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0 Johdanto (in Finnish) 2

0 Johdanto (in Finnish)

Tässä pro gradu -tutkielmassa todistan Enrico Le Donne -professorin ja Se-
bastiano Nicolussi Golo -tutkijatohtori -ohjaajieni kanssa, että Lien ryhmällä
oleva vasemmastasainen, geodeettinen ja moniston topologian virittävä etäisyys
on kahdestasainen, jos ja vain jos Lien ryhmän yksimuuttujaiset aliryhmät
ovat geodeesejä. Milnorin tutkielmasta [7] seuraa, että tälläinen ryhmä on
Rn Euklidelan ja K tiheän Lien ryhmän Cartesilainen tulo. Tulos yleistää
yksimuuttujaisten aliryhmien geodeettisyyden ja kahdestasaisuuden yhtäpä-
tevyyden Latifin ja Toomanian todistamasta [5] yleisille vasemmastasaisille,
geodeettisille ja moniston topologian virittäville etäisyyskuvauksille.

Tutkielma alkaa eräitä alkeellisia kahdestasaisten etäkkeiden eli metri-
ikoiden ominaisuuksia kerraten. Sitten Finslerin tapaiset etäkkeet esitellään.
Kolmosluvussa johdetaan kaksi kahdestasaisuuden ominaistusta. Neloslu-
vussa tavataan Berestovskiin lause, joka kertoo vasemmastasaisten, geodeet-
tisten ja moniston topologian virittävien etäisyyksien olevan aliFinslerin
etäkkeitä. Viitosluku on lyhyt Minkowskilaisiin etäkkeisiin vievä johdanto,
joille Latifin ja Toomanian oman vastaavan lauseensa todistivat. Kuutos- ja
seitsosluvuissa yhtäpätevyyden päälause todistetaan.

Kiitän ohjaajiani heidän antamastaan tuesta ja kärsivällisyydestä.

1 Introduction (englanniksi)

In this thesis we will derive some basic results on invariant distances on Lie
groups. We will show that a Lie group that admits a bi-invariant distance
function also admits a bi-invariant Riemannian metric and so, by a theorem
in Milnor’s paper [7], the group must be the Cartesian group product of
a Euclidean space Rn and a compact group. Afterwards we will consider
left-invariant geodetic metrics that generate the manifold topology on Lie
groups. Berestovskii showed in the 1980s that on each Lie group these are
in one-to-one correspondance with bracket-generating subspaces W of the
Lie algebra g of G, such that W is equipped with a norm N .

The main result of the thesis is Theorem 7.2 which shows that an ad-
missible left-invariant geodetic metric is bi-invariant if and only if all the
one-parametre subgroups t 7→ exp(tX) are geodesics. By geodesic we mean
a locally length minimising path. This is a generalisation of the same char-
acterisation for Minkowskian Finsler metrics given by Latifi and Toomanian
in [5], and of the classical Riemannian result found in Milnor [7].

Theorem 7.2. Let d be an admissible left-invariant geodetic metric on a
connected Lie group G. Then the following are equivalent

1. d is bi-invariant;

2. All the one-parametre subgroups t 7→ exp(tX) for X ∈ g are geodesics.
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The reader is expected to know basic theory of differentiable manifolds, and
that of Lie groups.

The thesis was supervised by Professor Enrico Le Donne, and Postdoc-
toral Researcher Sebastiano Nicolussi Golo. I am grateful for their time,
guidance, and advice.

2 Bi-invariant Distances and Metrics

Definition 2.1. We call a distance d on a group G left-invariant if it is
preserved by left-translations, that is, if for all g, x, y ∈ G

d(gx, gy) = d(x, y).

We call d right-invariant if it is preserved by right-translations. We call the
distance bi-invariant if it is both left- and right-invariant.

Proposition 2.2. If d is a left-invariant distance on a group then the fol-
lowing are equivalent:

1. d is bi-invariant;

2. d is inversion invariant, that is, d(x, y) = d(x−1, y−1);

3. conjugations are isometries.

Proof. 1 implies 2: If the distance is bi-invariant, then

d(x−1, y−1) = d(e, xy−1) = d(y, x) = d(x, y).

2 implies 3: Denote left-multiplication with g by lg. Conjugation by g
can be written as

cg(x) = gxg−1 = lg ◦ (y 7→ y−1) ◦ lg ◦ (y 7→ y−1)(x)

and is therefore an isometry if inversion is an isometry.
3 implies 1: Finally, if conjugations are isometries, we calculate

d(hg, kg) = d(ghgg−1, gkgg−1)

= d(gh, gk) = d(h, k)

which shows that the distance is bi-invariant.

Heuristically, on a Lie group it makes sense to ask for lengths of paths
to be integrals of a potential of their derivative. For this end, we define
the notions of Finsler and subFinsler metrics. Later on, in Section 4, we
discover that subFinsler metrics are, in fact, the most general admissible
left-invariant geodetic distances on Lie groups.
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Definition 2.3 (Finsler Metric). On a Lie group G, for each x ∈ G let Mx

be a norm on TxG. If the mapping x 7→ Mx is continuous, that is, if

x 7→ Mx(Xx)

is continuous for all continuous vector fields X, then x 7→ Mx is called a
Finsler metric.

Definition 2.4. A polarisation on a Lie group G is a constant rank sub-
bundle of the tangent bundle TG. Polarisations are also called distributions.

Definition 2.5 (subFinsler Metric). Let ∆ ⊂ TG be a polarisation on a Lie
group G. For each x ∈ G, let Nx be a norm on ∆x ⊂ TxG. If the mapping
x 7→ Nx is continuous with respect to horizontal vector fields, that is, if

x 7→ Nx(Xx)

is continuous for all continuous vector fields X such that Xx ∈ ∆x for all
x ∈ G, then x 7→ Nx is called a subFinsler metric.

Obviously every Finsler metric is also subFinsler. A Riemannian metric
is a Finsler metric when one considers the norm generated by the inner
product on every tangent space. In the context of left-invariant subFinsler
metrics on Lie groups we will usually identify the subFinsler metric with the
norm of the metric on the Lie algebra g of G.

