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Filling minimality and
Lipschitz-volume rigidity of convex bodies

among integral current spaces
By Giuliano Basso at Bonn, Paul Creutz at Bonn and Elefterios Soultanis at Jyväskylä

Abstract. In this paper we consider metric fillings of boundaries of convex bodies. We
show that convex bodies are the unique minimal fillings of their boundary metrics among all
integral current spaces. To this end, we also prove that convex bodies enjoy the Lipschitz-vol-
ume rigidity property within the category of integral current spaces, which is well known in the
smooth category. As further applications of this result, we prove a variant of Lipschitz-volume
rigidity for round spheres and answer a question of Perales concerning the intrinsic flat conver-
gence of minimizing sequences for the Plateau problem.

1. Introduction

1.1. Statement of main results. Suppose that Y is a closed orientable smooth mani-
fold equipped with a distance function inducing the same topology. Following Gromov [25]
the filling volume FillVol1.Y / is defined to be the infimum over the volumes of complete
Riemannian manifolds X bounded by Y . A Riemannian manifold M is called minimal filling
if Voln.M/ D FillVol1.𝜕M/, where 𝜕M is equipped with the subspace metric. Calculating
filling volumes and finding minimal fillings is notoriously difficult. Even the filling volume of
simple spaces, such as S1 endowed with the angular metric, is unknown. Whether the mini-
mal filling in this case is the round hemisphere is called Gromov’s filling area conjecture and,
despite remarkable partial results [6, 39, 49], it remains widely open.

The deep work of Burago and Ivanov [14, 15] shows that Riemannian manifolds which
are C 3-close to full dimensional submanifolds of Euclidean or hyperbolic space are minimal
fillings. See also [40] for a recent generalization of their work to symmetric spaces of negative
curvature. However not every Y admits a smooth minimal filling as defined above. By a result
of Wenger [46] the situation changes when, in the definition of the filling volume, smooth
Riemannian manifolds are replaced by integral current spaces, see [43]. These are spaces which
carry an analytically defined analogue of a fundamental class. In particular, there are well
defined notions of boundary and volume for such spaces, and hence it is possible to define the
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filling volume of a closed integral current space as well as when an integral current space is a
minimal filling, see, e.g., [38, Section 2.7].

Integral current spaces include, but are not limited to, compact oriented manifolds
equipped with a metric that is bi-Lipschitz equivalent to a Riemannian (or Finsler) metric.
As a Lipschitz manifold, a convex body C � Rn admits a canonical integral current JC K of
multiplicity one which satisfies in particular 𝜕JC K D J𝜕C K. The first main result in this paper
is that convex bodies are the unique minimal fillings of their boundaries among all integral
current spaces.

Theorem 1.1. Let C � Rn be a convex body and suppose � W 𝜕C ! X is an isometric
embedding into an integral current space X D .X; T / such that �#J𝜕C K D 𝜕T . Then

(1.1) Mir.T / � Voln.C /

with equality if and only if the map � extends to an isometry C ! X .

Here, Mir.T / denotes the inscribed Riemannian mass of T , a variant of the usual mass
M.T / as introduced by Ambrosio and Kirchheim [4]. We refer to Section 2.5 for the precise
definitions and mention here that Mir.T /, resp. Mir.𝜕T /, correspond to the volume Voln.X/,
resp. boundary volume Voln�1.𝜕X/, when X is a Riemannian manifold. Furthermore, one
always has M.T / �Mir.T /. If we additionally assume that X is infinitesimally Euclidean, in
the sense of having property (ET) [36], then the two notions of mass agree. We remark that the
mass estimate (1.1) remains true if Mir.T / is replaced by M.T /; see Lemma 6.1. This answers
a question by Sormani mentioned in her talk [42, 57:15–58:00]. However, the substantial part
of Theorem 1.1 is the rigidity, which remains open for the Ambrosio–Kirchheim mass M.

The proof of Theorem 1.1 is based on ideas of Burago and Ivanov [14, 15]. They use
the following observation: Let X , M be closed orientable Riemannian manifolds of the same
dimension and f WX !M a 1-Lipschitz map of degree one. If Voln.X/ � Voln.M/, then f
is a metric isometry. Variants of this statement have been obtained and applied by Besson,
Courtois and Gallot [9], Burago and Ivanov [13–15] and Cecchini, Hanke and Schick [16].
Generalizations to the singular settings of Alexandrov and limit RCD spaces were obtained
by Li [33] and Li and Wang [35]. See also [34] for an overview on these so-called Lipschitz-
volume rigidity results. The following variant, which is needed in the proof of Theorem 1.1,
does not impose curvature assumptions on the domain space X and is hence of independent
interest.

Theorem 1.2. Let .X; T / be an n-dimensional integral current space, let C � Rn

be a convex body and let f WX ! Rn be a 1-Lipschitz map such that f#.𝜕T / D J𝜕C K. If
M.𝜕T / � Voln�1.𝜕C/ and M.T / � Voln.C /, then f is an isometry onto C .

Note that the condition on the degree of f is replaced by f#.𝜕T /D J𝜕C K. Using Federer’s
constancy theorem, it is easy to see that this implies f#T D JC K.

As a corollary of Theorem 1.2 we derive the Lipschitz-volume rigidity of the round
sphere Sn with respect to the inscribed Riemannian area functional. Here round sphere refers
to the standard sphere Sn endowed with its intrinsic metric as a Riemannian manifold. Indeed
for simple reasons Sn endowed with the subspace metric of RnC1 cannot be Lipschitz-volume
rigid; see Section 8 below.
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Corollary 1.3. Let .X; T / be an n-dimensional integral current space with 𝜕T D 0 and
let f WX ! Sn be a 1-Lipschitz map such that f#T D JSnK. If Mir.T / � Voln.Sn/, then f is
an isometry.

Besides the proofs of Theorem 1.1 and Corollary 1.3, as another application of Theo-
rem 1.2 we answer the following question of Perales concerning the Euclidean unit ball Bn.
This question was promoted in the same talk by Sormani [42, 53:12–55:40].

Question 1.4 (Perales). Assume .Mi / is a sequence of compact orientable Riemannian
n-manifolds with

lim
i!1

Voln.Mi / � Voln.Bn/

which converges in the intrinsic flat sense to a limit spaceX . Assume further thatfi WMi!RN

are 1-Lipschitz maps such that fi#J𝜕MiK D JSn�1K for all i 2 N, the fi take values in a com-
pact set K � RN , and .fi / converges in the sense of the Sormani Arzelà–Ascoli theorem [41]
to a limit map f WX ! K. Does it follow that f is an isometry X ! Bn?

Informally, Question 1.4 asks about the interplay of the “extrinsic” flat convergence of
integral currents in RN and the intrinsic flat convergence of the corresponding “intrinsic met-
rics” on the currents. In general, Question 1.4 has a negative answer, see Example 7.4 below.
However, as a consequence of Theorem 1.2 the answer is positive if one imposes a suitable
bound on the boundary volumes.

Corollary 1.5. Let C � Rn be a convex body. Suppose .Xi / is a sequence of integral
current spaces with

lim inf
i!1

M.𝜕Ti / � Voln�1.𝜕C/ and lim inf
i!1

M.Ti / � Voln.C /

which converges in the intrinsic flat sense to a limit spaceX . Assume further that fi WXi ! RN

are 1-Lipschitz maps such that fi#.𝜕Ti / flat converges to J𝜕C K, the fi take values in a compact
setK � RN , and .fi / converges in the sense of Theorem 7.1 to a 1-Lipschitz map f WX ! K.
Then f is an isometry X ! C .

1.2. Strategy of proof. We prove the filling volume rigidity Theorem 1.1 by deduc-
ing it from the Lipschitz-volume rigidity Theorem 1.2 following the arguments of Burago and
Ivanov [14, 15]. The key idea is to consider a linear isometric embedding ˆ WRn ! L into
the injective Banach space L WD L1.Sn�1/. There is an inner product on L whose induced
norm agrees with k � k1 on ˆ.Rn/ and which does not increase the inscribed Riemannian
masses of rectifiable currents in L (see Lemma 6.2). The inner product induces an ortho-
gonal projection onto ˆ.Rn/ which, together with the injectivity of L , implies the existence
of a map f WX ! Rn with f#.𝜕T / D J𝜕C K that does not increase inscribed Riemannian vol-
umes. Although the argument of Burago–Ivanov showing that f is 1-Lipschitz does not gen-
eralize directly to integral current spaces, Theorem 1.1 follows from a double application of
Theorem 1.2 which circumvents this problem.

