vector DBMS (VDBMS) is not strictly a requirement for
any business domain, as vectors can be stored and queried without a
dedicated DBMS, similarly to relational or document data can be stored
and queried without a relational DBMS. The DBMS, however, in all
cases, facilitates data management that is feasible, freeing development
resources towards other business domain critical tasks by providing
ready-made features such as transaction and access control, automated
database scalability, and query optimization. Additionally, increasingly
complex business domains require increasingly complex features such
as vector similarity search complemented by metadata filters, as well as
searching with multiple query vectors (Wang et al., 2021), and efficient
ways to manage access control and concurrent transactions.

This narrative literature review aims to provide an easily accessi-
ble description of fundamental concepts behind VDBMSs (Section 2)
without focusing on the intricacies of a single product, an overview of
current VDBMS products and their features (Section 3), explanations
behind some popular use-cases such as image similarity search and
long-term memory for chatbots (Section 4), and some of the current
challenges related to VDBMSs (Section 5). This work assumes that the
reader is familiar with fundamentals of some other type of database
management system (e.g., relational), and does not detail the mathe-
matics of vectors, or algorithms behind vector search or vector index
creation.
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Fig. 1. Simple examples of applications of two-dimensional vectors.
. Vectors and vector database management systems

.1. Vectors as data representations

Perhaps one of the most intuitive use-case for vector data is in
eospatial applications (e.g., Touya & Lokhat, 2020). Two-dimensional
oints such as the location of the end-user and points-of-interest may
e represented as vectors, and the closest points-of-interest may be
alculated with simple and well-understood operations. For example,
y calculating the distance between the end-user (‘‘you’’ in Fig. 1(a))
nd points-of-interest, the length of vectors (𝑓𝑘 and 𝑘𝑎, i.e., distance)
an be compared, and the closest point-of-interest found. If we consider
he vector for the end-user as �⃗� = [6, 7], the vector for the restaurant
s 𝑓 = [3, 8] and the vector for the grocery store as 𝑎 = [7, 1], we can

calculate the similarity or closeness of the vectors by, e.g., Euclidean
distance or cosine similarity.

In addition to coordinates, other types of data can be represented
as vectors. For example, instead of coordinates, Fig. 1(b) shows Greek
plays mapped along how comic and tragic they are. By examining
closeness based on these two dimensions, we can, e.g., calculate that
the play The Knights is closer to The Frogs than Antigone, that is, the
vector 𝑓𝑘 is shorter than the vector 𝑘𝑎. The vector for Antigone can
be represented as 𝑎 = [7, 1], where the first component represents the
amount of tragedy, and the second component the amount of comedy.
Closeness of the vectors is not the only way to measure similarity.

The aforementioned are examples of very low-dimensional vectors.
By increasing the dimensions of vectors (say, by adding z coordinates,
or another genre, drama), vectors can capture increasingly rich data.
If Antigone’s drama amounts to 6, the vector for Antigone in three-
dimensional space is 𝑎 = [7, 1, 6]. Furthermore, a high-dimensional
vector may have thousands or millions of dimensions, making the
visualizations of such vectors unfeasible, and the data unreadable for a
human. Such high-dimensional vectors can be used to represent more
complex data such as text, image, audio and video features. From
data-representation perspective, this separates vector databases from
relational and NoSQL databases, in which data objects are often human-
readable, contextualized numbers, text strings, and time. This holds
especially in relational databases, where data objects are given meaning
by table and column names. In NoSQL databases, data objects may also
be highly unstructured and more difficult to understand for a human.

2.2. Vector database management systems

A vector database management system is a specialized type of
database management system that focuses primarily on the efficient man-
agement of high-dimensional vector data. Similarly to other types of
2

database management systems (such as relational, document, and
graph), this definition requires that a VDBMS is functional software that
can manage data, rather than being merely, e.g., a software library.
Data management includes but is not limited to data querying and
manipulation, collection of metadata, indexing, access control, back-
ups, support for scalability, and interfaces with other systems such as
database drivers, programming languages, frameworks, and operating
systems. Furthermore, a VDBMS focuses on the management of vector
data. There are several DBMSs that offer support for multiple data
models, (e.g., PostgreSQL supports relational, document and object-
oriented data models,1 and Redis supports key–value and vector data
models2) yet the primary focus of such systems is typically on one
data model. It has been noted that such systems miss optimization
opportunities for vector data, and may lack features such as the use
multiple query vectors (Wang et al., 2021). Finally, a VDBMS focuses
on the management of high-dimensional vectors. Systems focusing on,
e.g., two or three-dimensional geospatial data management are not
considered VDBMSs in this context.