Next we define the length of paths with respect to subFinsler metrics:

Definition 2.6 (Length of Paths). Let N be a subFinsler metric defined on
a distribution ∆ ⊂ TG, and let γ : [a, b] → G be a horizontal piecewise-C1

path, that is, a path such that for almost every t ∈ [a, b] the derivative γ̇(t)
exists and γ̇(t) ∈ ∆γ(t). If γ is everywhere C1 the length ℓ of γ is defined to
be

ℓ(γ) :=

∫
Nγ(t) (γ̇(t)) dt.

Otherwise γ can be written as the concatenation of C1 paths γ0···n and we
define the length of γ to be

ℓ(γ) :=
∑
i

ℓ(γi).

If γ isn’t horizontal almost everywhere we define its length to be infinite.

Definition 2.7 (Carnot-Carathéodory distances). The Carnot-Carathéodory
distance induced by a subFinsler metric N is defined as

d(x, y) := inf
{
ℓ(γ) | x, y ∈ Im(γ)

}
where ℓ(γ) is defined using the subFinsler metric N , and γ ranges over paths
on G that are piecewise-C1. We implicitly identify a subFinsler metric and
the Carnot-Carathéodory distance induced by the metric.
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It is a well known result that any two points on a connected component
of G can be joined by a finite-length path if the distribution of the subFinsler
metric is bracket-generating, that is, if the Lie algebra generated by horizon-
tal vector fields is the whole tangent bundle. These kinds of distributions are
sometimes also referred to as non-holonomic, and in the context of partial
differential equations the condition is called the Hörmander condition. By
abuse of notation, we will refer to subFinsler metrics whose distribution is
bracket-generating as bracket-generating.

We state the following useful lemma:

Lemma 2.8. Let ℓ be a lower semi continuous length structure, dℓ the dis-
tance function induced by ℓ and ℓ̃ the length structure induced by dℓ, then

ℓ̃ = ℓ.

The lengths of paths in the sense of metric geometry induced by a Carnot-
Carathéodory distance agree with the subFinsler lengths ℓ used to define the
Carnot-Carathéodory distance. In other words, the following formula holds
for all piecewise-C1 paths:

sup
t0<···<tn

∑
d(γ(ti), γ(ti+1)) = ℓ(γ).

A length structure induced by a metric is lower semi continuous.

Proof. See for example Gromov 1.6. Proposition [3], and Le Donne Propo-
sition 2.3.6. [6].

Lemma 2.9. Let W be a subspace of the Lie algebra g, and let N be a norm
defined on W . Extending W and N to a left-invariant subFinsler metric on
G, we obtain a subFinsler distance. If W is bracket-generating, then this
distance generates the manifold topology on G.

Proof. We refer the reader to Berestovskii Theorem 1. [2].

The previous two lemmas tell us that the Carnot-Carathéodory distance
induced by a bracket-generating subFinsler metric N is a length metric in
the sense of metric geometry, and that this distance generates the manifold
topology on G.1 Because Lie groups are locally compact complete spaces,
any two points on the Lie group can be joined by a geodesic of the induced
distance by the Hopf-Rinow theorem.

A (sub)Finsler metric is a structure on the tangent bundle TG so it can
be pulled back using left and right translations. Therefore, it makes sense
to ask for metrics to be left-, right- or bi-invariant, too:

1 We note that this nomenclature is unfortunate as a metric is what we call a distance;
however, check Theorem 2.13.
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Definition 2.10. We call a Finsler or a subFinsler metric N left-invariant if
it is preserved by pushforwards of left-translations, that is, if for all g, h ∈ G
and X ∈ ThG

Ngh(lg∗(X)) = Nh(X)

where lg∗ is the pushforward of the left-translation by g. We call the metric
right-invariant if it preserved by pushforwards of right-translations. We call
the metric bi-invariant if it is left- and right-invariant.

Lemma 2.11. A left-invariant metric N is bi-invariant if and only if Ne is
invariant under AdG.

Proof. The adjoint map Adg is the composition of the pushforwards of lg
and rg−1 . If the norm is bi-invariant, then it is invariant under Adg.

On the other hand, assume that Ne is invariant under AdG. Let g, h ∈ G,
and let X = lh∗(Y ) ∈ ThG. Then, because left- and right-translations
commute,

Nhg(rg∗(X)) = Ne(l(hg)−1∗ ◦ rg∗(X))

= Ne(Adg ◦ lg−1∗ ◦ lh−1∗ ◦ rg∗(X))

= N(X).

Lemma 2.12. If ∆ ⊂ TG is a bi-invariant bracket-generating polarisation
then it is the whole tangent bundle ∆ = TG. Especially, every bi-invariant
subFinsler metric is Finsler.

Proof. Let ∆e be the polarisation at the identity. Because ∆ is bi-invariant

∆e = (lg∗ ◦ rg−1∗)
∣∣
e
(∆e) = cg∗

∣∣
e
(∆e) = Adg ∆e.

Let us calculate the bracket of two vectors X ∈ g, and Y ∈ ∆e:

[X,Y ] =
d

dt
Adexp(tX) Y.

Since the map t 7→ Adexp(tX) Y takes values in ∆e, which is an embedded
submanifold of the Lie algebra g, the bracket [X,Y ] is in ∆e too. The
distribution ∆ is bracket-generating so [g,∆e] ⊂ ∆e implies that ∆e = g.

We have now defined two different notions of invariance: one for dis-
tance functions, and one for metrics on the tangent bundle. Because every
subFinsler metric induces a distance on the Lie group it is natural to ask if
these two concepts agree for Finsler metrics. This is, in fact, the case for
bi-invariant Finsler metrics and their induced distances:
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Proposition 2.13. The Carnot-Carathéodory distance induced by a Finsler
metric N on a connected Lie group G is a bi-invariant distance if and only
if the Finsler metric N is bi-invariant.

