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COAREA INEQUALITY FOR MONOTONE FUNCTIONS ON METRIC
SURFACES

BEHNAM ESMAYLI, TONI IKONEN, KAI RAJALA

Abstract. We study coarea inequalities for metric surfaces — metric spaces that are
topological surfaces, without boundary, and which have locally finite Hausdorff 2-measure
H2. For monotone Sobolev functions u : X → R, we prove the inequality

∗ˆ

R

ˆ

u−1(t)

g dH1 dt ≤ κ

ˆ

X

gρ dH2 for every Borel g : X → [0,∞],

where ρ is any integrable upper gradient of u. If ρ is locally L2-integrable, we obtain the
sharp constant κ = 4/π. The monotonicity condition cannot be removed as we give an
example of a metric surface X and a Lipschitz function u : X → R for which the coarea
inequality above fails.

1. Introduction

In this paper we prove a coarea inequality, involving upper gradients, for monotone
Sobolev functions on metric surfaces. To motivate the topic, recall the classical coarea
formula for Lipschitz maps u : Rn → Rm, n ≥ m ≥ 1. When m = 1, the only relevant case
in this paper, it reads as follows.

Theorem 1.1. If Ω ⊂ Rn is open and u : Ω → R is Lipschitz, thenˆ

R

ˆ

u−1(t)

g dHn−1dt =

ˆ

Ω

g|∇u| dx for every Borel g : Ω → [0,∞]. (1)

Throughout, Hα stands for Hausdorff measures. Extension of this result to Sobolev class
is a delicate matter, despite well-known Lipschitz approximation results.

Theorem 1.2 (Coarea formula, [MSZ03]). Let Ω ⊂ Rn be open and u ∈ W 1,1
loc (Ω;R) be

precisely represented. Then the coarea formula (1) holds with ∇u being the weak derivative.

We recall that continuous functions are precisely represented.

There are several equivalent approaches to Sobolev functions on metric(-measure) spaces.
We use the definition based on upper gradients in the sense of Heinonen and Koskela
[HK98, Sha00]. An upper gradient of a function u : X → R, on a metric space (X, d), is a
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2 BEHNAM ESMAYLI, TONI IKONEN, KAI RAJALA

Borel function ρ : X → [0,∞] so that for all x, y ∈ X and all rectifiable paths γ joining x
and y in X we have

|u(x)− u(y)| ≤
ˆ

γ

ρ ds.

Observe that for C1-smooth functions on Euclidean domains, ρ(x) = |∇u(x)| meets this
criterion. The upper gradient approach is equivalent to the energy density approach
[AGS13, ES21] and the test plan approach [AGS13]. We refer the interested reader to
[ACDM15]. On Euclidean domains, the upper gradient approach leads to the classical
Sobolev theory, see e.g. [HKST15].

We restrict ourselves to the class of metric n-manifolds. By a metric n-manifold (resp.
with boundary) we mean a metric space homeomorphic to a topological n-manifold (resp.
with boundary) with locally finite n-dimensional Hausdorff measure. Unless otherwise
mentioned, a metric n-manifold is assumed to have an empty boundary. When n = 2, and
there is no boundary, we use the term metric surface.

Question 1.3. (Coarea inequality) Does there exist a universal constant C = C(n) such
that for all metric n-manifolds X, all u : X → R and any upper gradient ρ : X → [0,∞] of
u, with locally integrable u and ρ,

∗ˆ

R

ˆ

u−1(t)

g dHn−1dt ≤ C

ˆ

X

gρ dHn for every Borel g : X → [0,∞]? (2)

Here
´ ∗
R refers to the upper integral in case the integrand happens to be nonmeasurable.

Question 1.3 has a positive answer for Lipschitz functions in all metric n-manifolds that
support a (1, 1)-Poincaré inequality and on which Hn is doubling, cf. Section 5.

In recent years the research on metric n-manifolds has been active, mainly for n = 2,
where inequalities of the form (2) have played a prominent role in the uniformization
results of metric surfaces by the third named author [Raj17] and more recently by Nta-
lampekos and Romney [NR22], see also [LW17, MW21]. The particular formulation of (2)
is motivated by a related well-known inequality from geometric measure theory.

Theorem 1.4 (Eilenberg’s Inequality, [Fed69, EH21])). Let (X, d) be any metric space and
fix n ≥ 1, not necessarily an integer, and suppose that X has a locally finite Hn-measure.
Then for any Lipschitz function u : X → R,

∗ˆ

R

ˆ

u−1(t)

g dHn−1dt ≤ 2ωn−1

ωn

ˆ

X

g lip (u) dHn, for every Borel g : X → [0,∞], (3)

where
lip (u)(x) := lim sup

x ̸=y→x

|u(y)− u(x)|
d(y, x)

. (4)

Here ωi are normalization constants involved in the definition of the Hausdorff measure.
In particular, when n is an integer, ωn is the volume of the n-dimensional Euclidean unit
ball. For example, ω1 = 2 and ω2 = π, so 2ω1/ω2 = 4/π.
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Eilenberg’s inequality is often stated using the global Lipschitz constant instead of lip ,
but a localization argument leads to (3). See Section 5, in particular Lemma 5.2, for a
proof of this folklore result. The Eilenberg inequality is closely related to the perimeter
of sublevel sets of Lipschitz functions, cf. [Mir03]. However, without strong geometric
assumptions on X, see e.g. [Amb01], the connection between the Hausdorff measure and
perimeter measure is unclear.

Theorem 1.4 implies, indirectly, that the Sobolev theory on metric surfaces is rich, cf.
Section 1.1. In particular, it is possible to construct 2-harmonic functions for suitable
boundary value problems on X as was done by the third named author in [Raj17, Section
3]. The results therein generalize to p ∈ (1,∞) and also to related problems in potential
analysis. We answer Question 1.3 in two-dimensions for a class of functions that contains
such functions and other functions arising from energy minimization problems. First, a
definition.

Definition 1.5. A function u : X → R is monotone if u is continuous and satisfies the
maximum principle: for every open set U , compactly contained in X,

sup
U

u = sup
∂U

u and inf
U

u = inf
∂U

u.

Theorem 1.6. Let X be a metric surface and ∞ ≥ p ≥ 1. If u : X → R is a monotone
function with a locally p-integrable upper gradient ρ, then for κ = (4/π) · 200,ˆ

R

ˆ

u−1(t)

g dH1 dt ≤ κ

ˆ

X

gρ dH2 (5)

for every Borel function g : X → [0,∞]. If p ≥ 2, then (5) holds with constant κ = 4/π.

We expect that the sharp constant κ = 4/π holds also for p < 2. Endowing the Euclidean
plane with the supremum norm ∥(x1, x2)∥ := sup {|x1|, |x2|} and considering u(x1, x2) = x1

shows the sharpness of Theorem 1.6 when p ≥ 2.

As hinted at earlier, (3) implies (2) for Lipschitz functions in spaces satisfying strong
geometric assumptions, for example, Hn being doubling and supporting a (1, 1)-Poincaré
inequality, cf. [Che99] (or [IPS22, ES21]). Without the further geometric assumptions, the
pointwise Lipschitz constant may be much larger than the minimal upper gradient, so (3)
does not always imply (2). Indeed, we have the following consequence of Theorem 5.3.

Theorem 1.7. For every n ≥ 2, there exist a metric n-manifold X ⊂ Rn+1 and a Cantor
set C ⊂ X such that for u(x1, x2, . . . , xn) = x1, the following holds:

0 < Hn(C) =

ˆ

R

Hn−1(C ∩ u−1(t)) dt and ρ = χX\C is an upper gradient of u|X .

In particular, (2) fails for g = χC with any constant.

Theorem 1.7 illustrates that the inequality (2) does not hold in the Lipschitz class. For
this reason, there is no obvious generalization of Theorem 1.6 in dimension two.

Question 1.8. Does Question 1.3 have a positive answer on metric n-manifolds for mono-
tone functions u : X → R with (locally) integrable upper gradients?
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1.1. Two-dimensionality. A noticeable assumption in Theorem 1.6 is the setting of met-
ric surfaces. Our methods do not lend themselves to obvious generalization even to metric
n-manifold setting for n ≥ 3. To illustrate the point, we argue as follows. When Theo-
rem 1.4 is applied on a metric n-manifold and u(x) = d(x, x0), we conclude that almost
every level set of u satisfies Hn−1(u−1(t)) < ∞. When t is small enough, u−1(t) is contained
in a neighbourhood Ω of x0 homeomorphic to Rn, and Alexander’s duality guarantees the
existence of a continuum C ⊂ u−1(t) separating Ω into two or more connected components.
In the particular case of n = 2, H1(C) < ∞ guarantees that C is a rectifiable path which
allows us to control the oscillation of a Sobolev function f on C in terms of

´
C
ρ dH1, where

ρ is any upper gradient of f . More precisely, we have

|f(x)− f(y)| ≤
ˆ

C

ρ dH1 for every x, y ∈ C. (6)

Without further geometric assumption on X, (6) does not seem to have a straight-forward
generalization for n > 2 since, e.g., Hn−1(C) < ∞ for continua C does not imply the
existence of a Lipschitz parametrization from [0, 1]n−1. The key point is that (6) allows
one to deduce that Sobolev analysis on metric surfaces is rich without any need for further
assumptions on X.

To handle the full range 1 ≤ p ≤ ∞, we provide two proofs of Theorem 1.6. The
inequality involving the non-sharp constant holds in the full range but the sharp constant
for p ≥ 2 in Theorem 1.6 is based on recent advances in uniformization theory of metric
surfaces: the existence of (weakly) quasiconformal homeomorphisms onto metric surfaces
[NR22], see Section 4.1 for further discussion.

1.2. Monotone functions. Typical examples of monotone functions include solutions
to the p-Laplace equation or other elliptic PDE’s of divergence form. The calculus of
variations approach to p-harmonic functions can be developed in metric (measure) spaces,
cf. [BB11]. In fact, an important first step in the uniformization theorem by the third
named author in [Raj17] was to construct a specific 2-harmonic function on a general
metric surface. The constructed function satisfies the following slightly weaker property.

Definition 1.9. A function u : X → R is weakly monotone if for every open V compactly
contained in X,

sup
V

u ≤ sup
∂V

u < ∞ and inf
V

u ≥ inf
∂V

u > −∞.

Deducing continuity of weakly monotone functions is of interest. This is one of our main
results.

Theorem 1.10. Suppose that X is a metric surface and u : X → R is weakly monotone.
If u has a locally p-integrable upper gradient, for p ≥ 2, then u is continuous. In particular,
u is monotone.