VDBMSs typically support similarity search through indexing meth-
ods that enable rapid and accurate searching of similar vectors, i.e.,
search for vectors that closely resemble a given query vector based on
specific distance metrics such as Euclidean distance or cosine similarity.
This capability is particularly valuable in various applications where
finding similar vectors is crucial, such as image or text retrieval sys-
tems. VDBMSs also offer support for vector operations, allowing users
to perform mathematical computations on vectors. These operations
may include arithmetic calculations, statistical analysis, or transforma-
tions to manipulate the vectors. In colloquial language, the term vector
database is sometimes used as a synonym for a VDBMS despite the
fact that a VDBMS is software, yet a vector database is a collection of
data. It is also worth noting that despite their popularity, we – among
others (Wang et al., 2021) – do not consider algorithms or libraries such
as Facebook’s FAISS library (Johnson, Douze, & Jegou, 2021) VDBMSs,
as they do not provide many of the functionalities described above.

2.3. Database system architecture

A database system consists of one or several database management
systems, databases, and software applications. Fig. 2 shows a simplified
flow of information from traditional data sources (depicted on the left-
hand side, e.g., relational databases) to the vector database (gray).

1 https://www.postgresql.org/docs/16/ddl-inherit.html
2 https://redis.io/docs/get-started/vector-database/
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Fig. 2. A simplified view of a database system illustrating the flow and transformation of information to and from the vector database; the vectorization process transforms
information into vectors which can be quickly compared with each other; it is worth noting that the natural language query depicted here requires data additional to the actual
plays.
2
s
s

Continuing with the example of Greek plays, the human-readable texts
of the plays are vectorized, i.e., transformed into high-dimensional
vector representations in a way that captures meaningful relationships
or patterns. The outcome of the vectorization process, i.e., the vector,
is often called a vector embedding or a feature vector. In addition to the
vector itself, VDBMSs typically store a vector identifier, some vector
metadata, and possibly the data that the vector represents. For example,
for the play Antigone, a VDBMS may store an unique identifier, a vector
embedding of the text of the play that contains numerical data about
the amount of tragedy, comedy and drama in Antigone, metadata such
s type of work (‘‘play ’’) and country of origin (‘‘Greece’’), and the play
tself in plain text. The play itself is often referred to as the payload of
he vector. As another example, YouTube utilizes metadata such as user
nd video language and time since video was last watched in providing
ersonalized recommendations (Covington, Adams, & Sargin, 2016).

In natural language processing, words and phrases are vectorized
nto vectors in such a way that similar words have similar vector
epresentations. Similarity can mean different things depending on
he context, e.g., words may sound similar (walking and talking), or
ords may mean similar things (walking and running) in different

ontexts. The amount of tragedy in a play may depend on the number
f tragic words in the play, a sentiment analysis assessing the tone
f the play, or topic modeling which identifies key themes in the
lay. This process helps algorithms understand and work with the data
ore effectively. Word2vec (Mikolov, Chen, Corrado, & Dean, 2013),

astText, and Doc2vec (Le & Mikolov, 2014) are examples of techniques
hat create vector embeddings for words in natural language.