To prove our Lipschitz-volume rigidity result, Theorem 1.2, we use a recently established
decomposition result for 1-dimensional currents [10] to obtain the case n D 1. The general
case n � 2 can be reduced to the 1-dimensional case by considering suitable slicings of the
current T . Let H � Rn be an .n � 1/-dimensional hyperplane and % WRn ! H the ortho-
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gonal projection onto H . We defineb% D % ı f . The slices Tp D hT;b%; pi, which are defined
for Hn�1-almost every p 2 H , are 1-dimensional integral currents and satisfy f#Tp D JCpK,
where Cp D C \ %�1.p/ is isometric to a closed interval in R. We prove that the integral
current space Xp D .setTp; Tp/ satisfies

f#Tp D JCpK; M.Tp/ � H1.Cp/ and M.𝜕Tp/ � H0.𝜕Cp/:

The crucial step of the proof is to show the last inequality concerning the mass of 𝜕Tp. This
follows essentially from Lemmas 3.1 and 3.2, which show that f is mass-preserving in a certain
sense. Thus we may deduce from the case n D 1 that f is an isometry

spthT;b%; pi ! spthJC K; %; pi

for Hn�1-almost every p 2 H . By Proposition 4.1 below this suffices to conclude that f is an
isometry.

To deduce Corollary 1.3, we verify that the assumptions of Theorem 1.2 are satisfied for
the coning map Cf WCX ! CSn D BnC1.

1.3. Organization. The paper is organized as follows. After reviewing definitions and
well established facts concerning measure theory, volume functionals and metric currents in
Section 2, we prove the basic properties of mass preserving Lipschitz maps needed in this
paper in Section 3.

The proof of Theorem 1.2 is given in Section 4, starting with the special 1-dimensional
case in Section 4.1, the reduction to the 1-dimensional case in Section 4.2, and the conclusion
in Section 4.3. Section 5 is devoted to the proof of Corollary 1.3, while Theorem 1.1 is proved
in Section 6, with the filling estimate proved in Section 6.1, and the rigidity statement in Sec-
tion 6.2. In Section 7.1 we discuss intrinsic flat convergence, while Section 7.2 is devoted to the
counterexample to the question of Perales and the proof of Corollary 1.5. Lastly, in Section 8,
we discuss possible extensions of our results and further counterexamples.

Acknowledgement. We would like to thank Alexander Lytchak for bringing Ques-
tion 1.4 to our attention. We are also grateful to Alexander Lytchak, Giacomo Del Nin, Raquel
Perales, and Roger Züst for several helpful remarks. We thank the anonymous referees for their
very helpful suggestions. The research for this article was done while the third named author
(Elefterios Soultanis) was at Radboud University. He gratefully acknowledges the support of
the REI fellowship program.

After the completion of the first version of this article, we were informed by Raquel
Perales that she and Giacomo Del Nin have obtained a similar result to Theorem 1.2 indepen-
dently. In their work [20] they discuss in detail the motivation for Question 1.4, which is to
give a direct argument for a gap in the proof of [27, Theorem 1.3]. See also [28] and [1, 2, 26].

2. Preliminaries

2.1. Basic notation and definitions. We write N D ¹1; 2; : : : º for the set of positive
integers. Moreover, we let Rn denote the set of n-tuples of real numbers with the convention
that R0 consists of exactly one point. A convex body is a compact convex subset of Rn with
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non-empty interior. Let X D .X; d/ be a metric space. We denote by BX .x; r/ (or simply
B.x; r/) the closed ball of radius r centered at x, and by Bn the n-dimensional Euclidean
unit ball BRn.0; 1/. Unless otherwise specified, subsets of X are always endowed the subspace
metric. We write X for the metric completion of X and we tacitly identify X with its canonical
isometric copy in X . A map f WX ! Y between metric spaces X , Y is called L-Lipschitz,
for some constant L � 0, if d.f .x/; f .y// � Ld.x; y/ for all x, y 2 X . The smallest L � 0
such that f is L-Lipschitz is denoted by Lip f . We use LIP.X/ to denote the set of Lipschitz
functionsX ! R. A metric space Y is called injective if wheneverX is a metric space,A � X
and f WA! Y is a 1-Lipschitz map, then f can be extended to a 1-Lipschitz map Nf WX ! Y .
A well-known theorem of McShane (see, e.g., [11, Theorem 1.27]) states that R is an injective
metric space. Hence, each of the Banach spaces `n1 WD .R

n; k � k1/ is injective as well. We
say that X and Y are bi-Lipschitz equivalent if there exists a bijection f WX ! Y such that f
and f �1 are both Lipschitz maps. A separable metric space X is called Lipschitz n-manifold
if every x 2 X has a closed neighborhood which is bi-Lipschitz equivalent to Bn.

2.2. Measure theory. As is common in geometric measure theory, we follow the con-
vention that a measure on a metric space X is a countably subadditive function

� WP .X/! Œ0;1�

such that �.;/ D 0. Throughout the forthcoming discussion � will always be a measure on X .
We say that A � X is �-measurable if

�.M \ A/C �.M n A/ D �.M/

for all M � X . The collection of all �-measurable subsets of X forms a � -algebra and the
restriction of � to this � -algebra is countably additive. The measure � is Borel if all Borel
subsets of X are �-measurable. Furthermore, � is Borel regular if � is Borel and for every
M � X there is a Borel set A � X such that M � A and �.M/ D �.A/. If X is separa-
ble and a Borel subset of its completion X , then every finite Borel measure � on X is tight,
see [37, Theorem 3.2]). The latter means that for every Borel set A � X and " > 0, there is
a compact set K � A with �.A nK/ < ". The support of � is the closed set spt� which con-
sists of those x 2 X such that �.B.x; r// > 0 for every r > 0. If � is a finite Borel measure,
then its support is separable. We say that � is concentrated on A � X if �.X n A/ D 0. If X
is separable, then � is concentrated on its support (see [23, Theorem 2.2.16]). Indeed, it is
consistent with (but not implied by) ZFC that the latter holds true without assuming X to be
separable (compare [23, Section 2.1.6 and Theorem 2.2.16]). In particular, if one assumes this
additional set-theoretic axiom, finite Borel measures on every complete metric space are tight.
In [4, 10] this is a standing assumption because there the authors want to treat also currents
in non-separable metric spaces X , and even for separable X some arguments therein rely on
embedding X isometrically into the non-separable Banach space `1. For the proof of Theo-
rems 1.1 and 1.2 it can be avoided to assume this axiom. But since we will not justify the use of
auxiliary results from the articles [4, 10], the reader is invited to also consider it an additional
standing assumption throughout this paper.

2.3. Volumes of rectifiable spaces. By Carathéodory’s criterion (see, e.g., [23, p. 75])
the Hausdorff n-measure on X , which will be denoted by Hn

X (or simply Hn), is Borel regu-
lar. In this paper, following a common convention, we normalize Hn

X so that Hn
Rn equals the
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Lebesgue measure Ln. Hausdorff measures can sometimes be calculated in terms of the so-
called area formula. The area formula relies on the following metric version of the Rademacher
theorem due to Kirchheim [30]: if f WA! X is a Lipschitz map from a Borel setA � Rn, then,
for almost every p 2 A, there exists a seminorm mdfp on Rn such that

d.f .q/; f .p// D mdfp.q � p/C o.jq � pj/

as q ! p with q 2 A. Now the area formula [30] states that the function x 7! #¹f �1.x/º is
Hn
X -measurable and

(2.1)
Z
A

Jacb.mdfp/ dp D
Z
X

#¹f �1.x/º dHn.x/:

Here Jacb.�/ denotes the Busemann Jacobian of a seminorm � WRn ! Œ0;1/which is defined
as !n=Ln.B� /, where B� is the unit ball of � and !n WD Ln.Bn/. More generally, a map
Jac� W †n ! Œ0;1/ from the space †n of seminorms on Rn is a Jacobian if

(i) Jac�.j � j/ D 1 for the standard Euclidean norm j � j on Rn,

(ii) Jac�.� 0/ � Jac�.�/ if � 0 � � ,

(iii) Jac�.� ı T / D jdetT j Jac�.�/ for any linear map T W Rn ! Rn.

The properties above are known as normalization, monotonicity, and transformation law, re-
spectively. See [17, Section 4.1] and the references therein for a more detailed overview. Two
Jacobians which play an important role in this paper are Gromov’s mass� Jacobian, defined by

Jacm�.�/ WD sup
P

2n

Ln.P /
;

where the supremum is taken over all parallelepipeds P containing B� , and Ivanov’s inscribed
Riemannian Jacobian

Jacir.�/ WD
!n

Ln.J.B� //
;

where J.B� / � Rn is the John ellipsoid of B� , that is, the ellipsoid of maximal Ln-measure
contained in B� . It follows from John’s theorem (compare, e.g., [5]) that if �1 2 †n1 and
�2 2 †

n2 , then

(2.2) Jacir.�1 � �2/ D Jacir.�1/ � Jacir.�2/;

where �1 � �2 2 †n1Cn1 is defined by .�1 � �2/.v1; v2/ D
p
�1.v1/2 C �2.v2/2.