The key idea in the proof of Theorem 1.10 is a non-sharp version of the coarea inequality
for weakly monotone functions with locally integrable upper gradients. Our approach is
based on a related result [RR19], and in fact, Theorem 1.10 generalizes related continuity
results from [RR19] for all ranges p ≥ 2 and for a large class of problems. Moreover,
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together with Theorem 1.6, we obtain a sharp duality of modulus lower bound in [RR19,
Theorem 1.3]; we note that the sharp duality lower bound was first proved in [EBPC22,
Corollary 1.2] with different methods and in greater generality. When p < 2, the continuity
conclusion does not hold even in the plane, cf. Example 3.10.

Given an inequality of the form (5) for monotone functions, a consequence of [Nta20,
Theorem 1.5] follows for metric surfaces.

Corollary 1.11. Let U be a metric surface homeomorphic to R2, and p ≥ 1. If a monotone
u : U → R has a locally p-integrable upper gradient, then for almost every t ∈ u(U) the
following properties hold:

(a) The level set u−1(t) is a locally rectifiable properly embedded topological 1-manifold.
(b) Each component of u−1(t) is homeomorphic to R.

We say that a set K ⊂ U is a properly embedded topological 1-manifold if K is closed
and every y ∈ K is contained in I ⊂ K, relatively open in K, with I homeomorphic to R.
Corollary 1.11 plays a key role when we establish the sharp version of (5) for p ≥ 2.

Notation. We shall write u−1(t) to mean {x : u(x) = t}. The α-dimensional Hausdorff
measure is denoted by Hα. The upper integral of any function on a measure space (X,µ)
is denoted by

´ ∗
f dµ. If f is µ-measurable then it agrees with the usual integral. We use

#A, χA and A to denote, resp., the cardinality, the characteristic function, and closure of
a set A. The closed ball {y : d(y, x) ≤ r} is denoted by B(x, r), which might not coincide
with the closure of the open ball B(x, r) = {y : d(y, x) < r}.

2. Preliminaries

Let X be a metric space. For all Q ≥ 0, the Q-dimensional Hausdorff measure, or the
Hausdorff Q-measure, of a set E ⊂ X is defined by

HQ
X(E) =

ωQ

2Q
sup
δ>0

inf

{
∞∑
i=1

(diamEi)
Q : E ⊂

∞⋃
i=1

Ei, diamEi < δ

}
,

where the dimensional constant ωQ is chosen so that Hn
Rn coincides with the Lebesgue

measure Ln for all positive integers. In particular, ω1 = 2 and ω2 = π. We typically omit
the subscript X from the definition.

Given a set K ⊂ X, a function f : K → R is Lipschitz if

LIP(f) := sup
x,y∈K,x̸=y

|f(x)− f(y)|
d(x, y)

< ∞.

The supremum on the left is the Lipschitz constant of f . We say that f is L-Lipschitz if
LIP(f) ≤ L.

For a given Lipschitz f : K → R and x ∈ K, we define the pointwise Lipschitz constant
of f as

lip (f)(x) = inf
r>0

sup
0<s≤r

sup
y∈B(x,s)∩K

|f(y)− f(x)|
s

.
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In fact, this definition of lip (f) coincides with the one in (4).

Let X be a metric surface. For each 1 ≤ p < ∞, we say ρ : X → [−∞,∞] belongs to
Lp(X) if ρ is measurable and

∥ρ∥Lp(X) :=

ˆ
X

|ρ|p dH2

1/p

< ∞.

For p = ∞, ∥ρ∥L∞(X) is the smallest C ∈ [0,∞] for which |ρ| ≤ C, H2-almost everywhere,
and denote ρ ∈ L∞(X) if ρ is measurable and ∥ρ∥L∞(X) < ∞. In case ρ ∈ Lp(X), we say
that ρ is p-integrable. Local p-integrability refers to being p-integrable on each compact
subset of the space; recall that X is locally compact so the space X can be covered by
open sets whose closures are compact, justifying the nomenclature.

2.1. The upper integral. Let E ⊂ X be a set with HQ(E) < ∞ for Q = 2 (resp. Q = 1).
For any function ρ : E → [0,∞] we define the upper integral of ρ (with respect to HQ) to
be

∗ˆ

E

ρ dHQ := inf


ˆ

E

ρ′ dHQ : ρ′ is HQ-measurable and ρ ≤ ρ′, HQ-almost everywhere

 .

We use some elementary properties of the upper integral. If 0 ≤ ρ1(x) ≤ ρ2(x), HQ-
almost everywhere in E, then

∗ˆ

E

ρ1 dHQ ≤
∗ˆ

E

ρ2 dHQ.

The monotone convergence theorem holds for upper integrals. Namely, if 0 ≤ ρ1(x) ≤
ρ2(x) ≤ . . . is an increasing sequence of (not necessarily measurable) functions, and for
HQ-almost every x ∈ E, ρ(x) = limn→∞ ρn(x), then

∗ˆ

E

ρ dHQ = lim
n→∞

∗ˆ

E

ρn dHQ.

Lastly, for an arbitrary ρ : E → [0,∞],
´ ∗
E
ρ dHQ = 0, if and only if ρ = 0, HQ-almost

everywhere in E.

2.2. Rectifiable curves and path integrals. A path in a metric space X is a continuous
map γ : [a, b] → X. The length ℓ(γ) of γ is the smallest value L ∈ [0,∞] for which

k∑
i=1

d(γ(ti), γ(ti−1)) ≤ L,

for every choice of k ∈ N and a = t0 ≤ t1 ≤ · · · ≤ tk = b. We say that γ is rectifiable if
ℓ(γ) < ∞.
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Suppose γ : [a, b] → X is a path and ρ : X → [0,∞] is Borel. Then the path integral of
ρ over γ is ˆ

γ

ρ ds :=

ˆ

X

#(γ−1(x))ρ(x) dH1.

Here #(γ−1(x)) = ∞ if γ−1(x) is not finite and otherwise #(γ−1(x)) is the cardinality of
the set γ−1(x). If ρ is not Borel, we define

ˆ

γ

ρ ds :=

∗ˆ

X

#(γ−1(x))ρ(x) dH1.

Remark 2.1. Note that whenever E ⊂ [a, b] is Borel and γ : [a, b] → X is a path, then
γ(E) is analytic [Fed69, 2.2.10]. This implies that γ(E) is H1-measurable [Fed69, 2.2.13].
This allows us to prove that x 7→ #(γ−1(x)) is H1-measurable. The key observation is to
fix a sequence of countable Borel partitions (Kn) of [a, b] such that the supremum of the
diameters of the elements of Kn converges to zero as n → ∞ and each Kn+1 refines Kn, i.e.,
each E ∈ Kn is a countable union of some elements of Kn+1. Now, measurability follows
from

#(γ−1(x)) = lim
n→∞

∑
E∈Kn

χγ(E)(x) for every x ∈ X.

If γ : [a, b] → X is rectifiable, then there exists a unique path γs : [0, ℓ(γ)] → X such
that γ = γs ◦ h, where h : [a, b] → [0, ℓ(γ)] is continuous, nondecreasing and onto, and
ℓ(γs|[0,s]) = s for all 0 ≤ s ≤ ℓ(γ). The path γs is called the arclength parametrization of
γ. Recall that the arclength parametrization is 1-Lipschitz, cf. [HKST15, Section 5].

Let γ : [a, b] → X be a rectifiable path in a metric space, and let γs : [0, ℓ(γ)] → X be the
arclength parametrization of it. For a Borel function ρ : X → [0,+∞], the path integral
of ρ over γ can be computed as follows:

ˆ

γ

ρ ds =

ℓ(γ)ˆ

0

ρ(γs(t)) dt.

The equality follows from the area formula for paths, proved for example in [Fed69, The-
orem 2.10.13.].

A path γ : [a, b] → X is absolutely continuous if ℓ(γ) < ∞ and if γ maps sets of Lebesgue
measure zero to sets of H1-measure zero. For absolutely continuous curves, there is a third
way to compute the path integral of Borel functions. For this purpose, we denote

|γ′|(t) := lim
h→0

d(γ(t+ h), γ(t))

|h|
whenever the limit exists. When the limit exists, we refer to |γ′|(t) as the metric speed
of γ at t. It turns out that for any rectifiable path, the limit exists almost everywhere in
[a, b] [Dud07]. Recall that in the Euclidean setting, the metric speed coincides with the
modulus of the usual derivative.

With the additional assumption of absolute continuity, we obtain the following.
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Lemma 2.2 ([Dud07]). Suppose that γ : [a, b] → X is absolutely continuous and ρ : X →
[0,+∞] is Borel. Then ˆ

γ

ρ ds =

bˆ

a

ρ(γ(t))|γ′|(t) dt.

2.3. Modulus of path families. We continue considering a metric surface X. We typ-
ically denote a collection of paths by Γ and refer to Γ as a path family. A Borel function
ρ : X → [0,∞] is admissible for a path family Γ ifˆ

γ

ρ ds ≥ 1 for every γ ∈ Γ.

Then, for each 1 ≤ p < ∞, we denote

modp Γ = inf


ˆ

X

ρp dH2
X : ρ is admissible for Γ

 .

In case p = ∞, we set

modp Γ = inf
{
∥ρ∥L∞(X) : ρ is admissible for Γ

}
.

The set function Γ 7→ modp Γ is an outer measure.

We say that Γ is p-negligible if modp Γ = 0. The following characterization of negligible
paths is an effective tool. Notice that this characterization does not require the notion of
modulus and could be given as a definition of modulus zero without defining modulus, see,
e.g. [HKST15, Lemma 5.2.8] for a proof.

Lemma 2.3. Let 1 ≤ p ≤ ∞. A path family Γ is p-negligible if and only if there exists an
Lp(X)-integrable Borel function h : X → [0,∞] such that

´
γ
h ds = ∞ for every γ ∈ Γ.

2.4. Sobolev analysis. Let X be a metric surface and Y a metric space. Let u : X → Y
be a map and ρ : X → [0,∞] a Borel function. If γ : [a, b] → X is rectifiable, we say that
the triple (u, ρ, γ) satisfies the upper gradient inequality if

d(u(γ(a)), u(γ(b))) ≤
ˆ

γ

ρ ds.

If the triple (u, ρ, γ) satisfies the upper gradient inequality for every path outside a p-
negligible family, we say that ρ is a p-weak upper gradient of u. If the exceptional set of
paths is empty, we say ρ is an upper gradient of u.