Proof. Because pullbacks of the tangents of one-parametre subgroups to the
identity element are constant:

l∗exp(tX)

d

dt
exp(tX) = X

the length of the path γX(t) = exp(tX) : [0, 1] → G equals the norm of X
at the identity TeG

ℓ(γX) =

∫ 1

0
N(X)dt = N(X).

Using Lemma 2.8, it can readily be seen from the length of a path as a sum
of distances of points on the curve that isometries preserve lengths of paths.
We conclude by applying this to the isometry cg(x) := gxg−1:

N(X) =

∫ 1

0
N(X)dt = ℓ(γX)

= ℓ(cg ◦ γX)

using the formula cg(exp(X)) = exp(Adg(X)):

=

∫ 1

0
N(Adg X)dt = N(Adg X).

In the other direction: Let Bd
e (ε) be an open ball for the Carnot-

Carathéodory distance centered at e such that the exponential map is a
diffeomorphism from an open subset b ⊂ g to Bd

e (ε). Because b is open,
there exists an open ball BN

0 (ε′) ⊂ b for the Finsler metric N . Define
B := exp(BN

0 (ε′)). Let γ : [0, 1] → G be a geodesic joining e and x ∈ B.
We can write γ using the exponential map as γ(t) = exp(X(t)). We will use
Duhamel’s formula, which is the coordinate expression for the derivative of
the exponential map pulled back to the origin. We refer the reader to, for
example, Varadarajan Formula 2.14.5. [8]. By abuse of notation, we leave
the pullback implicit and simply write (D exp)X .

(Duhamel’s Formula) (D exp)X =

∞∑
n=0

(−1)n

(n+ 1)!
(adX)n.

Because the Lie algebra automorphisms Adg are isomorphisms for Ne,
the path t 7→ exp(Adg X(t)) : [0, 1] → G is contained in the set B for all
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g ∈ G. We calculate D(exp ◦Adg X(t)):

D(exp ◦Adg X(t)) = (D exp)Adg X(t) ◦D(Adg X(t))

=
∞∑
n=0

(−1)n

(n+ 1)!
(adAdg X(t))

◦n(D(Adg X(t)))

=

∞∑
n=0

(−1)n

(n+ 1)!
(adAdg X(t))

◦n(Adg ◦D(X(t)))

= Adg

( ∞∑
n=0

(−1)n

(n+ 1)!
(adX(t))

◦n(D(X(t)))

)
.

Likewise calculating D(exp ◦X(t)) we see that

D(exp ◦X(t)) = DexpX(t) ◦D(X(t))

=

∞∑
n=0

(−1)n

(n+ 1)!
(adX(t))

◦n(D(X(t))),

and we obtain the equality D(exp ◦Adg X(t)) = Adg(D exp ◦X(t)).
Let γ′ be the path t 7→ exp(Adg X(t)) : [0, 1] → G still denoting the path

t 7→ exp(X(t)) : [0, 1] → G by γ. Because Adg is an isometry for the norm,
the paths γ and γ′ have the same length. The distance between e and cg(x)
is the infimum of lengths of paths joining the two points so

d(e, cg(x)) ≤ ℓ(cg∗γ)

= ℓ(γ′)

= ℓ(γ)

= d(e, x).

Because x = cg−1 ◦ cg(x), a similar argument shows that d(e, x) ≤
d(e, gxg−1) and therefore d(e, gxg−1) = d(e, x) for all x ∈ B.

Let y be an arbitrary point of G. By geodecity of the metric, for any
n ∈ N+ we can find n points xi ∈ G for 1 ≤ i ≤ n such that d(xi, xj) =
|i−j|
n+1 · d(e, y) for all 0 ≤ i, j ≤ n+1, where we let x0 := e and xn+1 := y. Let

n be so large that for any i, x−1
i xi+1 ∈ B. Then calculating for arbitrary
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g ∈ G

d(e, y) =
n∑

i=0

d(xi, xi+1)

=
n∑

i=0

d(e, x−1
i xi+1)

=
n∑

i=0

d(e, cg(x
−1
i xi+1))

=
n∑

i=0

d(e, cg(x
−1
i )cg(xi+1))

=
n∑

i=0

d(cg(xi), cg(xi+1))

≥ d(e, cg(y))

and because y = cg−1 ◦cg(y) we obtain the opposite inequality. We conclude
with Proposition 2.2 which showed equivalence between bi-invariance and
conjugations being isometries.

From now on, we will make no distinction between a Finsler metric being
bi-invariant, and the Carnot-Carathéodory distance induced by the metric
being bi-invariant. By abuse of notation, we will refer to a Finsler metric
and the Carnot-Carathéodory distance induced by the metric as metrics
whenever this is convenient to us.

3 Two Characterisations

Proposition 3.1. Continuing the classification of Proposition 2.2: Let d
be the Carnot-Carathéodory distance induced by a bracket-generating left-
invariant subFinsler metric N . The following statements are equivalent on
connected Lie groups:

1.’ d is bi-invariant;

4. Adg is an isometry of the Finsler norm for all elements g ∈ G;

5. The norm is constant on Ad-orbits;

6. For almost every X ∈ g and for all A ∈ g,

DN |X([A,X]) = 0.
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Proof. Using Lemma 2.11 and Proposition 2.13 we already know that the
conditions 4, and 1’ are equivalent. The other equivalences are trivial:

4 is equivalent to 5: This follows because all orbits are of the form
AdG(X) for some X ∈ g.

5 implies 6: Due to Rademacher’s theorem the norm, being a Lipschitz
function, is differentiable almost everywhere, and because N is constant on
Ad-orbits the derivative of N along an orbit must equal 0:

Using the chain rule and evaluating the derivative at t = 0 we calculate:

0 =
d

dt

∣∣∣∣
t=0

N(Adexp(tA)X)

=
d

dt

∣∣∣∣
t=0

N(ead tAX)

=
d

dt

∣∣∣∣
t=0

N(X + t[A,X] +O(t2))

= DN
∣∣
X
([A,X]).

6 implies 5: By analysis, a Lipschitz-function that is almost everywhere
differentiable, and has 0 derivative is constant. Using the same calculation
as in the previous case, and the fact that G is connected, we see that N is
constant on Ad-orbits.

We give two applications of Proposition 3.1:

Corollary 3.2. If G is a non-Abelian connected Lie group then it admits a
non-bi-invariant left-invariant Riemannian metric.

Proof. A metric N is non-bi-invariant if and only if there is an element X of
the Lie algebra whose adjoint orbit isn’t stable for the norm: that is there
is an element h ∈ G such that

N(AdhX) ̸= N(X).

