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GAMMA-CONVERGENCE OF FRACTIONAL GAUSSIAN PERIMETER

ALESSANDRO CARBOTTI, SIMONE CITO, DOMENICO ANGELO LA MANNA, AND DIEGO PALLARA

Abstract. We prove the Γ-convergence of the renormalised fractional Gaussian s-perimeter to
the Gaussian perimeter as s → 1−. Our definition of fractional perimeter comes from that of
the fractional powers of Ornstein-Uhlenbeck operator given via Bochner subordination formula.
As a typical feature of the Gaussian setting, the constant appearing in front of the Γ-limit does
not depend on the dimension.
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1. Introduction

For s ∈ (0, 1), fractional s-perimeters in the Euclidean space have been introduced in the
seminal paper by [8] to study nonlocal minimal surfaces of fractional type, while a generalised
notion of nonlocal perimeter defined through a positive, compactly supported radial kernel has
been introduced in [26]. In the last years fractional perimeters have been object of many studies
in relation with fractal sets [23], phase transitions [33], and nonlocal mean curvature flows
[14], see also the recent survey [18]. One can think of fractional perimeters as the sum of local
interactions of a measurable set E with its complement Ec in a fixed smooth open and connected
set Ω plus a nonlocal contribution coming from the interaction between points in Ω and in Ωc.
Namely

Ps(E; Ω) = Ls(E ∩ Ω, Ec ∩ Ω) +
(
Ls(E ∩ Ω, Ec ∩ Ωc) + Ls(E ∩ Ωc, Ec ∩ Ω)

)
:= PLs (E; Ω) + PNLs (E; Ω),

(1.1)
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2 A. CARBOTTI, S. CITO, D. A. LA MANNA, AND D. PALLARA

where, for any s ∈ (0, 1) and for any A,B measurable and disjoint sets we set

Ls(A,B) :=
ˆ
A

ˆ
B

dxdy

|x− y|N+s .

The functional Ls denotes the interaction between A and B driven by the fractional singular
kernel |x− y|−N−s that arises from the Bochner subordination formula for fractional powers of
second order positive definite linear elliptic operators (see e.g. [25]) through the formula

CN,s
|x− y|N+s =

ˆ ∞
0

Ht(|x− y|)
t
s
2 +1 dt, (1.2)

where CN,s = 2s
πN/2 Γ

(
N+s

2

)
and Ht denotes the Gauss-Weierstrass kernel

Ht(r) = 1
(4πt)N/2

e−
r2
4t . (1.3)

We notice that when s → 1− the local part PLs (E; Ω) goes always to infinity unless E ⊂ Ωc

or Ω ⊂ E, as observed in [7]. This fact suggests to renormalise appropriately the functional in
order to have a finite pointwise limit as s→ 1− as shown in [10], where the authors prove that
renormalising by the factor 1 − s, the s-fractional perimeter converges to the perimeter in the
sense of De Giorgi when s → 1−. See also [19] for the limiting behaviour of the s-perimeter as
s → 0+. These results follow the approximation of local energies by nonlocal ones proved in
[6, 16, 27, 29]. Moreover, in [2] the authors show that (1− s)Ps(E; Ω) approaches the perimeter
of E in Ω even in the Γ-convergence sense as s → 1−. A similar result has been obtained in
[4] for more general kernels but with different growth. See also [1, 30] for some applications in
phase transitions, and [12] for a partial result including kernels with the same growth as the
fractional one in the more general setting of Carnot Groups.

Fractional perimeters can be equivalently defined by minimising a Dirichlet energy associated
with an extension problem for the fractional Laplacian as proved by Caffarelli and Silvestre in
[9]. This result has been generalised by Stinga and Torrea in [31] for fractional powers of more
general operators. This last extension has been used in [28] in order to introduce a fractional
Gaussian perimeter in the more general setting of abstract Wiener spaces and to prove that the
halfspace is the unique minimiser among all sets with prescribed Gaussian measure as proved
for the Gaussian perimeter in [5, 13,20,21,32]. In [11] the same authors of this paper prove the
related stability estimate for the fractional Gaussian isoperimetric inequality in finite dimension.

A different notion of fractional Gaussian perimeter has been given in [17]

J γs (E; Ω) :=
ˆ
E∩Ω

e−
|x|2

4 dx

ˆ
Ec∩Ω

e−
|y|2

4

|x− y|N+sdy (1.4)

+
ˆ
E∩Ω

e−
|x|2

4 dx

ˆ
Ec∩Ωc

e−
|y|2

4

|x− y|N+sdy +
ˆ
E∩Ωc

e−
|x|2

4 dx

ˆ
Ec∩Ω

e−
|y|2

4

|x− y|N+sdy,

where the authors prove that, after rescaling by (1− s), the functional J γs (E; Ω) approaches the
Gaussian perimeter in the Γ-convergence sense as s→ 1−.
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In this paper we define the following fractional Gaussian perimeter

P γs (E; Ω) :=
ˆ
E∩Ω

dγ(x)
ˆ
Ec∩Ω

Ks(x, y)dγ(y)

+
ˆ
E∩Ω

dγ(x)
ˆ
Ec∩Ωc

Ks(x, y)dγ(y) +
ˆ
E∩Ωc

dγ(x)
ˆ
Ec∩Ω

Ks(x, y)dγ(y),
(1.5)

where γ is the standard Gaussian measure in RN , whose definition will be recalled in the next
section, and the kernel Ks is defined in (2.3). The definition in (1.5) is equivalent to the one
given in [11] when Ω = RN , it is analogous to (1.1), in the sense that it depends on a fractional
kernel Ks defined in terms of an explicit heat kernel as in (1.2) and it is not equivalent to (1.4),
see (2.4).

We notice that in the Gaussian setting no definition of fractional perimeter can satisfy the
translation invariance property (vi) in the axiomatic treatment proposed in [14, Pag. 29], as the
Gaussian weight γ is not translation invariant.

Inspired by [2, 17], the main result of this paper is the proof of the Γ-convergence of our
(renormalised) fractional Gaussian perimeter to the Gaussian perimeter as s→ 1−.

Main Theorem (Γ-convergence). For every measurable set E ⊂ RN we have

L1
loc − Γ− lim inf

s→1−
(1− s)P γ,Ls (E; Ω) ≥

√
2
π
P γ(E; Ω) (1.6)

and
L1

loc − Γ− lim sup
s→1−

(1− s)P γs (E; Ω) ≤
√

2
π
P γ(E; Ω). (1.7)

We recall that (1.6) means that

lim inf
n→∞

(1− sn)P γ,Lsn (En; Ω) ≥
√

2
π
P γ(E; Ω)

for any sequence En, sn such that χEn → χE in L1
loc(RN ) and sn → 1−, while (1.7) means

that for every measurable set E and any sequence sn → 1−, there exists a sequence En with
χEn → χE in L1

loc(RN ) such that

lim sup
n→∞

(1− sn)P γsn(En; Ω) ≤
√

2
π
P γ(E; Ω).

For an introduction to the Γ-convergence we refer to [15]. We notice that the constant in front
of the Γ-limit does not depend on the dimension, as usual in the Gaussian framework.

The paper is structured in the following way. In Section 2 we introduce the notation used
in the paper and state some preliminary results. In particular, in Subsection 2.1 we give our
definition of fractional Gaussian perimeter and we introduce a fractional Gaussian Sobolev space.
In Subsections 2.2 and 2.3 we state and prove three crucial estimates which allow us to prove
inequalities (1.6) and (1.7). In Section 3 we prove Theorem 1; to prove (1.6) we use Lemma
2.15 in order to exploit an idea that goes back to [22] and we reduce to proving an inequality on
Radon-Nikodym derivatives, while for (1.7) we reduce to proving the claim for the energy-dense
class of “transversal” polyhedra by using Lemma 2.13. In Section 4, as in [2, 17], we prove that
the Γ-convergence carries out the convergence of local minimisers to a local minimiser of the
limit functional.
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2. Notation and preliminary results

ForN ∈ N we denote by γN andHN−1
γ the Gaussian measure on RN and the (N−1)-Hausdorff

Gaussian measure

γN := 1
(2π)N/2

e−
|·|2

2 L N , HN−1
γ := 1

(2π)(N−1)/2 e
− |·|

2
2 HN−1,

where L N andHN−1 are the Lebesgue measure and the Euclidean (N−1)-dimensional Hausdorff
measure, respectively. When k ∈ {1, . . . , N}, we denote by γk the standard k-dimensional
Gaussian measure; when there is no ambiguity we simply write γ instead of γN and, with an
abuse of notation, we denote by γ both the measure and its density with respect to L N .

The Gaussian perimeter of a measurable set E in an open set Ω is defined as

P γ(E; Ω) =
√

2π sup
{ˆ

E
(divϕ− ϕ · x) dγ(x) : ϕ ∈ C∞c (Ω;RN ), ‖ϕ‖∞ ≤ 1

}
.

Moreover, if E has finite Gaussian perimeter, then E has locally finite Euclidean perimeter and
it holds

P γ(E; Ω) = HN−1
γ (FE ∩ Ω) = 1

(2π)
(N−1)

2

ˆ
FE∩Ω

e−
|x|2

2 dHN−1(x),

where FE is the reduced boundary of E. If Ω = RN , we denote the Gaussian perimeter of
E in the whole RN simply by P γ(E). We refer to [3] for the properties of sets with locally
finite perimeter. Let us present an approximation result that will be useful in the proof of the
Γ− lim sup inequality. Its proof is analogous to that of [2, Proposition 15].

Proposition 2.1. Let E ⊂ RN a set with P γ(E; Ω) <∞. Then, for every ε > 0, there exists a
polyhedral set Π ⊂ RN such that

(i) γ((E4Π) ∩ Ω) < ε;
(ii) |P γ(E; Ω)− P γ(Π; Ω)| < ε;
(iii) P γ(Π; ∂Ω) = 0.

In the sequel, for Ω ⊂ RN open connected Lipschitz set and for δ > 0 we set

Ω+
δ := {x ∈ Ωc : d(x,Ω) < δ} ,

Ω−δ := {x ∈ Ω : d(x,Ωc) < δ} .
(2.1)

2.1. Fractional Sobolev spaces and Fractional perimeters in the Gaussian setting.
In order to define the fractional perimeter, we introduce the Ornstein-Uhlenbeck semigroup, its
generator ∆γ , the fractional powers of the generator and the functional setting.

