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Abstract— The construction of statistical shape models 

(SSMs) is an important method in the field of medical image 

segmentation. Most SSMs are constructed by using traditional 

modeling methods based on principal component analysis 

(PCA), which cannot fully present the true deformation ability 

of models. To solve the insufficient deformation ability of SSMs, 

we propose a stacked autoencoder (SAE) neural network to 

construct a multi-resolution multi-organ shape model based on 

mouse micro-CT images, which can express more linear and 

non-linear deformations than SSMs based on PCA. The main 

advantage of this method is that the SAE neural network is 

simple and flexible and it can learn more deformation modes 

from training data. We have quantitatively compared the 

modeling performance of this method with the constructed 

SSMs based on PCA in terms of model generalization and 

specificity.     

Index Terms— statistical shape model, principal component 

analysis, mouse micro-CT images, stacked autoencoder neural 

network, multi-resolution multi-organ shape model 

I. INTRODUCTION 

The construction of statistical shape models (SSMs) is an 

important segmentation method in the field of medical image 

segmentation. The applications of medical image 

segmentation methods focus on the segmentation of biological 

tissues and organs. Some applications consist of liver 

segmentation for volume measurement [1], breast tumor 

segmentation for diagnosis [2], bone localization and 

segmentation [3], and automatic heart segmentation for 

treatment [4], etc. In the past few decades, SSM methods have 

been employed to construct segmentations for single specific 

organs, especially for research purposes. Only a few other 

modeling methods focused on the segmentation of multiple 

organs. The most important approach in constructing SSMs is 

the principal component analysis (PCA) based on eigenvalue 

decomposition [5]. Given a set of medical images, such as 

computed tomography (CT) images, PCA approaches are 

used to calculate the deformation components and 

corresponding deformation coefficients. Thereafter the 

deformation components are added to the mean shape of these 

medical images to obtain a traditional standard SSM. Based 

on this rationale, various techniques have been proposed to 

improve the calculation of deformation components. Many 

other features of images are added to the PCA process to 

construct more representative models for images: they include 

different variants based on active shape models [6] and active 

appearance models [7] proposed by Cootes et al. Later in 2009 

Tresadern et al. [8] combined an MRF-based local shape 

model with a PCA-based global shape model for modeling 

and locating deformable objects. Wilms et al. [9] expanded 

this work to construct a two-dimensional (2D) multi-

resolution multi-organ model for the segmentation of 2D CT 

images. 

Although PCA-based shape modeling methods have been 

used widely in medical image segmentation and many 
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different improved variants have been proposed in the last 

three decades, each modification can only be used in a specific 

application. Their performance may degrade dramatically 

when there are outliers in the data of the training models. Due 

to the limited deformation ability of linear SSMs, some non-

linear PCA methods have been proposed to represent 

variations of bending and rotation in a more natural fashion 

[10, 11, 12]. Furthermore, when there are large amounts of 

three-dimensional (3D) training models, the computer's 

memory requirements increase exponentially, which leads to 

the failure of model construction [9, 13]. 

On the other hand, in recent years autoencoder-based 

shape modeling approaches have been proposed. They can 

learn latent non-linear deformations of shape models and 

represent more refined expressions in deformation models. In 

2018, Litany et al. used a variational autoencoder to learn the 

latent space of objects with non-rigid deformations to 

reconstruct missing parts of objects [14]. At the same time, 

Ranjan et al. proposed to use convolutional mesh 

autoencoders learning non-linear variations for the 

construction of 3D faces [15].  

A trained autoencoder network is simple for model 

construction and it only needs to save a few trained network 

parameters compared with PCA-based methods. In this paper, 

we have stacked autoencoder networks to build an SAE neural 

network that is used to construct a multi-resolution multi-

organ shape model based on abdominal mouse micro-CT 

images. We have compared the models obtained from the 

SAE neural network with traditional global SSMs and local 

SSMs in terms of model generalization and specificity 

performance. 