We begin by observing that there exists an element h ∈ G such that
Adh /∈ {Id,− Id}. In fact, because the group isn’t Abelian the map Adg can’t
identically be the identity operator. Because Ad: G → GL(g) is continuous
there must exist an element h ∈ G such that Adh /∈ {Id,− Id}.

Fix an element X ∈ g such that Adh(X) /∈ {X,−X}. Now we can find
an inner product ⟨−,−⟩ such that the unit sphere of ⟨−,−⟩ contains X but
not Adh(X).

Corollary 3.3. On the sphere S3 when realised as the Lie group of units
of the quaternions, up to scalar multiplication, there is only one unique bi-
invariant Finsler structure, and it is the usual Riemannian sphere structure.
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Proof. The orbit of any non-zero X ∈ TpS
3 under the differentials of the

isotropy group of p spans the whole tangent space under multiplication by
positive scalars so this must be a λ-sphere for our norm for some λ > 0. We
know that the sphere S3 admits a bi-invariant Riemannian structure so by
uniqueness of the adjoint orbits the statement follows.

Next, we prove another classification theorem, but this time for the ex-
istence of a bi-invariant distance on a connected Lie group. We start with
a couple of lemmas:

Lemma 3.4 (Milnor. Lemma 7.5.). A connected Lie group G admits a bi-
invariant Riemannian metric if and only if it is isomorphic to the Cartesian
product of a compact group and an additive vector group, that is Rn.

Proof. We refer the reader to Milnor Lemma 7.5. [7].

Lemma 3.5. Let G be a connected Lie group. If the adjoint group AdG is
precompact in the space GL(g), then G admits a bi-invariant Riemannian
metric.

If G admits a bi-invariant Riemannian metric, then its adjoint group
AdG is compact.

Proof. Take any inner product ⟨·, ·⟩ on g. Because AdG is a precompact Lie
subgroup of the general linear group of g we can define a new function on g
by integrating over the compact Lie group K := AdG ⊂ GL(g):

⟨X,Y ⟩′ :=
∫
φ∈K

⟨φ(X), φ(Y )⟩ dφ.

Extend this function to the whole tangent space TG using left-translations
lg−1 . It is trivial to check that the new function ⟨·, ·⟩′ is invariant under
AdG, is symmetric, bilinear, and positive definite. Hence it is a bi-invariant
Riemannian metric on G.

For the second part, if ⟨·, ·⟩ is a bi-invariant Riemannian metric on G,
then Adg is an isometry for the inner product ⟨·, ·⟩; therefore, AdG belongs
to the orthogonal group O(⟨·, ·⟩) so AdG is precompact. To show that it is, in
fact, compact we will use Lemma 3.4: If G admits a bi-invariant Riemannian
metric, then G factors as G = K × Rn, where K is a compact Lie group.
Conjugation in G can be written as

(a, b)(x, y)(a−1,−b) = (axa−1, y)

so the adjoint group of G is isomorphic to the adjoint group of K. The
adjoint map Ad: K → Aut(k) is a smooth map, and a continuous image of
a compact set is compact; therefore, AdG is compact.

Definition 3.6. We call a metric on a Lie group G admissible if it generates
the manifold topology on G.
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Theorem 3.7. Let G be a connected Lie group. Then the following are
equivalent:

1. There exists an admissible bi-invariant distance on G;

2. There exists a bi-invariant Riemannian metric on G;

3. G is the direct product of a compact group and a vector group, that is,
Rn for some n ∈ N;

4. AdG is compact in the space of linear transformations of the Lie algebra
g.

Note that Iwasawa’s theorem tells us that any Lie group is topologically
the product of a compact group and a vector group, but if (and only if) the
group admits an admissible bi-invariant metric, then this product can be
made to respect the group law.

Proof. The implication 2 =⇒ 1 follows from Proposition 2.13. The equiv-
alence between 2 and 3 is Lemma 3.4, and the equivalence between 2 and
4 is Lemma 3.5. Therefore; the only implication we have to show is the
implication 1 =⇒ 2.

Let b be an open bounded subset of g such that the exponential map is a
diffeomorphism from b onto an open neighbourhood of e ∈ G. Because the
distance d is admissible there exists an open ball Bd

e (λ) ⊂ exp(b). Because d
is bi-invariant conjugations are isometries for d. Take an element x ∈ Bd

e (λ).
The points cg ◦ exp(X) = exp(Adg X), and exp(X) are equidistant from the
identity e. Therefore, Adg X belongs to the bounded set b for all g ∈ G.
In order to establish that precompactness of AdG in GL(n) agrees with the
precompactness of the inclusion of AdG to the manifold of all matrices Mn×n,
we need to show that AdG stays away from the variety of zero-determinental
matrices;

Hadamard’s inequality tells us that the determinant of a matrix is bounded
by the norms of its columns. Because all the image vectors of the linear
transformation Adg are bounded, the determinant of Adg is bounded by
some positive real number S. Because AdG forms a group this means that
the determinants of the inverses Adg−1 are bounded by S−1. Therefore
AdG ⊂ GL(n) ⊂ Mn×n forms a bounded subgroup and hence it is precom-
pact. The adjoint representation of G is precompact and Lemma 3.5 tells
us that the group admits a bi-invariant Riemannian metric.

As an application of Theorem 3.7 we mention the following:

Corollary 3.8. The Heisenberg group doesn’t admit an admissible bi-invariant
distance.

Proof. In fact, the Heisenberg group is homeomorphic to R3, but isn’t
Abelian.
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We note that we can’t drop the requirement that the distance be admis-
sible, as the degenerate separating distance d(x, y) := 1 whenever x ̸= y is
bi-invariant on all groups.

4 Berestovskii’s Theorem

Theorem 4.1 (Berestovskii’s Theorem). Let d be an admissible left-invariant
geodetic metric on a connected Lie group. Then d is subFinsler, and bracket-
generating.

Every left-invariant bracket-generating subFinsler distance on a con-
nected Lie group is admissible, geodetic, and (trivially) left-invariant.

Proof. We refer the reader to Berestovskii 1984 [2].

Proposition 4.2. Let G be a Lie group equipped with an admissible left-
invariant geodetic distance d. If d is bi-invariant, then d is Finsler.

