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Topic- and learning-related predictors of deep-level learning strategies 

Abstract 

The aim of this study was to examine which topic- and learning-related knowledge and 

motivational beliefs predict the use of specific deep-level learning strategies during an 

independent learning task. Participants included 335 Estonian fourth- and sixth-grade students 

who were asked to read about light processes and seasonal changes. The study was completed 

electronically. Topic-related knowledge was assessed via an open question about seasonal 

changes, and learning-related knowledge was assessed via scenario-based tasks. Expectancies, 

interest, and utility values related to learning astronomy and using deep-level learning strategies 

were assessed via questions based on the Situated Expectancy-Value Theory. Deep-level 

learning strategies (using drawings in addition to reading and self-testing) were assessed while 

completing the reading task. Among topic-related variables, prior knowledge and utility value — 

but not interest or expectancy in learning astronomy — were related to using deep-level learning 

strategies. Among learning-related variables, interest and utility value of effective learning — 

but not metacognitive knowledge of learning strategies or expectancy in using deep-level 

learning strategies — were related to using deep-level learning strategies. This study confirms 

that it is not enough to examine students’ knowledge and skills in using learning strategies with 

general or hypothetical questions; instead, it is of crucial importance to study students in real 

learning situations. 
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Topic- and learning-related predictors of deep-level learning strategies 

 

Introduction 

The importance of self-regulation and the need to support the development of self-regulated 

learners beginning in elementary school, is widely acknowledged (Schunk & Greene, 2018). A 

critical dimension of self-regulated learning is the knowledge and application of learning 

strategies (LS), i.e., activities carried out during learning that directly affect the process and 

outcomes of learning (Dinsmore & Hattan, 2020; VanMeter & Campbell, 2020). It is well known 

that deep-level LS (e.g., self-testing) — compared with surface-level LS (e.g., rereading) — tend 

to support comprehension of new material such that learned knowledge can be later recalled and 

flexibly used for solving novel tasks (Dinsmore & Hattan, 2020). However, empirical studies 

have indicated that students tend to use easily applicable surface-level LS (Dirkx et al., 2019). To 

support students in applying deep-level strategies, it is important to know which factors enhance 

students’ choice of LS in specific learning situations. 

As confirmed by various studies (e.g., Finn, 2020; Rosenzweig et al., 2019; Taboada et 

al., 2008; Vu et al., 2021), knowledge and motivation are important in choosing and using 

specific LS. In addition, a distinction can be made between topic-related and learning-related 

indicators (cf. Karabenick et al., 2021). Topic-related indicators include prior topic knowledge 

and motivation to study the topic, while learning-related indicators include general metacognitive 

knowledge of LS, a tendency to apply these strategies, and motivation to use effective learning 

strategies.  

While earlier studies have confirmed the importance of specific knowledge and 

motivational factors, there has been a lack of studies examining the effect of concordant topic- 
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and learning-related knowledge and motivation on using deep-level LS. Our study attempts to fill 

this gap. The aim of our study was to examine which topic- and learning-related knowledge and 

motivational beliefs predict the use of specific deep-level LS when learning from written 

material. Participants were elementary school students (fourth and sixth graders) in Estonia who 

had to learn about light processes and seasonal changes. We examined the use of two specific 

deep-level LS: 1) making use of drawings in addition to simple reading, and 2) self-testing 

instead of re-reading. We studied motivational beliefs based on the situated expectancy-value 

theory SEVT (Wigfield & Eccles, 2020). 

Learning strategies: Using drawings and self-testing  

As mental or cognitive processes that a student carries out during learning, LS are related to what 

is learned, memorized, and understood (Alexander et al., 2018; Van Meter & Campbell, 2020). 

With deep-level LS, a student perceives new information, differentiates between more and less 

important information, and actively tries to integrate new knowledge with existing knowledge, 

resulting in the construction of new knowledge that is not simply a restatement of new material. 

In contrast, with surface-level LS, a student perceives new information and tends to 

mechanically repeat or memorize it, but does not attempt to integrate this new information with 

existing knowledge (Alexander et al., 2018; Chi & Wylie, 2014; Dinsmore & Alexander, 2012). 

While deep learning involves the creation of memory content that can be recalled and flexibly 

applied long after learning takes place, surface learning leads to the memorization of isolated 

facts that are not easily recalled and cannot be used flexibly later on (Carpenter et al., 2020; 

Dinsmore & Hattan, 2020). It should be noted that deep-level LS are not always superior to 

surface-level LS (Alexander et al., 2018; Dinsmore & Alexander, 2012). There is no single or 

group of most-effective LS, as the usefulness of each strategy depends on the student’s current 
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knowledge and abilities as well as the specific learning task and context (Dinsmore & Alexander, 

2012). Learning outcomes also depend on the quality of students’ LS application (Leopold & 

Leutner, 2015). Since deep-level LS require more effort and time than surface-level LS, deep-

level LS also presuppose higher motivation (e.g., Finn, 2020).  

One way to enhance deep learning is by making use of visuals (e.g., drawings) in addition 

to reading a text. Visuals are widely used in science education (Galano et al., 2018; Wang & 

Tseng, 2019), including in learning basic astronomy phenomena (Galano et al., 2018). Although 

many studies have shown the advantages of using and generating drawings over simple reading, 

other studies have indicated challenges and misunderstandings (e.g., Guo, McTigue, et al., 2020; 

Guo, Zhang, et al., 2020; for astronomy, see Authors, 1998a, 1998b). Learning efficacy depends 

on the quality of learning materials as well as the learner’s prior knowledge (Mayer, 2021). For 

instance, written material is easier to comprehend when visuals appear nearby the relevant 

portion of the text (e.g., Mayer, 2017). For learners with low knowledge, visuals presented in 

scientific texts may add new comprehension challenges and lead to cognitive overload (McTigue 

& Flowers, 2011).  