A metric space X is called n-rectifiable if there are Borel subsets ¹Aiºi2N of Rn and
bi-Lipschitz embeddings ¹'i WAi ! Xºi2N such that Hn

X is concentrated on
S
i2N '

i .Ai /.
Without loss of generality, one can assume additionally that 'i .Ai / and 'j .Aj / are disjoint if
i ¤ j . For n-rectifiable spaces, the density

‚n.B; x/ D lim
r!0

Hn.B \ B.x; r//

!nrn

exists and is equal to one for Hn-almost every x 2 B . Moreover, by the area formula (2.1) the
Hausdorff n-measure of a Borel set B � X is given by

Hn.B/ D
X
i2N

Z
.'i /�1.B/

Jacb.md'ip/ dp:
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When X has “non-Euclidean tangents” (i.e., the metric differentials md'ip are not neces-
sarily induced by inner products) different Jacobians yield distinct notions of volume. Indeed,
every Jacobian Jac� gives rise to a Borel regular measure ��X on X by setting

(2.3) ��X .B/ WD
X
i2N

Z
.'i /�1.B/

Jac�.md'ip/ dp

for Borel sets B � X . It follows from the chain rule for metric differentials and the transfor-
mation law (iii) that this does not depend on the choice of the coordinate charts ¹'iº. Further-
more, by the normalization axiom (i) of Jacobians and (2.1) one always has ��Rn D Hn

Rn . In
Section 2.5 we will see an analogous construction for the mass measure of rectifiable currents.

2.4. Metric currents. Using ideas of De Giorgi [19] and extending the classical theory
of currents, which goes back to de Rham [21] and Federer and Fleming [24], Ambrosio and
Kirchheim introduced metric currents in [4]. Variants of their definitions have been proposed
and studied by several authors (see [31,32,47,48]). In this paper we follow the original approach
of Ambrosio–Kirchheim and review its basic aspects below.

For each n � 0 let Dn.X/ denote the set of all tuples .h; �1; : : : ; �n/, where h WX ! R
is a bounded Lipschitz function and �i 2 LIP.X/.

Definition 2.1. Let X be a complete metric space. We say that an .nC 1/-multilinear
map T WDn.X/! R is an n-current if the following holds:

(1) T .h; �.j /1 ; : : : ; �
.j /
n /! T .h; �1; : : : ; �n/ as j !1, whenever �.j /i ! �i pointwise

and Lip�.j /i � C for some uniform constant C .

(2) T .h; �1; : : : ; �n/D 0whenever, for some i 2 ¹1; : : : ; nº, �i is constant on an open neigh-
borhood of spt h.

(3) There is a finite Borel measure � on X such that

(2.4) jT .h; �1; : : : ; �n/j �

nY
iD1

Lip�i

Z
X

jhj d�

for all .h; �1; : : : ; �n/ 2 Dn.X/.

The minimal measure � satisfying (2.4) is called the mass of T and is denoted by kT k.
Any n-current T extends to a functional T W L1.X; kT k/ � LIP.X/n ! R satisfying (2.4).
We define M.T / WD kT k.X/, sptT WD sptkT k, and write Mn.X/ for the vector space of all
n-currents on X . It is easy to check that Mn.X/ becomes a Banach space when it is endowed
with the norm M. � /. There are natural push-forward, restriction and boundary operators on
Mn.X/, which we recall next.

Every Lipschitz map f WX ! Y between complete metric spaces X , Y induces a push-
forward map f# WMn.X/!Mn.Y / on the level of currents. Indeed, for every T 2Mn.X/we
define

f#T .h; �1; : : : ; �n/ D T .h ı f; �1 ı f; : : : ; �n ı f /

for all .h; �1; : : : ; �n/ 2 Dn.Y /. In particular, we note that

(2.5) kf#T k � .Lipf /nf#kT k:
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If f WX ! Y is a Lipschitz map between arbitrary metric spaces, then f extends to a unique
Lipschitz map Nf WX ! Y . By abuse of notation, we will usually write f# instead of Nf#.

Given an n-current T 2Mn.X/, `2 ¹0; : : : ; nº, and an .`C1/-tuple!D .g; !1; : : : ; !`/,
where g WX ! R is a bounded Borel function and !i 2 LIP.X/, the restriction T ! of T by
! is an .n � `/-current defined by

T !.h; �1; : : : ; �n�`/ D T .h g; !1; : : : ; !`; �1; : : : ; �n�`/

for all .h; �1; : : : ; �n�`/ 2 Dn�`.X/. In particular, T A WD T 1A is a well-defined n-cur-
rent for any Borel set A � X .

Finally, if n � 1 the boundary 𝜕T of T 2Mn.X/ is the n-multilinear map

𝜕T WDn�1.X/! R

defined by
𝜕T .h; �1; : : : ; �n�1/ D T .1; h; �1; : : : ; �n�1/:

We say that T is a normal current if 𝜕T 2Mn�1.X/. The vector space of all normal n-currents
on X is denoted by Nn.X/ and we set N0.X/ DM0.X/. The spaces Nn.X/ equipped with
the norm N.T / DM.T /CM.𝜕T / are Banach spaces, with the convention N.T / DM.T / if
T 2 N0.X/.

2.5. Rectifiable currents and their Finsler mass. Every � 2L1.Rn/ induces an n-cur-
rent J�K 2Mn.Rn/ given by

J�K.h; �1 : : : ; �n/ D
Z

Rn

�h detŒ𝜕i�j �ni;jD1 dHn

for all .h; �1; : : : ; �n/ 2 Dn.Rn/. We say that T 2Mn.X/ is rectifiable (resp. integer-recti-
fiable) if there are compact sets Ki � Rn, functions ‚i 2 L1.Rn/ (resp. ‚i 2 L1.RnIZ/)
with spt‚i � Ki and bi-Lipschitz embeddings 'i WKi ! X such that

(2.6) T D
X
i2N

'i#J‚iK and M.T / D
X
i2N

M.'i#J‚iK/:

We denote by Rn.X/ (resp. In.X/) the collection of all rectifiable (resp. integer-rectifiable)
currents onX . The mass of a rectifiable current T has the following very concrete interpretation
in terms of the Gromov mass* volume �m�,

(2.7) kT k.A/ D
X
i2N

Z
A\'i .Ki /

j‚i ı '
�1
i .x/j d�m�.x/

for every Borel set A � X (see, for example, [49, Lemma 2.5 (2)]). More generally, given
a Jacobian Jac� and the associated volume measure ��X , the Finsler mass measure kT k� is
defined by

(2.8) kT k�.A/ WD
X
i2N

Z
A\'i .Ki /

j‚i ı '
�1
i .x/j d��X

for every Borel subset A � X . It can be shown that this definition is independent of the chosen
representation (2.6). It moreover satisfies natural estimates, e.g., kf#T k

� � .Lipf /nkT k� for
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every Lipschitz map f WX ! Y , and is comparable to the usual mass measure

kT k� � kT kir and C�1 � kT k � kT k� � C � kT k

for a constant C > 0 depending only on n, see [49, Lemma 2.5]. In particular, one has

sptkT k� D sptT :

We call M�.T / WD kT k�.X/ the Finsler mass associated to the Jacobian Jac�.
We remark that T 2 Rn.X/ if and only if kT k is concentrated on an n-rectifiable set and

kT k � Hn. Moreover, if T 2 Rn.X/, then kT k is concentrated on the n-rectifiable set

(2.9) setT D
²
x 2 X W lim inf

r#0

kT k.B.x; r//

!nrn
> 0

³
;

and any Borel set A � X on which kT k is concentrated contains setT up to an Hn-negligible
set (see [4, Theorem 4.6] ). The set defined in (2.9) is called characteristic set of T .

2.6. Slicing. Let T 2 Rn.X/ and % WX ! Rk be a Lipschitz map with k 2 ¹1; : : : ; nº.
In [4, Theorems 5.6 and 5.7], Ambrosio and Kirchheim show that there is a natural slic-
ing operator Rk 3 p 7! hT; %; pi 2 Rn�k.X/ which is defined for Hk-almost every p 2 Rk .
Each slice hT; %; pi is concentrated on sptT \ %�1.p/, and for every  2 Cc.Rk/,

(2.10)
Z

Rk

hT; %; pi .p/ dp D T . ı %; %1; : : : ; %k/;

where %i denotes the i th coordinate function of %. Moreover,

(2.11)
Z

Rk

khT; %; pik dp D kT .1; %/k;

where .1; %/ is shorthand for .1; %1; : : : ; %k/. In particular, the following slicing inequality
holds true: Z

Rk

M .hT; %; pi/ dp � .Lip %/k M.T /:

These properties uniquely characterize the slices hT; %; pi. Indeed, if T p 2Mn�k.X/ are con-
centrated on L \ %�1.p/ for some � -compact set L, satisfy

R
Rk M.T p/ dp <1 and (2.10),

then T p D hT; %; pi for Hk-almost every p 2 Rk . Hence, for example, one has that the slicing
and the push-forward operator commute. More concretely, if f WX ! Y and % W Y ! Rk are
Lipschitz maps, then

(2.12) f#hT;b%; pi D hf#T; %; pi

for Hk-almost every p 2 Rk , whereb% D % ı f .
Naively one might suspect that spthT; %; pi D sptT \ %�1.p/ up to a set of Hn�k-mea-

sure zero. However, as the following well-known example shows this cannot be true in general.