After the data objects have been vectorized and stored in the
ector database, the data are indexed to enable faster queries, as
ith effectively all data models (Kraska, Beutel, Chi, Dean, & Poly-

otis, 2018). As vector queries are almost always approximations,
ne of the primary trade-offs between different indexing algorithms
re accuracy and speed. Some popular algorithms are Product Quan-
ization (e.g., Ge, He, Ke, & Sun, 2013; Jégou, Douze, & Schmid,
3

011), which divides high-dimensional vectors into smaller parts and
ummarizes each part separately, reducing dimensionality and storage
pace requirements, but losing some accuracy, Locality-Sensitive Hash-

ing (e.g., Zheng et al., 2020), which hashes similar vectors to the
same buckets, enabling approximate similarity search, and Hierarchical
Navigable Small World (e.g., Malkov & Yashunin, 2020; Zhao, Tan, & Li,
2020), which creates a hierarchical graph with fast neighborhood ex-
ploration by building a small world network. Other algorithms include
R-trees (Guttman, 1984), KD-trees (e.g., Silpa-Anan & Hartley, 2008),
and Random Projection (e.g., Dasgupta & Freund, 2008). Table 1 sum-
marizes various vector index types. It is worth noting that the choice of
indexing algorithm depends on the data characteristics, dimensionality,
and search requirements. Index creation is typically computationally
expensive.

Similarly to inserting data into the vector database, queries in nat-
ural language or human-readable values in computer language queries
must be vectorized before the VDBMS can assess vector similarity. The
vectorization may happen in the application program or the VDBMS
(the latter case is depicted in Fig. 2, yet the former case is more
typical). Vectorization can be done in multiple ways depending on
the data and the purpose of the vectorization. Despite the fact that
feature vectors of Greek plays and feature vectors of images of cats may
look similar (i.e., both are ‘‘lists’’ of numbers), their values represent
different things.

As mentioned earlier, vector similarity or closeness may be assessed
using several methods such as Jaccard similarity, which measures the
similarity between two sets (i.e., vectors) by comparing their shared
elements to the total number of distinct elements in both sets, Euclidean
distance (L2), which measures the straight-line distance between two
points in a space with multiple dimensions, dot product, which com-
putes the sum of the products of corresponding elements in two vectors,
or cosine similarity, which measures the cosine of the angle between
two vectors, indicating how similar their directions are regardless of
their magnitudes. The choice of method depends on the context and
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Table 1
Comparison of some vector indexing techniques.

Characteristics Use-cases Advantages Disadvantages

Product
Quantization

Divides vectors into
smaller parts

Image search Reduces
dimensionality

Lossy compression
may reduce
accuracy

Locality-Sensitive
Hashing

Hashes similar
vectors to same
buckets

Near-duplicate
detection

Enables approximate
similarity search

Requires parameter
tuning

Hierarchical
Navigable Small
World

Creates a
hierarchical graph

Recommendation
systems, text search

Fast neighborhood
exploration

Complex index
structure, space
overhead

R-trees Hierarchical
structure with
bounding boxes

Spatial data
(geospatial
indexing)

Efficient range
queries, updates

Slower
nearest-neighbor
searches

KD-trees Binary tree
partitioning along
dimensions

Machine learning,
clustering

Balanced tree
structure, good for
low dimensions

Inefficient in high
dimensions,
complex build

Random Projection Projects
high-dimensional
data randomly

Text classification,
clustering

Fast indexing, good
for high dimensions

May lose
information,
requires tuning
Fig. 3. Hybrid queries in different VDBMSs using Python, and in PostgreSQL using SQL.
the specific characteristics of the data. For more in-depth, mathematical
explanations, Wang, Liu, Kumar, and Chang (2016) provide accessible
overview of several indexing and search methods mentioned above.

From a developer perspective, queries in VDBMSs are more closely
related to simple document or key–value store queries than to com-
plex queries in relational databases. Instead of retrieving documents
based on document identifiers as in many NoSQL systems, vectors are
retrieved using one or several query vectors. Despite this similarity
in queries, the query execution internals differ, since VDBMS queries
typically search for nearest neighbor vectors instead of exact matches.
Fig. 3 illustrates some basic queries in three VDBMSs and in PostgreSQL
with the pgvector extension. Instead of searching for Greek plays where
the amount of tragedy is high, as one probably would with a relational
query, a vector query may retrieve Greek plays which are similar to a
particular play in terms of tragedy, comedy, drama, author, publication
year, etc.