 Another way to enhance understanding is to test what has been learned by answering 

questions (referred to as testing-effect, retrieval, practice testing; Adesope et al., 2017; Agarwal 

et al., 2021; Kubik et al., 2021). The testing effect refers that tests provide not only opportunities 

to assess what has been learnt also good learning opportunities (Kubik et al., 2021). When testing 

learned material, learners activate previous knowledge, thereby restructuring existing knowledge 

such that new information is integrated with prior knowledge. Retrieval has been found to 

consolidate learned material, improve recall, and support meaningful learning at all ages (e.g., 
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Karpicke et al., 2009; Smith et al., 2013). Studies have referred to great variability in the 

effectiveness of feedback, depending on the level it is provided, how it is formulated etc.  

(Kubik et al., 2021; Wisniewski et al., 2020). However, retrieval has been shown to be effective 

even without feedback (Adesope et al., 2017). Retrieval has also been found to be more effective 

than rereading, during which a learner reads a text or its parts repeatedly (Karpicke et al., 2009). 

 

Topic-related prior knowledge, motivational beliefs, and their relationship with deep-level 

learning 

In scholastic settings, students frequently learn via prepared written texts, and comprehension 

requires using prior knowledge to interpret textual information and construct meaning from the 

text (Wiley & Guerrero, 2018). Many studies, including those focusing on learning scientific 

concepts, have shown that prior knowledge influences text comprehension (Kendeou & van den 

Broek, 2007; Linnenbrink-Garcia et al., 2012). With well-structured prior knowledge and 

without misconceptions that contradict new knowledge, it is relatively easy to find appropriate 

information from the text and integrate it with existing knowledge. In contrast, misconceptions 

and fragmental knowledge inhibit reading comprehension and meaning construction (Kendeou & 

van den Broek, 2007). Strong, well-structured, topic-related knowledge may refer to students’ 

habit of using deep-level LS in prior learning (for the relationship between deep-level learning 

and understanding, see Hattie & Donoghue, 2016; Dinsmore & Hattan, 2020; for the importance 

of habit, see Fiorella, 2020). Strong knowledge, consequently, may support further use of deep-

level LS.  

Researchers have analyzed the effects of LS on learning and the relationship between LS 

and learned knowledge (e.g., Diseth, 2011), but relatively few studies have examined the effects 
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of prior knowledge on LS. Zakariya et al. (2021) showed that, among university students, prior 

math knowledge decreased the likelihood of using surface LS but had no significant effect on 

using deep LS. The authors used self-report questionnaires that tapped surface and deep LS 

separately, but the authors did not ask about specific use of LS. Such effects have not been 

studied in elementary school or in relation to actual use of LS.  

  In addition to prior knowledge, motivational beliefs play an important role in learning. 

According to the SEVT, student’s expectancies and values as motivational beliefs guide their 

subjective interpretations of learning situations and tasks that, in turn, can trigger and/or enhance 

the learning process (Wigfield & Eccles, 2020). Expectancy (closely related to self-efficacy and 

academic self-concept; Bandura, 1993; Schroeders & Jansen, 2020) is defined as a student’s 

belief about how well he/she will do on future tasks in a specific field. As self-efficacy refers to a 

person's confidence that they can succeed in a future specific task, expectancy refers to their 

perception of the relationship between their actions and outcomes (Bandura, 1993; Eccles & 

Wigfield, 2020). As to the values, in this study, we focused on examining intrinsic and utility 

value. Intrinsic value can be defined as the enjoyment a learner gains from doing a given task 

(Eccles & Wigfield, 2020) and is similar to intrinsic motivation and interest (Renninger & Hidi, 

2011; Ryan & Deci, 2020). Utility value can be defined as the perceived relevance or usefulness 

of a task or subject area with regard to a student’s current or future plans.  

 Learners’ expectancies and values to learn specific subjects have been found to be strong 

direct predictors of different learning outcomes (e.g., test scores, academic engagement) starting 

from elementary school and lasting through higher education (Wigfield & Eccles, 2020). Studies 

in scientific areas where conceptual change is needed have also referred to the importance of 

interest and self-efficacy in learning (Andre & Windschitl, 2003; Linnenbrink-Garcia et al., 
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2012). Motivational beliefs may support learning and outcomes via two routes: quantity and 

quality of learning (Vu et al., 2021). Learning quantity can be measured via persistence, 

frequency and intensity of study, and so on. Learning quality refers to using adaptive, deep-level, 

LS. Since deep-level LS are effortful and time consuming, students who value certain tasks or 

domains are more likely to employ these strategies. Previous research, primarily studying 

middle-schoolers and older students, has shown that students with higher expectancies (academic 

self-efficacy; Bandura, 1993; Diseth, 2011; Linnenbrink & Pintrich, 2003; Trigwell et al., 2013) 

and subject-related task values (for overview, see Vu et al., 2021) tend to value and use deep-

level LS and have better learning outcomes. In elementary school, Chatzistamatiou et al. (2013) 

showed positive relationships between students’ math self-efficacy, the value they attribute to 

math, their enjoyment of learning math, and their reported self-regulatory strategies. In general, 

students’ expectancies tend to better predict achievement than task values, but task values tend to 

better predict course-taking intentions and choices (Perez et al., 2014; Rosenzweig et al., 2019).  

Although the importance of motivational beliefs (expectancies and values) on using LS 

has been extensively shown in previous research, only a few studies have been carried out at the 

elementary school level. Moreover, previous research has not considered the concurrent effects 

of topic-related knowledge and motivational beliefs on the use of specific LS; thus, we aimed to 

examine these effects among elementary school students.  

Learning-related knowledge, motivational beliefs, and their relationship with deep-level 

learning 

As learning strategies vary in usefulness depending on students’ knowledge, abilities, and the 

current learning task (Dinsmore & Alexander, 2012), there is no single most-effective LS. 

Instead, it is valuable for students to know the advantages and disadvantages of different LS 
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(Bjork et al., 2013). The need for such metacognitive knowledge of LS has been confirmed by 

intervention studies. Namely, one of the key components enhancing the learning and later use of 

LS is explicit teaching and discussions about LS (Dignath et al., 2008; Dignath & Büttner, 2008; 

Feeney, 2021). Specifically, when learning complex topics and striving for conceptual 

understanding, deep-level LS tend to be more effective than surface-level LS (cf. Alexander et 

al., 2018).  

