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Abstract. An Internet of Things (IoT) system typically comprises nu-
merous subsystems and devices, such as sensors, actuators, gateways for
internet connectivity, cloud services, end-user applications, and analyt-
ics. Currently, these subsystems are built using a wide range of program-
ming technologies and tools, posing challenges in migrating functionality
between them. In our previous work, we have proposed so-called liquid
software, where different subsystems are developed using a consistent set
of technologies and functions can flow from one computer to another. In
this paper, we introduce a prototype implementation of liquid artificial
intelligence features, which can be flexibly deployed at the cloud-edge
continuum.

Keywords: Liquid software - Artificial intelligence - AI - Machine learn-
ing - ML - Web of Things - WoT - Internet of Things - IoT - Isomorphic
software.

1 Introduction

Contemporary Internet of Things (IoT') systems and their associated applications
are capable of generating and managing vast volumes of data. This has paved the
way for the utilization of Machine Learning (ML) and Artificial Intelligence (AI)
in several application domains, including smart homes, smart cities, healthcare,
retail, and industrial systems. However, not all data generated by IoT devices
can be transmitted to the cloud for processing due to concerns related to privacy,
latency, or limited connectivity. As a result, it becomes imperative to perform
certain computations near the data source, while other computations can be
offloaded to the cloud. Nevertheless, there are numerous use cases where seamless
data and computation transfer between different system components is necessary.

Performing such transfer in the cloud-edge continuum has been one of the
goals of so-called liquid software in the IoT domain [I6]. A recent literature
study defined cloud continuum as “an extension of the traditional cloud towards
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multiple entities (e.g., edge, fog, IoT) that provide analysis, processing, storage,
and data generation capabilities” [20]. Given the rapidly increasing use of ML
technologies, we expect that the same technical challenges that apply to conven-
tional computations shall emerge also in the context of ML technologies across
the cloud-edge continuum.

In this paper, we report the first prototype of using AI/ML technologies in
the liquid context, building on our previous work [ISJI6JIR]. As the underlying
technology framework, we use WebAssembly, a technique for running small mem-
ory virtual machines with binary bytecode [23], and neural networks, which are
a commonly used technique in ML and has several practical use cases. Moreover,
it is expected that new, improved hardware platforms will allow distributing ML
functions between the cloud-fog-edge continuum.

The rest of the paper is structured as follows. In Section [2| we introduce the
background of the paper. In Section[3] we present our prototype implementation,
where we test AI/ML features in liquid fashion. In Section [4] we discuss the key
findings. Finally, towards the end of the paper, in Section [5] we draw some
conclusions.

2 Background and Motivation

2.1 Isomorphic IoT Systems

Using the term isomorphism — a well-established mathematical concept — in
software development has emerged relatively recently. In the context of web
applications, isomorphism refers to running the same code in both the backend
(cloud) and frontend (web browser) [25].

In general, isomorphic software architectures include software components
that do not need to be altered (’change their shape’) while running on various
hardware or software components of the system. Well-known examples of iso-
morphic systems are Java and its 'write once, run everywhere’ guarantee [2],
Unity 3D engine, Universal Windows platform, which allows running the same
code on Windows 10, Xbox One gaming machines, and HoloLens devices, and
liquid web applications [19].

There are several levels of isomorphism that can be identified [18]. Static,
development-level isomorphism allows using the same development technologies
consistently throughout the entire system’s different computational elements. In
contrast, dynamic isomorphism allows the usage of a common runtime engine
or virtualization solution to enable running the same code on various compu-
tational elements without the need for recompilation. In a more sophisticated
system, dynamic code migration from one computational element to another is
also possible.

In the IoT context, we are interested in dynamic isomorphism, allowing the
deployment of the the same, isomorphic software throughout the end-to-end sys-
tem to run on edge devices, gateways, mobile clients and cloud services, instead
of them all running separate software (Figure (1] [27]). Such facilities would liber-
ate the developers from designing dedicated applications for individual nodes in
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Fig. 1. Elements of a typical loT end-to-end system, with each element featuring their
own implementation technologies.

the network taking into account the associated implementation technologies [28],
and only create one implementation that can be deployed to various locations

[18].