If u has a p-integrable p-weak upper gradient, then there exists a p-weak upper gradient
ρ such that ρ ≤ ρ′ almost everywhere for every other p-integrable p-weak upper gradient ρ′
of u. For 1 ≤ p < ∞, this is proved in [HKST15, Theorem 6.3.20] and for p = ∞ a similar
argument works, cf. [Mal13]. Any p-minimal p-weak upper gradient of u is denoted by ρu;
we typically omit the p from the notation since p is clear from the context.

Whenever 1 ≤ p ≤ ∞, we write u ∈ D1,p(X;Y ) whenever u has a p-integrable p-weak
upper gradient. In case Y = R, we also use u ∈ D1,p(X). We note that Lemma 2.3
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implies that u has a p-integrable upper gradient whenever u has a p-integrable p-weak
upper gradient, see e.g. [HKST15, Lemma 6.2.2]. For a thorough exposition of the topic
of Sobolev analysis on metric measure spaces, see [HKST15].

We recall the following fact.

Lemma 2.4. Let X be a metric surface and Y a metric space. Let u : X → Y be a map with
a p-integrable p-weak upper gradient ρ. Let Γ0 denote the collection of all rectifiable paths
γ : [a, b] → X for which one of the following occurs: u◦γ is not rectifiable, ℓ(u◦γ) >

´
γ
ρ ds,

or
´
γ
ρ ds = ∞. Then Γ0 is p-negligible.

Proof. For 1 ≤ p < ∞, the claim follows from [HKST15, Propositions 6.3.2 and 6.3.3].
The same argument also works for p = ∞. □

2.5. Some topology of the plane and continua. In this section, we consider a metric
surface U homeomorphic to R2. For many of the topological results of this section, this is
a crucial assumption.

We first recall some topological results about separation of sets and continua. Recall
that A ⊂ U is a continuum if A is compact and connected. We say a set A ⊂ U separates
x and y if they belong to different connected components of U \ A.

Lemma 2.5 ([Wil79, Chapter 2, Lemma 5.20]). If K ⊂ U is compact and x, y ∈ U \K
are separated by K, then there exists a continuum C ⊂ K such that x and y are separated
by C. In particular, if a compact set separates two points, then a connected component of
the compact set separates them.

A continuous image of a compact subinterval of R is called a Peano continuum. The
next result claims that continua with finite 1-dimensional Hausdorff measure are Peano
continua. An example of a continuum that is not a Peano continuum is the Warsaw circle.

Lemma 2.6 ([RR19, Proposition 5.1]). Let K ⊂ U be a continuum. If H1(K) < ∞,
then there exists a 1-Lipschitz surjection γ : [0, 2H1(K)] → K such that #(γ−1(x)) ≤ 2 for
H1-almost every x ∈ K.

Given two sets K ⊂ V ⊂ U , we say that K ⊂ V is relatively closed (resp. open) in V if
there exists a closed (resp. open) set K ′ ⊂ U for which K = K ′ ∩ V . When the set V is
clear from the context, we say that K is relatively closed (resp. open).

For Peano continua, there is a stronger conclusion than in Lemma 2.5.

Lemma 2.7 ([Wil79, Chapter 4, Theorem 6.7]). If a Peano continuum K ⊂ U separates
x, y ∈ U \K, then there exists a subcontinuum K ′ ⊂ K that is homeomorphic to the unit
circle S1 and separates x and y.

We say that a Peano continuum K is simple if it is homeomorphic either to a point, to
a compact interval, or to the unit circle S1. A homeomorphic image of a compact interval
is called an arc. Observe that any subcontinuum of a simple Peano continuum is again
simple.
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Lemma 2.8. Let F be a collection of pairwise disjoint Peano continua in U and F ′ ⊂ F
the subcollection containing the ones that are not simple. Then F ′ is countable.

Proof. A point x0 in a Peano continuum K is a junction point, if there exists three (com-
pact) arcs E1, E2, E3 in K that meet at x0 but are otherwise disjoint. A Peano continuum
is not simple if and only if it contains a junction point [Nta20]. Thus every element in F ′

has a junction point. A theorem by Moore [Moo28, Theorem 1] states that there cannot be
an uncountable collection of pairwise disjoint Peano continua in U if each of them contains
a junction point. In particular, F ′ must be countable. □

Suppose that f : [0, 1] → K ⊂ U is a homeomorphism and H1(K) < ∞. Then P (t) =
H1(f([0, t])) is strictly increasing, continuous, and bounded. Then γ(t) = f ◦ P−1(t) is a
Lipschitz path. With this fact, the lemma below readily follows.

Lemma 2.9. Let K be a simple Peano continuum with H1(K) < ∞. Then there exists a
surjective Lipschitz γ : [a, b] → K, injective outside its end points.

For the purposes of future sections, we establish the following.

Lemma 2.10. Let E ⊂ U be a closed and connected set. If H1(E) < ∞, then there exists
a sequence of continua (En)

∞
n=1 with En ⊂ En+1 and E =

⋃∞
n=1En.

Proof. We may assume that E is not a continuum, since otherwise the claim is trivial.

We claim that E is locally connected. That is, given any point x0 ∈ E and a relatively
open set x0 ∈ W ⊂ E, there is a connected and relatively open x0 ∈ U ⊂ W . We argue
by contradiction. Then, by [Why63, Theorem (12.1), p. 18], there is x0 ∈ E, a relatively
open and bounded W ⊂ E with x0 ∈ W , a sequence of continua (Fi)

∞
i=1, pairwise disjoint,

with Fi ⊂ W ∩ E, converging to a continuum F of positive diameter. Therefore, there
exists c > 0 such that for all large i, diamFi ≥ c. Since for every N ∈ N,

H1(W ) ≥ H1

(
N⋃
i=1

Fi

)
=

N∑
i=1

H1(Fi) ≥
N∑
i=1

diamFi,

we obtain a contradiction by passing to the limit N → ∞. Hence E is locally connected.
Having verified that E is locally connected, connected and locally compact, [Why63, The-
orem (5.3), p. 38] proves that E is locally path connected, i.e. given any point x0 ∈ E and
relatively open set x0 ∈ W ⊂ E, there is a path connected and relatively open x0 ∈ U ⊂ W .

We show that the claim follows from the local path connectedness. To this end, fix
y1 ∈ E. Fix a sequence (Vn)

∞
n=1 for which y1 ∈ V1, V n ⊂ Vn+1 ⊂ U , E ∩ V n is compact, Vn

is open, and U =
⋃∞

n=1 Vn. By the local path connectivity and connectedness of E, every
y ∈ E is contained in some path γ : [0, 1] → E with γ(0) = y1 and γ(1) = y. For large
enough m, we have that Vm ⊃ |γ|. This implies that if Kn denotes the path connected
component of E ∩ Vn containing y1, we have E =

⋃∞
n=1 Kn. By setting En := Kn, we

obtain a sequence of continua in E for which E =
⋃∞

n=1En.

□
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2.6. Level sets of Lipschitz functions. In this section, we consider an open subset
U of a metric surface X with H2(U) < ∞. We begin with the following formulation of
Eilenberg’s inequality, proved later as Lemma 5.2:

Lemma 2.11 ([EH21]). Let f : U → R be L-Lipschitz. Then, for every Borel g : U →
[0,∞],

∗ˆ

R

ˆ

f−1(s)

g dH1 ds ≤ L
4

π

ˆ

U

g dH2.

Remark 2.12. When the integral on the right-hand side of the inequality in Lemma 2.11
is finite, the upper integral

´ ∗ can be replaced by the usual integral since in that case

s 7→
ˆ

f−1(s)

g dH1

is Borel measurable.

Lemma 2.13. Let U ⊂ X be homeomorphic to R2 and H2(U) < ∞. Fix a Lipschitz
function f : U → R and denote I = f(U). Then for almost every s ∈ I:

(1) H1(f−1(s)) < ∞ and each continuum E ⊂ f−1(s) is a simple Peano continuum;

Furthermore, suppose that N ⊂ U satisfies H2(N) = 0 and Γ0 is a p-negligible path family
in U , for some 1 ≤ p ≤ ∞. Then, for almost every s ∈ I,

(2) for every continuum E ⊂ f−1(s) of positive diameter, there exists a surjective
Lipschitz path γ : [0, 1] → E that is injective outside its end points;

(3) for every absolutely continuous γ : [a, b] → f−1(s),
´
γ
χN ds = 0. Moreover, if there

exists M ∈ N such that #(γ−1(x)) ≤ M for H1-almost every x ∈ X, then γ ̸∈ Γ0.

Proof. Applying Lemma 2.11 to g = χU implies that H1(f−1(s)) < ∞ for almost every
s. By Lemma 2.6, each compact set K ⊂ f−1(s) ∩ U is a Peano continuum. Lemma 2.8
implies that except for a countable set of values s, all continua E ⊂ f−1(s) are simple.
This proves (1). Claim (2) follows from Lemma 2.9.

Next, we establish (3). Since Γ0 has p-modulus zero, there exists an Lp(U)-integrable
Borel function h : U → [0,∞] such that ∞ =

´
γ
h ds for every γ ∈ Γ0.

Notice that h is also in L1(U). So, by Eilenberg’s inequality,
´
f−1(t)

h dH1 < ∞ for
almost every t. Hence, if γ : [a, b] → f−1(t) satisfies #(γ−1(x)) ≤ M for H1-almost every
x ∈ U , then ˆ

γ

h ds ≤ M

ˆ

f−1(t)

h dH1 < ∞.

Thus γ ̸∈ Γ0.
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To prove the remaining claim, first fix a Borel set Ñ ⊃ N such that H2(Ñ) = 0. Observe
that, by the Eilenberg inequality,

0 =

ˆ

f−1(t)

χÑ dH1 = H1(f−1(t) ∩ Ñ) for almost every t.

In particular, H1(f−1(t) ∩ N) = 0 for almost every t. For every such t, for every path
γ : [a, b] → f−1(t),

´
γ
χN ds = 0. □

3. Coarea inequality and continuity for monotone functions

In this section we establish the coarea inequality (Equation (5)), with the non-sharp con-
stant κ, for weakly monotone functions (Definition 1.9) with p-integrable upper gradients,
and prove their continuity (Theorem 1.10) when p ≥ 2.

Throughout this section, we fix a metric surface X and a metric surface U ⊂ X home-
omorphic to R2 and satisfying H2(U) < ∞. We also fix a weakly monotone function
u : U → R. We moreover assume that u has a p-weak upper gradient ρ ∈ Lp(U). We do
not impose restrictions on 1 ≤ p ≤ ∞ unless stated otherwise. Note that Lp(U) ⊂ L1(U)
since H2(U) < ∞.

