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Abstract

Uncovering the demographic basis of population fluctuations is a central goal of population

biology. This is particularly challenging for spatially structured populations, which require dis-

entangling synchrony in demographic rates from coupling via movement between locations. In

this study, we fit a stage-structured metapopulation model to a 29-year times series of threespine

stickleback abundance in the heterogeneous and productive Lake Mývatn, Iceland. The lake

comprises two basins (North and South) connected by a channel through which the stickleback

disperse. The model includes time-varying demographic rates, allowing us to assess the poten-

tial contributions of recruitment and survival, spatial coupling via movement, and demographic

transience to the population’s large fluctuations in abundance. Our analyses indicate that recruit-

ment was only modestly synchronized between the two basins, whereas survival probabilities of

adults were more strongly synchronized, contributing to cyclic fluctuations in the lake-wide pop-

ulation size with a period of approximately six years. The analyses further show that the two

basins were coupled through movement, with the North Basin subsidizing the South Basin and

playing a dominant role in driving the lake-wide dynamics. Our results show that cyclic fluc-

tuations of a metapopulation can be explained in terms of the combined effects of synchronized

demographic rates and spatial coupling.
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Introduction

Temporal fluctuations in demographic processes such as survival and reproduction are of central

importance to population biology (Twombly, 1994; Fox and Gurevitch, 2000; Koons et al., 2016).

Changes in demographic rates underpin population fluctuations (Coulson et al., 2005), and these

changes can arise from both endogenous processes such as predator-prey interactions (Rosen-

zweig and MacArthur, 1963) and exogenous processes such as climatic variability (Elton, 1924).

Furthermore, demographic rates can change in response to trait plasticity and evolution (Ellner

et al., 2011; Bonnet et al., 2019), and the interplay between ecological and evolutionary dynamics

in wild populations is often predicated on the potential for demographic rates to vary through

time (Coulson et al., 2006; Siepielski et al., 2009; Ozgul et al., 2010; Ellner et al., 2011). While

temporal variation in demographic rates has been extensively studied, these studies are often

restricted to populations subject to long-term monitoring with repeated observations of uniquely

identified individuals (e.g., mark-recapture; Fujiwara and Caswell, 2002), which may not be rep-

resentative of the full range of dynamics found in wild populations. Furthermore, long-term

demographic studies often focus on directional trends or responses to specific drivers such as

predator removal (e.g., Diller et al., 2016) or climate change (Hunter et al., 2010), rather than

addressing population fluctuations per se (but see White et al., 2007; Koons et al., 2017; Taylor

et al., 2018; Hoy et al., 2020). Consequently, there is a need for further studies characterizing the

demographic underpinnings of population fluctuations, especially in systems that are generally

underrepresented in long-term demographic studies.

Uncovering the demographic basis of population fluctuations can be particularly challeng-

ing for metapopulations (Bjørnstad et al., 1999), in which discrete patches or sub-populations are

linked through movement (i.e., immigration and emigration) (Hanski, 1998). Synchronous fluctu-

ations in patch-level abundance will tend to reinforce each other in the metapopulation dynamics,

while asynchronous or compensatory fluctuations will tend to cancel each other out (Liebhold

et al., 2004). The degree of synchrony between the patch-level dynamics will be influenced by
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the extent to which the within-patch demographic rates (e.g., reproduction and survival) are syn-

chronized between patches (Ranta et al., 1995; Liebhold et al., 2004). Synchronization could arise

from synchronous changes in environmental drivers such as climate (Moran, 1953) or through

patches being indirectly coupled by joint interactions with another dynamic agent such as a

mobile predator (Ims and Andreassen, 2000; Gilg et al., 2009). Moreover, direct coupling be-

tween patches via movement can alter the patch-level dynamics (Liebhold et al., 2004), and the

effect of movement on the metapopulation dynamics interacts with processes occurring within

patches (Ranta et al., 1995; Kendall et al., 2000; Goldwyn and Hastings, 2008). Disentangling the

effects of direct coupling through movement, the degree of synchrony between demographic pro-

cesses within patches, and the interplay between the two is an important step in characterizing

metapopulation fluctuations (Liebhold et al., 2004; Abbott, 2011).

Further complicating efforts to characterize the demographic basis of population fluctuations

is the potential role of transience. “Transience” refers to short-term dynamics of a system that

differ from the long-term or asymptotic dynamics under a fixed set of conditions (Hastings,

2010). A fixed set of demographic rates for a demographically structured population implies an

equilibrium distribution of individuals across population states such as stage classes or patches

(Caswell, 2001). After an external perturbation, the population’s state distribution will tend to-

wards its equilibrium, and this will generally entail transient changes in the total population

growth rate. The qualitative behavior of demographic transience depends on the exact config-

uration of demographic rates but can include cyclic fluctuations as the population approaches

its equilibrium distribution (Caswell, 2001). By definition, these transient fluctuations can oc-

cur without temporal variation in the underlying per capita demographic rates. Rather, transient

fluctuations arise because of changes in the distribution of individuals across demographic states,

which scales the relative contributions of the per capita rates to the overall population growth

rate. When per capita demographic rates vary through time, which is true to at least some extent

for all wild populations, the equilibrium distribution will be a “moving target” such that a given

population is likely to be in a perpetual state of disequilibrium (Fox and Gurevitch, 2000; Koons
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et al., 2017). Whether such perpetual disequilibrium results in large transience depends on the

extent to which the underlying demographic rates change through time and the rate at which

the population approaches its ever-changing equilibrium distribution, which is itself a function

of the time-specific demographic rates (Caswell and Neubert, 2005; Caswell, 2007). Despite grow-

ing recognition (Caswell, 2007; Koons et al., 2017), the contribution of transience to fluctuations

in wild populations is generally unknown (but see Hoy et al., 2020).

In this study, we analyzed the metapopulation fluctuations of threespine stickleback (Gasteros-

teus aculeatus) over the course of three decades in Lake Mývatn, Iceland. The Mývatn stickleback

population is spatially structured by the geomorphology of the lake (Gı́slason et al., 1998; Millet

et al., 2013), which is divided into two basins connected by two narrow channels (Figure 1 A).