Proof. By Theorem 4.1, d is a left-invariant subFinsler metric. Because d
is subFinsler, it is defined on a polarisation ∆ ⊂ TG. By Proposition 2.12,
the polarisation ∆ must equal the whole tangent bundle.

Proposition 4.3. Let G be a Lie group equipped with a left-invariant
geodetic distance d. If all one-parametre subgroups of G are geodesics,
then d is Finsler.

Proof. Assume to the contrary that X ∈ TeG has infinite norm. Let γX be
the one-parametre subgroup t 7→ exp(tX) : [0, 1] → G. Then

l(γX) =

∫ 1

0
Ne(X) dt

= Ne(X)

= ∞

which contradicts the assumption that γX is a geodesic.
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5 Minkowskian Finsler Metrics

Definition 5.1. Let G be a differentiable manifold. A continuous real
functionN on the tangent bundle TG is called aMinkowskian Finsler metric
if

1. N(λX) = λN(X) for X ∈ TgG, and λ ≥ 0;2

2. N is smooth on TM outside of the zero section;

3. The fundamental tensor

gv(X,Y ) :=
1

2

∂2

∂s∂t

(
(N(v + sX + tY ))2

)∣∣∣
s=t=0

is positive-definite on any tangent space TgG for every 0 ̸= v ∈ TgG.

A norm N on vector space V is called Minkowskian if it satisfies the
conditions 1, and 3, and is smooth outside of 0 ∈ V . A left-invariant Finsler
metric is a Minkowskian Finsler metric if and only if the norm on the Lie al-
gebra is a Minkowskian norm. The positive-definiteness of the fundamental
tensor implies subadditivity of the norm, and that its unit ball is strongly
convex in the sense explained below in Proposition 5.3. This further im-
plies that all geodesics are uniquely determined by their derivative at a point
(Check for example the book by Bao, Chern, and Shen [1].)

The following proof is from a paper by Latifi and Toomanian [5].

Theorem 5.2 (Latifi-Toomanian). If (G, d) is a Lie group with an ad-
missible bi-invariant geodetic metric such that the induced norm on g is
Minkowskian, then all the one-parametre subgroups are geodesics.

Proof. Let γ be a geodesic through the identity element e, with γ(0) = e.
For all g ∈ G define σg(x) := gx−1g. These are isometries by Proposition 2.2.
The conjugation σg is involutive because σ2

g = id, and has g as an isolated
fixed point because the differential at g is − id:

dσg ◦ dlg(X) = dlg ◦ d(y 7→ y−1) ◦ dlg−1 ◦ dlg X
= dlg (−X)

= −dlg X.

Because all the geodesics are uniquely determined by their tangent vector
at a point, and because the involutive symmetry has differential − id at the
point e, the geodesic γ must be reversible, that is, γ traversed backwards

2 While in Finsler geometry it is commonplace to assume that the involved norms need
not be symmetric, note that because we are dealing with distance functions that are
symmetric, that is d(x, y) = d(y, x), λ can be taken to be any real number, assuming we
replace the right-hand-side by |λ|N(X).
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is still a geodesic. Applying the involutive symmetry σe to the point γ(t)
we see that γ(t) must be reflected a distance d(e, γ(t)) about the identity
element. We obtain σe(γ(t)) = γ(−t) for t small enough for the geodesic to
be distance minimising. Applying the symmetry σγ(c) to the point γ(−t) it
must be reflected a distance d(γ(c), γ(−t)) about γ(c) this time obtaining

σγ(c) ◦ σe(γ(t)) = γ(c− (−t− c)) = γ(2c+ t)

once again for c, and t small enough for the geodesic to be distance minimis-
ing on the required interval. On the other hand, by definition of the maps
σ(·), this point must equal

σγ(c) ◦ σe(γ(t)) = σγ(c)(e.γ(t)
−1.e)

= γ(c)γ(t)γ(c)

= γ(c)2γ(t).

Substituting in t = 0 and using induction, we arrive at the formula

γ(nc) = γ(c)n

and if c1/c2 ∈ Q such that c1 = αn1, c2 = αn2 with n12 integers then

γ(c1 + c2) = γ((n1 + n2)α) = γ(α)n1γ(α)
n2 = γ(c1)γ(c2).

By continuity this is true for all c12 small enough. Hence γ(t) coincides with
a one-parametre subgroup in a neighbourhood of e ∈ G. Because the metric
is left-invariant the geodesic is a one-parametre subgroup globally.

Now let us prove that every one-parametre subgroup is a geodesic: Under
the Minkowskian norm hypothesis the geodesics leaving a point are charac-
terised one-to-one by their derivatives. Let exp(tX) be a one-parametre
subgroup and let γ be a geodesic leaving the identity with derivative X. We
know that γ must be a one-parametre subgroup having derivative X at the
identity, hence it must equal exp(tX), because any one-parametre subgroup
is characterised by its derivative in the Lie algebra. This shows that all the
one parametre subgroups are geodesics.

Proposition 5.3. Let N be a norm on a vector space V , and let B be its
closed unit ball. The norm N is Minkowskian if and only if ∂B is a smooth
hypersurface embedded in V and B is strongly convex, that is, the second
fundamental form σξ of ∂B is positive definite with respect to any transverse
vector ξ pointing out to B̊.

Proof. We refer the reader to Javaloyes and Sánchez Proposition 2.3. [4].
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6 Minkowskian Approximations of Norms

Lemma 6.1. Let N be a norm on a vector space V . Let G ⊂ GL(V ) be a
group. If N is G-invariant, then there exists a Euclidean norm | · | that is
also G-invariant, and any Lebesque measure of V is G-invariant.

Proof. Since N is G-invariant the elements of G are isometries of (V,N)
that fix 0. Using the Ascoli-Arzelà theorem G is a precompact subgroup
of GL(V ). Maximal compact subgroups of GL(V ) are conjugate copies of
O(n); therefore, there exists a scalar product ⟨−,−⟩ such that G is a group of
isometries of (V, ⟨−,−⟩). Finally, observe that |det(g)| = 1 for g ∈ O(n).

