
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

WebAssembly in IoT : Beyond Toy Examples

© 2023 Springer

Accepted version (Final draft)

Kotilainen, Pyry; Järvinen, Viljami; Tarkkanen, Juho; Autto, Teemu; Das, Teerath;
Waseem, Muhammad; Mikkonen, Tommi

Kotilainen, P., Järvinen, V., Tarkkanen, J., Autto, T., Das, T., Waseem, M., & Mikkonen, T. (2023).
WebAssembly in IoT : Beyond Toy Examples. In I. Garrigós, J. M. Murillo Rodríguez, & M.
Wimmer (Eds.), Web Engineering : 23rd International Conference, ICWE 2023, Alicante, Spain,
June 6–9, 2023, Proceedings (pp. 93-100). Springer Nature Switzerland. Lecture Notes in
Computer Science, 13893. https://doi.org/10.1007/978-3-031-34444-2_7

2023

WebAssembly in IoT: Beyond Toy Examples

Pyry Kotilainen, Viljami Järvinen, Juho Tarkkanen, Teemu Autto, Teerath
Das, Muhammad Waseem, and Tommi Mikkonen

University of Jyväskylä, Jyväskylä, Finland

pyry.kotilainen@jyu.fi, viljami.a.e.jarvinen@jyu.fi,

juho.a.tarkkanen@jyu.fi, teemu.a.autto@jyu.fi, teerath.t.das@jyu.fi,

muhammad.m.waseem@jyu.fi, tommi.j.mikkonen@jyu.fi

Abstract. WebAssembly enables running the same application code in
a range of devices in headless mode outside the browser. Furthermore,
it has been proposed that WebAssembly applications can be made iso-
morphic so that they can be liberally allocated to a set of computers
that comprise the runtime environment. In this paper, we explore if We-
bAssembly truly enables the development of comprehensive IoT applica-
tions with the same ease as more traditional techniques would enable.

Keywords: WebAssembly · Web of Things · Internet of Things · IoT.

1 Introduction

There has been a lot of interest in using WebAssembly (Wasm) outside the
browser [2]. It has been proposed as a small-memory portable operating system
(OS) [34], as well as a solution to improve modularity [17] or performance [16].
In particular, the cloud-edge continuum has been used as a target, either as an
OS [13] or by evaluating applicability in serverless computing [19], to support
services at the edge. However, many demonstrators have been small-scale imple-
mentations, focusing on demonstrating a single claim or feasibility of a proposed
approach with WebAssembly.

In industry, WebAssembly has been proposed as a tool for addressing perfor-
mance [5], size [17], and to some extent security issues [9] that more traditional
web technologies – in particular JavaScript – introduce. Numerous enterprises,
such as Google, eBay, and Norton have already started using WebAssembly
instead of JavaScript in many of the projects with the aim to enhance the per-
formance of services, such as Tenserflow.js applications [4], a barcode reader [26],
and pattern matching [27].

Furthermore, WebAssembly could tackle some major challenges of the In-
ternet of Things (IoT), which has become a key technology enabler for several
diverse and critical daily life applications such as healthcare, transportation, and
industrial automation, among others. The fragmented nature of IoT applications
requires a more profound understanding of various programming languages and
prior knowledge of technologies, which makes it more complex for developers to
implement and manage a typical end-to-end IoT system without impediments.

2 P. Kotilainen et al.

One of the prominent solutions for addressing these challenges is to adopt
an isomorphic IoT system architecture, which provides feasibility in developing
the whole system with the same set of technologies [20]. With this in mind,
WebAssembly is the way-forward approach that supports the development of
isomorphic IoT architecture. The possible benefits of having such an architec-
ture include reducing the complexity of the IoT system, improving the overall
performance, and decreasing the overhead of developers from implementing frag-
mented IoT applications [20].

In this paper, we discuss WebAssembly in the IoT application context. Fur-
thermore, we analyse the feasibility of an isomorphic IoT architecture using
WebAssembly based on our experiences gained with a prototype implementa-
tion. Finally, we analyze WebAssembly’s suitability as a platform for full-stack
IoT applications and propose its potential use in IoT in the short term.