The larger South Basin (Syðriflói; 28 km2) is dominated by exposed sediment and intermittent

mats of filamentous green algae (Einarsson et al., 2004). The substantially smaller North Basin

(Ytriflói; 8.5 km2) is more spatially heterogeneous, in part due to dredging of the lake bottom

that substantially altered its bathymetry. The North Basin has historically sustained much higher

densities of threespine stickleback than the South Basin (Gı́slason et al., 1998), presumably due

to the ecological differences between the basins. Despite the narrow connection between the

basins, population genetic analyses indicate limited differentiation (Millet et al., 2013), which

implies extensive gene flow and admixture. This is consistent with previous studies indicating

that lacustrine populations of threespine sticklebacks have the potential to be well-mixed through

extensive within-lake dispersal (Maciejewski et al., 2020).

In addition to its spatial heterogeneity, the Mývatn stickleback population fluctuates sub-

stantially through time. While the causes of these fluctuations are unknown, they are likely

connected to the large temporal variability of other species in the lake. Mývatn is naturally

eutrophic due to inflows of nutrient-rich springs, which sets the stage for high-amplitude fluctu-

ations in secondary producers (Einarsson et al., 2004). Chief among these are various species of

rotifers, chironomids, and crustaceans (Einarsson et al., 2002; Einarsson and Örnólfsdóttir, 2004;

Garðarsson et al., 2004; Ives et al., 2008), some of which are important food sources for threespine
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stickleback (Guðmundsson, 1996). Moreover, the lake hosts temporally variable populations of

Arctic charr (Salvelinus alpinus), brown trout (Salmo trutta), and piscivorous birds that have the

potential to induce fluctuations in the stickleback population from the top down (Garðarsson,

1979; Guðbergsson, 2004; Phillips et al., 2022). Finally, Mývatn’s stickleback can sustain high

loads of the tapeworm Schistocephalus solidus (Gı́slason et al., 1998; Karvonen et al., 2013), which

substantially reduces fecundity in other threespine stickleback populations (Heins et al., 2010;

Heins, 2012).

To characterize the spatiotemporal dynamics of the Mývatn stickleback population, we fit a

stage-structured metapopulation model (Caswell, 2001) to a 29-year time series of stickleback

abundance. The model includes temporal variation in basin-level recruitment and survival, as

well as movement between basins. Changes in these demographic rates were statistically inferred

as required to fit the observed population dynamics. This approach provides great flexibility in

modeling the demographic underpinnings of population fluctuations, including those implic-

itly arising from exogenous and endogenous processes (Zeng et al., 1998; Ives and Dakos, 2012;

Phillips et al., 2022). Equipped with the parameterized model, we quantified the synchrony in

recruitment and survival between the two basins in addition to the degree of coupling through

movement. Furthermore, we estimated both the direct (i.e., asymptotic) and indirect (i.e., tran-

sient) effects of time-varying recruitment, survival, and movement on the metapopulation dy-

namics. Our analysis illustrates how spatially structured fluctuations can arise through the con-

junction of spatial synchrony in demographic rates and spatial coupling through movement in a

wild population.

Methods

Long-term data collection

From 1991 to 2020, the stickleback population of Mývatn was surveyed in June and August of

each year (hereinafter “June census” and “August census”, respectively). These surveys were
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conducted under the auspices of the Mývatn Research Station, which has government approval

for collecting fish specimens from the lake (animal ethics review is not legally required in Iceland

for wild-caught fish euthanized upon capture). We sampled eight off-shore sites, five in the South

Basin and three in the North Basin (Figure 1 A). These sites provided wide coverage of the lake,

with the exception of the eastern portion of the South Basin that has historically had negligible

densities of sticklebacks. The sites exhibited different substrates, with two broad categories being

bare sediment (possibly with some cover by filamentous green algae) and sediment covered with

various species of vascular macrophyte; both categories have representative sites in each basin

(see detailed site descriptions in Millet et al., 2013).

For each site and survey event, we set unbaited minnow traps (c. 3.2 mm mesh size) for two

12-hour sessions, one during the day and one during the night. Typically, five traps were set and

counted separately, although occasionally fewer traps were set, or trap-catches were pooled for

a given site prior to counting. Trapped individuals were sorted into two size-classes (small and

large) with a threshold of 50 mm in June and 45 mm in July (Gı́slason et al., 1998). Although

there is likely variation in size at maturation (Singkam and MacColl, 2019), these size classes

are expected to generally correspond with sexual maturity (Guðmundsson, 1996; Gı́slason et al.,

1998), and for the purposes of demographic modeling (described below) we interpreted them

as two stage-classes: juvenile (small) and adult (large). In general, threespine stickleback reach

maturity at 1-2 years of age (Baker et al., 2008), although age and size at maturation are plastic

traits (Baker et al., 2015) that may differ among populations (Snyder, 1991).

We used site-level catch per unit effort (CPUE) for each of the two stage-classes at each time

point to parameterize the metapopulation model described below. CPUE was calculated for each

site and sampling event by summing across all traps set during both day and night sampling and

then dividing by the total number of traps. Within each basin and stage class, site-level catches

were of comparable magnitude and generally correlated through time (Figure 1 B). Therefore,

while we used site-level CPUE to parameterize the model, the model itself was formulated in

terms of relative basin-level abundance, with the sites serving as repeated observations of the
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same basin-level abundance estimate, as described in more detail below.

We grouped site 135 with the rest of the South Basin (Figure 1 A), despite its location on the

boundary between the two basins, as its stickleback catch was similar to other sites within the

South Basin in most years. However, we acknowledge that an unusually large number of adults

were trapped at site 135 in 2019 and 2020, which may not be fully captured in our basin-level

analysis. Moreover, we acknowledge the inherent uncertainties in catch data for fish populations,

and in particular the possibility that the catch probability varied among sites due to local condi-

tions such as substrate. However, our model was formulated in terms of basin-level abundance

(with each basin encompassing a range of substrates), and the higher densities in the North Basin

implied by the trapping data are consistent with a previous mark-recapture study (Gı́slason et al.,

1998). Furthermore, the data were collected with a consistent methodology and equipment by the

same researchers for the duration, which should improve the credibility of the inferred temporal

patterns that are the major focus of our analysis.

Metapopulation model

We used a stage-structured metapopulation model (Caswell, 2001) with time-varying demo-

graphic rates to characterize the dynamics of the stickleback population. The model projected the

population dynamics due to recruitment, survival, and stage transitions from juvenile to adult

within each basin, as well as movement between basins. Recruitment, survival, and movement

were allowed to vary through time, enabling the model to characterize a range of dynamics,

including those implicitly due to endogenous (e.g., density dependence) and exogenous (e.g.,

environmental variation) processes (Zeng et al., 1998; Ives and Dakos, 2012; Phillips et al., 2022).