Example 2.2. Fix n � 1 and let ¹xi W i 2 Nº be a dense subset of RnC1. Further, let
.ri /i2N be a sequence of positive real numbers such that

P
i2N r

n
i is finite. We put

Ti D 𝜕JB.xi ; ri /K and T D
X
i2N

Ti :
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By construction, T is an integer-rectifiable n-current. Moreover, it is easy to check that

sptT D RnC1;

and thus
sptT \ %�1.p/ Š R

for every orthogonal projection % onto a hyperplane. But hT; %; pi is an integer-rectifiable
0-current for Hn-almost every p 2 Rn. In particular, the support of hT; %; pi consists of finitely
many points, and so it cannot be equal to sptT \ %�1.p/ up to a set of H0-measure zero.

The following lemma shows that such an equality is true if instead of spthT; %; pi and
sptT the corresponding characteristic sets are considered. The proof is based on (after isometri-
cally embeddingX into `1) an application of the coarea inequality [22], and [4, Theorems 9.1,
9.5 and 9.7]. We omit the details.

Lemma 2.3. If T 2 Rn.X/ and % WX ! Rk with k � n is a Lipschitz map, then up to
a set of Hn�k-measure zero

(2.13) set hT; %; pi D setT \ %�1.p/

for Hk-almost every p 2 Rk .

Notice that if k D n, then (2.13) is an actual equality, since the empty set is the only
H0-null set.

2.7. Integral current spaces. The space of integral currents In.X/ is defined as

In.X/ D In.X/ \ Nn.X/:

Integral currents are the most important class of currents in this article. The seminal boundary-
rectifiability theorem [4, Theorem 8.6] states that 𝜕T 2 In�1.X/ whenever T 2 In.X/ and
n � 1. We also remark that In.X/ is a closed additive subgroup of Nn.X/ for every n � 0
and, if T 2 In.X/, then f#T 2 In.Y / for every Lipschitz map f WX ! Y . Moreover, for any
Lipschitz map % W X ! Rk one has hT; %; pi 2 In�k.X/ for Hk-almost every p 2 Rk . The
following definition is due to Sormani and Wenger (see [43, Definition 2.46]).

Definition 2.4 (Integral current space). A pair .X; T / is called n-dimensional integral
current space if X is a metric space and T 2 In.X/ is such that setT D X . We generally do
not emphasize the dependence of the integral current space .X; T / on T and denote it only
by X .

To any integral current space .X; T /, one can naturally associate a boundary

𝜕X D .set 𝜕T; 𝜕T /;

which is also an integral current space. Prime examples of integral current spaces are compact
connected orientable Lipschitz manifolds.

Example 2.5. Let M be a compact orientable connected Lipschitz n-manifold. Every
such manifold admits a finite atlas of bi-Lipschitz maps

 i WUi !M;
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where Ui � Rn�1 � Œ0;1/ are open and the a.e. defined differentials of the coordinate tran-
sitions  �1j ı  i are orientation preserving. By choosing a subordinate Lipschitz partition of
unity and defining it locally in the charts, one can as in the smooth case integrate Lipschitz dif-
ferential forms h d�1 ^ � � � ^ d�n. In particular, one obtains an (up to sign) uniquely defined
fundamental integer-rectifiable current JM K 2 In.M/. Furthermore, by the Lipschitz version
of Stokes’ theorem, the manifold boundary of M coincides with the current boundary of JM K.
That is 𝜕JM K D J𝜕M K and hence JM K 2 Ik.M/. Finally, since the mass measure of JM K
equals D �m�M , and M is locally bi-Lipschitz equivalent to an open set in Rn�1 � Œ0;1/, we
deduce that set.JM K/ DM . Hence, .M; JM K/ is an integral current space.

Every convex body C � Rn is a compact connected oriented Lipschitz n-manifold. In
particular, JC K is an integral n-current, and so the term J𝜕C K appearing in Theorem 1.2 is
a well-defined integral .n � 1/-current and satisfies J𝜕C K D 𝜕JC K. Other examples of integral
current spaces are the metric manifolds considered in [7].

3. Mass preserving 1-Lipschitz maps

In this section we make some simple general observations concerning mass preserving
1-Lipschitz maps. The first of these is the following.

Lemma 3.1. Let X; Y be complete metric spaces, let f WX ! Y be 1-Lipschitz and let
T 2 Rn.X/. If M.T / �M.f#T /, then

(3.1) kf#T k.A/ D kT k.f
�1.A//

for every Borel set A � Y . Furthermore,

(3.2) f .sptT / � sptf#T and kf#T k.Y n f .setT // D 0:

We remark in passing that the inclusion in (3.2) is strict in general. Indeed, let sn denote
the oriented segment in R2 connecting .n; 1

n
/ to .n; 1

nC1
/ and consider the integral current

T D
P
n2NJsnK. Letting f WR2 ! R denote the projection onto the second coordinate, we

find that f .sptT / D .0; 1�, but sptf#T D Œ0; 1�.

Proof of Lemma 3.1. The inequality kf#T k.A/ � kT k.f
�1.A// is readily implied by

the map f being 1-Lipschitz, the characterization of the mass measure given in [4, Proposi-
tion 2.7] and the definition of the push-forward. Applying this inequality to A and Y n A, we
obtain

M.f#T / D kf#T k.A/C kf#T k.Y n A/

� kT k.f �1.A//C kT k.X n f �1.A// DM.T /:

By our assumption M.T / �M.f#T /, this inequality chain must be rigid and hence (3.1)
follows.

To finish the proof, we show (3.2). If y D f .x/ with x 2 sptT and U is an open neigh-
borhood of y, then f �1.U / is an open neighborhood of x and hence

kf#T k.U / D kT k.f
�1.U // > 0:
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In particular, it follows that f .sptT / � sptf#T . Finally,

kf#T k.Y n f .setT // D kT k.X n setT / D 0

which completes the proof.

Our next lemma deals with currents whose push-forward is equal to a current induced by
the fundamental class of a Lipschitz manifold.

Lemma 3.2. Let X be a complete metric space, let f WX ! RN be 1-Lipschitz and let
T 2 In.X/ be such that f#T D JM K, where M � RN is a compact n-dimensional Lipschitz
submanifold. If further M.T / � Hn.M/, then for every Borel set A � X , it follows that
f .A \ setT / is Hn-measurable with

Hn.f .A \ setT // D kT k.A/;

H0.f �1.p/ \ setT / D 1

for Hn-almost every p 2M .

Naively one might hope that f preserves the mass of all Borel subsets A � X even in
the more general setting of Lemma 3.1. There are however two obstacles. The more obvious
one is that multiplicities might add up. This is excluded here by assuming T to be integer-
rectifiable and that the push-forward current has “multiplicity one”. The more subtle one is
that sptT n setT is always a kT k-nullset but might in general have positive Hn-measure (see
Example 2.2). In particular, we cannot exclude the possibility that the image of this set does
have positive Hn-measure.

Proof of Lemma 3.2. We may suppose X D sptT . In particular, it follows from Lem-
ma 3.1 that f .X/ �M . As T 2 In.X/, there are Borel setsBi � Rn, bi-Lipschitz embeddings
'i WBi ! X and Borel functions‚i WBi ! Z n ¹0º such that setT and S D

S
i2N 'i .Bi / are

equal up to a set of Hn-measure zero,

(3.3) T D
X
i2N

'i#J‚iK and kT k D
X
i2N

k'i#J‚iKk:

Since H0 is the counting measure, one has for every Borel set A � X that

Hn.f .A \ S// �

Z
RN

H0.f �1.p/ \ A \ S/ dHn.p/(3.4)

�

X
i2N

Z
M

H0.f �1.p/ \ A \ 'i .Bi // dHn.p/:

Moreover, using the area formula, that the metric differentials md.f ı 'i /q are almost every-
where Euclidean and the monotonicity of Jacobians, we getZ

M

H0.f �1.p/ \ A \ 'i .Bi // dHn.p/ �

Z
'�1

i
.A/\Bi

Jacb.md.f ı'i /q/ dq(3.5)

D

Z
'�1

i
.A/\Bi

Jacm�.md.f ı'i /q/ dq

�

Z
'�1

i
.A/\Bi

Jacm�.md.'i /q/ dq
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for every i 2 N. Therefore, using that j‚i .q/j � 1 for all q 2 Bi , we arrive at

Hn.f .A \ S// �
X
i2N

Z
'�1

i
.A/\Bi

j‚i .x/j � Jacm�.md.'i /q/ dq(3.6)

D

X
i2N

k'i#J‚iKk.A/ D kT k.A/;

where in the last equality we used (3.3). Since f is Lipschitz, and setT and S agree up to
Hn-nullsets, we have that

Hn.f .A \ setT // D Hn.f .A \ S//

and
H0.f �1.p/ \ A \ setT / D H0.f �1.p/ \ A \ S/

for Hn-almost every p 2M . Now, as in the proof of Lemma 3.1,

Hn.f .setT // � Hn.f .A \ setT //CHn.f ..X n A/ \ setT //(3.7)

� kT k.A/C kT k.X n A/ DM.T /:

Lemma 3.1 tells us that f .setT / � sptJM K DM , and so

Hn.M n f .setT // D kJM Kk.M n f .setT //

D kT k.X n f �1.f .setT /// � kT k.X n setT / D 0:

In particular, (3.7) is rigid and hence so are (3.6), (3.5) and (3.4). By our previous observations
this gives the claimed equalities.