Proposition 6.2. If N is a G-invariant norm on a vector space V , then
there exists a sequence (Ni) of norms on V such that:

1. Ni is smooth on V \ {0};

2. Ni → N uniformly on compact sets;

3. Ni is Minkowskian;

4. Ni is G-invariant.

In other words, the norm N can be approximated by a sequence of G-
invariant Minkowskian norms.

Proof. Using Lemma 6.1 there exists a G-invariant Euclidean norm | ·| on V .

Let ρε a family of mollifiers such that spt(ρε) ⊂ B
|·|
0 (ε), and ρε(x) = ρε(y)

for all x, and y such that |x| = |y|. Define

Ñε(v) :=

∫
V
N(v − w)ρε(w)dw.

Notice that Ñε is smooth but it is not a norm, because norms aren’t smooth
at the origin. For this reason, we will use the level set of Ñε to define a
norm Nε.

Let L > 0 be a real number such that |v|/L ≤ N(v) ≤ L|v|. We claim
that for all v ∈ V

(1) N(v)− Lε ≤ Ñε(v) ≤ N(v) + Lε.

Indeed, since
∫
ρε(w)dw = 1, and spt(ρε) ⊂ B

|·|
0 (ε), we immediately obtain

(2) inf{N(x) : |v − x| ≤ ε} ≤ Ñε(v) ≤ sup{N(x) : |v − x| ≤ ε}.

By the reverse triangle inequality, we also have for all v, x with |v − x| ≤ ε

N(v)− Lε ≤ N(x) ≤ N(v) + Lε.
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Thus, we obtain (1).
Fix ε < 1/L and set

Bε := {v : Ñε(v) ≤ 1}.

We claim that Bε is the unit ball of a norm: This is equivalent to
showing that 0 belongs to the interior of Bε, and that Bε is closed, symmet-
ric, convex, and bounded. Indeed, Bε is closed because Ñε is continuous,
and by (1), Ñε(0) ≤ Lε < 1 since ε < 1/L, thus 0 belongs to the interior of
Bε. The set Bε is symmetric because

Ñε(−v) =

∫
N(−v − w)ρε(w)dw

=

∫
N(v + w)ρε(w)dw

with a change of variables w 7→ −w:

=

∫
N(v − w)ρε(−w)dw

using the fact that ρε is symmetric:

=

∫
N(v − w)ρε(w)dw

= Ñε(v).

Moreover, Bε is convex because Ñε is convex; in other words, for all a, b ≥ 0
with a+ b = 1 and for all u, v ∈ Bε,

Ñε(au+ bv) =

∫
N(au+ bv − w)ρε(w)dw

=

∫
N(a(u− w) + b(v − w))ρε(w)dw

≤ a

∫
N(u− w)ρε(w)dw + b

∫
N(v − w)ρε(w)dw

= aÑε(u) + bÑε(v) ≤ 1.

Finally, Bε is bounded because, by (1), if Ñε(v) ≤ 1, then N(v) ≤ 1 + Lε,
and thus Bε ⊂ BN

0 (1 + Lε).
This concludes the proof that Bε is the unit ball of a norm, which we

shall denote by Nε.

Next, we claim that Nε is smooth on V \ {0}: This is equivalent
to the statement that ∂Bε is a smooth graph in the radial direction by
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Lemma 6.3. To prove our claim, we will show that Ñε has strictly positive
radial derivative on ∂Bε, that is, for all v with Ñε(v) = 1 we have

(3)
d

dh

∣∣∣∣
h=0

Ñε(v + hv) > 0.

Since N is Lipschitz,

d

dh

∣∣∣∣
h=0

Ñε(v + hv) =

∫
d

dh

∣∣∣∣
h=0

N(v + hv − w)ρε(w)dw.

Notice that, wheneverN is differentiable at v−w, with w ∈ spt(ρε) ⊂ B
|·|
0 (ε),

we have

d

dh

∣∣∣∣
h=0

N(v + hv − w) = lim
h→0

N(v − w + hv)−N(v − w)

h

= lim
h→0

(
N(v − w + h(v − w))−N(v − w)

h

+
N(v − w + hv)−N(v − w + h(v − w))

h

)
≥ N(v − w)− lim sup

h→0

N(v − w + hv)−N(v − w + h(v − w))

h

grouping terms and using the reverse triangle inequality

≥ N(v − w)−N(w)

≥ |v − w|/L− L|w|
≥ |v|/L− (L+ 1/L)ε.

Using the inequality |v| ≥ N(v)/L one can easily check that, if ε <
1

L·(1+L2)
, then |v|/L − (L + 1/L)ε > 0 and thus the strict inequality (3)

holds.

Next, we claim that the spheres ∂BN and ∂BNε are (L2ε)-close in
the Hausdorff sense with respect to the chosen norm | · |:

On the one hand, let x0 ∈ ∂BNε and consider Inequality 2 again:

inf
{
N(x0 − w) : w ∈ B

|·|
0 (ε)

}
≤ Ñ(x0) ≤ sup

{
N(x0 − w) : w ∈ B

|·|
0 (ε)

}
.

Using continuity of N and the Intermediate Value Theorem, if Ñε(x0) =

1, then there must be a point y0 ∈ B
|·|
x0(ε) so that N(y0) = 1. Hence, for

any point x0 on ∂BNε , there is a point y0 on ∂BN , that is ε-close to x0.
On the other hand, let y0 ∈ ∂BN

0 (1). By (1), we have that for h > 0,

h− Lε ≤ Ñε(hy0) ≤ h+ Lε.
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It follows that Ñε(hy0) ≥ 1 if h = 1+Lε, where |hy0−y0| = Lε|y0|. Similarly,
Ñε(hy0) ≤ 1 if h = 1− Lε, where |hy0 − y0| = Lε|y0|.
Now, since sup{|y| : y ∈ ∂BN

0 (1)} ≤ L, we have obtained that there are

two points y+ and y− in B
|·|
y0(L

2ε) such that Ñε(y+) ≥ 1 ≥ Ñε(y−). By

the Intermediate Value Theorem, there exists a point x0 ∈ B
|·|
y0(L

2ε) with
Ñε(x0) = 1, i.e., x0 ∈ ∂BNε

0 (1).