We estimated the demographic rates by fitting the model to the time series of CPUE. In gen-

eral terms, this approach works by reconstructing the demographic rates required to project the

distribution of abundances across demographic states from one time step to the next (Phillips

et al., 2022). By explicitly modeling temporal variation in the demographic rates, we were able

to take advantage of shared information across all time points simultaneously to constrain the
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parameter estimates.

In the model as described below, movement is defined as the proportion of individuals that

begin in one basin and end in the other basin over a given time interval. Moreover, recruitment is

formulated as in situ per capita recruitment (i.e., new individuals appearing in a basin through

birth in that basin per adult). By formulating in situ recruitment and movement as separate

processes in the model, we endeavored to disentangle these processes through the model fitting.

However, we acknowledge that any effort in model-based inference is subject to uncertainty and

that the literal biological meaning of the demographic parameters should be interpreted with

caution.

For a given time interval from t − 1 to t, the population dynamics were projected as

xt = Pt−1 xt−1 (1)

where Pt is 4 × 4 a matrix of demographic rates at time t, and xt is a 4 × 1 vector of relative

abundances for a given stage (juveniles j; adults a) and basin (south s; north n):

xt =



xj,s,t

xa,s,t

xj,n,t

xa,n,t


. (2)

The projection matrix Pt can be expressed as

Pt =

 Ws,t Bs→n,t

Bn→s,t Wn,t

 (3)

where Wi,t is a 2 × 2 matrix characterizing per capita contributions within basin i, and Bi→k,t is

a 2 × 2 matrix characterizing contributions from basin i to basin k. Within-basin contributions

were modeled as

Wi,t =

 ϕj,i,t (1 − γj) (1 − δj,i,t) ρi,t

ϕj,i,t γj (1 − δa,i,t) ϕa,i,t (1 − δa,i,t)

 (4)
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where ϕh,i,t is the survival probability of stage-class h, γj is the proportion of surviving juve-

niles that transition into adults (i.e., the “stage-transition” probability), δh,i,t is the proportion of

surviving individuals that move to the other basin, and ρi,t is per capita recruitment. We modeled

between-basin contributions as

Bi,t =

 ϕj,i,t (1 − γj) δj,i,t 0

ϕj,i,t γj δa,i,t ϕa,i,t δa,i,t

 . (5)

For computational tractability, we fixed the stage-transition probability γj to a single value for

both basins and through time; therefore, temporal variation in stage-transitions was implicitly

incorporated into the time-varying survival probabilities.

To be biologically interpretable, survival, movement, and stage-transition probabilities must

be constrained to between 0 and 1. Furthermore, probabilities of all possible fates for an individ-

ual beginning in a given state (i.e., basin × stage combination) must sum to 1. To accommodate

these constraints, we modeled survival, movement, and stage-transitions in terms of latent tran-

sition rates (denoted ω
p
t for parameter p), from which we calculated the transition probabilities

(i.e., ϕh,i,t, γj, and δh,i,t) projected over the interval between time steps (see Appendix A). This ap-

proach imposes an inverse relationship between the basin-specific movement probabilities for a

given stage class, which is appropriate because only the net movement between basins manifests

in the population dynamics. Our formulation first calculates survival, then stage transitions, and

finally movement (Appendix A equation A5), which is reflected in the structure of equations 4

and 5.

We modeled temporal variation in recruitment (ρi,t) and latent transition rates (ωp
t ) as

ζ
q
t ∼ Gaussian

(
ζ

q
t−1, σq

)
Truncated (0, ∞) (6)

where ζ
q
t is the value for demographic rate q at time t, and σq is the standard deviation of the

distribution. This approach results in autocorrelated changes in the demographic rates through

time, since the contribution of equation 6 to the model likelihood (defined below) declines as

the difference between ζ
q
t and ζ

q
t−1 increases; the strength of this penalization against changes
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in ζ
q
t declines as σq increases. We estimated a single value of σq for recruitment in both basins,

and a single value for survival and movement of all state combinations, as these demographic

processes respectively occurred on similar scales. Equation 6 was truncated from the left at zero

(Stan Development Team, 2021) to ensure the demographic rates remained positive.

We used a Bayesian approach to estimate the parameters in the metapopulation model (equa-

tions 1 through 6) by fitting the model to site-level CPUE for each stage class h at each time step t,

with a function m(k) defined to map site k to basin i. Because we were interested in using CPUE

to infer the relative abundance between basins, (rather than the absolute magnitude of CPUE),

we divided CPUE by the global mean CPUE for model fitting (hereinafter “scaled CPUE”). The

metapopulation model was formulated in terms of relative populations sizes in each basin, while

site-level scaled CPUE is an index of population density. To account for this, we defined a vari-

able κi to represent the relative sampling areas of the South Basin and the North Basin covered by

the sampling sites, which were originally selected to represent the full distribution of the popu-

lation throughout the lake. Specifically, we defined κs as the region of the South Basin excluding

the region east of the chain of islands and south of site 135 (c. 17.5 km2), and κn as the entire

North Basin (c. 8.5 km2) (Figure 1 A). This resulted in a 2:1 relative scaling of South vs. North

Basin, or κs = 2 and κb = 1.

Using these definitions, we calculated the likelihood of scaled CPUE yh,k,t given a modeled

relative abundance xh,i,t as

L = ∏
h,k,t

Gaussian
(

yh,k,t | xh,m(k),t/κm(k), σy

)
, (7)

with standard deviation σy representing “sampling error” that includes deviations of sites from

the mean basin-level density. While other distributions might seem more appropriate for abun-

dance data such as CPUE, we found that some common choices produced unsatisfactory fits

to the observed data. Specifically, both log-normal and negative binomial distributions led to a

flattening of the likelihood at high population densities (due to the variance scaling proportion-

ally with mean), causing the model to be only weakly informed by the data at high densities.
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Moreover, the multiplicative nature of population processes is already entailed in the population

projection, and it is not obvious that variation in the distribution of individuals across sampling

sites is best construed as a “count process”. Therefore, we opted for a Gaussian likelihood. Be-

cause the model was parameterized in a way that ensured xh,i,t was non-negative, the posterior

distribution of xh,i,t was also guaranteed to be non-negative.

We used gamma priors with shape parameter 1.5 for the initial values for demographic rates

and standard deviations for time-varying rates and model likelihood. A gamma distribution with

shape parameter of 1.5 has zero density at zero and is concave down as it approaches its mode,

allowing the posterior to be arbitrarily close to zero while not being artificially drawn towards it.