Definition 2.2. Let t > 0 and x ∈ RN . For u ∈ L1
γ(RN ) we define the Ornstein-Uhlenbeck

semigroup as

et∆γu(x) :=
ˆ
RN

Mt(x, y)u(y)dγ(y)

where Mt(x, y) denotes the Mehler kernel

Mt(x, y) := 1
(1− e−2t)N/2

exp
(
−e
−2t|x|2 − 2e−tx · y + e−2t|y|2

2(1− e−2t)

)
,
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which satisfies

et∆γ1 =
ˆ
RN

Mt(x, y)dγ(y) = 1,

for any t > 0 and any x ∈ RN .
The generator of et∆γ acts on sufficiently smooth functions as

∆γu = ∆u− x ·Du

and is called Ornstein-Uhlenbeck operator; see e.g. [24] and the references therein for the main
properties of et∆γ and ∆γ .

Remark 2.3. We notice that if we write x = (x′, xN ), y = (y′, yN ) ∈ RN−1 × R, we have

Mt(x, y) = MN−1
t (x′, y′)M1

t (xN , yN ),

for any t > 0, where for k ∈ {1, . . . , N}, Mk
t (·, ·) denotes the Mehler kernel in Rk. When there

is no ambiguity we omit the superscript k.

Since −∆γ is a positive definite and selfadjoint operator which generates a C0-semigroup of
contractions in L2

γ(RN ), we can define its fractional powers by means of spectral decomposition
via the Bochner subordination formula. In particular, for s ∈ (0, 1) and x ∈ RN the fractional
Ornstein-Uhlenbeck operator is defined as

(−∆γ)su(x) : = 1
Γ(−s)

ˆ ∞
0

et∆γu(x)− u(x)
ts+1 dt

= 1
Γ(−s)

ˆ ∞
0

dt

ts+1

ˆ
RN

Mt(x, y)(u(y)− u(x))dγ(y)

= 1
|Γ(−s)|

ˆ
RN

(u(x)− u(y))K2s(x, y)dγ(y),

(2.2)

where for σ > 0 we have set

Kσ(x, y) :=
ˆ ∞

0

Mt(x, y)
t
σ
2 +1 dt, (2.3)

and the right-hand side in (2.2) has to be intended in the Cauchy principal value sense.

The definition of the kernelKσ suggests the following definition of fractional Gaussian Sobolev
spaces

Definition 2.4. Let Ω ⊆ RN be an open set, s ∈ (0, 1) and 1 ≤ p <∞. We define the fractional
Gaussian Sobolev space W s,p

γ (Ω) as

W s,p
γ (Ω) :=

{
u ∈ Lpγ(Ω); [u]W s,p

γ (Ω) <∞
}
,

where

[u]W s,p
γ (Ω) :=

(ˆ
Ω
dγ(x)

ˆ
Ω
|u(x)− u(y)|pKsp(x, y)dγ(y)

)1/p
,

and Ksp is deined in (2.3) with σ = sp.
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Remark 2.5. The integrability of the function

(0,∞) 3 t 7→ Mt(x, y)
t
sp
2 +1

near zero, for any x, y ∈ RN , x 6= y, is ensured by the fact that

lim
t→0+

Mt(x, y)
Ht(|x− y|)

= (2π)N/2e
|x|2

4 e
|y|2

4 for any x, y ∈ RN , (2.4)

where Ht(·) is the Gauss-Weierstrass kernel defined in (1.3). It is easily seen that the equality
in formula (2.4) it is not true for any t > 0.

Now, we make more precise the definition of fractional Gaussian perimeter (1.5) given in
Section 1.

Definition 2.6. Let Ω ⊂ RN be a connected open set with Lipschitz boundary, and E ⊂ RN a
measurable set. We define the Gaussian s-perimeter of E in Ω as

P γs (E; Ω) := P γ,Ls (E; Ω) + P γ,NLs (E; Ω),

where the local part is

P γ,Ls (E; Ω) :=
ˆ
E∩Ω

dγ(x)
ˆ
Ec∩Ω

Ks(x, y)dγ(y), (2.5)

and the nonlocal part is

P γ,NLs (E; Ω) :=
ˆ
E∩Ω

dγ(x)
ˆ
Ec∩Ωc

Ks(x, y)dγ(y) +
ˆ
E∩Ωc

dγ(x)
ˆ
Ec∩Ω

Ks(x, y)dγ(y). (2.6)

As for the Gaussian perimeter we omit the second argument in P γs (E; Ω) if Ω = RN .

Remark 2.7. We notice that, since Ks(y, x) = Ks(x, y) for every s ∈ (0, 1) and x, y ∈ RN , we
have P γs (Ec; Ω) = P γs (E; Ω).

As already observed in Section 1 the definition in (1.5) is equivalent to the one given in [11,28]
thanks to the following integration by parts formula

1
2[u]2Hs

γ(RN ) =
ˆ
RN

u(−∆γ)su dγ.

Indeed
1
2[u]2Hs

γ(RN ) =1
2

ˆ
RN

dγ(x)
ˆ
RN
|u(x)− u(y)|2K2s(x, y)dγ(y)

=1
2

(ˆ
RN

u(x)dγ(x)
ˆ
RN

(u(x)− u(y))K2s(x, y)dγ(y)

−
ˆ
RN

dγ(x)
ˆ
RN

u(y)(u(x)− u(y))K2s(x, y)dγ(y)
)

=
ˆ
RN

u(x)
ˆ
RN

(u(x)− u(y))K2s(x, y)dγ(y) =
ˆ
RN

u(x)(−∆γ)su(x)dγ(x)

where in the third equality we switched x and y and used the symmetry of the kernel. If u = χE

for some measurable set E we have

P γs (E) =
ˆ
E

(−∆γ)s/2χEdγ.
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Another useful inequality which involves (1.5) is the fractional Gaussian isoperimetric inequal-
ity in its analytic form, which reads

P γs (E) ≥ Is(γ(E)), (2.7)

where Is : (0, 1) → (0,∞) denotes the fractional Gaussian isoperimetric function, i.e., the
function that associates to m ∈ (0, 1) the fractional Gaussian perimeter of a halfspace having
Gaussian measure m, and in (2.7) equality holds if and only if E is a halfspace (see [28]).

The kernel Ks satisfies the following estimate.

Lemma 2.8. For any x, y ∈ RN and for any s ∈ (0, 1) we have

Ks(x, y) ≥ CN,s
|x− y|N+s , (2.8)

where CN,s := 2s+
N
2 Γ
(
s+N

2

)
.

Proof. For any x, y ∈ RN we have

Mt(x, y) = 1
(1− e−2t)N/2

exp
(
−e
−2t|x|2 − 2e−tx · y + e−2t|y|2

2(1− e−2t)

)
(2.9)

≥ 1
(2t)N/2

exp
(
− e
−t|x− y|2

2(1− e−2t)

)
≥ 1

(2t)N/2
exp

(
−|x− y|

2

4t

)
= (2π)N/2Ht(|x− y|),

where in the first inequality we used the fact that e−2t ≤ e−t and 1 − e−2t ≤ 2t for any t ≥ 0,
while in the second we used that e−t

2(1−e−2t) ≤
1
4t for any t > 0. By dividing both sides of (2.9)

by t
s
2 +1 and integrating with respect t in (0,∞) we get the thesis. �

Lemma 2.9. For any x, y ∈ RN and for any s ∈ (0, 1), the following estimate

Ks(x, y) ≤ e
|x|2

4 e
|y|2

4 K̃s(|x− y|) (2.10)

holds true, where, for any z ∈ RN we have defined the decreasing kernel

K̃s(r) :=
ˆ ∞

0
exp

(
− etr2

2(e2t − 1)

)
dt

t
s
2 +1(1− e−2t)N/2

, r ≥ 0.

Moreover, for any a > 0 there exists Ra > 0 such that for any s ∈ (0, 1) the kernel K̃s satisfies
the summability condition

K̃s(|x|) ∈ L1(BRa , | · |) ∩ L1(Bc
Ra , e

−a|·|2). (2.11)

Proof. The estimate in (2.10) simply follows by noticing that

Mt(x, y) = 1
(1− e−2t)N/2

exp
(
− e

t|x− y|2

2(e2t − 1)

)
exp

(
(et − 1)(|x|2 + |y|2)

2(e2t − 1)

)

and
et − 1

2(e2t − 1) ≤
1
4
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for any t > 0. For every R > 0 we have

J1 : =
ˆ
BR

|x|dx
ˆ ∞

1

exp
(
− et|x|2

2(e2t−1)

)
t
s
2 +1(1− e−2t)N/2

dt

= NωN

ˆ R

0
ρNdρ

ˆ ∞
1

exp
(
− etρ2

2(e2t−1)

)
t
s
2 +1(1− e−2t)N/2

dt ≤ NωN
RN+1

N + 1
2

s(1− e−2)

(2.12)

and

J2 : =
ˆ
BR

|x|dx
ˆ 1

0

exp
(
− et|x|2

2(e2t−1)

)
t
s
2 +1(1− e−2t)N/2

dt

= NωN

ˆ R

0
ρNdρ

ˆ 1

0

exp
(
− etρ2

2(e2t−1)

)
t
s
2 +1(1− e−2t)N/2

dt

≤ NωN
ˆ 1

0

dt

t
s
2 +1(1− e−2t)N/2

ˆ ∞
0

ρN exp
(
− etρ2

2(e2t − 1)

)
dρ

= 2
N
2 NωNΓ

(
N + 1

2

) ˆ 1

0

(e2t − 1)1/2e
N−1

2 t

t
s
2 +1 dt

≤ 2
N+1

2 NωNΓ
(
N + 1

2

)
e
N+1

2

ˆ 1

0
t

1−s
2 −1dt

= 2
N+3

2 NωNΓ
(
N + 1

2

)
e
N+1

2

1− s,

(2.13)

where in the second equality in the right-hand side we performed the change of variable

w := etρ2

2(e2t − 1) ,

and in the second inequality we used that for any t ∈ [0, 1]

e2t − 1 ≤ 2e2t.