4. Proof of Theorem 1.2

4.1. The case n D 1. In the following we prove Theorem 1.2 for n D 1. The general
case n � 2 is proved in Section 4.3 by reducing it to this case. In the proof we use metric
1-currents induced by curves. For a Lipschitz curve 
 W Œa; b�! X into a metric space X , the
integral 1-current J
K WD 
#JŒa; b�K is given by

J
K.h; �1/ D
Z b

a

h.
.t//.�1 ı 
/
0.t/ dt; .h; �1/ 2 D1.X/:

Note that the boundary of J
K is given by 𝜕J
K.h/ D h.
.b// � h.
.a// for all h 2 D0.X/.
If 
 is a loop and 
 jŒa;b/ is injective, we say that 
 is a simple Lipschitz loop. By [10, Theo-
rem 5.3], the integral 1-current T admits a decomposition

T D
X
i2I

J
iKC
X
j2J

J�j K;

where I; J are countable index sets, each 
i is an injective Lipschitz curve, each �j is a simple
Lipschitz loop,

M.T / D
X
i2I

M.J
iK/C
X
j2J

M.J�j K/ D
X
i2I

`.
i /C
X
j2J

`.�j /
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and

(4.1) M.𝜕T / D
X
i2I

M.𝜕J
iK/C
X
j2J

M.𝜕J�j K/ D 2jI j:

By assumption,
M.𝜕T / DM.f#.𝜕JB1K// DM.J1K � J�1K/ D 2

and hence (4.1) implies jI j D 1. Henceforth we will denote the unique injective curve 
j
by 
 W Œa; b�! X , and by x1; x2 the endpoints of 
 . Since 𝜕T D 𝜕J
K D Jx2K � Jx1K and
f#.𝜕T / D J1K � J�1K, we conclude that f .x2/ D 1 and f .x1/ D �1. In particular, since f
is 1-Lipschitz,

2 � d.x1; x2/ � `.
/ � `.
/C
X
j2J

`.�j / DM.T / � 2:

This implies that d.x1; x2/ D 2, T D J
K, and 
 is a geodesic connecting x1 to x2. Since
X D setT D sptT D 
.Œa; b�/, we conclude that X is isometric to B1. In particular, because
X is connected and 1;�1 2 f .X/, it follows that f must be surjective. Since f WX ! B1 is
a surjective 1-Lipschitz map, we conclude that f is an isometry.

4.2. From slice-isometry to isometry. The aim of this subsection is to prove the fol-
lowing proposition which shows that, to obtain Theorem 1.2, it suffices to prove that f is an
isometry when restricted to certain slices.

Proposition 4.1. Let n � 2, X be an integral n-current space, let C � Rn be a convex
body and let f WX ! Rn be a 1-Lipschitz map such that f#T D JC K and M.T / � Hn.C /.
Further, suppose that k 2 ¹1; : : : ; n � 1º and for every orthogonal projection % WRn ! Rk the
following holds: For Hk-almost every p 2 Rk the restriction of f is an isometry

spthT; % ı f; pi ! spthJC K; %; pi:

Then f is an isometry X ! C .

Here, we use the convention that % WRn ! Rk is called orthogonal projection if there
are a k-plane H � Rn and an isometry � WRk ! H such that � ı % is equal to the orthogonal
projection Rn ! H .

To prove Theorem 1.2, we will apply Proposition 4.1 with k D n � 1 to reduce it to the
n D 1 case handled in the previous subsection. Another natural option would be to take k D 1
reducing the theorem to the n � 1 case and performing an induction argument. For the proof
of Proposition 4.1 we need the following simple consequence of the Lebesgue density theorem
and Fubini’s theorem.

Lemma 4.2. Let n; k 2 N with k < n and let A1; A2 � Rn be Hn-measurable sub-
sets such that Hn.Ai / > 0. Then there exist an orthogonal projection % WRn ! Rk and an
Hk-measurable E � %.A1/ \ %.A2/ with Hk.E/ > 0 such that for every p 2 E the respec-
tive sections %�1.p/ \ Ai are Hn�k-measurable with Hn�k.%�1.p/ \ Ai / > 0.

Proof. Let pi 2 Ai be Lebesgue density points, that is, ‚n.Ai ; pi / D 1, and we set
v WD p1 � p2. For F WD A1 \ .A2 C v/, we claim that Hn.F / > 0. Indeed, using the fact that
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Hn.A2 \ B.p2; r// D Hn..A2 C v/ \ B.p1; r// for any r > 0, and the inclusion-exclusion
principle, we find that

Hn.A1 \ B.p1; r//CHn.A2 \ B.p2; r//

D Hn..A1 [ .A2 C v// \ B.p1; r//CHn.F \ B.p1; r//

and consequently‚n.A1; p1/C‚n.A2; p2/ D 2 � 1C‚n.F; p1/, implying that F has den-
sity 1 at p1.

Now we choose an orthogonal projection % WRn ! Rk with %.v/ D 0. Then

%.F / � %.A1/ \ %.A2 C v/ D %.A1/ \ %.A2/:

Since F is Hn-measurable with Hn.F / > 0, it follows from Fubini’s theorem that there is
an Hk-measurable set E � %.F / with Hk.E/ > 0 such that for every p 2 E the section
%�1.p/ \ F is Hn�k-measurable with Hn�k.%�1.p/ \ F / > 0. Since F � A1, F � A2 C v
and %�1.p/C v D %�1.p/, we have Hn�k.%�1.p/ \ Ai / > 0 for i D 1; 2. Finally, by Fubini
%�1.p/ \ Ai is Hn�k-measurable for almost every p 2 Rk and hence we may also assume
that %�1.p/ \ Ai is Hn�k-measurable for every p 2 E.

Proof of Proposition 4.1. Let x1; x2 2 X and ı > 0. Note that the balls B.xi ; ı/ are
kT k-measurable with kT k.B.xi ; ı// > 0. By Lemma 3.2, setting Bi WD B.xi ; ı/ \ setT , the
sets Li WD f .Bi / are Hn-measurable with Hn.Li / > 0.

Due to Lemma 4.2, there are an orthogonal projection % WRn ! Rk and a measurable
E � %.L1/ \ %.L2/ with Hk.E/ > 0 such that %�1.p/ \ Li is of positive Hn�k-measure
for every p 2 E. By Lemma 2.3 we may further assume that for every p 2 E,

(4.2) sethT;b%; pi Db% �1.p/ \ setT

up to an Hn�k null set and by our assumption that for every p 2 E the restriction of f defines
an isometry spthT;b%; pi ! spthJC K; %; pi.

Now let p 2 E. Then for each i the slice %�1.p/ \ Li is of positive Hn�k-measure. As
f is 1-Lipschitz and f .b% �1.p/ \ Bi / D %�1.p/ \ Li , this implies that alsob% �1.p/ \ Bi is
of positive Hn�k-measure. Thus we deduce from (4.2) that

Hn�k.Bi \ sethT;b%; pi/ D Hn�k.b% �1.p/ \ Bi / > 0:
In particular, we may respectively choose points yi 2 Bi \ spthT;b%; pi. Since f is an isometric
embedding on sethT;b%; pi, we have that

d.y1; y2/ D jf .y1/ � f .y2/j:

Since yi 2 B.xi ; ı/ and f is continuous, by letting ı ! 0 we conclude that

d.x1; x2/ D jf .x1/ � f .x2/j:

In particular, since x1; x2 2 X were arbitrary, it follows that f defines an isometric embedding.
By Lemma 3.1, f .X/ is dense in C , and so it follows that Nf WX ! C is an isometry. Since
f#T D JC K, we find that X D setT D sptT D X and hence the claim follows.

4.3. Proof of Theorem 1.2. In the following, we suppose that n � 2. The case when
n D 1 is treated in Section 4.1. To prove the theorem, it suffices to show that the assumptions
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of Proposition 4.1 are satisfied for k D n � 1. Let % WRn ! Rn�1 be an orthogonal projec-
tion and set Tp D hT;b%; pi, Xp D setTp, and Cp D C \ %�1.p/, we claim that the following
conditions are satisfied for Hn�1-almost every p 2 Rn�1:

(1) .Xp; Tp/ is an integral current space,

(2) f#Tp D JCpK,

(3) M.Tp/ � H1.Cp/,

(4) M.𝜕Tp/ � H0.𝜕Cp/.

Condition (1) follows directly from the properties of the slicing operator discussed in
Section 2.6.