For most of the gamma priors, we used a scale parameter of 0.75 (implying a prior distribution

mean of 2), which is a reasonable scale relative to the scaled CPUE data. However, we used a

more conservative scale parameter of 3 (prior distribution mean of 0.5) for the initial values and

standard deviation of transition rates to better constrain them on the latent scale. We used an

exponential prior with a rate of 0.5 (prior distribution mean of 2) for initial relative abundances,

which we chose as it was somewhat more diffuse than the gamma priors.

We fit the model using Stan 2.19 (Carpenter et al., 2017) run from R 4.0.3 (R Core Team,

2020), with the rstan package (Stan Development Team, 2018). We fit the model with 4 chains,

20000 iterations (10000 of warm-up and 10000 of sampling), thinning interval of 2 to retain a

manageable number of samples, tree depth of 11, and “adapt delta” of 0.97. Convergence was

assessed by the number of divergent transitions, the potential scale reduction factor (R̂), the tail-

and bulk-effective sample size, and trace plots for individual parameters (see Online Supple-

ment: Model Assessment for further details). We used posterior medians as point estimates and

quantile-based uncertainty intervals with coverage analogous to standard errors (16% and 84%

quantiles for 68% coverage).

In addition to the full model, we also fit three reduced models to which it could be com-

pared. First, we fit a model only including movement of adults (“adult movement”), because

the demographic estimates from the full model implied negligible net movement of juveniles
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between the basins. Second, we fit a model omitting movement entirely (“no movement”), al-

lowing us to assess the contribution of movement to the model fit. Third, we fit a model with

recruitment, survival, and adult movement fixed through time (“fixed rates”), allowing us to

assess the contribution of temporal variation in demographic rates to the model fit. The fixed

rates model omitted juvenile movement altogether, because the comparison of the full and adult

movement models implied a negligible contribution of time-varying juvenile movement to the

model fit (see Results). We assessed goodness-of-fit using three related metrics: the posterior

median of the log-likelihood given by equation 7, the “widely applicable” information criterion

(WAIC), and the “leave-one-out” cross validation information criterion (LOOIC). We calculated

WAIC and LOOIC using the loo package (Vehtari et al., 2020).

Annual dynamics and sensitivity analysis

While we parameterized the model in terms of seasonal projections to accommodate the seasonal

nature of the data (June and August censuses), we focused our analysis on the annual dynamics

to better reflect the annual nature of spawning in this population and to circumvent interpreta-

tional issues arising from the unequal projection intervals within a year. Accordingly, we defined

the annual projection matrix as

Ay = Pt[y]+1Pt[y] (8)

for year y and sequential time steps within that year t[y] and t[y] + 1, with the year defined to

start with the June census. Ay projects the dynamics from June of one year to June of the next

year. Because Pt[y] was defined through June of 2020, we only calculated Ay from 1991 through

2019.

We characterized the overall dynamics of the population in terms of the annual population

growth rate λy, calculated as

λy =
Ny+1

Ny
=

c⊤Ayxy

c⊤xy
(9)

where Ny is the summed abundance across basins and life stages in June of year y and c is a 4 × 1
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vector of ones (Caswell, 2001). Temporal variation in λy reflects both variation in the demographic

rates and transient fluctuations due to non-equilibrium state distributions. Therefore, it is also

informative to calculate the asymptotic population growth rate that would obtain under the

equilibrium state distribution in a given time step, which is equal to real part of the leading

eigenvalue of Ay (Caswell, 2001).

Both the transient and asymptotic population growth rates appeared to display periodic be-

havior for at least a portion of the three-decade time series (see Results). We quantified this

putative periodicity by applying continuous wavelet transforms to the time series for the tran-

sient and asymptotic growth rates, on a log-scale (the results were similar for the raw values)

and with no detrending. Wavelet transforms are a generalization of Fourier transforms, allowing

the decomposition of the signal into periodic elements to be localized in time (Cazelles et al.,

2008). Because our use of wavelet transforms was chiefly descriptive and applied to signals that

were themselves the outputs of a statistical model, we did not attempt to apply formal statisti-

cal inference (i.e., hypothesis testing) to the wavelet decomposition. We conducted the wavelet

analysis using the R package WaveletComp (Roesch et al., 2018), and for tractability we applied

the wavelet transform to the posterior median of λy (rather than to multiple Markov chain sam-

ples). While the wavelet decomposition was conducted for periods up to the maximum period

length (29 years), the signal associated with periods >10 years was very weak. So, for clarity of

visualization we truncated the periodogram at 10 years.

We conducted a sensitivity analysis to evaluate the effect of perturbations in the demographic

rates on the population growth rate, using the approach of Caswell (2007) that is applicable to

transient dynamics (see Appendix B for relevant formulas). The sensitivity of the population

growth rate with respect to a demographic parameter quantifies how much the growth rate

would change in response to a perturbation in that demographic parameter. In order to compare

across parameters of different magnitudes (which is particularly relevant in the present context

with time-varying rates), it is common to calculate the proportional change in response to a

proportional perturbation, otherwise known as the “elasticity” (Caswell, 2001). For each year,
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we calculated the elasticity of the annual growth rate with respect to the demographic rates at

each of the two intervals within that year. To simplify the presentation, we added together the

elasticities for the intervals within a given year for each demographic parameter. We report the

sensitivity analysis for both transient and asymptotic growth rates. Transient sensitivity analysis

propagates perturbations in the demographic rates through time, such that transience due to

non-equilibrium state distributions is attributed to the demographic parameters resulting in the

non-equilibrium state distribution for a given time step (Caswell, 2007). Transient results were

obtained by propagating each perturbation for a single time-step for each year, while approximate

asymptotic results were obtained by propagating for 50 time-steps, which we confirmed was

sufficiently long to exclude transient effects through visual comparison to shorter projections.

The sensitivity analysis was performed for 2000 samples of the Markov chain generated during

fitting of the full demographic model to propagate uncertainty parameter estimates.

Results

We used a stage-structured metapopulation model to characterize the population dynamics of

Mývatn stickleback arising from temporal variation in movement, survival, and recruitment.