Therefore

J1 + J2 =
ˆ
BR

|x|K̃s(|x|)dx ≤ NωN

(
RN+1

N + 1
2

s(1− e−2) + 2
N+3

2 Γ
(
N + 1

2

)
e
N+1

2

1− s

)
<∞,

for any R > 0 and s ∈ (0, 1).
Fix now a > 0 and let R > 0. We have

K1 : =
ˆ
BcR

e−a|x|
2
dx

ˆ ∞
R

exp
(
− et|x|2

2(e2t−1)

)
t
s
2 +1(1− e−2t)N/2

dt

= NωN

ˆ ∞
R

ρN−1e−aρ
2
dρ

ˆ ∞
R

exp
(
− etρ2

2(e2t−1)

)
t
s
2 +1(1− e−2t)N/2

dt

≤ NωN
(1− e−2R)N/2

ˆ ∞
R

dt

t
s
2 +1

ˆ ∞
0

ρN−1e−aρ
2
dρ

= 2πN/2

(1− e−2R)N/2
R−

s
2

s
√
a
,

(2.14)
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and

K2 : =
ˆ
BcR

e−a|x|
2
dx

ˆ R

0

exp
(
− et|x|2

2(e2t−1)

)
t
s
2 +1(1− e−2t)N/2

dt

= NωN

ˆ ∞
R

ρN−1e−aρ
2
dρ

ˆ R

0

exp
(
− etρ2

2(e2t−1)

)
t
s
2 +1(1− e−2t)N/2

dt

≤ NωN
ˆ ∞
R

dt

t
s
2 +1(1− e−2t)N/2

ˆ ∞
0

ρN−1 exp
(
− etρ2

2(e2t − 1)

)
e−aρ

2
dρ

≤ NωN
ˆ ∞
R

dt

t
s
2 +1(1− e−2t)N/2

ˆ ∞
0

ρN−1 exp
(
−e

t + 2a(e2t − 1)
2(e2t − 1) ρ2

)
dρ

= 2
N
2 −1NωN

ˆ ∞
R

(
e2t − 1

et + 2a(e2t − 1)

)N/2
dt

t
s
2 +1(1− e−2t)N/2

ˆ ∞
0

w
N
2 −1e−wdw

= 2
N
2 −1NωNΓ

(
N

2

) ˆ ∞
R

(
e2t

2ae2t + et − 2a

)N/2
dt

t
s
2 +1 ,

(2.15)

where in the second equality we performed the change of variable

w := et + 2a(e2t − 1)
2(e2t − 1) ρ2.

To conclude, we notice that

0 < e2t

2ae2t + et − 2a ≤
1
2a for any t ≥ log(2a) if a >

1
2 , (2.16)

and so in order to have K2 < ∞ we can choose R = Ra := log(2a). On the other side the
inequality in (2.16) is true for any t > 0 if a ∈

(
0, 1

2

]
(and we can choose Ra := 1 for simplicity).

Now, putting together (2.14), (2.15) and (2.16), with this choice of Ra we obtain

K1 +K2 =
ˆ
BcRa

K̃s(|x|)e−a|x|
2
dx ≤ 4πN/2

s
R
− s2
a

( 1
2
√
a(1− e−2Ra)N/2

+ 1
2aN/2

)
<∞

for any a > 0 and s ∈ (0, 1). �

In the Gaussian framework, in analogy with the Euclidean one, we have a Coarea formula.

Lemma 2.10 (Coarea formula). For every measurable function u : Ω→ [0, 1] it holds that

1
2[u]

W s,1
γ (Ω) =

ˆ 1

0
P γ,Ls ({u > t}; Ω)dt

Proof. Given x, y ∈ Ω, the function [0, 1] 3 t 7→ χ{u>t}(x)− χ{u>t}(y) takes values in {−1, 0, 1}
and it is nonzero in the interval (min{u(x), u(y)},max{u(x), u(y)}). Therefore

|u(x)− u(y)| =
ˆ 1

0
|χ{u>t}(x)− χ{u>t}(y)|dt

and

|χ{u>t}(x)− χ{u>t}(y)| = |χ{u>t}(x)− χ{u>t}(y)|2

= χ{u>t}(x)χΩ\{u>t}(y) + χ{u>t}(y)χΩ\{u>t}(x).
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Substituting we obtain

[u]
W s,1
γ (Ω) =

ˆ
Ω
dγ(x)

ˆ
Ω
Ks(x, y)dγ(y)

ˆ 1

0
|χ{u>t}(x)− χ{u>t}(y)|2dt

= 2
ˆ 1

0
dt

ˆ
{u>t}

dγ(x)
ˆ

Ω\{u>t}
Ks(x, y)dγ(y)

= 2
ˆ 1

0
P γ,Ls ({u > t}; Ω)dt.

�

Corollary 2.11. For E ⊂ RN measurable set, s ∈ (0, 1) and 1 ≤ p <∞ we have

P γ,Ls (E; Ω) = 1
2[χE ]

W s,1
γ (Ω) = 1

2[χE ]p
W

s
p ,p

γ (Ω)
.

Proof. For the first equality it is sufficient to apply Coarea formula 2.10 to u = χE . The second
equality follows from the same computations by noticing that K s

p
p(x, y) = Ks(x, y) and that

|χE(x)− χE(y)|p = |χE(x)− χE(y)|2 for any x, y ∈ RN , s ∈ (0, 1) and 1 ≤ p <∞. �

Now we prove a compactness criterion. This result, combined with the lower semicontinuity
of perimeters, ensures existence of local minimisers thanks to direct method of Calculus of
Variations.

Lemma 2.12 (Compactness Criterion). Let (En) be a sequence of measurable sets, let sn → 1−

as n→∞ and
sup
n∈N

(1− sn)P γ,Lsn (En; Ω′) <∞ ∀Ω′ b Ω. (2.17)

Then, there exists a subsequence (Enk) and a set E with locally finite perimeter in Ω such that
χEnk → χE in L1

loc(Ω).

Proof. We simply notice that, thanks to (2.10), it holds that

(1− sn)P γ,Lsn (En; Ω) ≤ (1− sn)PL
K̃sn

(En; Ω), (2.18)

where in the right-hand side of (2.18) for any n ∈ N the quantity PL
K̃sn

(En; Ω) denotes the local
part of the Euclidean nonlocal perimeter with respect to the radial kernel K̃sn of En in Ω.

The rest of the proof is a simple consequence of the Fréchet-Kolmogorov compactness criterion
in L1

loc (see for instance [4, Theorem 3.5]). �

2.2. Estimates on small cubes. In this section we prove lower and upper estimates on the
integral of the kernel Ks on small cubes that are crucial in order to obtain the precise value of
the constants in (1.6) and (1.7). The upper estimate holds true for every s ∈ (0, 1), the lower
estimate holds true only in the limit s ↑ 1.

Lemma 2.13 (Estimate from above). Let N ≥ 2, let Σ be a (N − 1)-dimensional plane and
x0 ∈ Σ and denote Σ± the two halfspaces determined by Σ. Let Qr(x0) be a cube centred in x0

with side length r and faces either parallel or orthogonal to Σ and set

Q±r (x0) := Σ± ∩Qr(x0).
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Then, there is C > 0 such that for any s ∈ (0, 1) the estimate

(1− s)
ˆ
Q+
r (x0)

ˆ
Q−r (x0)

Ks(x, y) dγ(x) dγ(y) ≤ 1
s2

N−1−s
2 π

N+1
2
rN−1e−

|x0|
2

2 (1 + Cr) (2.19)

holds.

Proof. Without loss of generality, we can suppose Σ =
{
x ∈ RN : xN = (x0)N

}
and Qr(x0) ={

x ∈ RN : maxi=1,...,N |xi − (x0)i| < r
2

}
. In the sequel we write x = (x′, xN ) ∈ RN−1 × R. We

haveˆ
Q+
r (x0)

ˆ
Q−r (x0)

Ks(x, y) dγ(x) dγ(y)

=
ˆ (x0)N+ r

2

(x0)N
dγ1(yN )

ˆ (x0)N

(x0)N− r2
dγ1(xN )

ˆ
QN−1
r (x′0)

dγN−1(x′)
ˆ
QN−1
r (x′0)

Ks(x, y) dγN−1(y′),

where QN−1
r (x′0) =

{
x′ ∈ RN−1 : maxi=1,...,N−1 |x′i − (x′0)i| < r

2

}
.

We estimate the integrand with respect to the x′ variable:
ˆ (x0)N+ r

2

(x0)N
dγ1(yN )

ˆ (x0)N

(x0)N− r2
dγ1(xN )

ˆ
RN−1

Ks(x, y) dγN−1(y′) (2.20)

=
ˆ (x0)N+ r

2

(x0)N
dγ1(yN )

ˆ (x0)N

(x0)N− r2
dγ1(xN )

ˆ
RN−1

dγN−1(y′)
ˆ ∞

0

M1
t (xN , yN )MN−1

t (x′, y′)
t
s
2 +1 dt

=
ˆ (x0)N+ r

2

(x0)N
dγ1(yN )

ˆ (x0)N

(x0)N− r2
dγ1(xN )

ˆ ∞
0

M1
t (xN , yN )
t
s
2 +1 dt

ˆ
RN−1

MN−1
t (x′, y′)dγN−1(y′)

= r2

2π

ˆ ∞
0

dt

t
s
2 +1(1− e−2t)1/2

ˆ 1
2

0
dyN

ˆ 0

− 1
2

exp
(
−r2 |xN − yN |2

2(1− e−2t)

)
·

· exp
(
−((x0)N + rxN )((x0)N + ryN )

1 + e−t

)
dxN ,

where in the second equality we used Tonelli Theorem and in the third we used thatˆ
RN−1

MN−1
t (x′, y′)dγN−1(y′) = 1, for any t > 0 and x′ ∈ RN−1

and we performed the changes of variables xN → xN−(x0)N
r and yN → yN−(x0)N

r .
Since there exists C > 0 such that, for r sufficiently small,

− |(x0)N |2

(1 + e−t) − Cr ≤ −
((x0)N + rxN )((x0)N + ryN )

(1 + e−t) ≤ − |(x0)N |2

(1 + e−t) + Cr (2.21)

uniformly in t > 0 and |xN |, |yN | ≤ 1, we can estimate the integrand with respect to t in (2.20)
as follows

1
t
s
2 +1(1− e−2t)1/2

ˆ 1
2

0
dyN

ˆ 0

− 1
2

exp
(
−r2 |xN − yN |2

2(1− e−2t)
)

exp
(
−((x0)N + rxN )((x0)N + ryN )