3.1. Initial bounds on oscillations.

Proposition 3.1. Fix a compact E ⊂ U and let f(z) := d(z, E). Fix ϵE > 0 such that
f−1([0, ϵE]) is compactly contained in U . Then, denoting Er := f−1([0, r]), we have

2H1(u(Er)) ≤
ˆ

f−1(r)

ρ dH1 for almost every r ∈ (0, ϵE).

Moreover, if 0 < r < ϵE and E ′ is a continuum with E ′ ⊂ Er, then

2 diamu(E ′) ≤
ˆ

f−1(s)

ρ dH1 for almost every s ∈ (r, ϵE). (7)

Corollary 3.2. For every x0 ∈ U and every r > 0 for which B(x0, 2r) is compact in U ,
the function f(z) = d(z, x0) satisfies

2rH1(u(B(x0, r))) ≤
2rˆ

r

ˆ

f−1(s)

ρ dH1 ds ≤ 4

π

ˆ

B(x0,2r)

ρ dH2.

Proof. We apply Proposition 3.1 for E = {x0}. Then Es = B(x0, s) for each 0 < s <
2r. Moreover, if r < s < 2r, then H1(u(Er)) ≤ H1(u(Es)). Since s 7→ H1(u(Es)) is
nondecreasing, it is measurable. Subsequently,

2rH1(u(Er)) =

2rˆ

r

2H1(u(Er)) ds ≤
2rˆ

r

2H1(u(Es)) ds ≤
2rˆ

r

ˆ

f−1(s)

ρ dH1 ds.

The proof is completed once we apply the Eilenberg inequality. □
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We apply the following lemma during the proof of Proposition 3.1.

Lemma 3.3. Fix N ⊂ U with H2(N) = 0, and let Γ0 be a p-negligible collection of paths.
Let E ⊂ U be compact and recall the notation (and choice of ϵE > 0) from Proposition 3.1.
Then for almost every s ∈ (r, ϵE), there exists a finite collection of Jordan domains (Wi)

N
i=1,

compactly contained in U , that satisfy the following:

(1) Er ⊂
⋃N

i=1 Wi;
(2) ∂Wi ⊂ f−1(s) for every i and (W i)

N
i=1 are pairwise disjoint;

(3) for every continuum C ⊂
⋃N

i=1 ∂Wi, there exists a surjective Lipschitz parametriza-
tion γ : [0, 1] → C, injective except possibly for γ(0) = γ(1), such that γ ̸∈ Γ0 and´
γ
χN ds = 0.

Proof of Lemma 3.3. Fix x1 ∈ U \ f−1([0, ϵE]) and 0 < r < r′ < s < ϵE for now. Observe
that there is a finite number of components (Vi)

N
i=1 of f−1([0, r′)) covering Er. Recalling

Lemma 2.5, for every Vi, there exists a connected component Fi ⊂ f−1(s) separating Vi

from x1. For almost every s ∈ (r′, ϵE), each connected component of f−1(s) is a simple
Peano continuum by Lemma 2.13 (1). On the other hand, Lemma 2.7 guarantees that Fi

contains a continuum homeomorphic to S1. Given that Fi is simple, this happens only if
Fi itself is that subset.

Let Ki ⊂ U denote the unique set homeomorphic to [0, 1]2 satisfying ∂Ki = Fi. We
denote the interior of Ki by Wi. By construction, x1 ∈ U \Ki. Observe that if Fi∩Fj ̸= ∅,
then necessarily Ki = Kj. Indeed, if Fi ∩ Fj ̸= ∅, then Fi = Fj must hold since Fi ∪ Fj

is connected and the connected components of f−1(s) are simple. Next, observe that
an arbitrary compactly contained Jordan domain V ⊂ U is the unique component of
U \ ∂V homeomorphic to the plane. Hence Ki = Kj. With this observation, by removing
possible duplicate indices, we may assume that (Ki)

M
i=1 are pairwise disjoint. We have now

verified requirements (1) and (2). Towards (3), we simply need to apply (2) and (3) from
Lemma 2.13 (and Lemma 2.9 to obtain a parametrization that is injective outside its end
points). □

Proof of Proposition 3.1. Let Γ0 be the p-negligible family identified in Lemma 2.4 and
r ∈ (0, ϵE). We apply Lemmas 2.13 and 3.3 for N = ∅ and Γ0, and obtain a negligible set
of s ∈ (r, ϵE) outside which the conclusions of the Lemmas hold. We may also assume that
the upper gradient inequality holds for all absolutely continuous paths γ : [a, b] → f−1(s)
with (H1-essentially) bounded multiplicity and that

´
f−1(s)

ρ dH1 < ∞.

Let Wi be the Jordan domains given by Lemma 3.3. Observe that u(Wi) is contained in
an interval Ii of length diamu(Wi), so

H1(u(Wi)) ≤ H1(Ii) = diamu(Wi). (8)

By the weak monotonicity of u (Definition 1.9), we have

diamu(Wi) ≤ sup
x,y∈∂Wi

|u(y)− u(x)|. (9)

Observe that ∂Wi admits a Lipschitz parametrization γ : [0, 1] → ∂Wi injective outside the
end points. As γ ̸∈ Γ0, the composition u ◦ γ is absolutely continuous. Therefore, there
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exists a pair of points x0 and y0 on ∂Wi such that
sup

x,y∈∂Wi

|u(y)− u(x)| = |u(y0)− u(x0)|.

Since ∂Wi can be separated into two subarcs γ1, γ2, overlapping only at x0 and y0, we can
choose the one that yields

sup
x,y∈∂Wi

|u(y)− u(x)| = |u(y0)− u(x0)| ≤
ˆ

γj

ρ ds ≤ 1

2

ˆ

∂Wi

ρ ds , (10)

where we applied the upper gradient inequality. Combining (8), (9), and (10) and using
subadditivity of the Hausdorff measure we obtain

2H1(u(Er)) ≤ 2
N∑
i=1

H1(u(Wi)) ≤
N∑
i=1

ˆ

∂Wi

ρ ds ≤
ˆ

f−1(s)

ρ dH1 < ∞.

The last inequality uses the fact that the boundaries of the Jordan domains Wi are pairwise
disjoint.

We first prove the second part of the proposition. To this end, suppose that E is a
continuum in Er. Then Er is contained in a single Wi. Therefore

2 diamu(Er) ≤ 2 diamu(Wi) ≤
ˆ

∂Wi

ρ dH1 ≤
ˆ

f−1(s)

ρ dH1.

This proves the second part of the claim.

Towards proving the first claim of the proposition, let Nr ⊂ (r, ϵE) be the negligible set
so that for all s ∈ (r, ϵE) \Nr,

2H1(u(Er)) ≤
ˆ

f−1(s)

ρ dH1. (11)

Fix a countable dense subset (ri)
∞
i=1 of (0, ϵE), and let M be the union of all Nri and

the collection of discontinuity points of (0, ϵE) ∋ r′ 7→ 2H1(u(Er′)). Observe that the
discontinuity points form a countable set since the function of interest is nondecreasing
and locally bounded. Clearly M is negligible.

Now fix s ∈ (0, ϵE) \M . Then (11) yields

2H1(u(Es)) = sup
ri<s

2H1(u(Eri)) ≤
ˆ

f−1(s)

ρ dH1. (12)

Finally, this proves the first claim of the proposition (with s playing the role of r). □

The following oscillation result is key in establishing initial topological properties of u.

Corollary 3.4. Fix x0 ∈ U and r > 0 for which B(x0, 2r) is compact in U . Let V be the
connected component of B(x0, r) containing x0. Then

2r sup
x,y∈V

|u(y)− u(x)| ≤ 4

π

ˆ

B(x0,2r)

ρ dH2. (13)
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Proof. We apply Proposition 3.1 for E = {x0} and f(z) = d(z, E). Then (7) shows that

2 sup
x,y∈V

|u(y)− u(x)| ≤
ˆ

f−1(s)

ρ dH1 for almost every s ∈ (r, 2r).

Now, (13) follows by integrating over the interval (r, 2r) and applying the Eilenberg in-
equality. □

We later show continuity for weakly monotone functions with p-integrable upper gradi-
ents, p ≥ 2. The following lemma is a weaker continuity result.

Lemma 3.5. Let G denote the collection of all x ∈ U with

lim sup
r→0+

r−2

ˆ

B(x,2r)

ρ dH2 < ∞.

Then u is continuous at every x ∈ G. In particular, u is continuous H2-almost everywhere
in U .

To emphasize, here continuity is with respect to the original domain and not just the
continuity of u|G.

Proof. The complement of G has negligible H2-measure due to the integrability of ρ; we ap-
ply [Fed69, Theorem 2.10.19 (3)] to the measure µ = ρH2 to deduce that the 2-dimensional
upper density of µ is finite at H2-almost every x ∈ X. Consider an arbitrary x0 ∈ G. Since
the collection of the sets V from Corollary 3.4 form a neighbourhood basis of x0, continuity
of u at x0 follows from (13) and the defining property of G. □

3.2. First proof of the coarea inequality. In this section we prove Theorem 1.6 for
weakly monotone functions and weak upper gradients, with the non-sharp constant κ.

Theorem 3.6. Let X be a metric surface and p ≥ 1. If u : X → R is a weakly monotone
function with a locally p-integrable p-weak upper gradient ρ, then for κ = (4/π) · 200,

∗ˆ

R

ˆ

u−1(t)

g dH1 dt ≤ κ

ˆ

X

gρ dH2 for every Borel g : X → [0,∞]. (14)

Proof. It suffices to show that
∗ˆ

R

ˆ

u−1(t)∩U

g dH1 dt ≤ κ

ˆ

U

gρ dH2 for every Borel g : U → [0,∞] (15)

for any subset U ⊂ X homeomorphic to R2 with H2(U) < ∞ and g ∈ Lp(U). Indeed, we
can cover X with countably many such subsets Uj, apply (15) to the restrictions of g to
Uj \ ∪j−1

ℓ=1Uℓ on Uj, and sum up the results to get (14).
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Moreover, it suffices to prove (15) for g = χE, the characteristic function of an open set
E ⊂ U compactly contained in U , due to standard approximation via simple functions.
Fix ϵ0 > 0 such that B(x, 20ϵ0) is compactly contained in U for every x ∈ E.

Step 1: Consider the collection G of all x ∈ E for which for all 0 < ϵ < ϵ0 there exists
some 0 < r < ϵ with ˆ

B(x,10r)

ρ dH2 ≤ 200

ˆ

B(x,r)

ρ dH2.