To evaluate the degree to which the CPUE data provided meaningful information on the time-

varying demographic rates, we compared the fits of alternative models with different combi-

nations of fixed and time-varying rates. The model with all demographic rates fixed through

time (“fixed rates”) provided a much worse fit than any of the other models (Table 1; Figure

2), indicating that temporal variation in the demographic rates was important in accounting for

the observed population dynamics. In contrast, the models including movement of adults only

(“adult movement”) and movement of both stage classes (“full model”) provided nearly identi-

cal fits, indicating that there was no clear signature of differential movement of juveniles in the

population dynamics. The model omitting movement altogether (“no movement”) provided a

somewhat worse fit to the data than the models including movement. Visually, this manifested
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as slightly lower flexibility of the model without movement to track fluctuations in the data,

even though the qualitative behavior was largely similar (Figure 2). The discrepancy between the

models with and without movement was greatest for South Basin juveniles; allowing movement

of adults from the North to South basins relaxed the constraints on inferred abundance of South

Basin juveniles and thereby allowed a closer fit to the data. Hereafter, we present the results of

the adult movement model, as it better characterized the data than the no movement and fixed

rates models while being simpler than the full model.

The demographic rates fluctuated substantially over the study period, resulting in large

changes in abundance. Per capita recruitment was of similar magnitude and modestly covaried

between the two basins (Pearson correlation r = 0.50; Figure 3). However, South Basin recruit-

ment was somewhat more variable, with a peak in 1991 being particularly striking. Survival

probabilities covaried across stage classes within each basin (r = 0.88 and 0.84 for the South and

North basins, respectively) and within stage classes between basins (r = 0.61 and 0.93 for juve-

niles and adults, respectively). For both stage classes in both basins, survival probabilities peaked

in 2002-2003 prior to an extended decline until 2015, after which survival probabilities generally

increased (Figure 4). However, survival probabilities of South Basin juveniles were lower than for

the other classes throughout the time series, and this was especially true during the final decade.

Figure 5 shows the inferred net movement between basins (rather than basin-specific movement

probabilities), as this is most relevant to the observed population dynamics and thereby “visible”

to the model when fit to the data (see Online Supplement: Movement Probabilities for further

details). Net movement was generally low and punctuated by several “waves” of movement from

north to south. While these waves of southward movement persisted throughout the time series,

they were substantially larger prior to 2005 than afterwards. The direction of net movement

was rarely northward and only of substantial magnitude in 2004, following a particularly large

southward movement event.

We used both the transient and asymptotic growth rates to characterize the annual population

dynamics. The transient growth rate quantified the dynamics as they actually occurred, including
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fluctuations due to the non-equilibrium distribution of individuals across population states (i.e.,

basin × stage-class combinations). In contrast, the asymptotic growth rate assumed an equilib-

rium state-distribution at each time point and thereby isolated the direct long-term effects of the

per capita demographic rates. Both the transient and asymptotic growth rates fluctuated substan-

tially across the study period, indicating periods of rapid population growth and decline (Figure

6 A). Over the first two decades, the asymptotic growth rate was cyclic with a period of approx-

imately 6 years (Figure 6 B). However, this was supplanted by fluctuations of lower-amplitude

and higher-frequency in the last 10 years (Figure 6 A). The 6-year periodicity was weaker for the

transient growth rate, which instead was dominated by two bouts of high-frequency fluctuations

at the beginning and end of the study period. Together, these results indicate that there was a

cyclic aspect to the large fluctuations of the Mývatn stickleback population, although the dynam-

ics appear to have changed over the last decade. Furthermore, transience due to non-equilibrium

state distributions reduced the apparent cyclicity in the realized population dynamics.

We assessed the potential contributions of each demographic rate to the population dynamics

using elasticities, which quantified the proportional change in the population growth rate in re-

sponse to proportional perturbations in the underlying demographic rates. Elasticities are shown

for both the transient and asymptotic growth rates (Figure 7). Transient elasticities included in-

direct effects of changes in per capita demographic rates via changing distributions across basin

× stage-class combinations, while the asymptotic elasticities only included direct effects of the

per capita demographic rates. The elasticities fluctuated substantially through time. While these

fluctuations were generally similar for the asymptotic and transient cases, the transient elastici-

ties were more variable and strongly differed from the asymptotic elasticities in some individual

years. This result mirrored the differences in the asymptotic and transient growth rates near the

beginning and end of the study period (Figure 6). Furthermore, the asymptotic elasticities for

juvenile survival and recruitment were identical within each basin, which is expected given their

similar contributions to the population projection matrix (Caswell, 2001). However, this was not

the case for the transient elasticities, which showed marked differences between juvenile survival
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and recruitment within each basin in some years. In other words, the direct effects of juvenile

survival and recruitment on the population growth rate were similar, but their indirect effects

through changes in population state distribution differed in years when transience was especially

pronounced.

Despite the large interannual variability in both asymptotic and transient elasticities, this

variation was small relative to the overall contrasts between the different demographic rates (Fig-

ure 7). This indicates that the relative importance of different demographic processes remained

broadly consistent throughout the study period. The elasticities were neutral or positive in most

years for all demographic rates except for movement probabilities from the North to the South

Basin, which were substantially negative in most years. The negative elasticities for southward

movement indicated that conditions were demographically less favorable in the South than in the

North Basin, such that increases in southward movement would reduce the population growth

rate. Among the remaining demographic rates, the largest elasticities were for juvenile survival,

recruitment, and adult survival in the North Basin, while the analogous rates for the South Basin

were generally close to zero. This pattern was especially pronounced in the most recent years,

coinciding with low survival (Figure 4) and adult abundance (Figure 1 B) in the South Basin.

Together, these results show that the North Basin dominated the overall population dynamics,

and this dominance increased towards the end of the study period.

Discussion

Despite the long-standing interest in population fluctuations, particularly those cyclic in character

(Elton, 1924; Nicholson and Bailey, 1935), studies that decompose these dynamics into direct

and indirect contributions from the underlying demographic rates are relatively rare (Fox and

Gurevitch, 2000; Coulson et al., 2005; Koons et al., 2017). Using a metapopulation model with

time-varying demographic rates fit to three decades of monitoring data (CPUE), we decomposed

the population dynamics of threespine stickleback from Lake Mývatn into contributions from
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recruitment, survival, and movement between the lake’s North and South basins. Recruitment

was only modestly synchronized between the two basins, whereas survival probabilities of adults

were more-strongly synchronized, contributing to cyclic fluctuations in the lake-wide population

with a period of approximately six years for most of the study period. Moreover, the two basins

were coupled through movement of individuals, with the North Basin subsidizing the South

Basin and playing an important role in the lake-wide dynamics. While the population dynamics

were generally cyclic, they appeared to shift in the final decade towards fluctuations of lower

amplitude and higher frequency. This shift was associated with a decline in lake-wide survival

probabilities and reduced net movement. In addition to their direct effects, the time-varying

demographic rates indirectly resulted in transient fluctuations in the population growth rate,

partially obscuring the cyclic nature of the underlying dynamics. While we acknowledge the

inherent limits of CPUE data for inferring population dynamics, particularly for movement and

dispersal, our analysis provides a plausible characterization of the dynamics that could lead to

the large spatiotemporal patterns in the observed data.