In addition to the vectors themselves, queries may utilize metadata
to, e.g., limit the number of vectors to compare. For example, if the
end-user is requesting data on Greek plays, and the database contains
metadata for language and type of media, the vector similarity search
may be limited to Greek plays rather than all written art originating
from all countries. While vectors are indexed using different vector
indices, metadata may be indexed using more traditional techniques
such as B+-trees to support range queries. Queries that utilize both a
query vector and metadata filters are called hybrid queries. If a VDBMS
4

does not provide the means for hybrid queries, metadata-based searches
may be implemented separately as part of a broader architecture. Fig. 4
provides a generalized (i.e., not product-specific) overview of VDBMS
components. These components are in principle similar to components
in other types of DBMSs: the query component parses the queries and
other statements from the software application, checks user access
rights on data object level, optimizes the query, and passes the query
to the storage component. The storage component logs the transaction
if the VDBMS utilizes transaction logs such as Write Ahead Logging,
manages transaction locks if applicable, and retrieves or stores the
data the application has requested with the help of different buffers,
memory, CPU and GPU, and possibly other specialized hardware such
as Field-Programmable Gate Arrays or tensor processing units.

3. Products and features

At the time of writing, DB-Engines (DB-Engines, vector database
management systems, 2023) lists seven VDBMSs: Pinecone, Chroma,
Milvus, Weaviate, Vald, Qdrant and Deep Lake. However, since Vald
primarily focuses on similarity search and lacks features such as access
control and integrations to other technologies, we considered Vald a
vector search engine rather than a VDBMSs as defined in Section 2.1.
Several of these products are designed from the ground up to utilize
different types of processing units or devices, and multi-GPU and
CPU parallelism in a coordinated manner (Wang et al., 2021). The
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Fig. 4. A generalized overview of VDBMS components; the arrows represent the flow of information from the software application through the VDBMS to the physical database;
he database represents persistent storage device, contrary to Fig. 2, where the database represents the logical database structure maintained by the VDBMS; the righ-hand side
hows an example of the stored data object consisting of metadata, the vector, and vector payload.
Table 2
VDBMS features; example use-cases are based on a product’s documentation’s use-case examples as of August 2023.

License First release Querying with metadata

Pinecone Proprietary 2021 rich expressions
Chroma Apache 2.0 2023 rich expressions
Milvus Apache 2.0 2019 rich expressions
Weaviate BSD 3-clause/proprietary 2019 supported
Qdrant Apache 2.0/proprietary 2022 rich expressions
Deep Lake Apache 2.0/proprietary 2019 rich expressions

Integration Querying Example use-cases

Pinecone OpenAI, LangChain, others Java, Python, C#, several others chatbots, image search
Chroma LangChain, LlamaIndex JavaScript, Python, Ruby, others chatbots
Milvus OpenAI, LangChain, others Java, Python, Go, Node.js chatbots, image/audio/video search
Weaviate OpenAI, Cohere, PaLM Java, JavaScript, Python, Go, GraphQL chatbots, image search
Qdrant OpenAI, LangChain, others Python, JavaScript, Go, Rust chatbots, image search
Deep Lake LlamaIndex, LangChain Python, SQL-like TQL image search
VDBMSs typically implement several index and search methods (such
as Euclidean distance), and the optimizer component selects the most
suitable search method depending on the characteristics of the data and
the query, similarly to the optimizer in relational DBMSs.

In addition to the VDBMSs mentioned above, there are also several
DBMSs with multiple data models, vectors being one of them, several
vector extensions to other DBMSs such as PostgreSQL, MongoDB, Cas-
sandra, Redis and SingleStore, and as vector database-enabling libraries
for programming languages, such as Thistle for Rust (Windsor & Choi,
2023). Table 2 lists some features of these six VDBMSs. Similarly to
NoSQL systems, we expect VDBMSs to develop rapidly in terms of
features, new products, and community support.