In addition to differences in topic-specific expectancies and values, students differ in how 

confident they are and how much they value different LS. Applying deep-level LS assumes 

increased attention, working memory capacity, reasoning skills, persistence, and motivation 

(Schleepen & Jonkman, 2012; Seufert, 2020). Karabenick et al. (2021) referred to two types of 

motivation: 1) outcome motivation (i.e., expectancies and values related to learning specific 

topics); and 2) strategy motivation (i.e., expectancies and values related to the learning process). 

Strategy motivation includes beliefs about how easy, difficult, or useful a strategy is, and these 

expectancies and values guide engagement in the learning process and the selection of specific 

strategies. Karabenick et al. (2021) emphasized that students decide to use a given strategy when 

they see its value and efficacy. So far, strategy motivation has been rarely recognized and 

assessed (for an exception in composing drawings during math learning, see Schukajlow et al., 

2022). Thus, we aimed to examine the effects of metacognitive knowledge of LS, together with 

motivation to use LS, on actual use of deep-level LS.  

The present study and hypotheses 

The main aim of our study was to examine the role of both topic- and learning-related factors in 

choosing and applying two deep-level LS — making use of drawings, and self-testing — while 

learning about a scientific topic (light processes and seasonal changes). Students were asked to 
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read and comprehend a prepared text. In addition to reading, students were allowed to make use 

of drawings. After reading the text once, students were given the possibility to review the text by 

either reading it again or answering prepared questions (i.e., self-testing). Using drawings and 

self-testing are referred to here as deep-level LS. Our theoretical model and hypotheses are 

shown in Figure 1. Our research questions and hypotheses are as follows.  

 First, what topic-related factors are related to choosing and using deep-level LS? We 

expected (H1) that students with strong prior astronomy-related knowledge would use deep-level 

LS. Strong knowledge may indicate that a student has good learning skills and habitually uses 

deep-level LS (cf. Fiorella, 2020). With good knowledge, a student can also better detect lack of 

information in text and search for missing details in drawings (Linnenbrink-Garcia et al., 2012). 

We also expected (H2) that higher values and expectancy would guide students to use deep-level 

LS. Specifically, we expected a higher effect of values compared to expectancy (Perez et al., 

2014; Rosenzweig et al., 2019). 

 Second, what learning-related factors are associated with choosing and using deep-level 

LS? We expected that students who had metacognitive knowledge of deep-level LS (H3) and 

those who self-reported using deep-level LS in daily learning (H4) would use deep-level LS in 

this study’s specific learning situation. Strong metacognitive knowledge of LS is important in 

self-regulated learning (Bjork et al., 2013), and self-reported use of deep-level LS during 

independent test preparation may refer to a habitual way of learning (cf. Fiorella, 2020). One 

pathway in which motivational beliefs may support learning and outcomes is through the use of 

high-quality learning behaviors (i.e., deep-level LS; Vu et al., 2021), thus we expected (H5) that 

students with higher expectancy and values would use deep-level LS. Similar to topic-related 
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motivational beliefs, we expected a higher effect of values compared to expectancy (Perez et al., 

2014; Rosenzweig et al., 2019). 

Method 

Participants and procedure 

Participants included 335 Estonian fourth- and sixth-grade students (50.2% boys) from six 

mainstream schools in different regions of Estonia.  

Schools were first invited to participate in a study conducted by a university research 

group. School participation was voluntary. Students and their parents were informed of the 

content of the test. Student participation was voluntary. Written consent from at least one parent 

or guardian was required to participate in the study. Students were allowed to discontinue the 

study at any time. 

Students were tested at the beginning of the school year. Students took the tests in 

computer labs during regular school days and were supervised by teachers. The test assessed 

students’ learning-related indicators, including metacognitive knowledge of LS, use of LS, 

motivational beliefs, text comprehension, topic-related knowledge, and reasoning skills. The test 

took approximately 45 minutes to complete.  

Measures 

Independent variables 

Topic-related indicators  

Astronomy-related knowledge was assessed with one open question before reading the text: 

“Write briefly why in Estonia it is colder in the winter than in the summer.” The answers were 

coded in four broad categories: 1) incorrect or missing answers, 2) descriptive answers, 4) 

answers with misconceptions or partly incorrect explanations, 4) scientific explanations (see 
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Appendix A). One-third of the answers were coded by two researchers (the first author of the 

paper and one doctoral student in psychology); the rest of the answers were coded by the first 

author of the paper. Inter-rater reliability was very high, Cohen κ = 0.95 (SE = 0.027; 95% CI: 

0.893–0.998).  

 Expectancy-values to learn astronomy was assessed via a questionnaire based on the 

expectancy-value theory (Eccles & Wigfield, 2020). Students had to think about how well each 

description characterized them and mark their answers using a 5-point scale (1—do not agree at 

all; 5—completely agree). One item assessed expectancy of learning astronomy (“Learning 

about the sun and the planets is easy for me”); one item assessed interest in learning astronomy 

(“I am interested in knowledge related to the sun and the planets”); and one item assessed the 

utility value of learning astronomy (“Knowledge related to the sun and planets is useful in my 

out-of-school life and in future”).  

Learning-related indicators  

Metacognitive knowledge of deep-level LS. Participants were given the following instructions: 

“You are given descriptions of different learning tasks in which two students use different 

learning procedures or strategies. Evaluate how effective each strategy is for understanding, later 

recalling, and applying the learned material.” The scenarios and strategies are given in Appendix 

B. They based on previous empirical studies indicating that deep-level LS were related to better 

outcomes than surface-level LS (e.g. Carpenter et al., 2020; Dunlosky et al., 2013; Roediger & 

Karpicke, 2006). The scenarios and strategies were modified from earlier studies (Authors, 2022; 

McCabe, 2011; Surma et al., 2022) to be suitable for elementary school students. Students had to 

evaluate the effectiveness of each strategy on a 5-point Likert-type scale (1—the strategy is 
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ineffective; 5—the strategy is very effective). Metacognitive knowledge of deep-level LS was 

assessed as a mean score of six deep-level LS evaluations. Cronbach’s 𝛼 was 0.70. 