The fluctuations of the Mývatn stickleback population were best explained by changes in the

per capita demographic rates, as opposed to being purely transient as would be embodied by

a model with fixed demographic rates corresponding to basic life history characteristics (e.g.,

average lifespan or maturation rate; Caswell, 2001). Indeed, in the absence of time-varying de-

mographic rates, the best-fitting model rapidly reached its equilibrium behavior of essentially

constant population density. This finding is consistent with Wootton et al. (2005), who compared

the dynamics of three different threespine stickleback populations in the United Kingdom (one

riverine, one lacustrine, and one backwater) and found that only the backwater population had

cyclic fluctuations. Such variation in the dynamics of different populations is contrary to what

one would expect if the cyclicity were an inherent feature of threespine stickleback life-history.

However, the lack of transient fluctuations arising directly from life history or demographic

structure does not imply that transience was not important for the population dynamics. On the

contrary, there were substantial transient effects on the realized population growth rate. These
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transient features arose because of repeated perturbations of the demographic rates, which per-

petually kept the population away from its equilibrium state distribution. While the dynamics of

our model were locally linear and density-independent, our approach for inferring time-varying

demographic rates can implicitly embody nonlinear and density-dependent dynamics (Ives and

Dakos, 2012). It is possible that the time-varying demographic rates themselves were the manifes-

tation of some transient phenomenon, such as overcompensatory density-dependence that could

lead to sustained cycles under constant environmental conditions (e.g., May, 1974). This high-

lights the key point that transience must be defined with respect to some set of conditions under

which a system can be characterized as “fixed” (Hastings, 2010), which is as much a feature of

the observer as of the phenomenon being observed.

Uncovering the mechanistic basis for changes in the demographic rates is crucial for under-

standing the ecological and evolutionary relevance of population fluctuations. Our metapopu-

lation model for Mývatn stickleback implies that processes both lake-wide and specific to each

basin are likely to contribute. For example, the broadly synchronized survival probabilities across

the lake, especially for adults, suggest a lake-wide driver. While several possibilities exist, a likely

candidate is predation from salmonids such as Arctic charr and brown trout. Arctic charr in par-

ticular are widely distributed and disperse extensively throughout the lake (Guðbergsson, 1991,

2004), which could induce synchronous fluctuations in stickleback survival. Avian predators

may also be important drivers of temporal variation in survival, although they tend to be more

localized (Einarsson et al., 2004) and therefore do not obviously account for similarities between

the two basins. Predation-induced synchrony among sub-populations has been observed in other

metapopulations and may be quite common in cases where predators are highly mobile relative

to their prey (Ims and Andreassen, 2000; Gilg et al., 2009). In contrast to survival, per capita

recruitment was less correlated between the two basins, implying that it was driven in part by

factors unique to each. The two basins differ substantially in their substrates, bathymetry, and

water chemistry (Einarsson et al., 2004), which in turn translates to differences in invertebrate

communities (Bartrons et al., 2015) that serve as key food sources for threespine stickleback.
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Food availability could influence adult fecundity or survival of recently hatched juveniles, both

of which would manifest as variation in per capita recruitment in our model. Infection by the

tapeworm Schistocephalus solidus could also account for spatiotemporal variation in fecundity

(Heins et al., 2010; Heins, 2012), which is the subject of ongoing research in the Mývatn popula-

tion. Moreover, our model indicates a shift in the dynamics of the stickleback population over the

past decade, with the 6-periodicity dominant in the first two-thirds of the study period giving

way to more irregular high-frequency fluctuations. While the basis for this change is unclear, it

could be connected to a shift in the Arctic charr population towards a more adult-dominated age

distribution (Phillips et al., 2022). However, other aspects of the Mývatn ecosystem may have

changed over this time period as well, which is a topic of ongoing study.

In addition to the ecological perspective of population demography and spatial heterogene-

ity, our analyses have implications for evolutionary processes over space and time. Threespine

stickleback provide some of the most prominent examples of rapid evolution, adaptive diver-

gence, and ecological speciation (reviewed in Hendry et al., 2013). In Mývatn, the distribution of

the threespine stickleback population across two ecologically distinct basins with differentiation

in demographic rates could set the stage for adaptive divergence. Previous work from Mývatn

has identified spatial variation in feeding morphology and defensive traits (Millet et al., 2013).

For example, dorsal spines tend to be longer in the North Basin than in the South Basin, which

might reflect elevated predation risk (Hoogland et al., 1956; Reimchen and Nosil, 2002). How-

ever, population-genetic studies have provided mixed evidence for genetic differentiation and

clear evidence of extensive gene flow across the lake (Ólafsdóttir et al., 2007; Millet et al., 2013),

which is consistent with the inference from our metapopulation model that the two basins are

dynamically coupled through movement. Nonetheless, if differences in natural selection between

the basins are sufficiently strong, it is plausible that this could result in phenotypic differentia-

tion even in the absence of clear population-genetic structure (Räsänen and Hendry, 2008). The

apparent phenotypic variation between the two basins could also be explained by phenotypic

plasticity, which theoretical work suggests may be favored in metapopulations with strong cou-
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pling through movement (Sultan and Spencer, 2002). Moreover, the large temporal variation in

survival and recruitment may set the stage for fluctuating selection (Siepielski et al., 2009), which

in turn could lead to rapid evolutionary changes in traits associated with the underlying demo-

graphic rates. Per capita population growth rates are tightly associated with evolutionary fitness,

and previous studies have successfully linked fluctuating population growth rates to rapid evolu-

tionary change in other populations (Coulson and Tuljapurkar, 2008; Engen et al., 2014; de Vries

and Caswell, 2019). A challenge for future work is to characterize how these eco-evolutionary

processes manifest in space (Hanski, 2012; Brunner et al., 2019).

In conclusion, we fit a stage-structured metapopulation model to a 29-year times series of

threespine stickleback abundance in the heterogeneous and productive Lake Mývatn, Iceland.