2.2 Liquid Software

Liquid software [LOJITI29IT9] is a paradigm that builds on isomorphic software,
allowing the migration of software from one computer to another on the fly. In
the context of the web, the main use case has been experience roaming from
one display to another [19], whereas in the context of IoT, liquid software en-
ables flexible configurations of applications, instead of rigid architectures that
are associated with traditional technologies [28].

It has been pointed out that there are various ways to build liquid software,
depending on what are the desired characteristics and use cases [7/8]. These char-
acteristics and use cases have an impact on various technical decisions, including
topology, replication and migration techniques, thickness of the client, and user
interface adaptation, to name some examples.

To support isomorphic, liquid software deployment, a runtime environment
is needed where the same infrastructure is made available across the cloud-
edge continuum. In our previous work, we have used WebAssembly, with some
early results published in [I2]. This setup allows using various programming
languages to create the software, but the infrastructure maps everything to the
WebAssembly virtual machine. This virtual machine can be included in various
nodes in the cloud-edge continuum, so that the actual code can be flexibly run
in different locations. This added flexibility then enables orchestrating functions
so that energy consumption, communication bandwidth, and performance and
memory requirements can be taken into account. In fact, similar executions could
be run in different configurations at different times, if the circumstances change.

2.3 Liquid AI/ML

One important use case for liquid software is edge intelligence [21]. In ”classic”
IoT systems, the majority of computation and analytics are performed in the
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cloud in a centralized fashion. However, in recent years there has been a notice-
able trend in IoT system development to move intelligence closer to the edge,
challenging the existing rigid design space [28].

Historically, the computing capacity, memory and storage of edge devices
were limited. Due to increasing computational capabilities of edge devices and
requirements for lower latencies, though, intelligence in a modern end-to-end
computing system is gradually moving towards the edge, first to gateways and
then to devices. Another driver is the huge data that the edge devices generate. It
is often reasonable to process data on the edge devices for performance reasons,
but privacy and data ownership concerns also support placing of the computation
to edge devices.

This trend towards edge includes both generic software functions, and — more
importantly — time critical AI/ML features for processing data available on the
edge with minimal latency. The requirement to run advanced AI/ML and ana-
lytics algorithms on the edge increases the demand for consistent programming
technologies across the end-to-end system. Hence, in addition to liquid software,
we also need liquid AI/ML [26], allowing flexible deployment of intelligent com-
ponents in different nodes of the IoT network.

2.4 'WebAssembly and WASI

WebAssembly (Wasm) is a binary instruction format for a stack-based vir-
tual machine designed for efficiency together with hardware- and platform-
independence among other things [22]. WebAssembly offers dynamic isomor-
phism, as a standard runtime interpreter is used to execute the code. Therefore,
WebAssembly can be used as a runtime environment for applications developed
using different languages, but compiled for the WebAssembly stack machine.

While the origins of WebAssembly are inside the browser, the developer com-
munity has started to realise its significance outside the browser, in particular as
a unifying environment for heterogeneous devices [4I34IT4I35]. WebAssembly’s
conservative memory usage and somewhat near-native performance make it a
good candidate for constrained environments like IoT devices [9].

Moreover, extensions such as WebAssembly System Interface (WASI) [5] have
been introduced to access system resources when running WebAssembly outside
the browser. This is particularly pertinent to our research, as access to host
functions from the WebAssembly runtime offers a way to outsource running
AI/ML models to a host runtime with potentially significant performance gains.
This approach has been formalized in a WASI proposal called wasi-nn [3], an
extension for the WebAssembly System Interface to provide an API to run ML
models on a native ML runtime.

The motivation for the wasi-nn proposal are the challenges that would arise
from trying to ensure high-performance AI/ML inference in WebAssembly —
AI/ML requires special hardware support (GPU, TPU, and special CPU in-
structions in particular) for maximal performance. Support for these would be
challenging to implement for WebAssembly. In addition machine learning still
evolves rapidly, with new computational operations getting introduced. These
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Fig. 2. Two WebAssembly use cases: one where WASI extended with wasi-nn is suf-
ficient to run the module, and other where Python is used to embed WebAssembly
runtime and provide more interfacing options with the host than WASI

new operations would need added support to run new models which are using
these operations. The wasi-nn proposal therefore leaves the ML runtime imple-
mentation details outside WebAssembly domain. This approach has the benefit
of protecting the model intellectual property, as the WebAssembly module and
runtime do not need to know anything about the inner workings of the model.
Essentially wasi-nn treats AT/ML model as a virtualized I/O type, with defined
operations such as load and compute.