2 Background and Motivation

2.1 Isomorphic IoT Systems

While isomorphism is a well-established concept in mathematics, in software
development the concept has emerged relatively recently. In the context of web
applications, isomorphism refers to the ability to run the same code both on
the backend (cloud), and in the frontend (web browser) [29]. More broadly,
isomorphic software architectures feature software components that do not have
to be modified (’change their shape’) when running across the different hardware
or software components of the system. Examples of isomorphic systems include
Java and its ’write once, run everywhere’ promise [1], Unity 3D engine, Universal
Windows platform, which enables running the same code in Windows 10, Xbox
One gaming machines and HoloLens devices, and liquid web applications [21].

Several different levels of isomorphism can be identified [20]. At the first level,
isomorphism refers to the consistent use of the same development technologies
across the different computational elements in the entire system. In contrast with
such static, development-level isomorphism, in dynamic isomorphism, a common
runtime engine or virtualization solution is used so that the same code can
run in different computational elements without recompilation. In an even more
advanced system, dynamic migration of code from one computational element
to another is enabled.

In the IoT context, the same, isomorphic software can ideally be deployed
throughout the end-to-end system to run on edge devices, gateways, mobile
clients and cloud services. With its characteristics, WebAssembly is a natural
candidate for such use, as discussed below.

2.2 WebAssembly in a Nutshell

WebAssembly is a low level code format designed for efficiency together with
hardware- and platform-independence among other things [28]. WebAssembly

WebAssembly in IoT: Beyond Toy Examples 3

offers dynamic isomorphism, as a standard runtime interpreter is used to exe-
cute the code. Therefore, WebAssembly can be used as a runtime environment
for applications developed using different languages, but compiled for the We-
bAssembly interpreter.

While the origins of WebAssembly are inside the browser, the developer com-
munity has started to realise its significance outside the browser, in particular
as a unifying environment for heterogeneous devices [2,31,15,33]. Indeed, We-
bAssembly’s conservative memory usage and somewhat near-native performance
make it suitable for constrained environments like IoT devices [6]. Moreover, fa-
cilities such as WebAssembly System Interface (WASI) [3] have been introduced,
to access system resources when running WebAssembly outside the browser.

3 Design and Implementation

3.1 Development Goals and Initial Architecture

The goal of our development approach was straightforward – go all the way to
build isomorphic IoT applications with WebAssembly. In more technical sense,
the target was to

G1: Demonstrate that isomorphic web applications can be freely located to form
a functioning IoT network;

G2: Demonstrate that various WebAssembly modules from different repositories
can be used to implement the applications;

G3: Demonstrate that applications can configure themselves upon deployment
to liberate developers from rigid, development-time configurations.

The technical framing for the demonstrations was to use a microservice ar-
chitecture consisting of various IoT devices [10]. Within this architecture, het-
erogeneous devices could easily be discovered and used in accordance to their
characteristics, such as varying processing power and peripheral features, be-
cause application code could move inside the system. Computations would then
be executed when and where best suited, taking into account the state of the
system and the capacity of the different subsystems.

Device discovery would be performed with mDNS for advertising available
IoT-devices to the orchestrator. For querying the capabilities of discovered de-
vices, a ReSTful endpoint providing the answers would be placed on each IoT
device. For machine-to-machine (M2M) communication between the IoT-devices
using CoAP was planned, to demonstrate that IoT specific protocols are feasible.
Finally, all functionality running on the different IoT-devices – in particular ex-
ecuting WebAssembly binaries – would be controlled by the host process, which
we call supervisor.

3.2 Development and the Reality Check

From the beginning, we realized that relying on external components would
be necessary, building on earlier experience with IoT systems [22]. Hence, in

4 P. Kotilainen et al.

Fig. 1. Overview of the function of the proposed system. In this case, a low quality
video is sent from a source to an intermediary device with resources for upscaling the
video and then sent to a device with a screen to display the upscaled video.

parallel to composing our first application specific WebAssembly routines, we
started with an inventory of suitable 3rd party WebAssembly components we
could use. Unfortunately, it turned out that if we wanted to rely on widely
used, reliable technologies, we would have to look beyond WebAssembly. For
instance, as the ReSTful endpoint we decided to use a Python framework Flask,
not a WebAssembly derivative. As the development went on, the same thing kept
repeating – with almost every feature, some new open source component, not
implemented with WebAssembly, crept in because it simply was not technically
feasible for the team to implement everything in WebAssembly with a reasonable
development time. The most essential learnings are listed below.