Self-reported use of deep-level LS. After evaluating the effectiveness of each strategy, 

students were asked to mark which strategy they would use in the described learning situation 

(the strategy of Student A, or the strategy of Student B). In this study, we use answers to 

Scenario 1 (choosing between rereading and self-testing) and Scenario 5 (choosing between 

rereading and reading and looking at drawings; see Appendix B). We formed scores Self-

reported use of self-testing and Self-reported use of drawings. For both, a score of 1 means that 

the student marked the deep-level strategy (using self-testing and drawings) rather than the 

surface-level strategy (reading).  

Expectancy-values to use deep-level LS was assessed via a questionnaire based on the 

expectancy-value theory (Eccles & Wigfield, 2020). Students had to think about how well each 

description characterized themselves and mark their answers using a 5-point scale (1—do not 

agree at all; 5—completely agree). One item assessed expectancy of using deep-level learning 

strategies (“I am able to use effective learning strategies”); one item assessed interest in effective 

learning (“I am interested in knowing how to learn more effectively”); and one item assessed the 

utility value of effective learning (“Knowledge of how to learn effectively is useful in my 

extracurricular life and in my future”).  

Dependent variables 

Using deep-level LS (drawings and self-testing) 

Students had to read and comprehend a prepared text about the scientific phenomenon of light 

and why the seasons change (see Appendix C). Before reading, students were told that they 

would be asked questions about the text one week later (the results of testing one week later are 
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not used in this paper) and in order to better understand the text, they can also look at the 

drawings about the text. The text was composed of three sections, and in each section was 

supplemented with a drawing/schema, supporting section comprehension. After each section of 

the text, students were asked the question: “Do you want to look at the drawing?” If a student 

answered “Yes”, a related drawing appeared below the text. If a students answered “No”, the 

drawing did not appear and a student had the option to move on to the next section. Students had 

the opportunity to look at up to three drawings, which formed a Using drawings score (0–3).  

After reading the text once, students were told that, in order to better understand and 

remember the topic, they needed to choose a single strategy to review the material. One strategy 

was rereading, which was presented as follows: “Read the text again and look at the drawings.” 

Another strategy was self-testing (retrieval), which was presented as follows: “You will be asked 

revision questions about the text. Answer them! You don’t have to write the answers, just answer 

them in your head. You will also get the correct answers.” Students were first shown a question 

about the text and then asked the question: "Do you want to see the correct answer to this 

question?" If the student answered "Yes", the correct answer was displayed below the question. 

If the student answered "No", the answer was not displayed. Based on a student’s choice, a 

Using self-testing score (1–3) was formed. A score of 1 meant that the student selected rereading. 

A score of 2 meant that the student selected self-testing, but checked the correct answers for less 

than half of the questions (i.e., 0–3 questions). A score of 3 meant that the student selected self-

testing and checked the correct answers for more than half of the questions (i.e., 4 or more 

questions). 

 

Analysis Strategy 
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All analyses were carried out using Mplus version 8.8 (Muthén & Muthén, 1998–2017). The 

model parameters were estimated using maximum likelihood estimation with robust standard 

errors (MLR), thus not requiring variables to follow normal distribution. A multivariate multiple 

regression model was constructed to answer our research questions. Our two dependent variables 

— using drawings and using self-testing — were predicted by all independent variables. Due to 

the lack of metric element between its categories (equidistance between the scale levels), the 

self-testing variable was specified to be categorical. All independent variables were allowed to 

correlate with each other, and the error terms of both dependent variables were specified to 

correlate.  

 We did not have missing data except for one case in the variable “using self-testing” (the 

overall multivariate data coverage was 99.7–100%). Mplus was set to use the full information 

maximum likelihood option (FIML) which accounted for all 350 cases when estimating the final 

model. As children were nested within six schools, we used School ID as a cluster for the 

COMPLEX function of Mplus. The COMPLEX option of Mplus estimates parameters while 

taking nestedness into account (i.e., children belonging to certain schools).  

Results 

Descriptives 

Descriptions of all study variables are presented in Table 1, and correlations among all study 

variables are presented in Table 2. According to Cohen’s (1988, 1992) interpretation of effect 

sizes (the effect size for r values around 0.1, medium for r values around 0.3, and large for r 

values larger than 0.5), using drawings and using self-testing were moderately related (r = .208, 

p < .05). Astronomy related knowledge did not correlate with values and expectancy of learning 

astronomy, but weakly related to deep-level strategy use (.143–.167). We found medium positive 
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relations among values and expectancy of learning astronomy (.252–.456) and their weak-to-

nonsignificant relations with deep-level LSs. Metacognitive knowledge of deep-level learning 

strategies positively related to deep-level strategy use (.235–.241; medium effect). Self-reported 

use of drawings and self-testing differentially correlated with actual using of drawings and self-

testing (from nonsignificant to medium effect). We also found medium-to-large effects among 

values and expectancy of using deep-level LS (.434–.502), which consistently related to using 

drawings (weak-to-medium effect), but not using self-testing.  

Hypotheses Testing 

To answer our research questions, the multivariate multiple regression model was constructed, 

and the saturated model was obtained. The results showed that residuals of the dependent 

variables — using drawings and using self-testing — were not associated (r = .155, p = .212). As 

presented in Table 2, the model explained 14.8% of the variance of the using drawings and 

18.6% of the variance of using self-testing. 

 To answer our first research question concerning the relations between topic-related 

factors and children’s deep-learning strategy use, the results showed that astronomy-related 

knowledge positively predicted using drawings and using self-testing. Thus, Hypothesis 1 (H1) 

was supported. In partial support to our Hypothesis 2 (H2), we found that utility value of 

learning astronomy was positively related to using self-testing. However, expectancy of learning 

astronomy was negatively related to using drawings and using self-testing. All other connections 

between values, expectancy and strategy use were not significant.  