1 + e−t

)
dxN

≤ 1
t
s
2 +1

ˆ 1
2

0
dyN

ˆ 0

− 1
2

exp
(
−r2 |xN − yN |2

2(1− e−2t)

)
dxN

1
(1− e−2t)1/2 exp

(
−|(x0)N |2

1 + e−t

)
(1 + Cr)
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≤ 1
t
s
2 +1

ˆ ∞
0

dyN

ˆ ∞
0

exp
(
−r2 |xN + yN |2

2(1− e−2t)

)
dxN

1
(1− e−2t)1/2 exp

(
−|(x0)N |2

1 + e−t

)
(1 + Cr)

=
(ˆ π/2

0
dθ

ˆ ∞
0

ρe−ρ
2(1+sin(2θ))dρ

)
2
r2

(1− e−2t)1/2

t
s
2 +1 exp

(
−|(x0)N |2

1 + e−t

)
(1 + Cr)

=
(

1
2

ˆ π/2

0

dθ

1 + sin(2θ)

)
2
r2

(1− e−2t)1/2

t
s
2 +1 exp

(
−|(x0)N |2

1 + e−t

)
(1 + Cr)

= 1
r2

(1− e−2t)1/2

t
s
2 +1 exp

(
−|(x0)N |2

1 + e−t

)
(1 + Cr), (2.22)

where we performed the change of variables
rxN√

2(1−e−2t)
= ρ cos θ

ryN√
2(1−e−2t)

= ρ sin θ.
(2.23)

Putting (2.22) in (2.20) and integrating with respect to γN−1(x′), we obtain
ˆ
Q+
r (x0)

ˆ
Q−r (x0)

Ks(x, y) dγ(x) dγ(y)

≤ (1 + Cr) 1
(2π)

N+1
2

ˆ
QN−1
r (x′0)

e−
|x′|2

2 dx′
ˆ ∞

0

(1− e−2t)1/2

t
s
2 +1 exp

(
−|(x0)N |2

1 + e−t

)
dt

≤ (1 + Cr) 1
(2π)

N+1
2
rN−1

ˆ
QN−1

1

e−
|x′0+rx′|2

2 dx′
ˆ ∞

0

(1− e−2t)1/2

t
s
2 +1 exp

(
−|(x0)N |2

1 + e−t

)
dt

≤ (1 + Cr) 1
(2π)

N+1
2
rN−1e−

|x′0|
2

2

ˆ
QN−1

1

dx′
ˆ ∞

0

(1− e−2t)1/2

t
s
2 +1 exp

(
−|(x0)N |2

1 + e−t

)
dt.

Using that HN−1(QN−1
1 ) = 1 we have

ˆ
Q+
r (x0)

ˆ
Q−r (x0)

Ks(x, y) dγ(y) dγ(x) ≤ rN−1(1 + Cr)e−
|x′0|

2

2

· 1
(2π)

N+1
2

ˆ ∞
0

(1− e−2t)1/2

t
s
2 +1 exp

(
−|(x0)N |2

1 + e−t

)
dt.

(2.24)

Let us fix T > 0 and split the integral on the right hand side in order to estimate separately the
integrals on (0, T ) and (T,∞). As

1
(1 + e−t) ≥

1
2

for any t ≥ 0, we obtain
ˆ ∞
T

(1− e−2t)1/2

t
s
2 +1 exp

(
−|(x0)N |2

1 + e−t

)
dt ≤ e−

|(x0)N |
2

2

ˆ ∞
T

dt

t
s
2 +1 = 2

s
T−

s
2 e−

|(x0)N |
2

2 . (2.25)

For every t ≥ 0, it holds (1− e−2t)
1
2 ≤
√

2t
1
2 and

exp
(
−|(x0)N |2

1 + e−t

)
≤ exp

(
−|(x0)N |2

2

)
,
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so we have
ˆ T

0

(1− e−2t)1/2

t
s
2 +1 exp

(
−|(x0)N |2

1 + e−t

)
dt ≤

√
2e−

|(x0)N |
2

2

ˆ T

0

dt

t
s−1

2 +1

= 2
√

2
1− sT

1−s
2 e−

|(x0)N |
2

2 .

(2.26)

By plugging estimates (2.25) and (2.26) into (2.24), multiplying by (1− s) and minimising with
respect to T (the optimal value for the constant is achieved for T = 1/2) we get the thesis. �

Remark 2.14. Notice that we obtain the same estimate even if we replace Q±r (x0) with Σ±.

Lemma 2.15 (Estimate from below). Under the hypotheses and notations of Lemma 2.13, there
exists C > 0 such that the following estimate holds

lim inf
s→1−

(1− s)
ˆ
Q+
r (x0)

ˆ
Q−r (x0)

Ks(x, y) dγ(x) dγ(y) ≥ 1
2
N−2

2 π
N+1

2
rN−1e−

|x0|
2

2 (1− Cr), (2.27)

hence

lim inf
s→1−

(1− s)
rN−1 P γ,Ls (Σ+;Qr(x0)) ≥ 1

2
N−2

2 π
N+1

2
e−
|x0|

2
2 (1− Cr).

Proof. Let Σ and Qr(x0) be as in Lemma 2.13. Let us consider x ∈ Q+
r (x0) and estimate

Js(x) := e−
x2
2

(2π)N/2

ˆ
Q+
r (x0)

Ks(x, y) dγ(y).

It holds

Js(x) =
ˆ
Q+
r (x0)

e−
x2
2

(2π)N/2
dγ(y)

ˆ ∞
0

Mt(x, y)
t
s
2 +1 dt (2.28)

= 1
(2π)N

ˆ ∞
0

dt

t
s
2 +1(1− e−2t)N/2

ˆ
Q+
r (x0)

exp
(
− |x− y|2

2(1− e−2t)

)
exp

(
− x · y

1 + e−t

)
dy

≥(1− Cr)
(2π)N

ˆ ∞
0

exp
(
− |x0|2

1 + e−t

)
dt

t
s
2 +1(1− e−2t)N/2

ˆ (x0)N+ r
2

(x0)N
exp

(
−|xN − yN |

2

2(1− e−2t)

)
dyN ·

·
ˆ
QN−1
r (x0)

exp
(
− |x

′ − y′|2

2(1− e−2t)

)
dy′,

where in the above inequality we applied (2.21) on each addend of x ·y. Now, let us fix δ ∈ (0, 1).
Then, there exists Tδ > 0 such that, for any t ∈]0, Tδ]

γN−1

(
QN−1

r√
1−e−2t−r

(0)
)
≥ 1− δ (2.29)

and

(1− e−2t)1/2
(

1− e−
r2

8(1−e−2t)

)
exp

(
− |x0|2

1 + e−t

)
≥ e−

|x0|
2

2 (
√

2t1/2 − t) ≥ 0 (2.30)
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(indeed, the first factor on the left hand side is ≥
√

2t+ o(t), the second one is ≥ 1− t and the
third is ≥ e−

|x0|
2

2 − ct). By (2.28) we have

Js(x) ≥(1− Cr)
(2π)N

ˆ Tδ

0
exp

(
− |x0|2

1 + e−t

)
dt

t
s
2 +1(1− e−2t)1/2

ˆ (x0)N+ r
2

(x0)N
exp

(
−|xN − yN |

2

2(1− e−2t)

)
dyN ·

·
ˆ
QN−1

r√
1−e−2t

(x′0−x′)
exp

(
−|z

′|2

2

)
dz′

where we performed the change of variables

z′ = y′ − x′√
1− e−2t

.

Let us notice that the integration domain for z′, namely the cube QN−1
r√

1−e−2t
(x′0 − x′), satisfies

QN−1
r√

1−e−2t
(x′0 − x′) ⊃ QN−1

r√
1−e−2t−r

(0)

for any x′ ∈ QN−1
r (x′0). Indeed, if z′ ∈ QN−1

r√
1−e−2t−r

(0), then |x′i − (x′0)i| < r
2 for i = 1, . . . , N − 1

and

|z′i − (x′ − x′0)i| ≤ |z′i|+ |x′i − (x′0)i| <
r

2
√

1− e−2t
− r

2 + r

2 = r

2
√

1− e−2t
.

By using (2.29) we obtain

Js(x) ≥ (1− Cr)
(2π)

N+1
2

ˆ Tδ

0
exp

(
− |x0|2

1 + e−t

)
dt

t
s
2 +1(1− e−2t)1/2

ˆ (x0)N+ r
2

(x0)N
exp

(
−|xN − yN |

2

2(1− e−2t)

)
dyN ·

· γN−1

(
QN−1

r√
1−e−2t−r

(0)
)

≥ (1− δ)(1− Cr)
(2π)

N+1
2

ˆ Tδ

0
exp

(
− |x0|2

1 + e−t

)
dt

t
s
2 +1(1− e−2t)1/2

ˆ (x0)N+ r
2

(x0)N
exp

(
−|xN − yN |

2

2(1− e−2t)

)
dyN .

Now, we integrate with respect to the x variable
ˆ
Q+
r (x0)

ˆ
Q−r (x0)

Ks(x, y) dγ(x) dγ(y) =
ˆ
Q−r (x0)

Js(x) dx

≥ (1− δ)(1− Cr)
(2π)

N+1
2

ˆ Tδ

0
exp

(
− |x0|2

1 + e−t

)
dt

t
s
2 +1(1− e−2t)1/2

·

·
ˆ (x0)N+ r

2

(x0)N
dyN

ˆ (x0)N

(x0)N− r2
exp

(
−|xN − yN |

2

2(1− e−2t)

)
dxN · LN−1(QN−1

r (x′0))

= rN−1 (1− δ)(1− Cr)
(2π)

N+1
2

r2
ˆ Tδ

0
exp

(
− |x0|2

1 + e−t

)
dt

t
s
2 +1(1− e−2t)1/2

·

·
ˆ 1

2

0
dyN

ˆ 0

− 1
2

exp
(
−r2 |xN − yN |2

2(1− e−2t)

)
dxN ,
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where we replaced xN → xN−(x0)N
r and yN → yN−(x0)N

r . Proceeding as in (2.22), we can estimate
from below the integrand with respect to t in (2.28) as follows

exp
(
− |x0|2

1 + e−t

)
1

t
s
2 +1(1− e−2t)1/2

ˆ 1
2

0
dyN

ˆ 0

− 1
2

exp
(
−r2 |xN − yN |2

2(1− e−2t)

)
dxN (2.31)

≥ exp
(
− |x0|2

1 + e−t

)
1

t
s
2 +1

ˆ 1
2

0
dyN

ˆ 1
2

0
exp

(
−r2 |xN + yN |2

2(1− e−2t)

)
dxN ·

1
(1− e−2t)1/2 (1− Cr)

≥ exp
(
− |x0|2

1 + e−t

)(ˆ π/2

0
dθ

ˆ r

2
√

2(1−e−2t)

0
ρe−ρ

2(1+sin(2θ))dρ

)
2
r2

(1− e−2t)1/2

t
s
2 +1 (1− Cr)

≥ exp
(
− |x0|2

1 + e−t

)(
1
2

ˆ π/2

0

dθ

1 + sin(2θ)

)(
1− e−

r2
8(1−e−2t)

)
2
r2

(1− e−2t)1/2

t
s
2 +1 (1− Cr)

= 1
r2

(1− e−2t)1/2

t
s
2 +1

(
1− e−

r2
8(1−e−2t)

)
exp

(
− |x0|2

1 + e−t

)
(1− Cr),

where we performed the change of variables (2.23). Then, it holdsˆ
Q+
r (x0)

ˆ
Q−r (x0)

Ks(x, y) dγ(x) dγ(y)

≥ rN−1 (1− δ)(1− Cr)
(2π)

N+1
2

ˆ Tδ

0

(1− e−2t)1/2

t
s
2 +1

(
1− e−

r2
8(1−e−2t)

)
exp

(
− |x0|2

1 + e−t

)
dt.