During the development, a repeating problem was the features of different
WebAssembly runtime implementations. Some of the WASI implementations
lacked key functions for our use cases. For instance, networking – or even access to
the underlying OS’s file system – meant that we had to implement our supervisor
function without directly using WebAssembly. Obviously a layer of unnecessary
abstraction is a burden when running on constrained IoT-devices, but this was
considered the simplest way forward, and we would know where the superfluous
function is. In the end, we used Python3 and the WebAssembly runtime Wasm3
[18], because the selection of libraries they provide fit our planned use cases, e.g.
cameras and sensors controlled with laptop and Raspberry PIs, respectively.

Application programming with WebAssembly raised some concerns with re-
spect to data objects and secure and refined interfaces to access the data. Because
multiple programming languages can be used to compose WebAssembly code,

WebAssembly in IoT: Beyond Toy Examples 5

it seems that a common and accepted way of using non-primitive datatypes in
WebAssembly is based on pointers, as described in [12]. This impression is re-
inforced by examples of using WebAssembly’s memory like an integer-indexable
array [23], which is adopted also in practice and business (e.g. [15]). Hence, while
WebAssembly might help in dealing with problems such as buffer overflow and
running code from untrusted sources in a sandbox [14,31], dangers still seem
to exist [11]. Such security concerns are especially unfavorable considering the
potential of code reuse with existing C/C++ libraries compiled to WebAssembly.

The application development stage also introduced challenges related to com-
binining IoT device architecture and general microservice architecture. A way
to comprehensively, extensively and even automatically describe the interfaces
between different WebAssembly modules was needed. In our work, we took the
Web of Things Thing description [7] and OpenAPI [25] as the baseline. Ac-
tual descriptions could be made with different interface description languages,
such as Smithy, which is used by the WasmCloud [33] project. Even parsing
the WebAssembly binaries (i.e., the modules) for their exports using Kaitai [8]
was considered, but abandoned as we wanted to enforce fundamentally API-like
descriptions. Finally, for generating APIs, Swagger [30] was selected, because it
supports OpenAPI by its design. However creating a comprehensive, all-purpose
implementation was considered an overkill, and we turned to existing research
prototypes for inspiration. Unfortunately, earlier work and existing implemen-
tations where WebAssembly is used in a way that is aligned with our goals do
not support any WebAssembly targeting language in application development,
but only one language. The WiProg system as proposed by Li, Dong and Gao
[12] uses language-specific constructs tied to C/C++. With WasmCloud [33], in
contrast, the currently available languages are Rust and TinyGo.

When considering existing implementations, the closest match with our needs
was provided by the Losant [15] project. However we did not wish to commit
to using their service to construct our applications. In the end, we wrote our
own prototype version of the required functions, targeted to exact use cases we
had in mind. The available device server entries and deployment instructions
are defined in JSON, and the actual package management and deployment was
implemented in JavaScript.

3.3 Results and Observations

At the present phase of the development, there is a running demonstrator, where
isomorphic code can be run in WebAssembly environment. However, while We-
bAssembly is at the core and applications are written in WebAssembly, every-
thing that surround the apps is something else, most often JavaScript, Node.js,
or Python, simply because a dominant design already existed. Moreover, building
the corresponding function from scratch would have been a major engineering
effort, not simple experimentation. Hence, the grand goal to use WebAssembly
to implement every part of the architecture was deemed to fail. In hindsight,
this could have been overcome by using a monolithic architecture instead of
microservices, which by definition embrace technology integration.

6 P. Kotilainen et al.

4 Discussion

To summarize the experiences from our development, there are numerous aspects
that truly fulfilled the WebAssembly promise. For instance, running old code,
implementing fast algorithms, was considered feasible, and the new tools and
techniques, in particular Rust, form pieces for a really developer-friendly IoT
technology stack. Hence, potential for future development truly exists.

However, forming full technology stacks – or even forming one’s own – was
deemed difficult with WebAsssembly. There was little support for accessing re-
sources or to support integration between different microservices or subsystems,
implemented with different technologies. We attribute the above to WASI im-
plementations, which are still immature, and to calling WebAssembly modules
from other languages, which is made cumbersome, in particular when dealing
with complex data structures. One needs to use generated glue code even with
single WebAssembly modules, if these form meaningful business entities, which
by definition often is the case with microservices. Moreover, implementation-
specific differences in essence imply that it is easy to be bound to a particular
virtual machine in a project, instead of being able to use different ones in dif-
ferent devices, based on characteristics of the device. These issues have been
overcome by others (e.g. [12,33]) by simply avoiding excessive interfacing, and
enforcing a monolithic architecture.