4. Use-cases

4.1. Similarity search in general

As explained in Section 2.1, there are many use-cases for vector
data. Effectively all data objects that can be vectorized in a meaningful
way may be used in approximate similarity search, which is the basis
for almost all vector database retrieval operations. Although the next
subsections focus on some popular use-cases for vector databases,
it is worth noting that this is not an exhaustive list. For example,
vectors are used in storing and comparing molecular structures (Mater
& Coote, 2019) and rentable apartments (Grbovic & Cheng, 2018),
5

automated black-and-white image colorization (Baldassarre, Morín,
& Rodés-Guirao, 2017), facial expression recognition (Bashyal & Ve-
nayagamoorthy, 2008), tracking digital image assets (Sahoo, Paul,
Shah, Hornback, & Chava, 2023), and recommender systems (Shankar,
Narumanchi, Ananya, Kompalli, & Chaudhury, 2017).

4.2. Image and video similarity search

In a similar fashion as Greek plays, images can be vectorized, yet the
process is typically more complex and involves image normalization in
terms of size and pixel values, and feature extraction prior to vectoriza-
tion. Feature extraction, which is typically external to the VDBMS, can
involve passing the images – one at a time – through a convolutional
neural network. The process extracts increasingly abstract features from
the image, starting from simple features such as the presence of vertical
and horizontal edges and simple shapes (e.g., Herbulot, Jehan-Besson,
Duffner, Barlaud, & Aubert, 2006), to textures such as fur, foliage and
water. These features are vectorized and used for similarity search.
Images with similar vector representations are likely to be visually
similar in terms of the captured features. Similarly to Fig. 3, Fig. 5(a)
shows that after a set of images has been vectorized, similar process can
be used for reverse image search (i.e., searching for images with image
input). Once similar vectors have been found, the VDBMS returns the
vector payloads to the application.

In the context of video vectorization, videos are typically broken
down into individual frames, although just a representative subset of

frames may be considered. Similarly to stand-alone images, features are
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Fig. 5. Uses-cases for VDBMSs in the domains of image similarity search and chatbots; note how here all the VDBMSs handle the vectorization of data – this is not usually the
case.
extracted from the individual frames and vectorized into a feature vec-
tor representing its content. Additionally, temporal information is often
needed to further understand the contents of the video. For example,
one video of a Greek play may develop from comedy to tragedy, while
another may do the opposite. Without temporal information about
the order of the frames, it is not possible to tell one from another
in this regard. The process results in a sequence of feature vectors
which can be combined. In other words, the sequence of vectors may
be considered a three-dimensional tensor, where dimensions represent
frames, features, and time. This tensor can be stored as a flattened
vector in the vector database. It is worth noting that the dimension of
the tensor here is a different concept than the dimension of the vector.

4.3. Voice recognition

Voice recognition using vectors works in a similar fashion to video
vectorization and search. If the audio is analog format, it is digitized
and divided into short frames, each of which represent a segment of the
audio. Each frame is normalized, filtered and transformed with various
techniques, and finally stored as a feature vector (Venayagamoorthy,
Moonasar, & Sandrasegaran, 1998). The whole audio is therefore a
sequence of feature vectors, all together representing a spoken word
or sentence, a song, or some other type of audio. If voice recognition
is used in user authentication, similar process may be applied to a
spoken keyphrase, and the vectorized spoken keyphrase compared with
vectorized recordings. On the other hand, if voice recognition is used
in a conversational agent, the sequences of vectors can be used as
an input for, e.g., neural networks to recognize and classify spoken
words, and to respond accordingly in text or synthesized voice using a
generative model such as ChatGPT. The examples of returning similar-
looking cats and using voice recognition to authenticate users serve
as opposing prime examples of tolerance in similarity search. While
several images of similar cats may be returned with relatively low
tolerance, authenticating an user by their voice requires high tolerance.
6

4.4. Chatbots and long-term memory

VDBMs can be used for long-term memory of chatbots or other
generative models. Illustrated on the left-hand side of Fig. 5(b), a large
dataset is first used to train a model capable of imitating understanding
and producing natural language to a certain degree. A VDBMS can
be used to store and index the vectors, although this can be done in
other ways as well. Generative models have limitations when it comes
to remembering past conversations or context, and currently, several
technical limitations contribute to this challenge. For example, several
models can only consider a limited amount of preceding text when
generating a response. Consequently, they currently often struggle to
recall detailed information from long conversations (Tay et al., 2020).
Generative models do not have a built-in memory of past interactions,
and generate responses based on the immediate context provided in
the input. Once a conversation becomes too lengthy or complex, the
model’s ability to reference earlier parts of the conversation diminishes.
Furthermore, generative models are trained on large datasets, but
they lack the ability to distinguish between factual information and
user-specific interactions. This can lead to instances where the model
provides inconsistent or incorrect information based on the training
data (cf. e.g., Zhang, Press, Merrill, Liu, & Smith, 2023).