By applying the constancy theorem (see [24, Corollary 3.13]) to the integral n-cycle
S D f#T � JC K, it follows that S D 0 and thus f#T D JC K. Alternatively, this can be seen by
applying the deformation theorem (see, e.g., [8, Theorem A.2]). Hence, using (2.12), we find
that

f#Tp D f#hT;b%; pi D hf#T; %; pi D hJC K; %; pi

for Hn�1-almost every p. Notice that JCpK 2M1.Rn/ are concentrated on %�1.p/, satisfy
(2.10), and

R
Rn�1 M.JCpK/ dp <1. Hence, as these properties uniquely determine the slices

hJC K; %; pi, it follows that hJC K; %; pi D JCpK for Hn�1-almost every p, and thus (2) follows.
We proceed by showing (3). By (2), it follows that M.Tp/ � H1.Cp/. Hence, using Fubini
and (2.11), we find that

Hn.C / D

Z
Rn�1

H1.Cp/ dp �
Z

Rn�1

M.Tp/ dp DM.T .1;b%// �M.T /:

By our assumption M.T / � Hn.C / this equality is rigid, and so (3) follows.
Finally, we prove (4). By Lemma 3.1, f .spt.𝜕T // � 𝜕C , and hence by Lemma 3.2 for

Hn�1-almost every p,
H0.b% �1.p/ \ set 𝜕T / � 2:

However, for Hn�1-almost every p we also have by Lemma 2.3 that

b% �1.p/ \ set 𝜕T D seth𝜕T;b%; pi D set 𝜕Tp D spt 𝜕Tp:

Together with f#.𝜕Tp/ D J𝜕CpK this implies (4).
Now, since Theorem 1.2 is valid when n D 1, it follows that the restriction of f is an

isometry spthT;b%; pi ! spthJC K; %; pi for Hn�1-almost every p 2 Rn�1. Therefore, as %was
arbitrary, Proposition 4.1 tells us that f is an isometry, as desired.

5. Proof of Corollary 1.3

The Euclidean cone CX over a metric space X D .X; d/ is the metric space obtained
when endowing X � Œ0; 1� with the pseudometric

dC ..x; r/; .y; s// WD

´p
r2 C s2 � 2rs cos.d.x; y// if d.x; y/ < �;

r C s otherwise,

which defines a metric on the quotient space CX D X � Œ0; 1�=�, where .x; 0/ � .y; 0/ for all
x; y 2 X . Compare also [12, Section 3.6]. Observe in particular that the Euclidean cone over
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the round sphere Sn is isometric to the flat diskBnC1. We denote byH WX � Œ0; 1�! CX and
e WX ! CX the Lipschitz maps defined byH.x; t/D Œ.x; t/� and e.x/D Œ.x; 1/�. It is a conse-
quence of the monotonicity of the cosine function on Œ0; �� that e is 1-Lipschitz. For the same
reason, also if f WX! Y is 1-Lipschitz, thenCf WCX!CY defined by Œ.x; r/� 7! Œ.f .x/; r/�

is 1-Lipschitz as well.
For any T 2 In.X/, we set

CT WD H#.T � J0; 1K/;

where the product current T � J0; 1K 2 InC1.X � Œ0; 1�/ is defined as in [8, Section 3.3]. By
construction, CT 2 InC1.CX/, and one has

set.CT / D H.setT � Œ0; 1�/; sptCT D H.sptT � Œ0; 1�/;

𝜕.CT / D C.𝜕T /C e#T; .Cf /#CT D C.f#T /:

Moreover, if T is represented as in (2.6) by functions‚i 2 L1.Rn;Z/ and bi-Lipschitz embed-
dings 'i WKi!X , then setting e‚i .x; t/ WD‚.x/, eKi WDKi � Œ0; 1� ande'i .x; t/ WD Œ.'i .x/; t/�
we find that

(5.1) CT D
X
i2N

e'i#Je‚iK and M.CT / D
X
i2N

M.e'i#Je‚iK/:
The following lemma shows that the Mir-mass ofCT is analogous to the volume of cones

in Euclidean space.

Lemma 5.1. If T 2 In.X/, then

(5.2) Mir.CT / D
1

nC 1
�Mir.T /:

Note that for M, instead of (5.2), only a weaker inequality without the factor 1
nC1

holds,
compare [8, Lemma 3.5]. For this reason we can prove Corollary 1.3 only for Mir.

Proof. For a Lipschitz map ' WK ! X with K � Rn we consider the corresponding
mape' WK � Œ0; 1�! CX as above. Then for almost every .x; r/ 2 K � Œ0; 1� one has for every
.v; s/ 2 Rn �R D RnC1 that

.mde'.x;r/.v; s//2 D lim
"#0

.r C "s/2 C r2 � 2r.r C "s/ cos.d.'.x C "v/; '.x///
"2

:

Using that 1 � cos.x/ D x2

2
CO.x4/, we deduce

mde'.x;r/.v; s/ Dqr2 � .md'x.v//2 C s2:

Thus by (2.2) one has

Jacir.mde'.x;r// D Jacir.r �md'x/ D rn � Jacir.md'x/:

Using this observation, the chartse'i as in (5.1), and Fubini, we obtain

Mir.CT / D

Z 1

0

rn dr �Mir.T / D
1

nC 1
�Mir.T /;

as desired.
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Proof of Corollary 1.3. Notice that CX D .CX;CT / is an integral current space and
Cf WCX ! BnC1 is a 1-Lipschitz map with .Cf /#CT D JBnC1K (see the discussion before
Lemma 5.1). Furthermore, by Lemma 5.1,

M.CT / �Mir.CT / D
1

nC 1
�Mir.T / �

1

nC 1
� Voln.Sn/ D VolnC1.BnC1/

and
M.𝜕.CT // DM.e#T / �M.T / �Mir.T / � Voln.Sn/:

Hence Theorem 1.2 implies that Cf WCX ! BnC1 is an isometry.
Now if x; y 2 X are such that dCX .Œ.x; 1/�; Œ.y; 1/�/ D dBnC1.f .x/; f .y// < 2, then

d.x; y/ < � and p
2 � 2 cos.d.x; y// D

p
2 � 2 cos.dSn.f .x/; f .y///:

Since the cosine function is injective on Œ0; ��, this implies that d.x; y/ D dSn.f .x/; f .y//.
To prove the equality also for x; y 2 X with dBnC1.f .x/; f .y// D 2, we choose z 2 X with
x ¤ z ¤ y. Since f is bijective and f .z/ lies on an Sn-geodesic from f .x/ to f .y/, the
previous case gives

d.x; y/ � d.x; z/C d.z; y/

D dSn.f .x/; f .z//C dSn.f .z/; f .y//

D dSn.f .x/; f .y//:

Since f is 1-Lipschitz, this implies the claim.

6. Proof of Theorem 1.1

6.1. The lower bound. We start by proving inequality (1.1). It is readily implied by the
following lemma since M �Mir.

Lemma 6.1. Let C � Rn be a convex body and suppose � W 𝜕C ! X is an isometric
embedding into an integral current space X such that �#J𝜕C K D 𝜕T . Then

M.T / � Voln.C /:

The following proof is essentially based on an observation due to Gromov [25, Proposi-
tion 2.1.A].

Proof. Since � is an isometric embedding and spt �#J𝜕C K � �.𝜕C/, we can conclude that
j#.𝜕T / D J𝜕C K, where j W 𝜕X ! 𝜕C denotes the inverse of �. Let h WRn ! `n1 be the identity
map, which is 1-Lipschitz. Obviously, h ı j is also 1-Lipschitz, and since `n1 is injective,
there exists a 1-Lipschitz extension f WX ! `n1 of h ı j . Since Rn and `n1 are bi-Lipschitz
equivalent, it follows directly from the constancy theorem (see [24, Corollary 3.13]) that the
n-cycle S D f#T � h#JC K is equal to the zero current and thus f#T D h#JC K. In particular,
M.T / �M.h#JC K/. But

M.h#JC K/ D �m�.h.C // D �m�.C / DM.JC K/;

where in the second equality we have used that Jacm�.k � k1/ D 1.
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6.2. Rigidity. In this subsection we use the techniques of Burago and Ivanov developed
in [14, 15] to deduce the rigidity statement in Theorem 1.1 from the Lipschitz-volume rigidity
result Theorem 1.2.

For the proof we need the following auxiliary spaces: We denote by L WD L1.Sn�1/
the Banach space of (equivalence classes of) Borel measurable essentially bounded functions
Sn�1 ! R endowed with the usual norm k � k1. Furthermore, we consider the space

L 2 WD L
2.Sn�1/

equipped with the inner product

hf; gi2 WD
n

Voln�1.Sn�1/

Z
Sn�1

fg dHn�1

and the corresponding norm kf k2 WD
p
hf; f i2. The need for this particular normalization

constant will become clear below. The properties of these spaces relevant for the proof of
Theorem 1.1 are summarized in the following lemma.

Lemma 6.2. The following hold true:

(1) L is injective.

(2) L 2 is a Hilbert space.

(3) The canonical embedding I WL ! L 2 is Lipschitz and

(6.1) kI#T k
ir
� I#kT k

ir

for every T 2 Rn.L /.

(4) There is a linear map ˆ WRn ! L such that ˆ and the composition I ıˆ WRn ! L 2

are both isometric embeddings.

Proof. To prove (1), it suffices to combine McShane’s extension theorem with [14, Lem-
ma 5.1]. Moreover, (2) holds true since k � k2 is just a rescaling of the usual L2-norm.