(2.32)

In view of (2.30) we have
ˆ Tδ

0

(1− e−2t)1/2

t
s
2 +1

(
1− e−

r2
8(1−e−2t)

)
exp

(
− |x0|2

1 + e−t

)
dt

≥
√

2e−
|x0|

2
2

(ˆ Tδ

0

dt

t
s−1

2 +1
−
ˆ Tδ

0

dt

t
s
2

)
= 2
√

2e−
|x0|

2
2

T 1−s
2

δ

1− s −
T

2−s
2

δ

2− s

 . (2.33)

By plugging estimate (2.33) into (2.32) and multiplying by (1− s) we get

(1− s)
ˆ
Q+
r (x0)

ˆ
Q−r (x0)

Ks(x, y) dγ(x) dγ(y) ≥ (1− δ)(1− Cr)
2
N−2

2 π
N+1

2
rN−1e−

|x0|
2

2

(
T

1−s
2

δ − 1− s
2− sT

2−s
2

δ

)
and letting s→ 1− we obtain

lim inf
s→1−

(1− s)
ˆ
Q+
r (x0)

ˆ
Q−r (x0)

Ks(x, y) dγ(x) dγ(y) ≥ 1
2
N−2

2 π
N+1

2
rN−1e−

|x0|
2

2 (1− Cr)(1− δ).

Since δ is arbitrary, we get the thesis. �

Corollary 2.16. Under the hypotheses of Lemmas 2.13 and 2.15, it holds

lim
r→0+

1
rN−1 lim inf

s→1−
(1− s)

ˆ
Q+
r (x0)

ˆ
Q−r (x0)

Ks(x, y) dγ(x) dγ(y)

= lim
r→0+

1
rN−1 lim sup

s→1−
(1− s)

ˆ
Q+
r (x0)

ˆ
Q−r (x0)

Ks(x, y) dγ(x) dγ(y) = 1
2
N−2

2 π
N+1

2
e−
|x0|

2
2 .

Proof. It is sufficient to notice that the constant in Lemma 2.13 converges to 1
2
N−2

2 π
N+1

2
as

s→ 1−. �
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2.3. Gluing. In this subsection we perform a construction similar to the one in [2] that is going
to be essential to prove the Γ − lim inf result. The sets Ω±δ are defined in (2.1). To do this we
introduce the finite measure

λ := 1
(2π)N/2

e−
|·|2

4 LN . (2.34)

Proposition 2.17. Let Q b RN be a Lipschitz set. Given s ∈ (0, 1), E1, E2 ⊂ RN measurable
sets such that P γ,Ls (Ei;Q) <∞, i = 1, 2, and given δ1 > δ2 > 0 there is a measurable set F such
that

(1) ‖χF − χE1‖L1
γ(Q) ≤ ‖χE1 − χE2‖L1

γ(Q) ,

(2) F ∩
(
Q \Q−δ1

)
= E1 ∩

(
Q \Q−δ1

)
, F ∩ Ω−δ2

= E2 ∩ Ω−δ2
.

(3) For all ε > 0 we have

P γ,Ls (F ;Q) ≤P γ,Ls (E1;Q) + P γ,Ls (E2;Q−δ1+ε) + 2N+1K̃s(ε)

+ C ′(N,Q, δ1, δ2)
(
cN

1− s + c′(Q,N)
s

)
‖χE1 − χE2‖L1

λ
(Q−

δ1
\Q−

δ2
)

+ C ′(N,Q, δ1, δ2)
(
dN

2− s + d′(Q,N)
s

)
‖χE1 − χE2‖L1

λ
(Q) .

Proof. Let ϕ ∈ C∞(RN ) such that 0 ≤ ϕ ≤ 1 in Q, ϕ ≡ 0 in Q−δ2
, ϕ ≡ 1 in Q \ Q−δ1

and
|∇ϕ| ≤ 2

δ1−δ2
. Given u1, u2 two measurable functions, u, v : Q → [0, 1] s.t. [ui]W s,1

γ (Q) < ∞,
i = 1, 2. Define w := ϕu1 + (1− ϕ)u2. For x, y ∈ Q we have

w(x)− w(y) =(ϕ(x)− ϕ(y))u1(y) + ϕ(x)(u1(x)− u1(y))

+ (1− ϕ(x))(u2(x)− u2(y))− u2(y)(ϕ(x)− ϕ(y))

=(ϕ(x)− ϕ(y))(u1(y)− u2(y)) + ϕ(x)(u1(x)− u1(y))

+ (1− ϕ(x))(u2(x)− u2(y)),

and this implies

|w(x)−w(y)| ≤ |ϕ(x)−ϕ(y)||u1(y)−u2(y)|+χ{ϕ6≡0}(x)|u1(x)−u1(y)|+χ{ϕ6≡1}(x)|u2(x)−u2(y)|.

Since {ϕ 6≡ 0} ⊂ Q \Q−δ2
and {ϕ 6≡ 1} ⊂ Q−δ1

we get

[w]
W s,1
γ (Q) ≤

ˆ
Q
|u1(y)− u2(y)|dγ(y)

ˆ
Q
|ϕ(x)− ϕ(y)|Ks(x, y)dγ(x)

+
ˆ
Q\Q−

δ2

dγ(y)
ˆ
Q
|u1(x)− u1(y)|Ks(x, y)dγ(x)

+
ˆ
Q−
δ1

dγ(y)
ˆ
Q
|u2(x)− u2(y)|Ks(x, y)dγ(x)

=:I1 + I2 + I3.

Let us estimate I1. Using (2.10) and

|ϕ(x)− ϕ(y)| ≤ |Dϕ(y)||x− y|+ 1
2

∥∥∥D2ϕ
∥∥∥
∞
|x− y|2,
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for α ∈ {1, 2} we define the constants C(N,Q, α, s) through the following estimateˆ
Q
|x− y|αKs(x, y)dγ(x) ≤ e

|y|2
4

ˆ
Q
|x− y|αK̃s(|x− y|)dλ(x)

≤ e
|y|2

4

ˆ
BRQ (y)

|x− y|αK̃s(|x− y|)dλ(x)

≤ e
|y|2

4

(2π)N/2

ˆ
BRQ (y)

|x− y|αK̃s(|x− y|)dx

= NωN
(2π)N/2

e
|y|2

4

ˆ RQ

0
ρN+α−1dρ

ˆ ∞
0

exp
(
− etρ2

2(e2t−1)

)
t
s
2 +1(1− e−2t)N/2

dt

=: e
|y|2

4 C(N,Q, α, s),

where RQ is large enough to get Q ⊂ BRQ(y). We have

I1 ≤
ˆ
Q
|u1(y)− u2(y)|dγ(y)

ˆ
Q

(
|Dϕ(y)||x− y|+

∥∥D2ϕ
∥∥
∞

2 |x− y|2
)
Ks(x, y)dγ(x)

≤
ˆ
Q
|u1(y)− u2(y)|dλ(y)

ˆ
Q

(
|Dϕ(y)||x− y|+

∥∥D2ϕ
∥∥
∞

2 |x− y|2
)
K̃s(|x− y|)dλ(x)

≤C(Q, δ1, δ2)
(
C(N,Q, 1, s) ‖u1 − u2‖L1

λ
(Q−

δ1
\Q−

δ2
) + C(N,Q, 2, s)

2 ‖u1 − u2‖L1
λ

(Q)

)
≤C ′(N,Q, δ1, δ2)

((
cN

1− s + c′(Q,N)
s

)
‖u1 − u2‖L1

λ
(Q−

δ1
\Q−

δ2
)

+
(
dN

2− s + d′(Q,N)
s

)
‖u1 − u2‖L1

λ
(Q)

)
,

(2.35)

where

cN := 2
N+3

2 Γ
(
N + 1

2

)
e
N+1

2 , c′(Q,N) :=
2RN+1

Q

(N + 1)(1− e−2) , dN := 2
N+3

2 Γ
(
N + 2

2

)
e
N+2

2 ,

d′(Q,N) :=
RN+2
Q

(N + 2)(1− e−2) .

Before going on, let us check that the product (1 − s)C(N,Q, α, s) is bounded for α = 1, 2
and s → 1−. For, if we split C(N,Q, α, s) in the contribution of (ρ, t) ∈ (0, RQ) × (0, 1) and
(ρ, t) ∈ (0, RQ)× (1,∞) with analogous computions as in Lemma 2.9 we have

ˆ RQ

0
ρN+α−1dρ

ˆ ∞
1

exp
(
− etρ2

2(e2t−1)

)
t
s
2 +1(1− e−2t)N/2

dt ≤
RN+α
Q

N + α

2
s(1− e−2) (2.36)

and ˆ RQ

0
ρN+α−1dρ

ˆ 1

0
exp

(
− etρ2

2(e2t − 1)
) dt

t
s
2 +1(1− e−2t)N/2

(2.37)

≤
ˆ 1

0

dt

t
s
2 +1(1− e−2t)N/2

ˆ ∞
0

ρN+α−1 exp
(
− etρ2

2(e2t − 1)
)
dρ
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= 2
N+α−1

2 Γ
(
N + α

2

) ˆ 1

0

(e2t − 1)α/2e
N−α

2 t

t
s
2 +1 dt

≤ 2
N+2α−1

2 Γ
(
N + α

2

)
e
N+α

2

ˆ 1

0
t
α−s

2 −1dt

= 2
N+2α+1

2 Γ
(
N + α

2

)
e
N+α

2

α− s
.