II. MATERIALS AND METHODS  

A. Mouse Micro-CT Data 

In this study, we have collected micro-CT images of 98 

mice from the Molecular Imaging Centre of the University of 

California, Los Angeles. For neural networks, sufficient 

training data should be provided to train the network. 

Practically, there are certain challenges in the collection of 

medical images, and 98 mouse images can be regarded as 

large sample data in the domain of medical image analysis. 

The detailed operating rules of mouse micro-CT imaging and 

the parameter settings of imaging equipment are described in 

our previous study [16]. 

After we have collected 98 mouse micro-CT images, we 

need to preprocess these images to obtain the final training 

data. The specific process is as follows: (1) We invited small 

animal imaging experts to manually segment 98 mouse micro-

CT images to obtain labels of the liver, spleen, left kidney, and 

right kidney. (2) Next, these labels have been converted into 

multi-organ surface meshes with the moving cube algorithm 

[17]. (3) After this, we chose a multi-organ surface mesh from 

the meshes as a reference template and used the point cloud 

registration method [18, 19] to register it to the other 97 

meshes. Finally, each mesh has the same number of points and 

each point on the mesh corresponds to the same anatomical 

position. (4) We performed the same downsampling on all 

points on every mesh to obtain point cloud data that can be 

trained by the network. 

B. Methods 

1) Description of autoencoder network  

An autoencoder network is an unsupervised neural 

network that learns input data and reconstructs the input data 

to the greatest extent. Normally, the simplest autoencoder has 

three layers: an input layer, a hidden layer, and an output layer. 

The number of nodes in the output layer is the same as the 

input layer. Since the input data is lossy and relevant during 

compression and decompression, the autoencoder network 

can learn compression and decompression functions that 

contain specific features of the data and can be used for data 

dimensionality reduction and feature extraction. In practical 

applications, an autoencoder network must try to obtain the 

most important features that can represent the input data.  

An autoencoder consists of an encoder ϕ, and a decoder 

Ψ, which can be defined as follows: 

ϕ: X→F 

                                           Ψ: F→X                                         (1) 

ϕ, Ψ = argmin
ϕ,Ψ

‖X - (Ψ∘ϕ)X‖2 

where argmin represents obtaining minimum values of ϕ, Ψ 

simultaneously. 

In the simplest case, given one hidden layer, the encoder 

stage of an autoencoder takes the input 𝑥𝜖𝑅𝑑 = 𝑋 and maps it 

to ℎ ∈ 𝑅𝑝 = 𝐹: 

                                    h = σ(Wx + b),                                        (2) 

 

where ℎ  is referred to as code, latent variables, or latent 

representation, σ is an element-wise activation function such 

as a sigmoid function or a rectified linear unit, 𝑊 is a weight 

matrix, and 𝑏 is a bias vector.  

The decoder stage of the autoencoder maps ℎ  to the 

reconstruction 𝑥′ of the same shape 𝑥: 

                                   x'=σ'(W'h+b
'
),                                          (3) 

 

where 𝜎′ is also an element-wise activation function, 𝑊′ is a 

weight matrix and 𝑏′ is a bias vector.  

Autoencoders are trained to minimize reconstruction 

errors which are often referred to as the "loss": 

L(x,x') = ‖x-x'‖
2
= ‖x - σ'(W'(σ(Wx + b)) + b

'
)‖

2
(4) 

 

The basic structure of an autoencoder network is shown in 

Fig. 1. The first column is the input layer, the middle column 

is a hidden layer and the last column is the output layer, +1 

indicates an offset constraint condition added to the 

corresponding layer. 