A straightforward application of Hölder’s inequality shows that I is
p
n-Lipschitz. To

complete the proof of (3), it remains to show (6.1). In light of (2.8) and (2.3) it suffices to show
that

(6.2) Jacir.md.I ı '/x/ � Jacir.md'x/ for Hn-almost every x 2 E;

for every bi-Lipschitz map ' W E!L from a Borel setE � Rn. If N' W Rn!L is a Lipschitz
extension of ', then md'x D md N'x for Hn-almost every x 2 E. Thus we may assume that '
is defined on Rn. Let x 2 Rn be a point where ' admits a metric differential md'x and I ı '
admits a Fréchet differential Ax WD .I ı '/0.x/ W Rn ! L 2. Observe that

md.I ı '/x.v/ D kAx.v/k2; v 2 Rn:

We first claim that Vx WD Ax.Rn/ � L . Indeed, since



'.x C hv/ � '.x/h






1

� Lip.'/ and Ax.v/ D lim
h!0

'.x C hv/ � '.x/

h
in L 2
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for each v 2 Rn it follows that Ax.v/ 2 L and, moreover, that

kAx.v/k1 � lim inf
h!0





'.x C hv/ � '.x/h






1

D md'x.v/; v 2 Rn:

We now prove (6.2). The claim is trivially true if Ax is not injective. Thus we may assume that
Ax W Rn ! Vx is a linear isomorphism. In particular, we have that

(6.3) Jacir.md.I ı '/x/ D jdet.I ı Ax/j; Jacir.md'x/ � Jacir.s/ D jdetL�1j;

where L WRn ! Rn is a linear isomorphism such that L.Bn/ is the John ellipsoid of the norm
s D kAx. � /k1. Note that

.Ax ı L/.B
n/ � Ax.Bs/ D Vx \ BL ;

and thus Ax ı L W Rn ! L is 1-Lipschitz. From [14, Lemma 6.1] it now follows that the
composition I ı Ax ı L W Rn ! L 2 is area non-increasing, i.e., jdet.I ı Ax ı L/j � 1. Thus

jdet.I ı Ax/j D jdet.I ı Ax ı L/j � jdet.L�1/j � jdet.L�1/j;

which by (6.3) implies (6.2).
To prove (4), we consider the linear map ˆ W Rn ! L defined by ˆx.p/ D hx; pi,

p 2 Sn�1, for each x 2 Rn. By using the Cauchy–Schwarz inequality, it is easy to check that
ˆ is an isometric embedding. It remains to show that I ıˆ is an isometric embedding as well.
This follows from the proof of [14, Lemma 4.6]. Indeed, for all x 2 Rn of unit norm, one has

kI ıˆ.x/k22 D n

«
Sn�1

hx; pi2 dHn�1.p/ D

«
Sn�1

nX
iD1

hei ; pi
2 dHn�1.p/ D 1:

By linearity of I ıˆ this completes the proof.

The proofs of rigidity in [14] and [15] rely on a rigidity version of (6.1) that does not
apply in our current setting. Nevertheless, by applying our Lipschitz-volume rigidity theorem
twice we are able to avoid this difficulty and complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let X be an integral current space and � W 𝜕C ! X an isometric
embedding such that �#J𝜕C K D 𝜕T . Inequality (1.1) follows immediately from Lemma 6.1. It
remains to show that if Mir.T / D Voln.C /, then � can be extended to an isometry C ! X .

Clearly, we have 𝜕X D �.𝜕C/. By Lemma 6.2 (1) the map ˆ ı ��1 W 𝜕X ! L admits
a 1-Lipschitz extension f WX ! L . Let S WD f#T and let Z be the integral current space
.set.I#S/; I#S/ endowed with the subspace metric of L 2. By Lemma 6.2 (3) and the mono-
tonicity of Mir we have

(6.4) M.I#S/ �Mir.I#S/ �Mir.S/ �Mir.T / � Voln.C /:

Lemma 6.2 (2) implies that there is a 1-Lipschitz projection P WL 2 ! .I ıˆ/.Rn/. Notice
that P#J𝜕ZK D .I ıˆ/#J𝜕C K. Now, since M.J𝜕ZK/ D Voln�1.𝜕C/ and M.JZK/ � Voln.C /,
Theorem 1.2 implies that the restriction of P to Z defines an isometry Z ! .I ıˆ/.C /.
Since L 2 is a Hilbert space and hence uniquely geodesic, we conclude that Z D .I ıˆ/.C /.
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In particular, (6.4) is rigid, and so Mir.I#S/ DMir.S/ D Voln.C /. Therefore, by (6.1), we
get that kI#Sk

ir D I#kSk
ir and so I.sptS/ � spt I#S . Thus, since spt I#S D .I ıˆ/.C / and

𝜕S D ˆ#J𝜕C K, it follows that S D ˆ#JC K. But S D f#T and so

Voln.C / DM.f#T / �M.T / �Mir.T / � Voln.C /:

By Lemma 3.1, it follows that f .X/ � ˆ.C/. Hence, we can apply Theorem 1.2 once again
and we conclude that f WX ! ˆ.C/ is an isometry.

7. Intrinsic flat convergence and the Perales question

7.1. Intrinsic flat convergence. Given T 2 In.X/, let

FX .T / D inf¹M.U /CM.V / W T D U C 𝜕V; U 2 In.X/; V 2 InC1.X/º

denote the flat norm of T . If the ambient spaceX is clear from the context we often write F .T /

instead of FX .T /. We say that Ti 2 In.X/ flat converges to T 2 In.X/ if F .T � Ti /! 0 as
i !1, and that Ti converges weakly to T if Ti .h; �1; : : : ; �n/! T .h; �1; : : : ; �n/ as i !1
for every .h; �1; : : : ; �n/ 2 Dn.X/. It is readily verified that flat convergence implies weak
convergence. Conversely, if X admits local coning inequalities and sup N.Ti / <1, then weak
convergence also implies flat convergence (see [44]).

In [43], Sormani and Wenger introduced a notion of flat convergence for currents which
are not necessarily defined on the same metric space. The intrinsic flat distance between two
integral current spaces X1, X2 of the same dimension is defined as

dF .X1; X2/ D inf FZ.�1#T1 � �2#T2/;

where the infimum is taken over all complete metric spaces Z and all isometric embeddings �i
of Xi into Z. We say that a sequence Xi of integral current spaces converges in the intrinsic
flat sense to an integral current space X if dF .Xi ; X/! 0 as i !1. The following Arzelà–
Ascoli-type theorem is due to Sormani.

Theorem 7.1 (see [41, Theorem 6.1]). SupposeXi are integral current spaces converg-
ing to the integral current space X in the intrinsic flat sense. Further, suppose fi WXi ! Y

are L-Lipschitz maps to a compact metric space Y . Then there exist an L-Lipschitz map
f WX ! Y and a subsequence, also denoted by fi , and isometric embeddings �i WXi ! Z

and � WX ! Z into a complete separable metric space Z such that

(a) FZ.�i#Ti � �#T /! 0 as i !1, and

(b) fi .xi /! f .x/ whenever xi 2 Xi and x 2 X satisfy �i .xi /! �.x/.

The map f WX ! Y will be called a Sormani limit of the subsequence fi . We note that
for every x 2 X there is always such a sequence xi 2 Xi as in Theorem 7.1 (b) above. In
particular, if a subsequence has a Sormani limit, then this limit is unique. This follows directly
from the next lemma.

Lemma 7.2. LetZ be a complete metric space and Ti 2 In.Z/ a sequence flat converg-
ing to T 2 In.Z/. Then for every z 2 sptT there is a sequence zi 2 setTi such that zi ! z

as i !1.
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Proof. The following argument is due to Wenger [45, Proposition 2.2]. Let z 2 sptT
and " > 0. Using [4, Proposition 2.7], one can show there exists .h; �1; : : : ; �n/ 2 Dn.X/ such
that T .h; �1; : : : ; �n/ ¤ 0 and spt h � B.x; "/. As Ti flat converges to T , and therefore in par-
ticular converges weakly to T , for any i that is sufficiently large, one has Ti .h; �1; : : : ; �n/¤ 0.
It now follows from Definition 2.1 (3) that for every such i there is zi 2 sptTi \ spt h. Since
" > 0 was arbitrary and setTi is dense in sptTi , a sequence zi 2 setTi such that zi converges
to z is now easily constructed.

It turns out that the convergence as in Theorem 7.1 is compatible with push-forwards
of currents.

Lemma 7.3. LetXi be a sequence of integral current spaces converging in the intrinsic
flat sense to an integral current space X . Suppose further that fi WXi ! RN are uniformly
bounded L-Lipschitz maps and let f WX ! RN be the Sormani limit of some subsequence fi .
Then fi#Ti flat converges to f#T .

Proof. Since fi#Ti D 0 and f#T D 0 whenever N < n, we may assume in the fol-
lowing that n � N . Due to Theorem 7.1, there exist a separable complete metric space Z
and isometric embeddings �i WXi ! Z and � WX ! Z such that �i#Ti flat converges to �#T

and fi converges to f in the sense of Theorem 7.1 (b). To simplify the notation, we write
Si D �i#Ti and S D �#T .