For I2 we notice that trivially
I2 ≤ [u1]

W s,1
γ (Q). (2.38)

For I3 we have

I3 =
ˆ
Q−
δ1

dγ(y)
ˆ
Q−
δ1+ε

|u2(x)− u2(y)|Ks(x, y)dγ(x)

+
ˆ
Q−
δ1

dγ(y)
ˆ
Q\Q−

δ1+ε

|u2(x)− u2(y)|Ks(x, y)dγ(x)

≤[u2]
W s,1
γ (Q−

δ1+ε)
+ 2K̃s(ε)λ(Q−δ1

)λ(Q \Q−δ1+ε) ≤ [u2]
W s,1
γ (Q−

δ1+ε)
+ 2N+1K̃s(ε).

(2.39)

Summing up (2.35), (2.38) and (2.39) we prove (3). Using Lemma 2.10 we deduce that there
exists t? ∈ (0, 1) such that F := {w > t?} and

2P γ,Ls (F ;Q) ≤ [w]
W s,1
γ (Q).

If we specialise the previous estimates choosing u1 := χE1 and u2 := χE2 we obtain the desired
estimate for the local part of the perimeter. Moreover, by construction the set F satisfies points
(1) and (2). �

3. Proof of the Main Theorem

Proof. Liminf inequality Let us prove that E is a Caccioppoli set. If Ω′ b Ω, there is c0 =
c0(Ω′) such that γ(x)γ(y) ≥ c0 for every x, y ∈ Ω′. Therefore, we may compare P γ,Lsn with its
Euclidean counterpart PLsn using (2.8) and we get

CN,sc0 lim sup
n→∞

(1− sn)PLsn(En; Ω′) ≤ lim
n→∞

(1− sn)P γ,Lsn (En; Ω′) <∞.

By [2, Theorem 1], we know that E has locally finite perimeter in Ω. Let us denote by C the
family of all N -cubes in RN

C :=
{
R(x+ rQ) : x ∈ RN , r > 0, R ∈ SO(N)

}
,

where Q :=
(
−1

2 ,
1
2

)N
and let sn, En be such that sn → 1 and χEn → χE in L1

loc(RN ). Our
claim is

lim inf
n→∞

(1− sn)P γ,Lsn (En; Ω) ≥
√

2
π
P γ(E; Ω).

Denote by µ the perimeter measure µ(A) := |DχE |(A) for any Borel set A ⊂ Ω, and notice
that for any x0 ∈ FE there exists a rotation Rx0 ∈ SO(N) such that the blow-up E−x0

r locally
converges in measure to Rx0H as r → 0+ and

lim
r→0+

µ(x0 + rRx0Q)
rN−1 = 1. (3.1)
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Now, for C ∈ C, C ⊆ Ω we set

αn(C) := (1− sn)P γ,Lsn (En;C) and α(C) := lim inf
n→∞

αn(C).

We set Cr(x0) := x0 + rRx0Q and define the measure

ν(F ) :=
ˆ
F
γ(x)dµ(x), ∀F Borel set.

We claim that for µ-a.e. x0 ∈ RN it holds
√

2
π
≤ lim inf

r→0+

α(Cr(x0))
ν(Cr(x0)) . (3.2)

Indeed, if (3.2) is true, the family

Aε :=
{
Cr(x0) ⊂ Ω :

√
2
π
ν(Cr(x0)) ≤ (1 + ε)α(Cr(x0))

}
is a fine covering of µ-almost all of Ω and using a suitable variant of Vitali’s covering Theorem
as done in [17] we get

√
2
π
P γ(E; Ω) ≤ (1 + ε) lim inf

n→∞
(1− sn)P γ,Lsn (En; Ω).

Notice that in the right-hand side of (3.2) we have the Radon-Nikodym derivative of α with
respect to ν.

Since ε > 0 is arbitrary, the Γ − lim inf inequality follows. Therefore we reduce ourselves to
proving (3.2). For x0 ∈ FE, because of the continuity of the density we have

lim
r→0+

 
Cr(x0)

γ(x)dµ(x) = γ(x0). (3.3)

Then, it suffices to show that

lim inf
r→0+

α(Cr(x0))
rN−1 ≥

√
2
π
γ(x0).

From now on, since x0 ∈ FE is arbitrary we assume that Rx0 = I, so Cr(x0) = x0 + rQ. Let us
choose a sequence rk of radii rk → 0 such that

lim inf
r→0+

α(Cr(x0))
rN−1 = lim

k→∞

α(Crk(x0))
rN−1
k

.

For k > 0 we choose i(k) large enough such that the following conditions hold
αi(k)(Crk(x0)) ≤ α(Crk(x0)) + rNk

1− si(k) ≤ rNkffl
Crk (x0) |χEi(k) − χE |dx <

1
k .

Hence we have

α(Crk(x0)) ≥ αi(k)(Crk(x0))− rNk = (1− si(k))P γ,Lsi(k)
(Ei(k);x0 + rkQ)− rNk .

Let us fix δ > 0. Recalling that the halfspace H passes through the origin, (hence βH = H for
any β > 0), and using Proposition 2.17 with Fi(k) = Ei(k) in x0 + rk(Q \ Q−δ ), Fi(k) = x0 + H
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in x0 + rkQ
−
δ/2 and δ1 = δ, δ2 = δ/2 and ε = δ/4, we have that for any k ∈ N there exists a set

Fi(k) such that

P γ,Lsi(k)
(Fi(k);x0 + rkQ) ≤P γ,Lsi(k)

(Ei(k);x0 + rkQ) + P γ,Lsi(k)
(x0 +H;x0 + rk(Q−5δ/4))

+ 2N+1K̃si(k)

(
δ

4

)
+ C1(δ)‖χEi(k) − χH‖L1

λ
(x0+rkQ)

+ C2(δ)
1− si(k)

‖χEi(k) − χH‖L1
λ

(x0+rk(Q−
δ
\Q−

δ/2)).

(3.4)

Multiplying both sides of (3.4) by 1− si(k) we have that for k large enough

(1− si(k))P γ,Lsi(k)
(Fi(k);x0 + rkQ) ≤(1− si(k))(P γ,Lsi(k)

(Ei(k);x0 + rkQ))

+ (1− si(k))P γ,Lsi(k)
(x0 +H;x0 + rk(Q−5δ/4))

+ C2(δ)rNk
k

+ (1− si(k))2N+1K̃si(k)

(
δ

4

)
.

(3.5)

With an argument similar to the one in Lemma 2.13 we can prove that

(1− si(k))P γ,Lsi(k)
(x0 +H;x0 + rk(Q−5δ/4)) ≤ Cδe−

|x0|
2

2 rN−1
k .

Let us focus on the left hand side of (3.5). Using the isoperimetric inequality for the fractional
Gaussian perimeter in analytic form (2.7) we have

P γsi(k)
(Fi(k))

Isi(k)(γ(Fi(k)))
≥

P γsi(k)
(x0 +H)

Isi(k)(γ(x0 +H)) .

It is easy to prove that the function Is is Lipschitz. Therefore, we have

P γsi(k)
(Fi(k)) ≥ (1− Cγ(Fi(k)4(x0 +H)))P γsi(k)

(x0 +H) ≥ (1− CrNk )P γsi(k)
(x0 +H).

Notice that this immediately implies

(1− si(k))(P γ,Lsi(k)
(Fi(k);x0 + rkQ)− P γ,Lsi(k)

(x0 +H;x0 + rkQ))

≥ (1− si(k))(P γ,NLsi(k)
(x0 +H;x0 + rkQ)− P γ,NLsi(k)

(Fi(k);x0 + rkQ))− rk.

We can prove that the difference between the nonlocal terms goes to zero, following [2, Lemma
14] and using (2.10), while for the other terms (note that we need to divide by rN−1

k ) we also
note that it behaves as rNk + δrN−1

k . Thus using Lemma 2.15 we have

(2π)−
N−1

2 lim
k→∞

α(Crk)
rN−1
k

≥ (2π)−
N−1

2 lim
k→∞

(1− si(k))P γ,Lsi(k)
(x0 +H;x0 + rkQ)
rN−1
k

−δ ≥
√

2
π
e−
|x0|

2
2 −δ.

Since δ is arbitrary we get inequality (1.6). �

Proof. Limsup inequality. It is enough to prove the Γ − lim sup inequality for a collection
B of sets of finite Gaussian perimeter which is dense in energy, i.e., such that for every set E
of finite Gaussian perimeter there exists a sequence (Ek) ⊂ B with χEk → χE in L1

loc(RN ) as
k →∞ and lim supk P γ(Ek; Ω) = P γ(E; Ω). Following the ideas in [2, Section 3.2], we consider
as B the collection of polyhedra Π ⊂ RN satisfying P γ(Π; ∂Ω) = 0 as in item (iii) of Proposition
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2.1. Notice that the transversality condition P γ(Π; ∂Ω) = 0 in the definition of B is equivalent
to

lim
δ→0+

P γ(Π; Ω+
δ ∪ Ω−δ ) = 0, (3.6)

where Ω+
δ and Ω−δ are defined in (2.1). Now, given a polyhedron Π ∈ B and δ > 0, we prove

that

lim
s→1−

(1− s)P γ,Ls (Π; Ω) =
√

2
π
P γ(Π; Ω),

lim
s→1−

(1− s)P γ,NLs (Π; Ω) = 2
√

2
π

P γ(Π; Ω+
δ ∪ Ω−δ ).

Passing to the limit as δ → 0+ the transversality condition (3.6) provides the required inequality.
We divide the proof in two steps.
Step 1. Estimate of P γ,Ls (Π; Ω). Let us fix r > 0 and set

(∂Π)r/2 :=
{
x ∈ RN : d(x, ∂Π) < r/2

}
, (∂Π)−r/2 := (∂Π)r/2 ∩Π.