 To answer our second research question concerning learning-related factors and 

children’s deep-learning strategy use, we found that metacognitive knowledge of deep-level LS 

was not related to deep-level strategy use (Hypothesis H3 rejected). In support to the Hypothesis 
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4 (H4), we found that self-reported use of drawings was positively related to both using drawings 

and using self-testing, whereas self-reported using of self-testing was positively related to actual 

using of self-testing (but not using drawings). Finally, we found some partial support for our 

Hypothesis 5 (H5), indicating that interest in effective learning and utility value of effective 

learning were positively related to using drawings. Other relations between values, expectancies 

and strategy use were not significant.  

Discussion 

The aim of this study was to examine which topic- and learning-related knowledge and 

motivational beliefs predict the use of specific deep-level LS during an independent learning 

situation. Elementary school students were provided a written text about light processes and 

seasonal changes, then asked to study these topics by either only reading the text (surface-level 

LS) or by additionally looking at drawings and answering prepared questions (deep-level LS). It 

is complex topic that can be more easily understood by using visuals (Galano et al., 2018; Mills 

et al., 2016) and answering questions (Agarwal et al., 2021). Among topic-related variables, we 

found that prior knowledge and utility value — but not interest in learning astronomy — were 

related to using deep-level LS. Among learning-related variables, we found that interest and 

utility value of effective learning — but not metacognitive knowledge of LS and expectancy in 

using deep-level LS — were related to using deep-level LS.  

Astronomy-related knowledge and motivation as predictors of using drawings and self-

testing during learning  

We hypothesized (H1) that better topic-related knowledge would relate to better use of deep-

level LS. Our results showed that better knowledge of seasonal changes was related to both 

making use of drawings and answering questions rather than simply reading and rereading. The 



17 
 

topic of light processes and seasonal changes is a difficult scientific topic for elementary school 

students because daily experiences contradict scientific explanations, thereby bolstering 

misconceptions. Namely, young students who tend to use everyday, unscientific concepts (cf. 

Authors, 2003; Vygotsky, 1997) are guided by visible changes (e.g., snow during the winter 

months) and assume these visible changes can help explain temperature changes. In addition, it is 

well known from daily life that it is warmer close to a heat source (e.g., fireplace), which 

naturally leads many children to assume that the sun is closer to the earth in summer and further 

in winter. This misconception, sometimes called distance theory, is a widespread inaccurate 

explanation of seasonal changes both in schoolchildren and adults (Authors, 1998a, 2003, 2004; 

Lelliott & Rollnick, 2009; Trumper, 2006).  

All participants in the current study had learned about light processes and seasonal 

changes at school before taking part in this study, but according to our findings, students’ level 

of knowledge varied widely. While 39% of students gave scientifically correct answers, 30% of 

students either referred to visible changes (e.g., there is snow in the winter) or gave general 

factual information without referring to any reasons behind the change (e.g., Estonia is in the 

northern hemisphere). Additionally, 15% of answers included misconceptions, and several of 

these referred to the distance between the earth and the sun. When learning complex topics in 

which learners may have misconceptions, understanding is supported by conceptual, 

constructive, deep-level LS (Alexander et al., 2018; Brod, 2020; Chi & Wylie, 2014; Dinsmore 

& Hattan, 2020; Van Meter & Campbell, 2020).  

 In addition, it is possible that better topic-related knowledge indicates that students have 

been engaged in deep-level learning before and, thus, may tend to habitually use deep-level LS 

in specific learning situations. Correlations between astronomy knowledge, metacognitive 
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knowledge of deep-level LS, and self-reported use of self-testing also refer to this possibility. 

However, as these correlations were low, the use of deep-level LS may not have been conscious 

or purposeful. Estonian science lessons and textbooks often rely on models and drawings. 

Textbooks also provide study questions at the end of each unit, and students are directed to refer 

to these questions when studying at home. This means that all participants had been exposed to 

drawings and questions at least to some extent previously. However, observational studies have 

shown that, although teachers use different cognitive strategies when teaching, they rarely 

explicitly talk about their value for supporting learning (e.g., Authors, 2023; Dignath & Büttner, 

2018; van Loon et al., 2021). Many students need direct instruction to become aware of the 

advantages of some LS over others (Zepeda et al.,2015). The need for explicit teaching of LS in 

supporting students’ metacognitive knowledge has been found in intervention studies (Dignath et 

al., 2008; Dignath & Büttner, 2008; Feeney, 2021). It is possible that many students are not 

explicitly aware of the advantages of using drawings and asking questions while learning and, 

thus, may not start to use them on their own. Instead, students are more likely to view these 

strategies only as tasks given by the teacher rather than strategies that support learning. 

Moreover, better prior knowledge may be related to higher reasoning skills (Salmi & Thuneberg, 

2018; Stender et al., 2018), spatial ability (Wang & Tseng, 2019), and effortful, persistent 

learning behavior (e.g., Authors, 2018), all of which support using more complex, deep-level LS.  

Our second hypothesis (H2) about the role of topic-related motivational beliefs was only 

partially confirmed. Empirical studies in older students have confirmed the positive role of 

subject-related task values and expectancies in deep learning and learning outcomes (e.g., 

Linnenbrink-Garcia et al., 2012; Vu et al., 2021). However, in our study, only utility value — a 

student’s perceived relevance or usefulness of learning scientific concepts in their current or 
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future plans — predicted the use of self-testing. We may speculate that, although students 

participated in the study voluntarily, the potential for future evaluation was still at the back of 

their minds, thus the students used self-testing as a way of preparing themselves for a future 

assignment. 