To counter these limitations, a VDBMS may be used as a long-
term memory in such use-cases. As illustrated on the right-hand side of
Fig. 5(b), when an end-user prompts (i.e., submits a query to) a chatbot,
the natural language query is vectorized and used as a query vector
for a long-term memory vector database to find top-k similar conver-
sations. The query (i.e., the user prompt in vectorized and natural
language form) is also stored in the long-term memory vector database.
Next, the original user prompt as well as k similar past conversations
are used as query vectors for the generative model (marked with an
asterisk in Fig. 5(b)). The generative model then generates a response,
which is inserted in the long-term memory database in vectorized and
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natural language form, and returned to the application (i.e., the chatbot
user interface). This approach not only allows the chatbot to remember
past conversations, but also enables personalized information, conver-
sation sequence encoding, and timestamps through vector metadata,
and potentially reduces the use of computational resources without
the need to retrain or fine-tune the generative model. In addition
or alternatively to storing past conversations, a VDBMS can be used
to store documents which are used as additional, context-providing
input to the generative model. These documents can be private to
the organization using the VDBMS, or they may be additional, timely
information not included in the generative model. This approach is
dubbed retrieval augmented generation (Cai, Wang, Liu, & Shi, 2022;
Lewis et al., 2020).

In summary, the previous subsections illustrate different use-cases
for VDBMSs, yet it can be seen that the function of the VDBMS is rather
uniform regardless of the use-case. That is, from a transaction process-
ing perspective, the VDBMS stores, indexes and retrieves vectors, and
domain-specific processes such as image feature extraction are carried
out in other parts of the system.

5. Current challenges

5.1. Balancing between speed and accuracy

As most queries in VDBMSs operate by searching approximate near-
est neighbors, balancing between query response time and the accuracy
of the results is a trade-off largely dictated by the business domain.
Some vector index types such as Product Quantization save storage space
nd speed up queries by abstracting and aggregating information with
he cost of accuracy, while other index types such as R-trees are loss-
ess. Lossless indices are preferred when exact similarity measurements
re critical, while lossy indices are used when approximate similarity
earches are acceptable, and there is a need to reduce storage and
omputation costs.

The challenge in choosing between speed and accuracy is two-
old. First, compared to many other data models, the concept of query
ccuracy plays a significantly larger role. Although many NoSQL data
odels forsake data integrity for eventual consistency, the effects of

uch design principles for the end-user are relatively small compared
o inaccurate vector searches. On the other hand, VDBMSs disregard
any challenges related to other data models, such as the complexity

f querying in relational databases, and respective challenges and
omplexities in logical database design in both relational and NoSQL
ata models. Second, the trade-offs between speed and accuracy are
mphasized in especially large datasets where both speed and query
ccuracy are critical. For example, natural language operated decision
upport systems which use large corporate datasets or stock market
ata need to provide decisions fast, but without returning inaccurate
r untrue results. One possible solution for ensuring both speed and
ccuracy is utilizing several indices for the same vectors, yet this
pproach naturally requires more storage capacity.

.2. Growing dimensionality and sparsity

The growing dimensionality of vectors is a challenge. As the needs
f the domain grow, it is natural that the vectorized data need more
eatures. For example, it is reasonable to assume that a vector database
f Greek plays will soon require more insights on the plays besides
he amount of comedy and tragedy. This leads to increased storage
equirements and computational complexity.