Fix an arbitrary 0 < ϵ < ϵ0. By the 5r-covering theorem [Fed69, 2.8.4], there exists
a countable (possibly finite) collection of pairwise disjoint balls {B(xj, rj)}j, for which
xj ∈ G, 10rj < min {ϵ, d(X \ E, xj)}. We write Bj = B(xj, rj) for short. The collection
{B(xj, 5rj)}j covers G, and

ˆ

10Bj

ρ dH2 ≤ 200

ˆ

Bj

ρ dH2 for each j.

For each j, we find a Borel set Cj ⊃ u(5Bj) with H1(Cj) = H1(u(5Bj)). Then

gϵ(t) =
∑
j

10rjχCj
(t)

is Borel measurable. Then, by Corollary 3.2, applied with r = 5rj,ˆ

R

gϵ(t) dt ≤
∑
j

4

π

ˆ

10Bj

ρ dH2.

The defining property of the Bj and the inclusion
⋃

j Bj ⊂ E yield∑
j

ˆ

10Bj

ρ dH2 ≤ 200

ˆ

E

ρ dH2.

Thus, ˆ

R

gϵ(t) dt ≤
4

π
200

ˆ

E

ρ dH2.

Suppose that x ∈ u−1(t) ∩G for some given t ∈ R. Then x is contained in some 5Bj. By
openness of 5Bj one shows that t ∈ u(5Bj) for every such j. Hence the definition of the
Hausdorff content H1

ϵ yields

H1
ϵ (u

−1(t) ∩G) ≤
∑

j: t∈u(5Bj)

10rj ≤
∑
j

10rjχu(5Bj)(t) ≤ gϵ(t).

Since ϵ was arbitrary, by applying monotone convergence theorem, we conclude
∗ˆ

R

H1(u−1(t) ∩G) dt = lim
ϵ→0+

∗ˆ

R

H1
ϵ (u

−1(t) ∩G) dt ≤ 4

π
200

ˆ

E

ρ dH2.
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Step 2: Consider F = E \G. We claim that
∗ˆ

R

H1(u−1(t) ∩ F ) dt = 0. (16)

This will complete the proof of inequality (15) for g = χE. Indeed, having verified (16),
by Step 1 and subadditivity property of the upper integral we deduce

∗ˆ

R

H1(u−1(t)) dt =

∗ˆ

R

H1(u−1(t) ∩G) dt ≤ 4

π
200

ˆ

E

ρ dH2.

So it remains to establish (16). By definition of G, for every x ∈ F , there exists kx ∈ N,
such that for any j > kx, ˆ

B(x,10−j)

ρ dH2 ≤ 200−(j−kx)

ˆ

B(x,10−kx )

ρ dH2. (17)

By monotone convergence, it is sufficient to establish (16) with F replaced with

Fk =
{
x ∈ F : kx ≤ k, d(x,X \ E) > 10−k

}
for arbitrary k ∈ N.

We fix k ∈ N and j − 1 > k for now. By the definition of the Hausdorff measure, there
exists a countable collection of balls Bm that cover Fk, with radii rm that satisfy rm ≤ 10−j

and 2rm ≥ diamBm ≥ rm, such that each Bm intersects Fk, and
4

π

∑
m

(diamBm)
2 − (1/j) ≤ 4H2(Fk). (18)

In fact, we may require the balls to be centered at the set Fk.1

For each m ∈ N, let jm ∈ Z be the largest integer for which 2rm ≤ 10−jm . Observe from
the inequalities 10−jm < 20rm ≤ 20 · 10−j that jm ≥ j − 1. Using these observations, we
deduce from Corollary 3.2 and (17) that

2rmH1(u(Bm)) ≤
4

π

ˆ

2Bm

ρ dH2 ≤ 4

π
200−(jm−k)

ˆ

U

ρ dH2. (19)

As before, we consider gj(x) =
∑

m 2rmχCm for Borel sets Cm ⊃ u(Bm) with H1(Cm) =
H1(u(Bm)). By arguing as in Step (1), the definition of H1

1/j yields that

H1
1/j(u

−1(t) ∩ Fk) ≤ gj(t) for all t ∈ R.

By (upper) integrating over R, we obtain
∗ˆ

R

H1
1/j(u

−1(t) ∩ Fk) dt ≤
∑
m

2rmH1(u(Bm)).

1After an initial choice of a covering according to the definition of H2, replace each set by a closed ball
centered on Fk and radius equal to the diameter of the set. (Hence, the factor 4 on the right.)
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We apply now (19) and the inequalities 1 < 20 · 10jm · rm and jm ≥ j − 1, and obtain
∗ˆ

R

H1
1/j(u

−1(t) ∩ Fk) dt ≤
∑
m

2rmH1(u(Bm)) ≤
4

π

∑
m

200−(jm−k)

ˆ

U

ρ dH2

≤ 200k · 4
π

ˆ
U

ρ dH2

∑
m

200−jm(20 · 10jmrm)2

≤ 200k · 4
π

ˆ
U

ρ dH2

 202
∑
m

2−(j−1)r2m

≤ 200k · 4
π

ˆ
U

ρ dH2

 2022−(j−1)
∑
m

r2m.

Now, we apply (18) and pass to the limit as j → ∞, and conclude
∗ˆ

R

H1(u−1(t) ∩ Fk) dt = 0.

Passing to the limit k → ∞ yields (16) and the proof is complete. □

3.3. Continuity of weakly monotone functions. In this section we prove Theorem 1.10:
weakly monotone functions with p-integrable upper gradients are continuous when p ≥ 2.
In other words, for this range of p, weakly monotone functions are monotone functions.
We prove this result by a refined study of the topology of the level sets of such functions.

The standing assumptions in this section are that U is homeomorphic to R2 with
H2(U) < ∞, and u : U → R is weakly monotone (Definition 1.9). We moreover assume
that u has a p-integrable upper gradient ρ, 1 ≤ p < ∞.

We start with the following topological lemma, cf. [Nta20, Corollary 2.8], which says
that connected components of the closures of the level sets of weakly monotone functions
“leave every compact set”.

Proposition 3.7. Let E ⊂ u−1(t) ∩ U be a connected component. Then ∅ ̸= E \ K for
every compact K ⊂ U .

Remark 3.8. Since the results are applied to cases where U is a subset of a metric surface
X, we maintain the notation u−1(t)∩U to emphasize that we are taking the closure relative
to the subspace topology of U .

Proof. Aiming for a contradiction, suppose to the contrary that E\K = ∅ for some compact
K ⊂ U . Then E itself is compact. Consider then a Jordan domain W ⊃ E compactly
contained in U . We denote A := W ∩ u−1(t), and observe that E is also a connected
component of A.
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Since A is a compact subset of U , with U being homeomorphic to R2, for each open
set V ⊃ E, there exists a Jordan domain V ′ compactly contained in V , with E ⊂ V ′ and
A ∩ ∂V ′ = ∅; see [Why58, Corollary 3.11, p.35]. Below, we apply this result for V = W .

We apply Lemmas 2.5 and 2.13 to f(z) = d(z, ∂V ′) as follows: Let

ϵ0 = min
{
d(U \W,∂V ′), d(A, ∂V ′)

}
,

observing that f−1([0, s]) is compact in W \ A for every 0 < s < ϵ0. Then, for every
0 < s < ϵ0, there exists a connected component Fs ⊂ f−1(s) ∩ V ′ separating E from ∂V ′;
recall Lemma 2.5. By applying Lemma 2.13, for almost every such s, we may assume
that Fs is simple (thus, homeomorphic to S1, cf. Lemma 2.7) and admits a Lipschitz
parametrization along which u is absolutely continuous. We fix one such s and let Vs be
the Jordan domain bounded by Fs that contains E. Since E ⊂ Vs ∩ u−1(t), Definition 1.9
implies

t ∈
[
inf
∂Vs

u, sup
∂Vs

u

]
.

Given that u|∂Vs is continuous, there exists x0 ∈ ∂Vs such that u(x0) = t. But then,
x0 ∈ u−1(t) ∩ ∂Vs, contradicting A ∩ ∂Vs = ∅. □

The next result can be compared to Lemma 2.13. However, here u is not necessarily
Lipschitz, and instead of the Eilenberg inequality we use the coarea inequality of Theo-
rem 3.6. Recall that a simple Peano continuum is a set homeomorphic either to a point,
or a compact interval, or to S1.

Proposition 3.9. Let u : U → R be a weakly monotone function with a p-integrable p-weak
upper gradient, for some 2 ≤ p ≤ ∞. Denote I := u(U). Then, for almost every t ∈ I,

(1) u−1(t) = u−1(t) ∩ U and every continuum E ⊂ u−1(t) ∩ U is a simple Peano
continuum, and,

(2) H1(u−1(t) ∩ U) < ∞.

Suppose, moreover, that Γ0 is a path family with p-modulus zero and N0 ⊂ U is an H2-
negligible set. Then, for almost every t ∈ I,

(3) for every continuum E ⊂ u−1(t) ∩ U of positive diameter, there exists a surjective
Lipschitz path γ : [0, 1] → E that is injective outside its end points; and

(4) for every absolutely continuous γ : [0, 1] → u−1(t) ∩ U ,
´
γ
χN0 ds = 0. Moreover, if

there exists M ∈ N such that #(γ−1(x)) ≤ M for H1-almost every x ∈ u−1(t) ∩ U ,
then γ ̸∈ Γ0.

Proof. We fix a minimal p-weak upper gradient ρ of u. Let Γ1 denote the negligible
collection of rectifiable paths for which the triple (u, ρ, γ) fails the upper gradient inequality
or along which ρ fails to be path integrable.

Recall the negligible family Γ0 and the set N0 with H2(N0) = 0 from our assumptions,
and recall also that u is continuous outside some N1 with H2(N1) = 0, as stated in



20 BEHNAM ESMAYLI, TONI IKONEN, KAI RAJALA

Lemma 3.5. Fix an arbitrary Borel set B ⊃ N0∪N1 with H2(B) = 0. We consider a Borel
function G : U → [0,∞] in Lp(U) satisfyingˆ

γ

Gds = ∞, for all γ ∈ Γ0 ∪ Γ1.

Let ρ̂ := ρ+ (1 +G)ϵ+∞ · χB for an arbitrary ϵ > 0. Observe that ρ̂ is Borel, ρ̂ ∈ Lp(U),
and that the upper gradient inequality holds for the triples (u, ρ̂, γ) for every rectifiable
path.