With the above observations in mind, WebAssembly is well suited for small,
independent, yet security and/or performance dependent routines that are called
when needed, instead of aiming at a full WebAssembly IoT stack. Such use of
WebAssembly resembles its role inside the browser where it can have a limited,
supporting role in some performance-heavy places, not as a fundamental piece
in the tech stack to build on in large scale. This approach has been proposed by
[24]. However, even performance advantages have been partially challenged [32].

5 Conclusions

Using WebAssembly outside the browser has gained a lot of interest recently.
In this paper, we have studied using it as a comprehensive technology for IoT
applications. In conclusion, we were able to use WebAssembly for key functions,
but the technology was complemented by readily available subsystems and ex-
tensions using some other technology. Therefore, we believe that WebAssembly
is presently applicable in the IoT domain, but to speed up executions and to pro-
duce security gains, instead of being a comprehensive development stack. This
resembles the role of WebAssemly inside the browser, where particular tasks can
be run independently inside the WebAssembly virtual machine. However, even
in this role several complications exist in the IoT domain, such as lack of compre-
hensive standards, lack of OS implementation, and the dominance of de-facto
implementations composed with dynamic languages and other less rigid tech-
niques than WebAssembly. To this end, in our future work, candidate subjects
to study include the use of artificial intelligence and machine learning (AI/ML)

WebAssembly in IoT: Beyond Toy Examples 7

related features, encryption and decryption in general, and domain specific al-
gorithms.

Acknowledgments.This work has been supported by Business Finland (project
LiquidAI, 8542/31/2022).

References

1. Arnold, K., Gosling, J., Holmes, D.: The Java programming language. Addison
Wesley Professional (2005)

2. Bryant, D.: WebAssembly outside the browser: A new foundation for pervasive
computing. Keynote at ICWE’20, June 9-12, Helsinki, Finland (2020)

3. Bytecode Alliance: Welcome to WASI, https://github.com/bytecodealliance/
wasmtime/blob/main/docs/WASI-intro.md, retrieved 2022-12-05

4. Daniel Smilkov, Nikhil Thorat, and Ann Yuan: Introducing theWebAssembly back-
end for TensorFlow.js, https://blog.tensorflow.org/2020/03/introducing-w
ebassembly-backend-for-tensorflow-js.html, retrieved 2020-03-11

5. De Macedo, J., Abreu, R., Pereira, R., Saraiva, J.: On the runtime and energy
performance of webassembly: Is WebAssembly superior to JavaScript yet? In: 2021
36th IEEE/ACM International Conference on Automated Software Engineering
Workshops (ASEW). pp. 255–262. IEEE (2021)

6. Hall, A., Ramachandran, U.: An execution model for serverless functions at the
edge. In: Proceedings of the International Conference on Internet of Things Design
and Implementation. pp. 225–236. IoTDI ’19, Association for Computing Machin-
ery, New York, NY, USA (Apr 2019). https://doi.org/10.1145/3302505.3310084

7. Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V., Kovatsch, M.: Web of
Things (WoT) Thing Description, https://www.w3.org/TR/wot-thing-descr
iption/, retrieved 2022-12-09

8. Kaitai project: Kaitai home page, https://kaitai.io/, retrieved 2023-1-24
9. Kim, M., Jang, H., Shin, Y.: Avengers, assemble! survey of WebAssembly secu-

rity solutions. In: 2022 IEEE 15th International Conference on Cloud Computing
(CLOUD). pp. 543–553. IEEE (2022)

10. Kotilainen, P., Autto, T., Järvinen, V., Das, T., Tarkkanen, J.: Proposing iso-
morphic microservices based architecture for heterogeneous iot environments. In:
International Conference on Product-Focused Software Process Improvement. pp.
621–627. Springer (2022)

11. Lehmann, D., Kinder, J., Pradel, M.: Everything old is new again: Binary security
of {WebAssembly}. In: 29th USENIX Security Symposium (USENIX Security 20).
pp. 217–234 (2020)