Next, we claim that the norm Nε is G-invariant: Let g be an element
of G, and let v ∈ V such that Nε(gv) = 1. Then

Nε(gv) = Ñε(gv)

=

∫
V
N(g(v)− w)ρε(w) dw

=

∫
V
N(g(v)− g · g−1(w))ρε(g · g−1(w)) dw

=

∫
V
N(g(v)− g(w))ρε(g(w)) dw

=

∫
V
N(v − w)ρε(w) dw

= Ñε(v) = Nε(v)

which shows that the norms Nε are G-invariant.

Finally: The fact that Nε → N uniformly on compact sets as ε → 0 follows
immediately from Lemma 6.4.

For any i ∈ N+ the norm

N ′
i :=

√
(1− 1/i)N2

ε=1/i + 1/i| · |2

is Minkowskian; In fact, we check that the norm satisfies condition 3 of
Definition 5.1:

gv(X,Y ) :=
1

2

∂2

∂s∂t

(
(N ′

i(v + sX + tY ))2
)∣∣∣

s=t=0

=
1

2

∂2

∂s∂t

(
(1− ε)N2

ε + ε| · |2
)

=
1

2
(1− ε)

∂2

∂s∂t
N2

ε +
1

2
ε

∂2

∂s∂t
| · |2

=
1

2
(1− ε)

∂2

∂s∂t
N2

ε + ε
∑
i

XiYi.

The latter summand is obviously positive-definite. It suffices to show that
the first summand is not strictly negative: in fact, N2

ε is the composition
of the non-decreasing convex real function x 7→ x2 and the function Nε is
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convex because it is a norm; therefore the Hessian is positive semi-definite
at all non-zero points.

We conclude that the sequence of norms

N ′
i :=

√
(1− 1/i)N2

ε=1/i + 1/i| · |2

converges to N uniformly on compact sets, that the norms N ′
i are strongly

convex, are smooth on V \ {0}, and are G-invariant. This concludes the
proof of Proposition 6.2.

Lemma 6.3. Let N be a norm on a vector space V and let S ⊂ V be the
unit sphere of a Euclidean norm | · |. Then the unit sphere ∂BN of N is a
radial graph, that is, there is a map r : S → ]0,+∞[ such that

∂BN = {r(p)p : p ∈ S}.

In fact, we have r(p) = 1/N(p) and thus, for all v ∈ V \ {0},

N(v) =
|v|

r(v/|v|)
.

In particular, N is smooth on V \{0} if and only if the function r is smooth.

Proof. By definition of the function r, if v ̸= 0 then

1 = N

(
r(v/|v|)

|v|
v

)
=

r(v/|v|)
|v|

N(v).

Lemma 6.4. Let | · | be a Euclidean norm on a vector space V . Suppose
that N1 and N2 are norms on V whose unit spheres have Hausdorff distance
less than η with respect to | · |. Let L1 and L2 be constants such that

|x|/Lj ≤ Nj(x) ≤ Lj |x|

for all x ∈ V . Then

(4) |N1(x)−N2(x)| ≤ L1L2η|x|.

Proof. Firstly, if N2(x̂) = 1, then there exists ŷ such that N1(ŷ) = 1 and
|x̂− ŷ| ≤ η. Therefore,

N1(x̂) ≤ N1(ŷ) +N1(x̂− ŷ)

≤ 1 + L1|x̂− ŷ|
≤ 1 + L1η.

Similarly, N1(x̂) ≥ 1− L1η.
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Secondly, if x ∈ V \ {0}, then

N1(x) = N2(x)N1

(
x

N2(x)

)
≤ N2(x)(1 + L1η),

and N1(x) ≥ N2(x)(1− L1η).
Finally, for all x ∈ V \ {0},

|N1(x)−N2(x)| = N2(x) ·
∣∣∣∣N1(x)

N2(x)
− 1

∣∣∣∣ ≤ L2|x| · L1η,

which proves (4).

7 Main Theorem

Lemma 7.1. Let | · | be a Euclidean norm on g. For a fixed path, the length
functional γ 7→ ℓN (γ) =

∫
N(γ̇) dt is continuous in the norm variable N

with respect to the Hausdorff distance induced by the norm | · | on g.

Proof. Let γ be a C1-path and fix a norm N on the Lie algebra g. Let M
be another norm on g such that the unit balls of N and M are ε > 0 apart.
We calculate

|ℓN (γ)− ℓM (γ)| =
∣∣∣∣∫ N(γ̇(t))dt−

∫
M(γ̇(t))dt

∣∣∣∣
≤
∫

|N(γ̇(t))−M(γ̇(t))|dt

By Lemma 6.4:

≤
∫

L1L2ε|γ̇(t)|dt

≤ L1L2εℓ|·|(γ),

where L1 and L2 are the constant in Lemma 6.4. This shows that the length
functional is continuous in norm.

Theorem 7.2. Let d be an admissible left-invariant geodetic metric on a
connected Lie group G. Then the following are equivalent

1. d is bi-invariant;

2. All the one-parametre subgroups t 7→ exp(tX) for X ∈ g are geodesics.

Proof. Proof that bi-invariance implies that the one-parametre sub-
groups are geodesics: By Lemma 4.2, d is a Finsler metric. If d is
Minkowskian, then the theorem by Latifi and Toomanian (Theorem 5.2)
tells us that all the one-parametre subgroups are geodesics.
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Otherwise use Proposition 6.2 to find a sequence (Ni) of bi-invariant
Minkowskian Finsler norms that approach the norm N of d in the Hausdorff
sense on the Lie algebra. The norms Ni extend to bi-invariant distances di
on the Lie group. Let u ⊂ g, and U ⊂ G be two open neighbourhoods of
0 ∈ g, and e ∈ G such that the exponential map is a diffeomorphism from
u onto U . The distance d({e}, U∁) is strictly positive so Lemma 7.1 tells
us that the sequence of real numbers di({e}, U∁) converges to d({e}, U∁);

therefore, the number R := infi

{
di({e}, U∁)

}
is strictly positive.

Let L be a positive real number such that 1/LN < | · | < LN . We know

that the ball B
(·)
0 (R) of any norm Ni or N is included in the set u. For

every norm Ni there exists a maximal ri ∈ R∗
+ such that BN

0 (ri) ⊂ BNi
0 (R).