We can find Nr disjoint cubes of side r, say Qr(xi) (i = 1, . . . , Nr), such that
(i) Qr(xi) ⊂ (∂Π)r/2, xi ∈ ∂Π and the faces of Qr(xi) are either parallel or orthogonal to

the face of ∂Π where xi lies;
(ii) any cube Qr(xi) intersects exactly one face of ∂Π and its distance by the other faces of

∂Π is larger than r/2;
(iii) the Nr intersections Dr(xi) := Qr(xi) ∩ Σ are (N − 1)-dimensional cubes that satisfy

HN−1
γ

(
(∂Π ∩ Ω) \

Nr⋃
i=1

Dr(xi)
)

= P γ(Π; Ω)−
Nr∑
i=1
HN−1
γ (Dr(xi))→ 0

as r → 0+.

Figure 1. A possible collection of cubes satisfying (i), (ii) and (iii).

Let us notice that ∣∣∣∣HN−1
γ (Dr(xi))−

1
(2π)N−1 r

N−1e−
|xi|

2
2

∣∣∣∣ ≤ Cr
for some positive constant C independent of i. From now on, for any face Σ of ∂Π, we denote
by Σ+ and Σ− the two parts of the strip determined by Σ lying, respectively, by the side of the
outer and the inner normal to Σ.
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We proceed by splitting the integral giving P γ,Ls (Π; Ω) in three parts:

P γ,Ls (Π; Ω) =
ˆ

Π∩Ω
dγ(x)

ˆ
Πc∩Ω

Ks(x, y)dγ(y)

=
ˆ

(Π∩Ω)\(∂Π)−
r/2

dγ(x)
ˆ

Πc∩Ω
Ks(x, y)dγ(y)

︸ ︷︷ ︸
(A)

+
ˆ

(Π∩Ω)∩
⋃Nr
i=1 Qr(xi)

dγ(x)
ˆ

Πc∩Ω
Ks(x, y)dγ(y)︸ ︷︷ ︸

(B)

+
ˆ

(Π∩Ω)∩
(

(∂Π)−
r/2\

⋃Nr
i=1 Qr(xi)

) dγ(x)
ˆ

Πc∩Ω
Ks(x, y)dγ(y)

︸ ︷︷ ︸
(C)

.

Figure 2. Cases (A), (B) and (C). The x variable is in blue, the y variable is in red.

(A) We notice that, for any x ∈ (Π ∩ Ω) \ (∂Π)−r/2 and y ∈ Πc ∩ Ω, |x− y| ≥ r/2. Then, by
recalling the upper estimate on the kernel Ks(x, y) in Lemma 2.9 it holdsˆ

(Π∩Ω)\(∂Π)−
r/2

dγ(x)
ˆ

Πc∩Ω
Ks(x, y)dγ(y)

≤
ˆ

(Π∩Ω)\(∂Π)−
r/2

dλ(x)
ˆ

Πc∩Ω
K̃s

(
r

2

)
dλ(y) ≤ CN,r <∞,

where λ is the measure defined in (2.34) and the constant CN,r can be estimated as the
integrals with respect to the variable t in Lemmas 2.13 and 2.15.

(B) Let us estimate separatelyˆ
Q−r (xi)

dγ(x)
ˆ

((Πc∩Ω)\(∂Π)r/2

Ks(x, y)dγ(y)

and ˆ
Q−r (xi)

dγ(x)
ˆ

((Πc∩Ω)∩(∂Π)r/2

Ks(x, y)dγ(y).

The first integral can be estimated from above as in case (A) by a positive constant
CN,r depending only on N and r, since |x − y| ≥ r/2. In order to estimate the second
integral, we can observe that, in view of (ii), if Qr(xi) intersects the face Σ ⊂ ∂Π, then
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the contribution of (Πc ∩ Ω ∩ (∂Π)r/2) \ Σ+ to the integral (A) is again estimated from
above by CN,r (the distance between x and y is larger than r/2). Then, it remains to
estimate ˆ

Q−r (xi)
dγ(x)

ˆ
Σ+∩(∂Π)r/2

Ks(x, y)dγ(y).

Assuming for simplicity that Σ lies in a hyperplane xN = c, by repeating the same
computations as in Lemma 2.13, we obtain

ˆ
Q−r (xi)

dγ(x)
ˆ

Σ+∩(∂Π)r/2

Ks(x, y)dγ(y)

≤ rN−1e−
|xi|

2
2 (1 + Cr)r

2

2

ˆ ∞
0

1
(1− e−2t)1/2 exp

(
−|(xi)N |

2

1 + e−t

)
dt

t
s
2 +1

·
ˆ 1/2

0
dyN

ˆ 1/2

0
exp

(
−r2 |xN + yN |2

2(1− e−2t)

)
dxN

≤ 1
s(1− s)2

N−1−s
2 π

N+1
2
rN−1e−

|xi|
2

2 (1 + Cr).

(C) Let us set ∂Π ∩ Ω =
⋃
j Σj , where Σj is the intersection of a face of ∂Π with Ω. Let us

denote by πj the hyperplane containing Σj and let π−j and π+
j the halfspaces determined

by πj and by the inner and the outer normal vector to Π, respectively. Let us consider
the set

(∂Π)−r/2,j :=
{
x ∈ (∂Π)−r/2 ∩ π

−
j : d(x, πj) < r/2

}
.

Notice that (∂Π)−r/2 =
⋃
j(∂Π)−r/2,j and that, if i 6= j, (∂Π)−r/2,i and (∂Π)−r/2,j have non

empty intersection only near the edges of Π.
Let now Σr/2,j be the projection of (∂Π)−r/2,j onto πj . Notice that HN−1

γ (Σr/2,j) ≤
HN−1
γ (Σj) +Cr for r sufficiently small. We thus infer, by Lemma 2.13 and the following

Remark 2.14ˆ
(∂Π)−

r/2\
⋃Nr
i=1 Qr(xi)

dγ(x)
ˆ

Πc∩Ω
Ks(x, y)dγ(y)

≤
∑
j

ˆ
(∂Π)−

r/2,j\
⋃Nr
i=1 Qr(xi)

dγ(x)
ˆ

Πc∩Ω
Ks(x, y)dγ(y) + CN,r

≤
∑
j

ˆ
(∂Π)−

r/2,j\
⋃Nr
i=1 Qr(xi)

dγ(x)
ˆ
π+
j

Ks(x, y)dγ(y) + CN,r

≤ 2
s
2

π(1− s)
∑
j

HN−1
γ

(
Σr/2,j \

Nr⋃
i=1

Dr(xi)
)

(1 + Cr) + CN,r

≤ 2
s
2

π(1− s)H
N−1
γ

(
(∂Π ∩ Ω) \

Nr⋃
i=1

Dr(xi)
)

(1 + Cr) + CN,r

where the constant CN,r estimates the integrals with |x−y| ≥ r/2 and it possibly changes
on each line.
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By putting together the estimates (A), (B), (C) and by summing the Nr contributes of the cubes
Qr(xi) we finally get

(1− s)P γ,Ls (Π; Ω) = (1− s)
ˆ

Π∩Ω
dγ(x)

ˆ
Πc∩Ω

Ks(x, y)dγ(y)

≤ 2
s
2

π

[
HN−1
γ

(
(∂Π ∩ Ω) \

Nr⋃
i=1

Dr(xi)
)

+
Nr∑
i=1
HN−1
γ (Dr(xi))

]
+ Cr + (1− s)CN,r

= 2
s
2

π
P γ(Π; Ω) + Cr + (1− s)CN,r.

(3.7)

We conclude the proof of this step by letting s→ 1− and considering the arbitrariness of r.
Step 2. Estimate of P γ,NLs (Π; Ω). We have

P γ,NLs (Π; Ω) =
ˆ

Π∩Ω
dγ(x)

ˆ
Πc∩Ωc

Ks(x, y)dγ(y) +
ˆ

Π∩Ωc
dγ(x)

ˆ
Πc∩Ω

Ks(x, y)dγ(y).

Let us fix δ > 0 and consider the sets Ω+
δ and Ω−δ . We first estimateˆ

Π∩Ω
dγ(x)

ˆ
Πc∩Ωc

Ks(x, y)dγ(y)

by splitting in different cases
(A) x ∈ (Π ∩ Ω) \ Ω−δ , y ∈ (Πc ∩ Ωc) \ Ω+

δ ,
(B) x ∈ (Π ∩ Ω) \ Ω−δ , y ∈ Πc ∩ Ω+

δ ,
(C) x ∈ Π ∩ Ω−δ , y ∈ (Πc ∩ Ωc) \ Ω+

δ ,
(D) x ∈ Π ∩ Ω−δ , y ∈ Πc ∩ Ω+

δ .

Figure 3. Cases (A), (B), (C) and (D). The x variable is in blue, the y variable is in
red.

Cases (A), (B) and (C) can be treated together, since in that cases Ks(x, y) is uniformly
bounded (the distance between x and y is larger than δ) by a positive constant CN,δ depending
only on N and δ; in other wordsˆ

(Π∩Ω×Πc∩Ωc)\((Π∩Ω−
δ

)×(Πc∩Ω+
δ

))
Ks(x, y)dγ(x)dγ(y) ≤ CN,δ. (3.8)

In the case (D), we haveˆ
Π∩Ω−

δ

dγ(x)
ˆ

Πc∩Ω+
δ

Ks(x, y)dγ(y)

≤
ˆ

Π∩(Ω−
δ
∪Ω+

δ
)
dγ(x)

ˆ
Πc∩(Ω−

δ
∪Ω+

δ
)
Ks(x, y)dγ(y) ≤ P γ,Ls (Π; Ω−δ ∪ Ω+

δ ).
(3.9)
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By summing (3.8) and (3.9) and multiplying by (1− s) we get

(1− s)
ˆ

Π∩Ω
dγ(x)

ˆ
Πc∩Ωc

Ks(x, y)dγ(y)

≤ (1− s)CN,δ + (1− s)P γ,Ls (Π; Ω−δ ∪ Ω+
δ )

≤ (1− s)CN,δ + 2
s
2

π
P γ(Π; Ω−δ ∪ Ω+

δ ),

(3.10)

where the last inequality is a consequence of the first step with Ω−δ ∪ Ω+
δ in place of Ω. By

switching Π and Πc in (3.10) and summing up the two contributions, we get the thesis. �

4. Convergence of local minimisers

We begin this section generalising [2, Proposition 16] to the radial kernel K̃s defined in Lemma
2.9.