The proposal has initial focus on only supporting inference, as it is the main
AT/ML use case, not training. However, adding support for training has not been
excluded from forthcoming implementations. The API provided by wasi-nn is a
simple model loader API, inspired by WebNN’s model loader proposal [33]. The
proposal is framework and model format agnostic, but runtime implementations
need to make decisions about what ML runtimes and model formats to support.

The first experimental implementation of wasi-nn for the Wasmtime We-
bAssembly runtime only supports OpenVINO ML runtime [30]. The implemen-
tation is however not considered production quality and Wasmtime needs to be
compiled with wasi-nn support enabled to have access to it. However, at present
the WasmEdge [6] runtime seems to have the most extensive implementation for
wasi-nn, with support for OpenVINO, PyTorch [31] and TensorFlow-Lite [32]
ML runtimes.

2.5 Device Management and Orchestration

IoT systems are often composed of many headless devices that need to be re-
motely managed, and thus most commercial IoT platform have a device manage-
ment functionality. This functionality keeps track of the devices and the software
in them. From the application point of view the device management should

— keep track of devices that can receive applications
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— maintain and utilize knowledge about device differences in a heterogeneous
fleet of devices,

— control the life-cycle of the applications, including installation, update and
removal, and

— in the context of this research manage the (liquid) lifecycle of the devices.

For liquid software this management functionality becomes more challenging
since the computation may change its location dynamically. The management
functionality should support dynamic moving of running applications — including
ML models.

The piece of software or ML model executing on a device is typically a com-
ponent of a bigger system, and the components need to collaborate for the overall
goal. Ensuring this collaboration is called orchestration or choreography depend-
ing on the selected technical approach.

In the context of liquid and isomorphic software, the device management and
orchestration are closely coupled. The common challenges include the following
two key points:

— ensuring reliability and trustworthiness a distributed system where stateful
components roam between locations

— minimizing disturbances to overall functionality while the software compo-
nents behave in a liquid fashion.

Some of these issues have been addressed in our earlier work. Integration
development and dynamic deployment to devices was address in [I] where IoT
application development was addressed in DevOps spirit. The research challenges
on managing Liquid AT applications have been discussed in [26]. In this paper
we address installation of ML models similarly to traditional applications. In
the future we plan to complement the system with full device management and
orchestration functionalities.

3 Design and Implementation

3.1 Development Goals

The goal of our development approach was to investigate and hopefully demon-
strate liquid deployment of AI/ML models on heterogeneous fleet of IoT devices.
In a more technical sense, the target was two-fold:

G1: Demonstrate the feasibility of using WebAssembly to run AT/ML models on
edge devices.

G2: Demonstrate the potential for liquid AI/ML software deployment on IoT
devices.

The technical framing for the system was to use a microservice architecture
consisting of various IoT devices building on our previous work [13]. Within
this architecture, heterogeneous devices could easily be discovered and used in
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accordance to their characteristics, such as varying processing power, available
peripherals and ML /AT hardware functions, because application code could move
inside the system. Computations would then be executed when and where best
suited, taking into account the state of the system and the present capacity of
the different nodes.

3.2 Implementation

As the baseline implementation technology we have used WebAssembly. This is
the key enabling technology to achieve the free deployment of software modules
across different hardware platforms, since as discussed, WebAssembly can be
used as a runtime environment for applications developed using different lan-
guages, but compiled for the WebAssembly interpreter. It is also the technology
we have used in our previous work, and the architecture to support liquid migra-
tion of functions followed the requirements identified in [I3]. As a new challenge
in the implementation, the applications that are deployed to devices include ML
components.

To support freely moving code, a specific element in the architecture is a
package-manager-housing orchestration server or orchestrator, whose function-
ality is depicted in Figure [3] While running, the orchestrator gathers 1) descrip-
tions of devices available and 2) deployment manifests from users, that each hold
the information needed for setting up an execution process/task as described in
[13] where an application composed together from WebAssembly modules is run
in the distributed system of heterogeneous devices.