Together, our results show how cyclic fluctuations can be explained by the combination of syn-

chronized demographic rates and spatial coupling through movement. Moreover, we show how

transient shifts in the distribution of individuals across population states can lead to short-term

deviations from long-term cyclic dynamics. Our analysis provides important context for future

efforts to decompose the fluctuations of wild metapopulations into contributions from time-

varying demographic rates.
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Appendix A: Transition rates

We parameterized latent transition rate matrices for mortality (Ωµ
t ), stage-transition (Ωγ), and

movement (Ωδ
t ) as:

Ω
µ
t =



−ω
ϕj,s
t 0 0 0

0 −ω
ϕa,s
t 0 0

0 0 −ω
ϕj,n
t 0

0 0 0 −ω
ϕa,n
t


(A1)

Ωγ =



−ωγj 0 0 0

ωγj 0 0 0

0 0 −ωγj 0

0 0 ωγj 0


(A2)

Ωδ
t =



−ω
δj,s
t 0 ω

δj,n
t 0

0 −ω
δa,s
t 0 ω

δa,n
t

ω
δj,s
t 0 −ω

δj,n
t 0

0 ω
δa,s
t 0 −ω

δa,n
t


(A3)

Note that mortality implicitly entails transition to a “death state” that is omitted for succinctness,

as dead individuals do not contribute to future transitions. For each transition matrix Ωα
t , we

then calculated the probability of transitioning as

Ψα
t = eΩα

t (A4)

which is the solution to the differential equation associated with the Markov process specified by

Ωα
t with initial condition equal to the 4 × 4 identity matrix (Yang, 2006). The unequal projection

interval duration from June-August and August-June was handled implicitly by the time-varying

rates, which proved more computationally stable than explicitly accounting for the projection

interval duration in equation A4.
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The transition probability matrix was calculated as

Pt = Ψδ
t Ψγ Ψ

µ
t . (A5)

The order of multiplication implies that proportional survival is calculated first, followed by

stage-transitions, and finally movement, resulting in the configuration of transition probabilities

given in equations 4 and 5. In principle, we could have included all of the demographic transi-

tions in a single transition matrix, which would imply that all of the transition processes occurred

simultaneously. However, modeling the different transition processes sequentially facilitated in-

terpretation of the resulting transition probabilities (i.e., the matrix elements in equations 4 and

5), as they would only pertain to a single type of demographic transition rather than multiple

transition processes occurring simultaneously. This also facilitated convergence of the MCMC

algorithm during model fitting, for much the same reasons.
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Appendix B: Sensitivity analysis

We used the method of Caswell (2007) to calculate the elasticities (proportional sensitivities) of

the annual transient population growth rate λy with respect to perturbations in the seasonal

demographic rates. It was convenient to perform the calculations using the logarithm of λy,

commonly denoted ry. This parameter is related to total population size Ny by the expression

ry = log
(

Ny+1
)
− log

(
Ny

)
. (B1)

Note that
dλy

dθ
= λy

dry

dθ
(B2)

where dλy
dθ can generically be interpreted as the sensitivity of λy with respect to perturbations in

a single parameter θ. The elasticity of λy is then defined as

θ

λy

dλy

dθ
= θ

dry

dθ
. (B3)

The multiplication of dry
dθ by θ implies proportional perturbations in θ. Therefore, the sensitivity

of ry with respect to proportional perturbations in θ equals the elasticity of λy. This deduction

is essentially a restatement of logarithmic relationship of λy and ry, along with the properties of

logarithmic derivatives.

The transient sensitivity of ry with respect to perturbations in demographic parameters is

defined as
dry

dθ⊤y
=

c⊤

Ny+1

dxy+1

dθ⊤y+1
− c⊤

Ny

dxy

dθ⊤y
(B4)

where θy is a vector of demographic parameters in year y, xy is a 4 × 1 vector of abundances

in each state, c is a 4 × 1 vector of ones, and “d” is the derivative operator. We were interested

in the sensitivity of ry with respect to proportional perturbations in the seasonal demographic

rates, which are connected to xy through the annual population projection matrix Ay as defined

in equation 8. If θy contains the seasonal demographic rates (i.e., the collective elements of Pt[y]
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and Pt[y]+1) and ϵy is a vector of proportional perturbations in θy, then

dxy+1

dθ⊤y+1
= Ay

dxy

dθ⊤y
+

(
x⊤y ⊗ Ic

) dvecAy

dϵ⊤
y

diagϵy (B5)

where Ic is the c × c identity matrix with c as the length of the parameter vector θy, ⊗ is the

Kroenecker product operator, “vec” is an operator that creates a vector by stacking columns of

the operand matrix, and “diag” is an operator that creates a square matrix with the operand

vector on the diagonal and zeros elsewhere. Defining an initial population size distribution x0

that is independent of the demographic parameters implies that dx0
dθ⊤0

= 0. Using this initial

condition, the sensitivities can then be calculated by iterating equations B4 and B5 for each year,

with perturbations ϵy proportional (or equal) to the parameter vector θy. Asymptotic results can

be obtained by iterating B5 many times for a given year, which eliminates the dependence on the

initial values such that each year can be treated independently.
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variation in space and time. Aquatic Ecology 38:317–348.

Ellner, S. P., M. A. Geber, and N. G. Hairston Jr. 2011. Does rapid evolution matter? Measuring

the rate of contemporary evolution and its impacts on ecological dynamics. Ecology Letters

14:603–614.

Elton, C. S. 1924. Periodic fluctuations in the numbers of animals: their causes and effects. Journal

of Experimental Biology 2:119–163.

Engen, S., T. Kvalnes, and B.-E. Sæther. 2014. Estimating phenotypic selection in age-structured

populations by removing transient fluctuations. Evolution 68:2509–2523.

Fox, G. A., and J. Gurevitch. 2000. Population numbers count: tools for near-term demographic

analysis. The American Naturalist 156:242–256.

Fujiwara, M., and H. Caswell. 2002. Estimating population projection matrices from multi-stage

mark–recapture data. Ecology 83:3257–3265.

Garðarsson, A. 1979. Waterfowl populations of Lake Mỳvatn and recent changes in numbers and
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Tables

Table 1: Comparison of model fits.

Model Log-likelihood WAIC ∆WAIC LOOIC ∆LOOIC

full model -1486 3174 0 3173 0

adult movement -1485 3174 0 3175 2

no movement -1502 3196 22 3194 21

fixed rates -1721 3463 290 3463 290

Note: Log-likelihood is calculated as the posterior median
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Figure legends

Figure 1: (A) Distribution of trapping sites within Mývan’s South (23, 27, 41, 44, and 135) and

North Basins (DN, 124, and 124). Gray areas indicate water and white areas indicate land. (B)

Scaled catch per unit effort (CPUE; scaled by mean) by station (thin colored lines) and posterior

median scaled-CPUE from the full version of the metapopulation model (thick black lines) for

each basin and stage class.