Increased dimensionality also impacts similarity search, as the no-
ion of proximity becomes less reliable in high-dimensional spaces. Eu-
lidean distance, which is commonly used in low-dimensional spaces,
ecomes less reliable in high-dimensional spaces due to the concen-
ration of points around the surface of the space. That is, in high-
imensional spaces, the volume of space grows exponentially with new
7

dimensions, while the possible number of vectors typically does not.
This results in vectors naturally concentrating close to the hypersurface
of the space, as that is where the majority of the space is. Because
vectors are concentrated near the surface, the distances between the
vectors tend to be more similar in high-dimensional space (Indyk
& Motwani, 1998). Developing effective distance measures that can
capture the true similarity or dissimilarity between high-dimensional
vectors is an ongoing research challenge.

Another challenge is the increased sparsity of high-dimensional vec-
tors. As the number of dimensions grows, the available space becomes
more sparsely populated, meaning that data points are spread out
across the vector. For example, if a vector database consisting of feature
vectors of images of cats is extended to cover images of other animals
as well, vector dimensions associated with cats (or mammals, or chor-
dates, etc.) do not contribute significantly to the overall structure of
vectors depicting other animals. This sparsity complicates indexing and
retrieval, as methods designed for denser data struggle to efficiently
represent and query sparse data. The challenges associated with sparse
data have been addressed in, e.g., the column-family data model, but
not in the degree that is required with high-dimensional sparse vectors.

5.3. Achieving general maturity

DBMSs are typically large and complex pieces of software. It follows
that there are several aspects to DBMSs that evolve and mature over
time, and because VDBMSs are relatively novel systems (cf. Table 2),
considerations such as their stability, reliability, and optimization are
subject to even drastic development. In comparison, even mature rela-
tional DBMSs still receive critical bug fixes (Oracle Critical Patch Update
Advisory - January 2023, 2023).

Maturity is not a goal in on itself. Decades of development and
testing have likely addressed many bugs and stability issues, making
DBMSs in general more reliable for mission-critical applications. Over
time, DBMSs tend to accumulate a rich set of features and functionali-
ties. They often support a wide range of data models, query languages,
and storage options, allowing them to cater to diverse use-cases. This
is not necessarily the case with more novel VDBMSs. Additionally, a
mature DBMS typically has a large and active user community, which
can be valuable for getting support, finding resources such as online
tutorials, and leveraging third-party extensions and integrations.

Information security is a challenge that is not limited to business
domains of VDBMSs. Due to their common use-cases, a vector database
may contain sensitive information such as conversations intended to
be private, biometric data, risk assessment profiles, and geospatial in-
telligence data. While many similar use-cases are common in relational
databases as well, older DBMSs have had time to identify and address
more security vulnerabilities, and usually have robust security features
and practices in place.

In summary, there are several open challenges regarding VDBMSs,
some of which are related to algorithms such as the need for novel
index structures, some to software such as the availability of cer-
tain features in VDBMSs, and some to social aspects such as the
maturity and availability of online support. In the future, we expect
the demand for vector databases to grow. Consequently, we expect
VDBMS vendors to focus on developing and applying new algorithms
for vector indices, as well as making high-dimensional vectors more
human-readable through visualizations. Additionally, as data-intensive
computational models are computationally expensive to retrain, we
expect that VDBMS vendors will try to address this by implement-
ing features for incremental learning, i.e., cost-effective fine-tuning of
computational models.

6. Conclusion

Vector database is a growing data model intended for storing vec-
tors which describe rich data in high-dimensional vectors. This study



Cognitive Systems Research 85 (2024) 101216T. Taipalus

D

G

G

J

J

K

L

L

L

M

M

M

O

S

S

S

T

T

V

W

W

W
Z

Z

Z

provided an overview of fundamental concepts behind vector databases
and vector database management systems, such as different types of
vector similarity comparison types, different vector index types, and
the principal software components in a VDBMS. Additionally, this study
described some VDBMSs and their features, as well as some popular
use-cases for vector data such as chatbots and image similarity search.
Finally, this study discussed some of the current challenges associated
with VDBMSs such as high-dimensionality and sparsity of vector data,
and the relative novelty of VDBMS products and the implications
therein.
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