Let Γ2 denote the collection of all paths γ : [a, b] → U satisfyingˆ

γ

ρ̂ ds = ∞.

In particular, if γ ̸∈ Γ2 is absolutely continuous, then u ◦ γ is absolutely continuous. Note
also that if γ contains a subpath in Γ0∪Γ1, then γ ∈ Γ2. Moreover, as ρ̂ is Lp(U)-integrable,
Γ2 is p-negligible.

In case p = ∞, ρ̂ ∈ L∞(U) and we may apply Theorem 3.6 to deduce that for almost
all t ∈ u(U), ˆ

u−1(t)∩U

ρ̂ dH1 ≤ ∥ρ̂∥∞H1(u−1(t) ∩ U) < ∞.

For 2 ≤ p < ∞, we claim that for almost every t ∈ u(U),ˆ

u−1(t)∩U

(ρ̂)p−1 dH1 < ∞. (20)

Indeed, we apply the coarea inequality Theorem 3.6 to the Borel function g = (ρ̂)p−1 and
the 1-weak upper gradient ρ̂ of u. Then Hölder’s inequality and (20) implyˆ

u−1(t)∩U

ρ̂ dH1 < ∞ (21)

for almost all t ∈ u(U). So the conclusion (21) holds for every 2 ≤ p ≤ ∞.

We are now in a position to establish Claims (1) to (4).

We establish Claim (4) first. To this end, consider an absolutely continuous γ : [a, b] →
u−1(t) ∩ U for an arbitrary t satisfying the conclusion (21). Then, as ρ̂ ≥ ∞ · χB, we
conclude H1(B ∩ u−1(t)) = 0. Therefore

´
γ
χB ds = 0 by definition of the path integral.

Next, in addition, we assume that #(γ−1(x)) ≤ M for H1-almost every x ∈ u−1(t) ∩ U .
Then the definition of the path integral impliesˆ

γ

ρ̂ ds ≤ M

ˆ

u−1(t)∩U

ρ̂ dH1.

Thus, if t satisfies the conclusion (21), then γ ̸∈ Γ2. Then conclusion (4) follows for any γ
as above. In particular, Claim (4) holds.
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Next, since ρ̂ ≥ ϵ, we conclude H1(u−1(t)∩U) < ∞ for every t satisfying the conclusion
(21). In particular, Claim (2) holds.

Let G denote the collection of t ∈ u(U) satisfying conclusion (21). We assume for now
that u−1(t) = u−1(t) ∩ U for every t ∈ G. We prove the latter in the next paragraph. We
then show how to establish (1). Let F ⊂ G denote the collection of t for which u−1(t)
contains a non-simple continuum. Then F is countable by Lemma 2.8. Claim (1) follows
from this observation.

Next, we claim that whenever t ∈ G, then u−1(t) = u−1(t) ∩ U . To this end, we first
observe that every connected component of u−1(t)∩U has positive H1-measure by Proposi-
tion 3.7. We consider an arbitrary connected component E of u−1(t)∩U . Then Lemma 2.10
implies the existence of continua (En)

∞
n=1 such that En ⊂ En+1 ⊂ E, E =

⋃∞
n=1En and

H1(E1) > 0. Then, by Lemma 2.6, there exists a surjective Lipschitz γn : [0, 1] → En sat-
isfying 1 ≤ #(γ−1

n (x)) ≤ 2 for H1-almost every x ∈ En. As in the proof of Claim (4), we
conclude γn ̸∈ Γ2. This yields that u ◦ γn is absolutely continuous. As γn has zero length
in B, by considering a constant speed reparametrization of γn, we may therefore assume
that γ−1

n (B) has negligible Lebesgue measure. Also, as u is continuous at every γn(s) for
every s ∈ [0, 1] \ γ−1

n (B), the absolute continuity of u ◦ γn implies u ◦ γn(s) = t for every
s ∈ [0, 1]. In particular, En ⊂ u−1(t) for every n ∈ N. The conclusion u−1(t) = u−1(t) ∩ U
follows by the arbitrariness of n ∈ N and the component E.

To finish, we show Claim (3). Now outside a countable family of t satisfying conclusion
(21), every continuum E ⊂ u−1(t) ∩ U is simple. When diamE > 0, such sets can be
parametrized by a Lipschitz path that is injective outside its end points, as we recall from
Lemma 2.4. Thus Claim (3) follows. Since Claims (1) to (4) were proved, the proof is
complete. □

We are now ready to prove Theorem 1.10.

Proof of Theorem 1.10. It suffices to prove continuity for u : U → R satisfying the standing
assumptions of this section. Let x0 ∈ U , and consider the numbers s1 = lim infy→x0 u(y)
and s2 = lim supy→x0

u(y). Then x0 is a point of discontinuity for u if and only if s1 < s2.

We assume that u is discontinuous at x0 and derive a contradiction. To this end, from
Lemma 3.3 we obtain ϵ0 > 0 and a nested collection of Jordan domains Ur compactly
contained in U , for almost every 0 < r < ϵ0, for which u|∂Ur is continuous, d(x0, y) = r
for every y ∈ ∂Ur and

⋂
r Ur = {x0}. Note that the continuity of u|∂Ur follows from the

existence of a Lipschitz parametrization of ∂Ur injective outside its end points, such that
u is absolutely continuous along the parametrization.

Continuity of u|∂Ur implies that u(∂Ur) is connected. Also, Definition 1.9 implies that
u(∂Ur) ⊃ (s1, s2). Since r is arbitrary, we conclude x0 ∈ u−1(t) for every s1 < t < s2.
Proposition 3.7 yields the existence of a connected component Et ⊂ u−1(t)∩U containing
x0, with diamEt > 0. On the other hand, Proposition 3.9 implies u|Et = t for almost every
such t. This is a contradiction since (s1, s2) has positive measure. □
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Example 3.10. Assumption p ≥ 2 in Theorem 1.10 cannot be relaxed even in the standard
R2. Indeed, u : D → R defined by u(x) = x1 + x1/|x| for x ̸= 0 and u(0) = 0 is weakly
monotone and discontinuous at the origin. Moreover, u ∈ D1,p(D) for all p < 2. See
[IKO01, Sect. 3] for further details.

4. Coarea inequality via weakly quasiconformal mappings

In this section we give a second proof of the coarea inequality for monotone functions
using suitable parametrizations of the metric surfaces from Euclidean domains. The mo-
tivation arises from the fact that in the Euclidean setting, better than an inequality, we
actually have an equality, known as the the coarea formula (Theorem 1.2).

4.1. Weakly quasiconformal maps.

Definition 4.1 (Quasiconformal maps). Given metric spaces Ω and X, endowed with
locally finite H2-measures, a homeomorphism f : Ω → X is quasiconformal if there exists
a K ≥ 1 such that

K−1modΓ ≤ mod fΓ ≤ KmodΓ,

for every family Γ of continuous paths. Here fΓ denotes the collection of all f ◦γ for which
γ ∈ Γ. We shall say K-quasiconformal to emphasize the role of K.

The third named author established in [Raj17] necessary and sufficient conditions for
a domain U ⊂ X homeomorphic to R2 in a metric surface X to admit a quasiconformal
parametrization from R2 or the disk D. That is, there to exist a quasiconformal home-
omorphism φ : Ω → U for Ω = D or Ω = R2. As a sufficient condition, we note the
following,

sup
x∈U

lim sup
r→0+

H2(B(x, r))

πr2
< ∞, see [RRR21].

Romney observed in [Rom19] that whenever such a parametrization exists, there exists
a π/2-quasiconformal homeomorphism φ : U → Ω ⊂ R2. More generally, we say that
U ⊂ X is a quasiconformal surface if every point x0 ∈ U is contained in an open set
U ′ ⊂ X which admits a quasiconformal parametrization. It is now understood that every
quasiconformal surface is a π/2-quasiconformal image of a Riemannian surface [Iko21].
In fact, for every quasiconformal surface X, there exists a Riemannian surface Y and a
quasiconformal homeomorphism f : X → Y satisfying

2

π
modΓ ≤ mod fΓ ≤ 4

π
modΓ (22)

for every path family Γ. Both inequalities are best possible. In general, there are geometric
obstructions for a metric surface to be a quasiconformal surface. A typical example involves
considering a length space X obtained from the plane R2 by collapsing the closed disk
D to a point and endowing the quotient space with the induced length distance. No
neighbourhood of the collapsed disk on X can be quasiconformal homeomorphic to a
subset of the plane. More subtle examples were recently considered in [IR22, Iko22, NR22].
Fortunately, every metric surface is a weakly quasiconformal image of a smooth Riemannian
surface. Before formulating the precise statement, we need a definition.
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Definition 4.2 (Weakly quasiconformal parametrization.). Given metric spaces V and U ,
endowed with locally finite H2-measures, a map f : V → U is weakly K-quasiconformal if
it satisfies the following:

(a) f is a uniform limit of homeomorphisms g : V → U ,
(b) there exists a K ≥ 1 such that

modΓ ≤ Kmod fΓ, (23)

for every path family Γ.

Recently, Ntalampekos and Romney established the following result which was conjec-
tured by the third named author and Wenger, cf. [IR22, Question 1.1].

Theorem 4.3 (Theorem 1.3, [NR22]). If U is a metric surface, then there exists a Rie-
mannian surface V and a weakly (4/π)-quasiconformal f : V → U .

Theorem 4.3 was proved earlier by Meier and Wenger [MW21] and Ntalampekos and
Romney [NRar], under the assumption that U is locally geodesic. See also [LW17]. Observe
that the mapping f in Theorem 4.3 satisfies only the upper bound in the stronger result
(22). Moreover, the example above shows that the one-sided inequality (23) cannot be
upgraded to quasiconformality.

Properties of weakly quasiconformal mappings have been extensively studied in the
metric surface setting in [NRar] and in greater generality in [Wil12, ILP21]. In particular,
we have the following.

Lemma 4.4 (Theorem 7.1, [NRar]). Let f : V → U be a continuous map between metric
surfaces. Then f satisfies modΓ ≤ Kmod(fΓ), for all path families, if and only if f has
a locally 2-integrable 2-weak upper gradient ρ for whichˆ

f−1(E)

ρ2 dH2 ≤ KH2(E) for every Borel set E ⊂ U . (24)

Note, in particular, that if (24) holds for some locally 2-integrable 2-weak upper gra-
dient, it also holds for the minimal 2-weak upper gradient ρf . Consider next ν(E) :=´
f−1(E)

ρ2f dH2 for every Borel set E ⊂ U . Inequality (24) is equivalent to requiring that ν
is locally finite and that

ν(E) ≤ KH2(E) for all Borel E ⊂ U .