By McShane’s extension theorem [11, Theorem 1.27] there exist .
p
NL/-Lipschitz maps

Fi WZ ! RN and F WZ ! RN such that fi D Fi ı �i for all i 2 N and f D F ı �. In par-
ticular, Fi#Si D fi#Ti and F#S D f#T . Thus, using the triangle inequality, we get

(7.1) F .fi#Ti � f#T / � F .Fi#Si � Fi#S/C F .Fi#S � F#S/

for all i 2 N. Since the maps Fi are uniformly Lipschitz and Si flat converges to S , it follows
from (2.5) that F .Fi#Si � Fi#S/! 0 as i !1.

Next, we show that the other term on the right-hand side of (7.1) also converges to
zero. Notice that Fi ı � converges pointwise to F ı �. Indeed, let x 2 X and let xi 2 Xi be
a sequence such that �i .xi / converges to �.x/. The existence of such a sequence is guaranteed
by Lemma 7.2. Using that fi .xi / D Fi .�i .xi //, we get

(7.2) d.f .x/; Fi .�.x/// � d.f .x/; fi .xi //C d.Fi .zi /; Fi .z//;

where zi D �i .xi / and z D �.x/. As f is the Sormani limit of the fi , we have that fi .xi /
converges to f .x/. Moreover, since d.Fi .zi /; Fi .z// � Ld.zi ; z/ and zi ! z as i !1, it
follows from (7.2) that Fi .�.x// converges to f .x/, as desired.

Now, since Fi ı � converges pointwise to F ı �, by using Definition 2.1 (1), (3) and
Lebesgue’s dominated convergence theorem, it is easy to check that Fi#S converges weakly
to F#S . Since the sequence is uniformly N-bounded and RN admits coning inequalities for
Ii .RN / for i D 1; : : : ; n, it follows that Fi#S flat converges to F#S . Hence, because of (7.1),
fi#Ti flat converges to f#T , as desired.

7.2. Perales question. The following example shows that the Perales question stated in
the introduction has a negative answer in general. The argument uses the following observation,
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which follows directly from Lemma 7.2: If Ti 2 In.Z/ flat converges to T 2 In.Z/ and setTi
Gromov–Hausdorff converges to Y , then sptT admits an isometric embedding into Y .

Example 7.4. Fix L 2 .0; 2/ and let M" denote the flat 2-dimensional Riemannian
manifold with boundary depicted in Figure 1. Notice that M" admits a natural decompo-
sition into three pieces, namelyM" D B

2
C
[R" [ B

2
�, where B2

˙
are isometric to the half-ball

B2 \ ¹y � 0º and R" is contained in a rectangle of length 2 and width ". By construction,
Vol2.M"/! Vol2.B2/ as "! 0. Let f" WM" ! B2 denote the map which collapses R" to
the x-axis and is the identity on the half-balls B2

˙
. Clearly, f" is 1-Lipschitz. Moreover, using

that every cycle in I1.S1/ is of the form m � JS1K for some m 2 Z, it is easy to check that
f"#J𝜕M"K D JS1K for every " > 0. Let U � R2 denote a slit unit disk where the slit has
lengthL. The Gromov-Hausdorff limit of .M"/ is equal to the metric completion ofU equipped
with the intrinsic metric. In particular, .M"/ thus does not converge to B2 in the intrinsic
flat sense.

ε

L

Figure 1. “Flat-football” counterexample to Question 1.4.

Question 1.4 has a positive answer if, in addition, one assumes a suitable bound for the
limit of the masses of the boundary currents. We now prove Corollary 1.5, whose statement
can be found in the introduction.

Proof of Corollary 1.5. Note that Lemma 7.3 implies that fi#Ti flat converges to f#T .
Since 𝜕.fi#Ti / D fi#.𝜕Ti / flat converges to J𝜕C K, it follows that 𝜕.f#T / D J𝜕C K. Moreover,
by the lower semi-continuity of mass (see [4, p. 19]), we have that

M.T / � lim inf
i!1

M.Ti / � Voln.C /

and analogously M.𝜕T / � Voln�1.𝜕C/. Therefore, by invoking Theorem 1.2, we find that
f WX ! C is an isometry.
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Using this corollary, the following result is a direct consequence of the Wenger compact-
ness theorem.

Corollary 7.5. LetC �Rn be a convex body and .Xi / a sequence of uniformly bounded
integral current spaces. Suppose fi WXi ! RN are 1-Lipschitz maps such that fi#.𝜕Ti / flat
converges to J𝜕C K. If

lim
i!1

M.𝜕Ti / � Voln�1.𝜕C/; lim
i!1

M.Ti / � Voln.C /;

then .Xi / converges in the intrinsic flat sense to C .

Proof. By [45, Theorem 1.2] there exists a subsequence, also denoted by Xi , that con-
verges in the intrinsic flat sense to an integral current space X . Further, notice that since the Xi
are uniformly bounded, the fi take values in a compact set K � RN . Let f WX ! K denote
the Sormani limit of a subsequence of .fi /. The existence of such a limit is guaranteed by
Theorem 7.1. In particular, f is 1-Lipschitz. Now, Corollary 1.5 tells us that f is an isometry
X ! C . Since the argument above can be applied to any subsequence of .Xi /, it follows that
.Xi / converges to C in the intrinsic flat sense, as desired.

8. Counterexamples and open questions

Theorem 1.2 and Corollary 1.3 show that convex bodies in Rn and the round sphere Sn

have the Lipschitz-volume rigidity property among all integral current spaces. This naturally
leads to the question which other metric spaces Y are Lipschitz-volume rigid among integral
current spaces. A simple way to come up with non-Lipschitz volume rigid spaces is to consider
non-intrinsic metrics. In particular, every compact Lipschitz submanifold Y � RN , which is
not a convex subset, does not enjoy the Lipschitz-volume rigidity property when it is endowed
with the Euclidean subspace metric. In this case the identity map Y int ! Y euc is 1-Lipschitz,
volume and boundary volume preserving, but not an isometry.

Note that in situations where Federer’s constancy theorem is not valid the boundary push-
forward condition is not sufficient (e.g., for non-trivial spaces Y with 𝜕Y D 0). In the following
we refer as Lipschitz-volume rigidity of an integral current space Y D .Y; S/ to the following
property: Suppose X is an integral current space of the same dimension as Y and f WX ! Y

is a 1-Lipschitz map such that f#T D S . If M.𝜕T / �M.𝜕S/ and M.T / �M.S/, then f is
an isometry.

Question 8.1. Let Y � RN be a compact orientable connected n-dimensional Lipschitz
manifold. Does Y have Lipschitz-volume rigidity among integral current spaces when endowed
with its intrinsic metric?

It is not hard to modify the proof of Theorem 1.2 to deduce an affirmative answer when
Y is smooth and n D N , and hence in particular Y is flat. On the other hand, [18, Example 4.4]
suggests that the answer to Question 8.1 is negative for general Lipschitz submanifolds. We
suspect that the answer is affirmative when Y is smooth but our proof does not seem amenable
for such a generalization in a straightforward way, since it relies on Fubini-type decompositions
of Voln.Y /.
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The situation becomes even more complicated when one allows for non-infinitesimally
Euclidean integral current spaces. It turns out that the Lipschitz-volume rigidity of Y can fail
even when Y is a convex body in a finite-dimensional normed space. For example, let I 2 be
the convex body Œ0; 1�2 � R2 endowed with the Euclidean metric and let Y D I 21 be the same
set endowed with the maximum norm. Then the identity map f W I 2 ! Y is 1-Lipschitz,

M.JI 2K/ D �m�.I 2/ D 1 D �m�.I 21/ DM.JY K/

and
M.J𝜕I 2K/ D `.𝜕I 2/ D 4 D `.𝜕I 21/ DM.J𝜕Y K/;

but f is not an isometry.
As discussed in Section 2.3 there is some ambiguity concerning volume as soon as non-

Euclidean tangent spaces come into play. The preceding counterexample stems from the obser-
vations that M corresponds to the mass� Jacobian Jacm� in the sense of (2.7) and that Jacm�.�/
is not strictly monotone in � . Hence, another interesting question would be to investigate
whether convex bodies in finite-dimensional normed spaces are Lipschitz-volume rigid among
integral current spaces with respect to the Busemann mass Mb or the Holmes–Thompson
mass Mht.

Concerning Theorem 1.1 we were informed by Roger Züst that Lemma 6.1 and hence the
lower bound (1.1) generalizes to convex bodies in finite-dimensional normed spaces. Indeed,
for a given Finsler mass M� it seems natural to expect that validity of this inequality for all
finite-dimensional normed spaces is equivalent to a property that is often called quasi-convexity
or semi-ellipticity over Z in the literature, see [3, 29, 36]. The counterexample above however
illustrates that in the setting of normed spaces one can only hope for rigidity when the mass
functional is strictly monotone, as is the case for Mb or Mht but not for M or Mir.
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