The proposed system shown in Figure [3| consists of an orchestration server or
orchestrator and a variable amount of heterogeneous node devices in the same
local area network. An actor (user or another system that interacts with our
system) can control the system through the orchestrator.

Aside from communication and application logic, the orchestration server
consists of three components, presented below:

— Device database contains the hardware configurations of the various devices,
and it is populated by listening to mDNS messages and requesting informa-
tion from the associated devices.

— Deployment registry contains all executed deployments by the orchestrator,
with each deployment listing the devices involved and the services they pro-
vide in it.

— Package manager maintains a database of all available WebAssembly soft-
ware modules that can be sent to the devices. It is also capable of resolving
dependencies to provide a complete list of required modules for a given mod-
ule to run.

The system functionality can be split into three phases: device discovery,
deployment and execution. Upon first discovery, the orchestrator requests con-
figuration information from the device and adds it to the device database the
server maintains. Upon a request for deployment, the orchestration server gener-
ates a setup that is a feasible deployment solution, and sends out the deployment



8 P. Kotilainen et al.

device configuration

loT sensor L :
, .. ML inference
ML preprocessing - “~*
0 \ ;\\\ R
: \\\.\ ) ".‘f /f \\\\\ b
AN op /f N
i \\Q_\_ “add ;jf? Xy
OR !

Orchestration
(MDMS + configuration)

oxa [

Storage

Wasm modules

Process monitoring

Fig. 3. Overview of the proposed system. In this example, an IoT sensor runs ML
preprocessing on measurements, sending the results to an intermediary device with
resources for ML inference based on the measurements. The results are then sent to a
device with a screen for monitoring.

configuration to involved devices. The devices pull the required microservices and
start serving them according to the deployment information.

Device discovery is performed with mDNS which each device uses to advertise
their availability to the orchestrator. For querying the capabilities of discovered
devices, a ReSTful endpoint providing the answers is available on each IoT de-
vice. ReSTful endpoints are currently also used for machine-to-machine (M2M)
communication between the IoT-devices. A move to CoAP has been planned,
to demonstrate that IoT specific protocols are feasible. Finally, all functional-
ity running on the different IoT devices — in particular executing WebAssembly
binaries — is controlled by the host process running on the device, which we
call supervisor. The supervisor was implemented in Python, based on our earlier
work, and the WebAssembly runtime for the moving code modules is Wasm3
[17].
The move to support AI/ML modules with our existing system necessitated
changes to the ReSTful interface on the supervisor to facilitate upload of ML
model files. Endpoints for uploading a pre-trained protocol buffer model file and
running ML inference with supplied binary data were added. Additions were
also required to the interface between the WebAssembly runtime and the host
to enable loading of modules and input data to the linear memory of the runtime.

There are two ways to run ML models with WebAssembly. These are porting
a ML framework to WebAssembly and running the model entirely in WebAssem-
bly runtime, or outsourcing the ML model execution to a host-provided native
ML runtime. As discussed earlier, latter approach has been formalized in a WASI
proposal called wasi-nn, an extension for the WebAssembly System Interface to
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provide an API to run ML models on a native ML runtime. The first experimen-
tal implementation of wasi-nn is for the Wasmtime WebAssembly runtime and
uses the OpenVINO ML runtime. The experimental status of the implementa-
tion as well as lack of Python bindings for wasi-nn deterred us from starting
with Wasmtime.

WasmEdge runtime implementation of wasi-nn has wider support for dif-
ferent ML runtimes including PyTorch, OpenVINO and Tensorflow-Lite, but
Python bindings are a work in progress. Both Wasmtime and WasmEdge also
have limited platform support compared to the Wasm3 runtime we have used in
previous work.

Because of the current limitations of wasi-nn support addressed above, the
supervisor prototype was done with ML framework compiled to WebAssembly,
and run without a host ML runtime, using Wasm3 as the WebAssembly runtime.

The WebAssembly modules for AI/ML inference were written in Rust and
the ML framework used was Tract[24], but these are of course interchangeable as
long as the supplied model files are in the correct format for the used framework.

3.3 Results and Observations

We were able to realise a rudimentary system of orchestrating AI/ML applica-
tions across varied devices using WebAssembly.