2) Multi-resolution shape modeling based on SAE neural 

network 

A stacked autoencoder (SAE) neural network is composed 

of multiple networks connected in series. In this paper, the 

purpose of using the SAE neural network to train input mesh 

data is to extract high-dimensional features of the data layer 



by layer and to reduce the dimension of the input data layer by 

layer. Therefore, the SAE neural network transforms high-

dimensional mesh data into a series of low-dimensional 

feature vectors. Finally, these low-dimensional feature vectors 

are decompressed to reconstruct mesh data approximately 

equal to the input mesh data. In the process of decompressing 

features and restoring data, if we regularly modify high-

dimensional feature parameters, we can see that the 

reconstructed data change regularly, which is also reflected in 

the deformation of 3D models. 

Fig. 2 shows the multi-resolution shape modeling process 

based on SAE neural network. E represents a compression 

network (i.e., an encoder) and D represents a decompression 

network (i.e., a decoder). Each combination of E and D is an 

autoencoder network introduced in section 1). 

This study uses an SAE neural network with three 

autoencoder networks. The training data for the first level E1 

and D1 is the shape vector of meshes described in section A. 

After training, E1 compresses the shape vector set into a 

shorter feature vector set  𝐹⃗⃗  ⃗1 = {𝑓 1,1, 𝑓 1,2, … , 𝑓 1,𝑀}, where 𝑀 is 

the number of training meshes, and the subscript 𝑖, 𝑗 of 𝑓 𝑖,𝑗 

represents the j-th sample of the i-th level. The 𝐹 1 obtained 

from the first level network is used as the training sample of 

the second level network to obtain the training results of 𝐸2 

and 𝐷2 . The second level network generates a further 

compressed feature vector set 𝐹 2 = {𝑓 2,1, 𝑓 2,2, … , 𝑓 2,𝑀}. Then 

𝐹 2 is used to train the third level network (i.e., 𝐸3 and 𝐷3). As 

a result, the vector lengths of 𝐹 1 , 𝐹 2 , and 𝐹 3 decrease 

gradually, which means the compression ratio gradually 

increases. From the perspective of shape characteristics, the 

resolution of the shape deformation should gradually 

transition from a global model to a local part of the model, 

thus forming a multi-resolution training method. 

The SAE neural network used in this research encounters 

the problem of too large model data. Each 3D training mesh 

contains 3759 surface sampling points and the shape vector of 

a mesh contains 11277 dimensions, which takes up a lot of 

memory and causes a computational burden for SAE neural 

network training. Due to the limitation of the memory capacity 

of the computer used in this study, the points of each training 

mesh are downsampled to 752 as described in section A. Then 

the down-sampled model vertices are trained by the SAE 

neural network, and the generated deformation vectors are 

interpolated through the Laplace iteration diffusion algorithm 

(5) to obtain deformation vectors of 3759 vertices of a mesh.  

                            X⃗⃗ i(n+1)
= X⃗⃗ in

 + 
λ

M
∑ (X⃗⃗ jn

 - X⃗⃗ in
)m

j=0                   (5) 

where 𝑛 represents the number of iterations, 𝑖 is the vertex 

index, 𝑥 𝑖𝑛  represents the deformation vector of the i-th vertex 

at the n-th iteration, 𝑗 = 0,1, … ,𝑚 represents m+1 indexes of 

neighbor vertices around vertex  𝑖 , λ represents the smooth 

intensity coefficient. 

In terms of the SAE neural network parameters set, we try 

to select the appropriate number of nodes in the hidden layer, 

and output layer as well as the number of levels in the SAE 

neural network by changing different parameter values in this 

study. After that, we determine to use a three-level SAE neural 

network in this study. The number of input nodes of the first 

level encoder is 752 × 3 = 2256 (i.e., the number of points of 

down-sampled mesh multiplied by the spatial dimension), and 

the corresponding number of output nodes is 1000. The 

number of input and output nodes of the second level encoder 

is 1000 and 200, respectively. The number of input and output 

nodes of the third level encoder is 200 and 30, respectively. 

Finally, the shape model including multiple organs is 

represented by the 30-dimensional feature vector 𝑓 3 , which is 

the output of the third level encoder. 