Figure 2: Scaled CPUE averaged across stations and multiplied by the relative basin area (points)

with fitted values from different versions of the demographic model (lines). Solid lines are

posterior medians, and shaded regions are quantile-based uncertainty intervals with coverage

analogous to standard errors (68%). Note that the fitted values for the full and adult-movement

models are visually indistinguishable.

Figure 3: Per capita recruitment as inferred from the adult-movement model. Solid lines are

posterior medians, and shaded regions are quantile-based uncertainty intervals with coverage

analogous to standard errors (68%).

Figure 4: Survival probabilities as inferred from the adult-movement model. Solid lines are

posterior medians, and shaded regions are quantile-based uncertainty intervals with coverage

analogous to standard errors (68%).
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Figure 5: Net movement of adults between basins as inferred from the adult-movement model.

We calculated net movement as the flux of individuals (in units of relative abundance) from

south to north (“northward”) minus the flux from north to south (“southward”). The model

was formulated such that movement was calculated after survival and stage-transitions, which

was reflected in the calculation of net movement. Solid lines are posterior medians, and shaded

regions are quantile-based uncertainty intervals with coverage analogous to standard errors.

Posterior summaries were applied to the calculation of net movement itself, rather than net

movement being calculated from posterior summaries.

Figure 6: (A) Transient and asymptotic population growth rates, projected annually from the

adult-movement model. Solid lines are posterior medians, and shaded regions are quantile-based

uncertainty intervals with coverage analogous to standard errors (68%). The dashed horizontal

line shows λ = 1, which corresponds to no change in the population size. (B) Periodograms from

wavelet transforms of transient and asymptotic growth rates, with darker shading representing

stronger signal associated with a given periodic element. The black contour lines are based on

signal quantiles and denote regions of high signal.

Figure 7: Elasticity analysis of the transient and asymptotic population growth rates with respect

to the time-varying demographic rates. Solid lines are posterior medians, and shaded regions

are quantile-based uncertainty intervals with coverage analogous to standard errors (68%).
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Model Assessement

We fit the various model versions using Stan 2.19 (Carpenter et al., 2017) run from R 4.0.3 (R

Core Team, 2020), with the rstan package (Stan Development Team, 2018). We used 4 chains,

20000 iterations (10000 of warm-up and 10000 of sampling), thinning interval of 2 to retain a

manageable number of samples, tree depth of 11, and “adapt delta” of 0.97. Convergence was

assessed by the number of divergent transitions, the potential scale reduction factor (R̂), and the

tail- and bulk-effective sample size. All of the models performed well by these diagnostics, with

the exception of the “fixed rates” model, which experienced a small number of divergent transi-

tions suggesting poor exploration of certain regions of the parameter space. This is unsurprising,

as the “fixed rates” very clearly fails to characterize the data due to the large fluctuations in

abundance that cannot be explained in the absence of temporally-variable demographic rates.

To complement the numerical convergence assessment, here we present some figures (S1 -

S4) illustrating the successful convergence and parameter space exploration for the “adult move-

ment” model, which was selected as the best-fitting model and served as the primary basis of

our analysis.
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Figure S1: Trace plots showing MCMC sampling of the parameter space after the 10000 iteration

adaptation phase for the “adult movement” model. Note that we used a thinning interval of 2,

such that only samples from every other iteration were saved. The model has > 1500 parameters,

and it would be impractical to show trace plots for them all. Therefore, we only show trace plots

for several key parameters. Specifically, we show the log-posterior density, which provides a syn-

optic measure of the overall model fit, and standard deviations associated with observation error

and temporal variation in demographic rates, which govern the basic behavior of the model in

relation to the data. The trace plots indicate thorough mixing among chains, indicating effective

sampling of the parameter space.
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Figure S2: Histogram of potential scale reduction factors (R̂) for all parameters of the “adult

movement” model. R̂ is a standard convergence diagnostic that approaches 1 as the sampled

distribution approaches the target distribution. The vertical line denotes 1.01, which is a common

threshold used to assess convergence. All R̂’s were well below this threshold, indicating that the

chains were well mixed.

5



Supplement to Phillips et al., “Metapopulation fluctuations,” Am. Nat.

0

20

40

60

5000 10000 15000 20000

Effective sample size

N
um

be
r 

of
 p

ar
am

et
er

s

Figure S3: Histogram of effective sample sizes for all parameters of the “adult movement”

model. The effective sample size is an approximate measure of the efficiency with which the pa-

rameter space is explored through MCMC. Autocorrelation in the chains reduces this efficiency,

and therefore requires more iterations to fully explore the parameter space. The effective sample

size was low relative to the total number of iterations for some parameters. However, lowest

effective sample size of 1310 samples should provide sufficient characterization of the parameter

space given that the chains were well mixed, as indicated by R̂.
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Figure S4: Estimated relative abundance for each basin × stage-class × date combination

(i.e., xh,m,t) from the “adult movement” model plotted against the scaled CPUE averaged across

stations and multiplied by relative basin area κ. The error bars indicate 90% posterior quantile

intervals. The values deviate somewhat from the 1:1 line, with the model slightly overestimating

abundance at low CPUE and underestimating at high CPUE. Nonetheless, there is a strong cor-

relation between the observed data and the model fit.
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Movement Probabilities

To characterize movement between basins, we formulated our model in terms of latent per capita

movement rates (ωδh,m for stage h in basin m), from which we then calculated the probability of

an individual beginning in one basin and ending in the other basin over a given time interval

(main text Appendix I). While the model is parameterized in terms of separate probabilities for

southward and northward movement, calculating these probabilities from latent transition rates

necessarily imposes an inverse relationship between them. Moreover, because the data do not

contain any information about the basin-of-origin for any given individual, only the net number

of individuals exchanged between basins can be inferred as needed to account for the observed

population dynamics. Therefore, in the main text we decided to present the net movement

between basins. Nonetheless, for completeness we have plotted the basin-specific movement

probabilities in Figure S5.
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Figure S5: Basin-specific probabilities of movement between basins as inferred from the “adult

movement” model. Note that while the probability of moving from south to north generally

exceeds that of moving north to south, this has to be assessed in the context of the relative abun-

dances in the two basins. Because abundance is generally higher in the north, movement from

north to south generally predominates, according to the model. This underscores the relevance

of considering net movement between basins (main text Figure 5) rather than the basin-specific

movement probabilities.
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