Higher interest was not related to using deep-level LS. We hypothesized that higher 

interest would be related to more curiosity, which in turn may lead students to look at drawings 

and check their answers (for a discussion about the relationship between interest and curiosity, 

see Alexander & Grossnickle, 2016). The lack of such activities may be related to the way 

interest was assessed in this study. We asked about individual interest (see Renninger & Hidi, 

2011) regarding solar and planetary knowledge, but the actual study topic was about light 

movements and temperature fluctuations throughout the seasons — not about planets. Student 

age should also be taken into account when explaining this finding. Namely, younger students 

interpret interest as enjoyment, which is typically accompanied by a positive mood, while older 

students interpret interest as being accompanied by increased attention, challenge seeking, and 

persistence in learning (Renninger & Hidi, 2011). Thus, emotion-based statements of interest 

may not affect real learning activities like choosing between more- or less-complex LS. Earlier 

studies investigating conceptual change in scientific domains have referred to the need to use 

person-oriented methods to describe subgroups of students with different motivational 

characteristics, including interest (Linnenbrink-Garcia et al., 2012; Sinatra & Mason, 2013; 

Weinstein et al., 2011).  

Since earlier studies investigating conceptual change in scientific domains have 

emphasized the importance of self-efficacy (Linnenbrink-Garcia et al., 2012), we expected that 

expectancy in learning about the sun and planets would be positively related to choosing deep-
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level LS. However, expectancy had negative effect on choosing and using deep-level LS. We 

may argue that students who are self-confident and who think that learning about astronomical 

phenomena is easy for them, may use easily applicable surface strategies reading and re-reading. 

However, we should be cautious of this interpretation as direct bivariate correlations between 

expectancy of learning astronomy and using deep-level LS were insignificant. Earlier studies 

carried out in the expectancy-value paradigm that used self-report questionnaires indicated 

relations between expectancy, valuing, and use of LS in older students (Bandura, 1993; Diseth, 

2011; Linnenbrink & Pintrich, 2003; Trigwell et al., 2013). Thus, expectancy may play a more 

minor role at younger age. Future studies are needed to explore the role of expectancies in 

learning in younger children. Studies have also shown that, compared to task values, students’ 

expectancies more strongly predict achievement and academic performance (Perez et al., 2014; 

Rosenzweig et al., 2019). However, this was not examined in the current study. 

Learning-related knowledge and motivational beliefs as predictors of using drawings and 

self-testing during learning  

Surprisingly and contrary to our hypothesis (H3), metacognitive knowledge of deep-level LS as 

assessed via perceived effectiveness of deep-level LS was not related to choosing or using deep-

level LS. According to bivariate correlations, metacognitive knowledge of LS was interrelated 

with self-reported use of deep-level LS (drawings and answering questions) when preparing for a 

comprehensive test for all motivational beliefs and topic-related knowledge. Thus, when taken 

together with other variables, the effect of metacognitive knowledge of LS on the use of deep-

level LS was not visible. In contrast, as expected (H4), self-reported use of specific deep-level 

LS predicted the use of the same LS during learning. Moreover, self-reported use of drawings 

predicted answering questions but not rereading. A higher tendency to use deep-level LS may be 
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a result of raising metacognitive knowledge of LS (Dignath et al., 2008; Dignath & Büttner, 

2008; Feeney, 2021). Using deep-level LS tends to be more effective than surface-level LS, 

especially when learning complex topics and striving for conceptual understanding (cf. 

Alexander et al., 2018).  

Applying deep-level LS assumes higher attention, persistence, and motivation than when 

using surface-level LS (Karabenick et al., 2021; Schleepen & Jonkman, 2012; Seufert, 2020). 

Our hypothesis (H5) concerning the effects of learning-related motivational beliefs on using 

deep-level LS was partially confirmed. While topic-related utility value had an effect on 

answering questions, students who showed higher utility value in effective learning made more 

use of drawings in addition to simply reading. Moreover, looking at drawings during reading was 

also related to higher interest in effective learning. Thus, both examined values had an effect on 

choosing and using drawings during learning, but not on reviewing learned knowledge by way of 

answering questions. Visuals are widely used in science classes (Galano et al., 2018; Mills et al., 

2016), and even if teachers have not explicitly discussed how and why visuals support learning 

(cf. Dignath & Büttner, 2018; van Loon et al., 2021), students may have experienced it 

themselves via metacognitive experiences (cf. Efklides, 2014). In this regard, visuals support 

students but may cause students to encounter new comprehension challenges, especially in 

students with low knowledge and reading skills (McTigue & Flowers, 2011). These different 

experiences may impact a student's motivation to use drawings. So regardless of their 

experience, students are likely to use a given strategy when they see its value and efficacy 

(Karabenick et al., 2021). However, low motivation to use drawings may be related to the fact 

that drawings are considered too time-consuming and confusing (i.e., visuals are not explained, 

students are not taught how to use them, and some visuals can be difficult to understand).  
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Similar to topic-related expectancy, learning-related expectancy did not predict the use of 

deep-level LS. We should also emphasize that these LS were not difficult to use. Students did not 

have to create summaries or draw by themselves, which is a more difficult strategy but can also 

be more effective. We also do not know how students applied these strategies (cf. Leopold & 

Leutner, 2015). We monitored how many times students looked at drawings and how many times 

they checked their answers in response to researcher-raised questions, but we do not know how 

well they understood the drawings or if their own answers were correct or not. 

Limitations, conclusion, and future directions 

Some limitations of the study should be mentioned. First, this was a cross-sectional study that 

used correlations. Therefore, we cannot make causal inferences. As effects among variables may 

be reciprocal, further longitudinal studies are needed. Second, we used only one specific learning 

task: learning about a challenging scientific topic in which students are known to have various 

misconceptions. To generalize our findings, different tasks could be used. Third, the learning 

situation itself was unusual (i.e. independently studying about the complex topic on a computer). 