3) Shape fitting and generation with SAE neural network 

Based on the trained three-level SAE neural network, we 

can do multi-organ shape fitting and generation for new 

mouse micro-CT images. As shown in Fig. 3 (a), the shape 

vectors of multiple organs are input to a three-level SAE 

neural network. Through the process of three compressions 

and three decompressions, a new shape is reconstructed as the 

fitting result of the input shape. According to the principle of 

the SAE neural network, the output shape should be as similar 

as possible to the input shape, and the error between them 

indicates the fitting error. The smaller the fitting error is, the 

better the training performance of the SAE neural network is. 

In this paper, we calculate the average surface distance [20] 

Fig. 1.  Basic structure of an autoencoder network. 

Fig. 2.  The overall structure of a three-level SAE network with 3 

autoencoder networks. 



between the constructed model and a training mesh to evaluate 

the modeling performance [21] of our method. If an input 

shape is one of the training samples, the fitting error reflects 

the specificity of the SAE neural network; if an input shape is 

not included in the training sample set, the fitting error reflects 

the generalization of the SAE neural network.  

Fig. 3 (b) shows the shape generation process based on the 

three-level decoder. If a randomly selected feature vector 𝑓 3 is 

input to the network, the corresponding output shape can be 

obtained; if the training performance of the network is 

effective, the output shape should correspond to the true 

anatomical shape. Further, if the mean shape of the training 

meshes is input to the three-level SAE neural network, the 

feature vector 𝑓 3 
̅̅ ̅

corresponding to the mean shape can be 

obtained. And if any value in any dimension of 𝑓 3 
̅̅ ̅

is modified, 

the deformation effect of the mean shape can be constructed, 

thus realizing the construction of the multi-resolution shape 

model for multiple organs.  

III. RESULTS 

A. Multi-resolution Shape Modeling Results Based on SAE 

Neural Network  

According to the shape generation method in the previous 

section, we take the 30-dimensional feature vector 𝑓 3
̅
 of the 

mean shape as the basis and make the unit size, which deviates 

from the average value, to be 0.1 by changing the value of 

each dimension in the study. At last, deformation results of the 

mean shape corresponding to 30 dimensions are obtained. we 

have found that in the process of controlling the deformation 

of the 30-dimensional components, some of the deformation 

laws of the model show a certain similarity. Therefore, in Fig. 

4, 17 representative deformation components are selected, 

where 𝐹𝑖(𝑖 = 1,2,3,4,6,7,8,11,13,14,15,16,18,19,25,26,30) 

represents the i-th deformation component of the third level in 

the SAE neural network. The first, third, and fifth columns are 

the mean models, and the second, fourth, and sixth columns 

are the deformation models reconstructed by adjusting these 

deformation components in this network. Some areas of the 

reconstruction model that have obvious deformation are 

circled. As Fig. 4 shows, in the reconstruction of the multi-

organ shape model, different deformation components in the 

third level of the SAE neural network control the deformation 

of different areas of the model. Such as 

components  𝐹4, 𝐹7 ,𝐹11 , 𝐹15 can control liver deformation, 

components  𝐹2 ,𝐹3 ,𝐹6 ,𝐹13  can control spleen deformation, 

components 𝐹7 , 𝐹15 , 𝐹30  can control right kidney 

deformation, components 𝐹13 , 𝐹14 , 𝐹25 , 𝐹30can control left 

kidney deformation, and the components 𝐹8 , 𝐹26 , etc. can 

control the relative position changes of certain organs. Each 

deformation component of constructing a multi-organ model 

not only controls the deformation of a certain organ, but also 

affects the changes in the shape and position of multiple 

organs. In the constructed model, there is not only a single 

organ with obvious local deformations, but also multiple 

organs with obvious global deformations, which shows a 

multi-resolution deformation effect. 