Because the norms Ni converge to N in the Hausdorff sense the radii must
converge to R; In fact, the intersection of BN

0 (ri) and BNi
0 (R) is non-empty

so the Hausdorff distance of the unit balls of Ni and N must be greater than

1

LR
· |R− ri|.

This means that the sequence (ri) is bounded from below and there exists a
strictly positive real number r′ such that BN

0 (r′) is included in all the balls
BNi

0 (R).
Let t 7→ exp(tX) be an arbitrary one-parametre subgroup, and let t∗ be

a strictly positive real number such that t∗X is in the set BN
0 (r′). For all

metrics di the length minimising path joining e and the point p∗ := exp(t∗X)
is a piece of a one-parametre subgroup t 7→ exp(tY ). Because exp is a local
diffeomorphism from u onto U , if Y ̸= X the one-parametre subgroup must
leave the set U to connect to the point p∗. The relation BNi

0 (R) ⊂ u implies
that the length of such a path must be greater than R. The ball BN

0 (r′)
is included in the ball BNi

0 (R) so the length of t 7→ exp(tX) : [0, t∗] → G is
bounded above by R. This shows that the length minimising path joining e
and p∗ is the path t 7→ exp(tX) : [0, t∗] → G for all metrics di.

Suppose that γ is any other piecewise-C1 path connecting the points e
and p∗. Then we have the following strict inequality for any metric di

ℓNi(γ) > ℓNi(t 7→ exp(tX) : [0, t∗] → G).

Using the continuity of the length functional we pass to the limit as i tends
to infinity, and obtain

ℓN (γ) ≥ ℓN (t 7→ exp(tX) : [0, t∗] → G).

This shows that the one-parametre subgroup t 7→ exp(tX) is a geodesic
for the limit distance. We remark that because the strict inequality turns
into a non-strict one we lose local uniqueness of geodesics. As an example,
one can take the L∞ norm on the Abelian Lie group (R2,+) and write it
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as a limit of Lp norms. For each 1 < p < ∞ the geodesics are unique and
are the usual straight lines. However for the limit norm L∞ any graph of a
1-Lipschitz function is a geodesic.

Proof that if all the one-parametre subgroups are geodesics,
then the metric d is bi-invariant By Proposition 3.1 it suffices to show
that

dN |v ([X, v]) = 0 ∀X ∈ g, for a.e. v ∈ g.

Because the derivative operator is linear and the Lie bracket bilinear, by
replacing v with λv when necessary we can assume that the one-parametre
subgroup t 7→ exp(tv) minimises the distance between exp(0v) = e and
exp(1v).

Let γ(t) := exp(tv) : [0, 1] → G. We define a variation η of γ:

η(t) = exp(tv + εφ(t)X)

where ε > 0, and φ is a smooth function such that φ(0) = 0 = φ(1). We have
the relations η(0) = γ(0), η(1) = γ(1), and l(γ) ≤ l(η). We will calculate
the derivative of the variation η:

η′(t) = d exp|tv+εφ(t)X

[
v + εφ′(t)X

]
Using Duhamel’s Formula this equals

η′(t) =
∞∑
n=0

(−1)n

(n+ 1)!
adntv+εφX

[
v + εφ′X

]
.

Because η is a variation of γ and the length of γ is the infimum of lengths
of paths joining γ(0) and γ(1) we must have that:

0 =
d

dε

∣∣∣∣
ε=0

∫ 1

0
N
(
η′(t)

)
dt

=
d

dε

∣∣∣∣
ε=0

∫ 1

0
N

( ∞∑
n=0

(−1)n

(n+ 1)!
adntv+εφX

[
v + εφ′X

])
dt

because N(η′(t)) is a Lipschitz-function of ε we can exchange the derivative
and the integral:

=

∫ 1

0

d

dε

∣∣∣∣
ε=0

N

( ∞∑
n=0

(−1)n

(n+ 1)!
adntv+εφX

[
v + εφ′X

])
dt

=

∫ 1

0
dN |∑∞

n=0
(−1)n

(n+1)!
adntv [v]

(
φ′X +

∞∑
n=1

(−1)n

(n+ 1)!

(
n∑

j=1

adj−1
tv ◦ adφX ◦ adn−j

tv [v] + adntv[φ
′X]

))
dt,
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where all the terms with more than one ε-variable were killed inside the
brackets

=

∫ 1

0
dN |v

(
φ′X +

∞∑
n=1

(−1)n

(n+ 1)!
(tnφ′ − tn−1φ) adnv (X)

)
dt

using integration by parts, and grouping terms that depend on t and v:

=

∫ 1

0
dN |v

(
φ′X

)
dt+

∞∑
n=1

(−1)n+1

n!

∫ 1

0
tn−1φ(t) dt · dN |v (ad

n
v (X)) = 0

=
∞∑
n=1

(−1)n+1

n!

∫ 1

0
tn−1φ(t) dt · dN |v (ad

n
v (X)) = 0.

Fix a non-zero positive smooth function φ such that φ(0) = 0, φ(t) = 0
for all t ≥ 1, and such that φ ≥ 0. For any 0 < λ < 1, define φλ(t) := φ(t/λ);
the new functions also satisfy the conditions φλ(0) = φ(0/λ) = 0, and
φλ(1) = φ(1/λ) = 0, and they are smooth as compositions of two smooth
functions. Therefore: (this is, in fact, a Mellin transform of φ)

∫ 1

0
tn−1φλ(t) dt = λn

∫ 1

0
tn−1φdt.

This gives us a geometric series in λ:

∞∑
n=1

(−1)n+1

n!

(∫ 1

0
tn−1φλ(t) dt

)
· dN |v (ad

n
v (X))

=
∞∑
n=1

λn (−1)n+1

n!

(∫ 1

0
tn−1φ(t) dt

)
· dN |v (ad

n
v (X))

and it is a fact that if a geometric series vanishes everywhere on an open set
then its coefficients are 0. Therefore, for each n ∈ N+ we have

dN |v (ad
n
v (X)) = 0

especially for n = 1 we have

dN |v (adv(X)) = 0

which is what we wanted to show.
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