Although students knew that their knowledge would be tested after some time, they also knew 

that they would not be graded or given immediate feedback. Thus, students may not have tried as 

hard as they might in a real lesson or testing scenario. Fourth, motivational beliefs were assessed 

using only one item which could tap only a few facets of the constructs. We based this item on 

the expectancy-value model’s motivational beliefs, but there are other motivational variables 

(e.g., achievement goals) that may play a role in using deep-level LS. Future studies should 

describe motivational constructs in more detail, and other measures should be used. Fifth, 

although we described specific learning situations and clearly distinguishable learning strategies, 

elementary school students may be in difficulties when using evaluation-scales and reporting 
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which learning strategies they tend to use. Future studies should use other methods like 

interviewing or observations. Sixth, Using drawings was assessed via student looking at the 

drawing. However, we cannot be sure that each student deeply engaged in learning the 

information from the drawing (i.e., used it as a deep-level strategy). Also, we did not assessed 

how students comprehended drawing. Last, our dependent variables were treated as continues 

due to the ordinal alignment of their answer options. However, cautions should be acknowledged 

due to their small ranges consisting of only a few categories. 

 In summary, our study confirmed that it is not enough to examine students’ knowledge 

and skills in using LS with general and hypothetical questions, but that it is of crucial importance 

to study students in real learning situations. We showed that both topic- and learning-related 

variables play a role in what LS students use in a specific learning situation. Moreover, topic- 

and learning-related knowledge and motivational beliefs may differently affect students’ choice 

and application of LS. From a practical point of view, our study confirmed that students need to 

be taught both subject knowledge and explicit knowledge about LS and how to apply them. In 

addition to supporting topic-related motivation, teachers should support students’ motivation to 

use deep-level LS by discussing and demonstrating the value of deep-level LS in specific 

learning situations. While prior studies have shown the effectiveness of interventions tapping 

topic-related utility value (Nagengast et al., 2017; Rosenzweig et al., 2020), our findings refer to 

the need to raise interest in and utility value of deep learning.  

 Further studies are needed to examine the learning process and outcomes; e.g., how 

students interpret drawings and answer questions as well as how students comprehend text and 

understand given topics. Moreover, as studies have shown that subgroups of students vary 

considerably in motivational beliefs and their impact on learning (e.g., Linnenbrink-Garcia et al., 
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2012), person-oriented analyses should be carried out to detect practical effects that might go 

unnoticed using variable-oriented methods.  
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Table 1 

Descriptive Statistics of All Study Variables 

  N M SD Min Max Skewness Kurtosis 

Astronomy-related knowledge 335 1.75 1.14 0 3 -.18 -1.45 

Interest in learning astronomy  335 3.59 1.13 1 5 -.57 -.44 

Utility value of learning astronomy 335 3.32 1.17 1 5 -.20 -.80 

Expectancy of learning astronomy 335 3.44 .96 1 5 -.37 -.02 

Metacognitive knowledge of deep-level learning 

strategies 
335 4.06 .64 1 5 -.86 1.19 

Self-reported use of drawings 335 .64 .48 0 1 -.58 -1.67 

Self-reported use of self-testing 335 .48 .50 0 1 .07 -2.01 

Interest in effective learning 335 3.70 .93 1 5 -.34 -.33 

Utility value of effective learning 335 4.10 .97 1 5 -.89 .04 

Expectancy of using deep-level LS  335 3.51 .94 1 5 -.41 -.12 

Using drawings 335 2.13 1.08 0 3 -.80 -.84 

Using self-testing  334 2.07 .90 1 3 -.14 -1.76 
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Table 2 

Pearson Correlations of All Study Variables 

    1 2 3 4 5 6 7 8 9 10 11 

1 Astronomy-related knowledge            

2 Interest in learning astronomy  .035           

3 Utility value of learning astronomy .014 .456**          

4 Expectancy of learning astronomy -.023 .401** .252**         

5 
Metacognitive knowledge of deep-level 

learning strategies 
.150** .265** .289** .211**        

6 Self-reported use of drawings .062 -.021 .083 .068 .336**       

7 Self-reported use of self-testing .111* -.028 -.055 .071 .260** .292**      

8 Interest in effective learning .034 .260** .281** .210** .358** .041 -.056     

9 Utility value of effective learning  .045 .122* .255** .144** .370** .008 -.015 .502**    

10 Expectancy of using deep-level LS  .102 .227** .308** .275** .257** .007 -.033 .434** .450**   

11 Using drawings .143** .117* .137* -.004 .241** .183** .021 .250** .257** .139*  

12 Using self-testing  .167** .052 .135* -.002 .235** .240** .249** .105 .053 .055 .208** 

 

Note. * p < .05, ** p < .01 

  



Table 3 

Multivariate Multiple Regression Predicting Using Drawings and Using Self-Testing 

Variable Using drawings  

(R2 = .148) 

 Using self-testing  

(R2 = .186) 

 β SE p  β SE p 

Astronomy-related knowledge .111 .047 .017  .139 .064 .030 

Interest in learning astronomy  .084 .078 .281  -.003 .089 .971 

Utility value of learning astronomy .014 .019 .460  .136 .042 .001 

Expectancy of learning astronomy -.109 .055 .048  -.092 .033 .005 

Metacognitive knowledge of deep-level learning strategies .070 .057 .216  .098 .078 .213 

Self-reported use of drawings .165 .069 .017  .160 .060 .008 

Self-reported use of self-testing -.038 .023 .091  .214 .079 .007 

Interest in effective learning .133 .043 .002  .095 .134 .480 

Utility value of effective learning  .168 .054 .002  -.045 .107 .673 

Expectancy of using deep-level LS  -.019 .099 .844  -.005 .072 .950 

 

Note. In bold—significant predictors at the p < .05 level 



Figure 1 

Theoretical Model 

 

Note. LS = learning strategy.  
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Appendix A. Coding answers for astronomy-related prior knowledge 

The answers for the question “Write briefly why in Estonia it is colder in winter than in 

summer” were coded in four broad categories.  

 Category 1: no answer, repetition of the information in the question, unrelated to the 

question answer.  

 Category 2: answers basing on visible observations (e.g., there is snow in the winter; the 

sun is lower in the sky during winter; there are clouds in the sky in the winter) or providing 

broad everyday information that does not properly explain the phenomenon (e.g., Estonia is in 

the Northern Hemisphere; we have northern climate; climate is different in the summer than 

during wintertime).  