We tested our system using pre-trained MobileNetV2 model for image clas-
sification. As expected using a framework compiled to WebAssembly results in
poor performance. What was more surprising was the difference between differ-
ent WebAssembly runtimes visible in table[I} as we also ran simple tests between
Wasm3 and Wasmtime. Tests were run on a laptop with Intel Core i7-1165G7
and 16GB of RAM. The results highlight the disparate state of WebAssembly
runtimes, but also the need for an extension like wasi-nn, as the pure WebAssem-
bly approach will not be performant enough for all applications.

Table 1. MobileNetV2 execution times on tested runtimes, Wasmtime and Wasm3.

Runtime Execution
time (s)

Wasmtime 0.42

Wasm3 5.85

Building the system revealed a promising but still lacking framework for
building liquid software systems with WebAssembly. The planned additions to
WASI will likely alleviate the problems encountered in our implementation.
Specifically standardized and extensive support for wasi-nn should enable an
out-of-the-box solution for deploying AT/ML applications across different hard-
ware platforms.
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With the current state of affairs however, we encountered a myriad of issues
in trying to implement our system. While some projects like WasmEdge were
close to being useful, each had some drawbacks, such as narrow platform support
or lack of bindings in our language of choice. While the lack of language bindings
can in the WebAssembly ecosystem be mostly eliminated by using Rust, the lack
of platform support or features like wasi-nn will likely continue to be a problem
for some time.

4 Discussion

With the experience gained from our work so far it seems that the best supported
language for working with WebAssembly is Rust, possibly owing to the fact
that the reference runtime Wasmtime is implemented in Rust. The support for
embedding WebAssembly in Rust as well as the tooling for compiling Rust to
WebAssembly are more developed and better documented than Python, which
we used for our supervisor implementation. Future development could benefit
from moving to Rust as the development language. This could also ease turning
developed functionality into contributions to existing WebAssembly ecosystem.

The lackluster performance of AI/ML inference on pure WebAssembly also
motivates a move to wasi-nn-style paradigm of running the models, and will
likely be necessary for wider adoption. This is however hindered by the lack of
implementations in WebAssembly runtimes, but will hopefully improve as the
wasi-nn proposal matures. As mentioned, currently the best support for running
AI/ML models on host runtimes seems to be on WasmEdge runtime. Previously
discussed move to rust would also allow us to change the WebAssembly runtime
to WasmEdge, which would enable us to take advantage of WasmEdge’s wasi-nn
implementation.

In future we also hope to expand the functionality of the orchestrator. For
example, the deployment requests need not be as specific as outlined above. The
server could make decisions about device selection and deployment topology
based on device availability and their dynamic state according to a deployment
task describing desired deployment outcome without necessarily naming specific
devices or their arrangement.

Including dynamic state for devices could also enable improved persistence
and self-healing properties, as detection of failed devices could trigger a change
in deployment topology and either a replacement device could be selected or the
responsibilities of the failed device could be moved to another available device.

5 Conclusions

WebAssembly has been gaining attention outside the browser as a technique to
speed up execution [4]. Its ability to support liquid deployment where applica-
tions can roam from one computer to another in an isomorphic fashion seems
ideal for AT/ML applications that typically run in isolation, but may introduce
strict requirements for performance.
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In this paper, we have introduced a prototype system for isomorphic mi-
croservices based architecture for liquid deployment of AI/ML applications using
WebAssembly, to test the limits of the above view. It was found out that execut-
ing AI/ML applications as WebAssembly modules in a WebAssembly runtime
that there is a serious performance hit in comparison to running native code,
and that running the applications using WebAssembly runtime requires both
more working memory and persistent storage [9]. The runtime also complicates
deploying applications that have real-time requirements, which are an integral
part of many IoT use cases.

In the future, with increasing computational power and memory of IoT de-
vices, the trade-off for ease of development and flexibility of deployment will
likely become less and less of a problem for traditional applications. This in turn
will liberate developers from considering some of the necessary practicalities
during the development and deployment of services. Furthermore, in connection
with AT/ML applications in particular, we expect that with emerging WAST ex-
tensions, such as wasi-nn, and host-bound specialised ML runtimes can be used
to bring execution to near-native performance. However, this in turn can have
impact on the isomorphic, liquid nature of the functions.

Acknowledgments.This work has been supported by Business Finland (project
LiquidAI, 8542/31/2022).
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