This implies thatˆ

U

g dν ≤ K

ˆ

U

g dH2 for any Borel function g : U → [0,∞].

In other words,ˆ

V

g(f(x))ρ2f (x) dH2(x) ≤ K

ˆ

X

g dH2 for any Borel function g : U → [0,∞]. (25)
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4.2. Pullback of monotone functions by weakly quasiconformal maps. In this sec-
tion, f : V → U is weakly K-quasiconformal where V ⊂ R2 is open and simply connected
and U is a metric surface satisfying H2(U) < ∞.

Later, u : U → R will be a (weakly) monotone function in the sense of Definition 1.9.
Throughout, we stick to the notation v := u ◦ f . The aim of this section is to prove that
v inherits important regularity and structural properties of u.

The modulus inequality (23) allows us to pullback Dirichlet functions using f . More
precisely, we have the following.

Lemma 4.5. Let V and U be metric surfaces and f : V → U weakly quasiconformal. If
u : U → [−∞,∞] has a 2-integrable 2-weak upper gradient ρ, then ρ′(x) = ρ(f(x))ρf (x) is
a 2-integrable 2-weak upper gradient of v := u ◦ f . In particular,

ρv(x) ≤ ρu(f(x))ρf (x) for H2-a.e. x ∈ V .

Proof. Let Γ0 denote the family of paths γ : [a, b] → U for which either

(1) u ◦ γ fails to be absolutely continuous,
(2)
´
γ
ρ ds = ∞, or

(3) there exists an interval I ⊂ [a, b] such that ℓ(u ◦ γ|I) >
´
I
(ρ(γ(t)))|γ′|(t) dt.

Then Γ0 has negligible 2-modulus since ρ is a 2-integrable 2-weak upper gradient of u. In
particular, for every absolutely continuous Γ0 ̸∋ γ : [a, b] → U ,

|(u ◦ γ)′|(t) ≤ ρ(γ(t))|γ′|(t) for almost every t ∈ [a, b];

see, e.g., [HKST15, Proposition 6.3.3].

Let Γ1 denote the family of paths γ : [a, b] → V for which

(1) f ◦ γ ∈ Γ0,
(2) f ◦ γ fails to be absolutely continuous,
(3)
´
γ
ρf ds = ∞, or

(4) there exists an interval I ⊂ [a, b] with ℓ(f ◦ γ|I) >
´
I
(ρf (γ(t)))|γ′|(t) dt.

Then Γ1 has negligible 2-modulus since f is weakly quasiconformal. Now, for each abso-
lutely continuous Γ1 ̸∋ γ : [a, b] → V , we have

|(v ◦ γ)′|(t) ≤ ρ(f(γ(t)))|(f ◦ γ)′|(t) ≤ ρ(f(γ(t)))ρf (γ(t))|γ′|(t) for a.e. t ∈ [a, b],

where [HKST15, Proposition 6.3.3] was used again. Hence

ℓ(v ◦ γ) ≤
ˆ

γ

(ρ ◦ f)ρf dt =
ˆ

γ

ρ′ dt.

So, ρ′(x) = ρ(f(x))ρf (x) is a 2-integrable 2-weak upper gradient — the integrability follows
from (25). □

Lemma 4.6. Suppose that V and U are metric surfaces and f : V → U is a uniform limit
of homeomorphisms fn : V → U . If u : U → R is a monotone function, then v = u ◦ f is
a monotone function.
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Proof. If fn : V → U are homeomorphisms converging to f uniformly, then it is easy to
check that vn := u ◦ fn converge to v := u ◦ f uniformly on compact sets K ⊂ V . Now, if
Ω is an open and compactly contained subset of V , then from the facts that vn|Ω → v|Ω
uniformly and that each vn is monotone, we conclude

sup
x∈∂Ω

v(x) = lim
n→∞

sup
x∈∂Ω

vn(x) = lim
n→∞

sup
x∈Ω

vn(x) = sup
x∈Ω

v(x).

Similar argument holds for inf in place of sup, so, the monotonicity of v follows. □

We recall from Theorem 1.10 that u having a 2-integrable upper gradient and being
weakly monotone implies continuity and thus monotonicity. Now combining this with
Lemmas 4.5 and 4.6 gives the main result of this subsection.

Theorem 4.7. Let Y and X be metric surfaces and f : Y → X weakly quasiconformal.
If a weakly monotone u : X → R has a locally 2-integrable 2-weak upper gradient, then
v = u ◦ f is also weakly monotone and has a locally 2-integrable 2-weak upper gradient.

4.3. Second proof of the coarea inequality. We now prove a version of Theorem 3.6
with the sharp constant when p ≥ 2.

Theorem 4.8. Let U be a metric surface and p ≥ 2. Suppose there exists weakly K-
quasiconformal map f : D → U . If a weakly monotone function u : U → R has a locally
p-integrable p-weak upper gradient ρ, then

∗ˆ

R

ˆ

u−1(t)

g dH1 dt ≤ K

ˆ

U

gρ dH2 for every Borel g : U → [0,∞].

Theorem 1.6 follows by combining Theorem 4.8 when p ≥ 2 and Theorem 3.6 when
1 ≤ p < 2, respectively.

Proof of Theorem 4.8. Recall that U is homeomorphic to D by the existence of f . By
exhausting U with compactly contained disks, we may assume that H2(U) < ∞ and that
ρ is p-integrable on U . We first recall from Theorem 1.10 that u is monotone. Fix a
minimal 2-weak upper gradient ρf of f . Write v := u ◦ f and recall from Lemma 4.5 that
ρ′(x) = ρ(f(x))ρf (x) is a 2-integrable 2-weak upper gradient of v. Moreover, Lemma 4.6
shows that v is monotone. Let g : U → [0,∞] be any Borel function. We claim thatˆ

u−1(t)

g dH1 ≤
ˆ

v−1(t)

(g ◦ f)ρf dH1 for almost all t ∈ u(U). (26)

To this end, let Γ0 denote the collection of all absolutely continuous θ : [a, b] → D for which
there exists an interval [c, d] ⊂ [a, b] so that f ◦ θ|[c,d] is not absolutely continuous or the
triple (f, ρf , θ|[c,d]) fails the upper gradient inequality. The family Γ0 is 2-negligible.

We apply Corollary 1.11 and Proposition 3.9 twice in the following manner. We first
apply it for u and conclude that for almost all t, u−1(t) is a properly embedded topological
1-manifold in U and H1(u−1(t)) < ∞. We next apply it for v and the path family Γ0. Then,
for almost all t, v−1(t) is a properly embedded topological 1-manifold in D, H1(v−1(t)) < ∞
and every injective absolutely continuous θ : [a, b] → v−1(t) is in the complement of Γ0.
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Combining the facts from the previous two paragraphs yields the following. For almost
all t ∈ u(U) and every connected component E of v−1(t), there exists an increasing sequence
(En)

∞
n=1 of continua exhausting E (Lemma 2.10). Moreover, E and En are homeomorphic

to R and [0, 1], respectively, and there exists a homeomorphic Lipschitz parametrization
θn : [0, 1] → En, θn ̸∈ Γ0. Therefore

ˆ

f(En)

g dH1 ≤
ˆ

f◦θn

g ds ≤
ˆ

θn

(g ◦ f)ρf ds =
ˆ

En

(g ◦ f)ρf dH1.

Here the first inequality and the equality follow from the area formula for paths. The
second inequality is a consequence of θn ̸∈ Γ0. The sets f(En) exhaust f(E), so, we pass
to the limit n → ∞ and concludeˆ

f(E)

g dH1 ≤
ˆ

E

(g ◦ f)ρf dH1.

As v−1(t) is a properly embedded topological 1-manifold, it has countably many compo-
nents. Thus we may take the sum over all the components of v−1(t) and apply subadditivity
to conclude (26).

Integrating (26) over R and applying the Euclidean coarea formula Theorem 1.2 for v
yields

∗ˆ

R

ˆ

u−1(t)

g dH1 dt ≤
ˆ

D

(g ◦ f)ρf |∇v| dH2 for every Borel g : U → [0,∞]. (27)

The application is valid since the weak (1, 2)-Poincaré inequality yields v ∈ L2(D), so, in
particular, v ∈ W 1,1(D).

Since |∇v| is a 2-minimal 2-weak upper gradient of u, |∇v| ≤ ρ′ = (ρ ◦ f)ρf , H2-almost
everywhere in D. Thus (27) implies

∗ˆ

R

ˆ

u−1(t)

g dH1 dt ≤
ˆ

D

((gρ) ◦ f)ρ2f dH2 for every Borel g : U → [0,∞]. (28)

We apply (25) to (28) and conclude

∗ˆ

R

ˆ

u−1(t)

g dH1 dt ≤ K

ˆ

U

gρ dH2 for every Borel g : U → [0,∞].

□

Combining Theorem 4.8 with the existence of weakly 4/π-quasiconformal parametriza-
tions gives the coarea inequality with the best possible constant 4/π.
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Corollary 4.9. Let X be a metric surface and p ≥ 2. If u : X → R is a weakly monotone
function with a locally p-integrable p-weak upper gradient ρ, then

∗ˆ

R

ˆ

u−1(t)

g dH1 dt ≤ 4

π

ˆ

X

gρ dH2 for every Borel g : X → [0,∞].

Proof. Arguing as in the beginning of the proof of Theorem 3.6, we may replace X with
surface U as in the proof of Theorem 4.8. The claim now follows from Theorem 4.3 and
Theorem 4.8. □

Theorem 1.6 follows from Theorem 3.6 and Corollary 4.9.

5. Lipschitz counterexamples to the coarea inequality

A natural question is whether the coarea inequality holds for all Sobolev functions that
may not be monotone. We start this section with the following remark.

Remark 5.1. In any complete metric n-manifold X supporting a weak (1, 1)-Poincaré
inequality and doubling Hn, the minimal p-weak upper gradient of each Lipschitz u : X →
R is equal to the pointwise Lipschitz constant lip (u) [Che99], whenever p > 1. Under
these assumptions, the coarea inequality for Lipschitz functions follows from (a localized)
Eilenberg inequality. Namely, whenever u : X → R is Lipschitz, Lemma 5.2 below implies

∗ˆ

R

ˆ

u−1(s)

g dHn−1 ds ≤ 2ωn−1

ωn

ˆ

X

gρu dHn for every Borel g : X → [0,∞]. (29)

When p > 1, the conclusion (29) applying [Che99] holds even if such geometric assumptions
are valid only locally on X, cf. [IPS22, Theorem 1.1]. The equality lip (u) = ρu is now
known to hold also in the p = 1 case, cf. [ES21, Theorem 1.10.].