B. Comparison of SAE Neural Network and SSM Modeling  

In the previous study, we used a modified traditional PCA 

method to construct traditional global SSM and multi-

resolution SSM for the mouse micro-CT images and obtained 

global and local deformation modes [16]. On this basis, we 

further compare the model constructed by the SAE network in 

this study with the multi-resolution model constructed in the 

previous study. We quantitatively analyze the generalization 

and specificity of the models constructed by these two 

different approaches, based on the average surface distance 

errors of the constructed model and each training data. 

For comparison, Fig. 5 shows the traditional PCA method 

to construct a global SSM for realizing the global deformation 

effect. The first and fourth columns are the mean models, 

which are represented by 𝛍. The deformation components are 

represented by 𝑃𝐶1 , 𝑃𝐶2  and 𝑃𝐶3 . λi(𝑖 = 1,2, … ,10)  is the 

eigenvalue obtained by implementing eigenvalue 

decomposition on the covariance matrix of training sample 

points, which corresponds to the deformation component. 

𝛼𝑖(𝑖 = 1,2, … ,10) is the model coefficient, which is set as the 

weight of the deformation model. Comparing Fig. 4 and Fig. 

5, we can find that almost all the deformation models 

constructed by PCA methods can also be constructed by using 

SAE neural network. However, the multi-organ deformation 

model reconstructed by SAE neural network has more 

deformation modes than that constructed by PCA methods.  

In this study, the SAE neural network is mainly used to 

reconstruct the mouse abdomen multi-organ model. As a 

comparison, the traditional global SSM and multi-resolution 

SSM are introduced to further analyze the accuracy of these 

Fig. 3.  Shape fitting and shape generation using the SAE neural 

network. (a) Shape fitting; (b) Shape generation. 
Fig. 4.  Multi-organ model reconstructed by SAE neural network.  



three modeling methods. It can be seen from Fig. 6 (a) that in 

terms of generalization, the modeling error of the traditional 

global multi-organ SSM and multi-resolution model are 

smaller than that of the SAE neural network. Especially for 

the multi-resolution model, the error is around 0.3 mm, while 

the modeling error of the SAE neural network is about 1.5 

mm. In Fig. 6 (b), in terms of specificity, the modeling errors 

of the traditional global multi-organ SSM and the multi-

resolution model have reached the level of 0.3 mm and 0.2 

mm, respectively, but the modeling error of the SAE neural 

network is still around 1.5 mm. According to the analysis, 

although the principle of the SAE neural network is simple 

and easy to implement, it is still inferior to the linear SSM 

construction method based on the PCA method. We also find 

that the number of hidden layers, the number of nodes, and the 

sparseness of the SAE neural network may cause the training 

error to become larger, which needs to be verified in future 

work. 

IV. CONCLUSION 

The method proposed in this paper is more concise and 

feasible, and the model constructed by it can express much 

richer deformation modes. The SAE neural network is simpler 

than PCA-based methods in terms of algorithm complexity. 

But the deformation successfully reflects multi-resolution 

changes in shapes. Moreover, SAE neural network is a new 

type of multi-resolution modeling method based on shape 

prior knowledge and is easy to implement. SAE neural 

network has potential application for multi-resolution organ 

segmentation as the multi-resolution features are important for 

the shape modeling of multiple organs. The advantages of the 

proposed method are that the constructed diverse deformation 

components consist of nonlinear and linear modeling 

characteristics. For example, the deformation components 

obtained by SAE neural network are much more than that of 

PCA-based methods. Likely, the model built by SAE neural 

network consists of much more local deformation components 

which can change the local shape of an organ in detail. 

Although the error rates of generalization and specificity of 

the SAE neural network are still a little bit higher, the 

excellent nonlinear multi-resolution modeling characteristics 

deserve further improvement and optimization. On the other 

hand, SAE neural network is a nonlinear modeling method, 

which is more suitable for simulating nonlinear shape space 

with a manifold distribution. In theory, it can obtain a more 

accurate modeling effect than traditional linear modeling 

methods. Furthermore, SAE neural network modeling method 

has multi-resolution characteristics not shared by traditional 

methods, which means SAE neural network modeling method 

performs better theoretically. 
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