Proposition 4.1. Let Ω ⊆ RN , u ∈ BV (Ω) and Ω′ b Ω. If we set

FK̃s(u; Ω′) :=
ˆ

Ω′
dx

ˆ
Ω′
|u(x)− u(y)|K̃s(|x− y|)e−

|x−y|2
4 dy,

we have

lim sup
s→1−

(1− s)FK̃s(u; Ω′) ≤ CN lim sup
|h|→0+

ˆ
Ω′

|u(x+ h)− u(x)|
|h|

dx ≤ CN |Du|(Ω). (4.1)

Proof. Observe immediately that the second inequality is well known, see e.g. [3, Remark 3.25],
hence the central lim sup is finite. For h ∈ RN we define

g(h) :=
ˆ

Ω′

|u(x+ h)− u(x)|
|h|

dx

and fix L > lim sup|h|→0+ g(h). Then there exists δL > 0 such that Ω′ + h ⊂ Ω for all h ∈ BδL
and

L ≥ g(h) for any 0 < |h| ≤ δL. (4.2)

Multiplying both sides of (4.2) by |h|e−
|h|2

4 K̃s(|h|) and integrating with respect to the variable
h on BδL we have

L

ˆ
BδL

|h|K̃s(|h|)e−
|h|2

4 dh ≥
ˆ
BδL

g(h)|h|K̃s(|h|)e−
|h|2

4 dh (4.3)

=
ˆ
BδL

e−
|h|2

4 dh

ˆ
Ω′
|u(x+ h)− u(x)|K̃s(|h|)dx.

Moreover, summing up estimates (2.37) and (2.36) with α = 1 and RΩ = δL, we have

LNωN

(
δN+1
L

N + 1
2

s(1− e−2) + 2
N+3

2 Γ
(
N + 1

2

)
e
N+1

2

1− s

)

≥ LNωN
ˆ δL

0
rNK̃s(r)dr = L

ˆ
BδL

|h|K̃s(|h|)dh ≥ L
ˆ
BδL

|h|K̃s(|h|)e−
|h|2

4 dh.

(4.4)
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Now we notice that

FK̃s(u; Ω′) =
¨
{Ω′×Ω′∩|x−y|≤δL}

|u(x)− u(y)|K̃s(|x− y|)e−
|x−y|2

4 dxdy

+
¨
{Ω′×Ω′∩|x−y|>δL}

|u(x)− u(y)|K̃s(|x− y|)e−
|x−y|2

4 dxdy

=
ˆ
BδL

e−
|h|2

4 dh

ˆ
Ω′
|u(x+ h)− u(x)|K̃s(|h|)dx

+
ˆ
Bc
δL

e−
|h|2

4 dh

ˆ
Ω′
|u(x+ h)− u(x)|K̃s(|h|)dx

≤
ˆ
BδL

e−
|h|2

4 dh

ˆ
Ω′
|u(x+ h)− u(x)|K̃s(|h|)dx

+ 2NωN ‖u‖L1(Ω)

ˆ ∞
δL

rN−1K̃s(r)e−
r2
4 dr,

(4.5)

where the second term in the right-hand side in (4.5) is finite thanks to Lemma 2.9.
To conclude, putting together (4.4), (4.3) and (4.5), multiplying by (1− s) and passing to the

lim sup for s→ 1− we obtain

CNL ≥ lim sup
s→1−

(1− s)FK̃s(u; Ω′),

and for L→ lim sup|h|→0+ g(h) we have proved the first inequality in (4.1). �

We now prove that if a sequence (En) of local minimisers of P γsn(·; Ω) converges to E and
sn ↑ 1 then E is a local minimiser of P γ(·; Ω). Recall that a set E is a local minimiser of
P γs (·; Ω) if P γs (E; Ω) ≤ P γs (F ; Ω) whenever E4F b Ω.

Theorem 4.2 (Convergence of local minimisers). Let (sn)n∈N be a sequence in (0, 1) such
that sn ↑ 1 and, for any n ∈ N, let En be a local minimiser of P γsn(·; Ω) such that χEn → χE in
L1

loc(RN ). Then
lim sup
n→∞

(1− sn)P γsn(E; Ω′) <∞ ∀Ω′ b Ω, (4.6)

the limit set E is a local minimiser of P γ(·; Ω) and (1−sn)P γsn(En; Ω′)→
√

2
π P

γ(E; Ω′) as n→∞
for any Ω′ b Ω such that P (E; ∂Ω′) = 0.

Proof. We firstly prove (4.6). Thanks to Proposition 4.1 with u = χEn and to (2.10), racalling
the measure λ defined in (2.34) we have

lim sup
n→∞

(1− sn)P γ,Lsn (En; Ω′) ≤ lim sup
n→∞

(1− sn)P λ,L
K̃sn

(En; Ω′) <∞

and
lim sup
n→∞

(1− sn)P γ,NLsn (En; Ω′) ≤ 2 lim sup
n→∞

(1− sn)P λ
K̃sn

(Ω′) <∞.

Now we prove the second part of the claim for compactly supported balls BR(x) in Ω. The
extension to general Ω′ b Ω goes as in [2]. Since in the sequel there is no ambiguity, for
any % > 0 we denote B%(x) simply with B%. Consider the monotone set function αn(A) =
(1− sn)P γ,Lsn (En;A) for every open set A ⊂ Ω, and extended to any F by

αn(F ) := inf{αn(A); F ⊂ A ⊂ Ω, A open}.
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Clearly, αn is regular (see definition in [2, Pag. 23]). Thanks to (4.6) and to the De Giorgi-Letta
Theorem (see [3, Theorem 1.53]), the sequence αn weakly converges to a regular monotone and
superadditive set function α. We now prove that if BR b Ω and α(∂BR) = 0, then E is a local
minimiser of the functional P γ(·;BR) and

lim
n→∞

(1− sn)P γsn(En;BR) = P γ(E;BR).

Indeed, let F ⊂ Ω be a Borel set such that E4F b BR; then, there exists r < R such that
E4F ⊂ Br. By the Γ-limsup inequality (1.7) there exists a sequence (Fn) such that

lim
n→∞

|(Fn4F ) ∩BR| = 0 and lim
n→∞

(1− sn)P γsn(Fn;BR) =
√

2
π
P γ(F ;BR).

According to Proposition 2.17, given % and t such that r < % < t < R, we can find sets Gn such
that for any n ∈ N

Gn = En in RN \Bt, Gn = Fn in B%

and for any ε > 0 the inequality

P γ,Ls (Gn;BR) ≤P γ,Ls (Fn;BR) + P γ,Ls (En;BR \B%−ε) + 2N+1K̃s(ε)

+ C ′(N,R, δ1, δ2)
(
cN

1− s + c′(R,N)
s

)
‖χEn − χFn‖L1

λ
(Bt\B%)

+ C ′(N,R, δ1, δ2)
(
dN

2− s + d′(R,N)
s

)
‖χEn − χFn‖L1

λ
(BR)

holds. By the local minimality of En we infer

P γsn(En;BR) ≤ P γsn(Gn;BR).

We now estimate P γ,NLsn (Gn;BR) := I + II, see (2.6). We have

I =
ˆ
Gn∩Bt

dγ(y)
ˆ
Ecn∩BcR

Ksn(x, y)dγ(x) +
ˆ
En∩(BR\Bt)

dγ(y)
ˆ
Ecn∩BcR

Ksn(x, y)dγ(x)

≤2NK̃sn(R− t) +
ˆ
En∩(BR\Bt)

dγ(y)
ˆ
Ecn∩(BR′\BR)

Ksn(x, y)dγ(x)

+
ˆ
En∩(BR\Bt)

dγ(y)
ˆ
Ecn∩BcR′

Ksn(x, y)dγ(x)

≤2NK̃sn(R− t) +
ˆ
En∩(BR′\Bt)

dγ(y)
ˆ
Ecn∩(BR′\Bt)

Ksn(x, y)dγ(x)

+
ˆ
En∩(BR\Bt)

dγ(y)
ˆ
Ecn∩BcR′

Ksn(x, y)dγ(x)

≤P γ,Lsn (En;BR′ \Bt) + 2N
(
K̃sn(R− t) + K̃sn(R′ −R)

)
,

for any R′ ∈ (R, d(x, ∂Ω)). Since II can be estimated in an analogous way we have

P γ,NLsn (En;BR) ≤ 2P γ,Lsn (En;BR′ \Bt) + 2N+1
(
K̃sn(R− t) + K̃sn(R′ −R)

)
,

and so
lim sup
n→∞

(1− sn)P γ,NLsn (En;BR) ≤ 2 lim sup
n→∞

(1− sn)P γ,Lsn (En;BR′ \Bt).
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Finally
√

2
π
P γ(E;BR) ≤ lim inf

n→∞
(1− sn)P γ,Lsn (En;BR) ≤ lim inf

n→∞
(1− sn)P γsn(En;BR)

≤ lim inf
n→∞

(1− sn)P γsn(Gn;BR)

≤ lim inf
n→∞

(1− sn)P γ,Lsn (Gn;BR) + lim sup
n→∞

(1− sn)P γ,NLsn (Gn;BR)

≤ lim inf
n→∞

(1− sn)P γ,Lsn (Fn;BR) + 3 lim sup
n→∞

(1− sn)P γ,Lsn (En;BR′ \B%−ε)

+ C lim
n→∞

|(En4Fn) ∩ (Bt \B%)|.

(4.7)

The last limit is zero, as E = F in Bt \ B% and |(En4E) ∩ BR| → 0, |(Fn4F ) ∩ BR| → 0 as
n→∞. Using [2, Proposition 22], and recalling that α(∂BR) = 0, we infer

lim
R′→R,%→R,ε→0

lim sup
n→∞

(1− sn)P γ,Lsn (En;BR′ \B%−ε) = lim
δ→0

lim sup
n→∞

αn(BR+δ \BR−δ) = 0,

and finally (4.7) yields
√

2
π
P γ(E;BR) = lim

n→∞
(1− sn)P γsn(Fn;BR) =

√
2
π
P γ(F ;BR).

Therefore E is a local minimiser of P γ(·;BR). Choosing F = E the inequalities in (4.7) become

lim
n→∞

(1− sn)P γsn(En;BR) = lim
n→∞

(1− sn)P γ,Lsn (En;BR) =
√

2
π
P γ(E;BR).
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