Lemma 5.2. Let X be a metric space with a locally finite Hn-measure. Let u : X → R be
Lipschitz, (Ei)

∞
i=1 a Borel decomposition of X, and h =

∑∞
i=1 χEi

lip (u|Ei
). Then

∗ˆ

R

ˆ

u−1(s)

g dHn−1 ds ≤ 2ωn−1

ωn

ˆ

X

gh dHn for every Borel g : X → [0,∞].

Proof. We first note that it is sufficient to prove the claim when g = χA for an arbitrary
Borel set A ⊂ X since the general claim follows via approximation by simple functions.

Lemma 3.10 and Theorem 3.15 of [EH21] establish that, for each Borel set E ⊂ X,
∗ˆ

R

Hn−1(E ∩ u−1(s)) ds ≤ Φ1,n−1(E, u), (30)
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where

Φ1,n−1(E, u) =
ωn−1

2n−1
lim
δ→0+

inf

{
∞∑
i=1

(diamu(Ai))
n−1 diam(Ai) : diamAi < δ,E ⊂

∞⋃
i=1

Ai

}
.

It is clear directly from the definition that Φ1,n−1(E, u) = Φ1,n−1(E, u|E) for every set
E. That Φ1,n−1(·, u) is a Borel regular outer measure follows from the Carathéodory’s
construction and from the fact that (diamu(A))n−1 diamA = (diamu(A))n−1 diamA for
every set A ⊂ X, where A denotes the closure of A.

Moreover, Lemma 3.9 of [EH21] shows

Φ1,n−1(E, u|E) ≤
2ωn−1

ωn

LIP(u|E)Hn(E), for every E ⊂ X. (31)

As a preliminary result, we claim that

Φ1,n−1(E, u) ≤ 2ωn−1

ωn

ˆ

E

lip (u|E) dHn, for any Borel E ⊂ X. (32)

Since Hn is locally finite, it suffices to establish (32) for Borel sets E ⊂ X with Hn(E) < ∞.
Notice that if A ⊂ B, then lip (u|A)(x) ≤ lip (u|B)(x) for every x ∈ A.

Next we adapt an argument from [Sch16, Lemma 3.157]: for each ϵ > 0 and η > 0, by
Lusin–Egorov, there exist triples (Ki, λi, ri)

∞
i=1 such that

(1) Ki are pairwise disjoint compact sets and Hn(E \
⋃

i Ki) = 0;
(2) λi ≥ 0;
(3) diamKi < ri < η; and
(4) for each (x, r) ∈ Ki × (0, ri],

λi − ϵ ≤ sup
s≤r

sup
y∈E∩B(x,s)

|u(y)− u(x)|
s

≤ λi .

The third and fourth points imply that u|Ki
is λi-Lipschitz in Ki. Then, by the countable

subadditivity of Φ1,n−1(·, u), by (1), and (31), we obtain

Φ1,n−1(E, u) ≤
∞∑
i=1

2ωn−1

ωn

ˆ

Ki

(
ϵ+ sup

s≤ri

sup
y∈E∩B(x,s)

|u(y)− u(x)|
s

)
dHn

≤ 2ωn−1

ωn

ϵHn(E) +
2ωn−1

ωn

ˆ

E

sup
s≤η

sup
y∈E∩B(x,s)

|u(y)− u(x)|
s

dHn.

Since the lower bound and the last upper bound are independent of the particular decom-
position, we may pass to the limits ϵ → 0+ and η → 0+, apply dominated convergence,
and conclude (32).

Fix an arbitrary Borel set A ⊂ X. We apply (32) for each Borel set A ∩ Ei, for
each i ∈ N, where (Ei)

∞
i=1 is the Borel decomposition from the assumptions. Given that
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lip (u|A∩Ei
)(x) ≤ lip (u|Ei

)(x) for every x ∈ A ∩ Ei, we conclude that

Φ1,n−1(A ∩ Ei, u) ≤
2ωn−1

ωn

ˆ

A∩Ei

h dHn for every i ∈ N. (33)

Now (30) and (33) yield that
∗ˆ

R

Hn−1(u−1(t) ∩ A) dt ≤ 2ωn−1

ωn

ˆ

A

h dHn for every Borel A ⊂ X.

This inequality completes the proof. □

We next show that the monotonicity condition cannot be disposed of in our main result,
Theorem 1.6, even in the Lipschitz category. Thus, in order to have the coarea inequality
hold for all Lipschitz or Sobolev functions one needs further geometric conditions on the
space, such as the ones in Remark 5.1.

Theorem 5.3. There exists an n-rectifiable metric n-manifold X ⊂ Rn+1 with Hn(X) < ∞
and a Cantor set C ⊂ X such that, whenever u : X → R is Lipschitz and 1 ≤ p ≤ ∞, the
p-minimal p-weak upper gradient ρu,p of u satisfies

ρu,p(x) = 0, for Hn-a.e. x ∈ C.

Moreover, the orthogonal projection u(x1, . . . , xn) = x1 satisfiesˆ

R

Hn−1(u−1(t) ∩ C) dt > 0. (34)

In particular, any universal coarea inequality of the form (2) fails for the pair (u, ρu,p).

The constructed surface X has the following property: When applying Lemma 5.2 with
the Borel decomposition E1 = C, E2 = X \ C, every Lipschitz u : X → R and every Borel
set E ⊂ X satisfy, for every p ≥ 1,ˆ

R

Hn−1(u−1(t) ∩ E) dt =

ˆ

E

χE1 lip (u|E1) dHn +

ˆ

E

χE2ρu,p dHn . (35)

Theorem 5.3 implies Theorem 1.7 directly.

We will prove Theorem 5.3 after recalling a method for construction of some special
metric n-manifolds that is of independent interest. The construction is fairly standard,
see, e.g. [Fed69, 4.2.25, pages 420-423], [HZ16], [Raj17, Proposition 17.1] for closely re-
lated constructions. We explain in the case n = 2 as the construction straight-forwardly
generalizes to n ≥ 3.

Recall the well-known example of a four-corner Cantor set with positive area. The set C
is the intersection of a nested sequence of unions of squares, beginning with the unit square
Q1

1 = [0, 1]2. To fix some notation, at stage k, we have the squares Qk
j , for j = 1, . . . , 4k−1.

Let qkj be the centers of the squares Qk
j . Each Qk

j , and by a slight abuse of terminology,
resp. each qkj , has four children that we denote by Qk+1

j(1) , . . . , Q
k+1
j(4) , resp. qk+1

j(1) , . . . , q
k+1
j(4) .
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Toward the construction of our metric surface X, begin with the (open) square (0, 1)2×
{1} ⊂ R3 as stage k = 1. Remove a small disk from (0, 1)2 × {1} centered at q11 and let
S1
1 be its boundary. Let S2

1 , . . . , S
2
4 be four small(er) circles lying in R2 × {1/2} centered,

resp., at q21, . . . , q24. There is a smooth surface whose boundary is precisely the (five) circles
just described. We can visualize the surface as a tube starting at S1

1 and then branching
into four sub-tubes that then get glued to S2

1 , . . . , S
2
4 .

Notice that by choosing S2
1 , . . . , S

2
4 small enough, we can make the area of the tube to

be as close to the area of the disc filling S1
1 as we wish. While almost preserving the area

by making the tube thinner, we may also spiral the tubular part to make the length of
paths joining S1

1 to the other boundary components as large as we wish. Except for the
boundaries, the surface is constructed in the interior (0, 1)2 × (1/2, 1).

We continue the construction by joining each circle S2
j to four smaller circles lying

in R2 × {1/3} and centered at the corresponding q3j(1), · · · , q3j(4). The joining tubes are
constructed within Q2

j × (1/3, 1/2), so the construction coming from S2
j is completely

disjoint from the one for S2
j′ , for any distinct pair j, j′.

Obviously, there is no obstacle in continuing this construction ad infinitum. The metric
surface X is the Hausdorff limit of the manifolds constructed in these steps. Notice that
it contains the Cantor set C (under the identification of R2 with R2 × {0}).

We list the key properties of X relevant for us:

(1) the space X is homeomorphic to (0, 1)2.

To see this, notice that each finite stage of the construction retracts to the previous stage.
So, a homeomorphism from X \C to (0, 1)2 \C can be constructed as a limit of a sequence
of homeomorphisms, each extending the domain of definition of the previous one without
altering the map there. It is then easy to see that the final homeomorphism extends
uniquely to C as well.

Since we had freedom in altering the areas and lengths, by modifying the connecting
tubes at each stage, we further guarantee that

(2) there exists a constant A > 0 so that

H2(X ∩B(x, r)) ≤ Ar2 for all x ∈ X and all r > 0,

and

(3) the minimum lengths of rectifiable curves in X that join a point at step k to a point
at step k + ℓ goes to infinity as ℓ → ∞.

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Again we work in n = 2 as the proof for higher dimensions is
basically the same. Let X and C be as above. First note that since C is 2-rectifiable
and X \ C is smooth, the space X is 2-rectifiable. By property (3) above, there are no
rectifiable curves that intersect C other than the constant curves. This means that the
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minimal upper gradient of any function is zero (a.e.) on C. Therefore, if ρ is the minimal
upper gradient of some u : X → R, thenˆ

C

ρ dH2 = 0 . (36)

Now, as C is a four-corner Cantor set with H2(C) > 0, and u(x1, x2, x3) = x1 is the
orthogonal projection, by Fubini’s theoremˆ

R

H1(u−1(t) ∩ C) dt > 0 .

By (36), thus, the coarea inequality fails for the Lipschitz u and any minimal upper gradient
of it.

The equality (35) follows for Borel sets E ⊂ X \ C from the smoothness of X \ C. On
the other hand, as C ⊂ R2 ×{0}, we may consider Borel subsets E ⊂ C as a subset of the
plane. The planar coarea formula then yieldsˆ

R

H1(u−1(t) ∩ E) dt =

ˆ

E

lip (u|C) dH2 for every Borel E ⊂ C;

the equality follows by applying the planar coarea formula for a Lipschitz extension of u|C .
Then (35) follows from the smoothness of X \ C. □

Remark 5.4. The last paragraph of the proof of Theorem 5.3 could also be argued using
the coarea formula established by Ambrosio and Kirchheim, cf. [AK00, Theorem 9.4].
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