 Category 3: explanations related to the movements of the Sun and the Earth, but 

including incorrect information. The majority of these included some form of distance theory 

that connected the changes in temperature to the distance between the Sun and Estonia (e.g., the 

Sun is closer to the Earth in the summer; the Sun is closer to Estonia in the summer; the axis of 

the Earth is tilted and, therefore, the Sun is closer to Estonia in the summer). Some answers were 

correct, but too general and missed some important information (e.g., the Earth revolves around 

the Sun and rotates around its axis; the axis is tilted, and the Earth is tilted).  

 Category 4: scientifically correct explanations that contained both critical parts of the 

explanation: 1) the Earth revolves around the Sun, and 2) the Earth's axis is tilted with respect to 

its orbital plane and/or the light’s inclination angle changes in relation to the surface of the Earth. 

 

Attachment to Manuscript Click here to access/download;Attachment to
Manuscript;Appendices R2.docx

https://www2.cloud.editorialmanager.com/eupe/download.aspx?id=95650&guid=26cf4c3c-0bf9-401e-ad82-570446f331a6&scheme=1
https://www2.cloud.editorialmanager.com/eupe/download.aspx?id=95650&guid=26cf4c3c-0bf9-401e-ad82-570446f331a6&scheme=1


Appendix B. Scenarios and the described learning strategies for assessing 

metacognitive knowledge of deep-level learning strategies 

 

Scenario Choice of answers Learning strategies 

1. Students need to familiarize 

themselves with a new topic before a 

Science lesson. They have to read a 

chapter from the textbook as 

homework. Their knowledge of the 

subject is not very good. They use 

different strategies to learn the new 

topic. 

Student A reads the textbook 

twice. 

Student B tests their knowledge 

by closing the textbook and 

answering study questions 

without looking at the text. 

Rereading versus 

self-testing 

2. Students need to prepare for a 

Maths lesson. Students solve the same 

number of problems in preparation for 

the test but use different strategies. 

Student A solves example 

problems given by a teacher 

several times. 

Student B solves example 

problems given by a teacher 

and also several other 

problems. 

Solving example 

problems versus 

solving example 

and novel problems 



3. Students have to read three pages of 

text on how viruses spread. In the next 

lesson, students must be prepared to 

talk about this topic to classmates and 

the teacher. Both students study for the 

same length of time but use different 

strategies. 

Student A reads through the 

text and then tries to make 

sense of what they have read. 

They think about what they 

already know about the topic 

and try to relate the new 

information to what is already 

available. Student B reads the 

text and marks important parts 

of the text. 

Underlining 

important parts of 

the text versus 

integrating new 

knowledge with 

prior knowledge 

4. Students need to prepare for a major 

test in History class. They choose to 

do a summative piece of work 

covering the topics studied in this 

subject. They use different strategies. 

Student A systematizes what 

they have learned according to 

links and themes. They try to 

find common features and 

themes and categorize them in 

the summarized material. 

Student B starts summarizing 

the material from the 

beginning. They arrange the 

different topics in the order in 

which they have learned them. 

Creating a linear 

summary according 

to the text versus 

systematizing the 

material before 

creating a summary 



5. Students have to read and 

understand a scientific text about how 

rainbows are formed. Both students 

study for the same length of time but 

use different strategies. 

Student A thoroughly reads the 

text twice. 

Student B reads the text, then 

looks at the pictures and 

drawings that clarify the text. 

Rereading versus 

reading and making 

use of drawings 

6. Students need to prepare for a 

Science lesson. They read a chapter in 

the textbook about plants and have to 

learn all the parts of a plant. Both 

students study for the same length of 

time but use different strategies. 

Student A reads the text once, 

makes a drawing, and writes 

the parts of the plant on the 

drawing. 

Student B thoroughly reads the 

text twice. 

Rereading versus 

composing 

drawings 

 

Appendix C. Test 

The introductory text reads as follows: “This text explains how heat sources heat different 

surfaces and how the seasons change. You can also look at the drawings to get a better 

understanding. Learn it! Next week you will have to answer questions about the text”. The text 

consisted of three parts that were accompanied with drawings. Each part was presented in one 

slide. If a student decided to look at the drawing, the text and the drawing were presented 

together.  

I Mart got a torch for his birthday present. He tested how far the torch would point and tested 

whether reading a book with it was better. He discovered that the torch was a heat source - it 

warmed up Mart's arm. The arm was warmer when the torch was closer and colder when Mart 

moved the torch further away. He thought it was probably the same as with the oven - warmer 



near the oven and colder away from it. He further discovered that the torch heats up more when 

the torch is pointed directly at his arm and less when the torch is tilted.  

 

II He told his father about his discovery. Father explained why the arm heated differently. 

Namely, if you point the torch directly at your arm, all the light and heat will go there. If you 

point the torch at an angle, part of the light will bypass your arm and only a part of the light will 

reach it. Father also made a drawing. He said that the same explanation is used to explain how 

the seasons change in Estonia. Mart knew that the Earth revolved around the Sun and that the 

Sun gave light and heat. Just like a torch. But he had thought that Estonia is further from the Sun 

during winter time and closer in the summer. 

 

III Father explained: the distance of the Earth from the Sun hardly changes, but during winter 

time the Sun's rays strike the ground at a shallower angle and the ground does not receive as 

much heat as in the summer. The Earth orbits around the Sun and rotates on its axis. The Earth's 

imaginary axis of rotation is tilted with respect to the orbit. So the different hemispheres of the 

Earth receive different amounts of sunlight. Estonia is located in the Northern Hemisphere. 

When the Northern Hemisphere is tilted towards the Sun, it is summer in Estonia. When the 

Southern Hemisphere faces the Sun, it is summer there and winter in Estonia. If the Earth's 



rotation axis were vertical (perpendicular to the orbital plane), the seasons would not alternate. 

The movement of light and heat fascinated Mart and he wanted to learn more about it. Mart’s 

father advised him to study more physics. 

 

 



  