12. Li, B., Dong, W., Gao, Y.: Wiprog: A webassembly-based approach to integrated
iot programming. In: IEEE INFOCOM 2021-IEEE Conference on Computer Com-
munications. pp. 1–10. IEEE (2021)

13. Li, B., Fan, H., Gao, Y., Dong, W.: ThingSpire OS: a WebAssembly-based IoT
operating system for cloud-edge integration. In: Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services. pp. 487–
488 (2021)

14. Long, J., Tai, H.Y., Hsieh, S.T., Yuan, M.J.: A lightweight design for serverless
function as a service. IEEE Software 38(1), 75–80 (2020)

15. Losant IoT, Inc: Embedded Edge Agent, https://docs.losant.com/edge-compu
te/embedded-edge-agent/overview/, retrieved 2022-11-09

https://github.com/bytecodealliance/ wasmtime/blob/main/docs/WASI-intro.md
https://github.com/bytecodealliance/ wasmtime/blob/main/docs/WASI-intro.md
https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html
https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html
https://doi.org/10.1145/3302505.3310084
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://kaitai.io/
https://docs.losant.com/edge-compute/embedded-edge-agent/overview/
https://docs.losant.com/edge-compute/embedded-edge-agent/overview/

8 P. Kotilainen et al.

16. Mäkitalo, N., Bankowski, V., Daubaris, P., Mikkola, R., Beletski, O., Mikkonen,
T.: Bringing WebAssembly up to speed with dynamic linking. In: Proceedings of
the 36th Annual ACM Symposium on Applied Computing. pp. 1727–1735 (2021)

17. Mäkitalo, N., Mikkonen, T., Pautasso, C., Bankowski, V., Daubaris, P., Mikkola,
R., Beletski, O.: WebAssembly modules as lightweight containers for liquid IoT ap-
plications. In: International Conference on Web Engineering. pp. 328–336. Springer
(2021)

18. Massey, S., Shymanskyy, V.: wasm3: The fastest WebAssembly interpreter, and the
most universal runtime, https://github.com/wasm3/wasm3, retrieved 2022-12-09

19. Mendki, P.: Evaluating WebAssembly enabled serverless approach for edge com-
puting. In: 2020 IEEE Cloud Summit. pp. 161–166. IEEE (2020)

20. Mikkonen, T., Pautasso, C., Taivalsaari, A.: Isomorphic Internet of Things archi-
tectures with web technologies. Computer 54(7), 69–78 (2021)

21. Mikkonen, T., Systä, K., Pautasso, C.: Towards liquid web applications. In: Inter-
national Conference on Web Engineering. pp. 134–143. Springer (2015)

22. Mikkonen, T., Taivalsaari, A.: Software reuse in the era of opportunistic design.
IEEE Software 36(3), 105–111 (2019)

23. Mozilla: WebAssembly, https://developer.mozilla.org/en-US/docs/WebAsse
mbly/JavaScript_interface/Memory, retrieved 2023-01-05

24. Oliveira, F., Mattos, J.: Analysis of WebAssembly as a strategy to improve
JavaScript performance on IoT environments. In: Anais Estendidos do X Simpósio
Brasileiro de Engenharia de Sistemas Computacionais. pp. 133–138. SBC (2020)

25. OpenAPI Initiative: OpenAPI Specification, https://github.com/OAI/OpenAPI
-Specification, retrieved 2022-12-09

26. Padmanabhan, S., Jha, P.: WebAssembly at eBay: A Real-World Use Case, https:
//tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-c

ase/, retrieved 2019-05-22
27. Raymond Hill. 2019.: gorhill/uBlock, https://github.com/gorhill/uBlock,

retrieved 2022-12-09
28. Rossberg, A.: Introduction — WebAssembly 1.1 (Draft 2022-04-05), https://ww

w.w3.org/TR/wasm-core-2/intro/introduction.html, retrieved 2023-01-12
29. Strimpel, J., Najim, M.: Building Isomorphic JavaScript Apps: From Concept to

Implementation to Real-World Solutions. O’Reilly Media (2016)
30. Swagger project: Swagger home page, https://swagger.io/, retrieved 2023-1-24
31. Vetere, P.: Why wasm is the future of cloud computing, https://www.infoworl

d.com/article/3678208/why-wasm-is-the-future-of-cloud-computing.html,
retrieved 2022-12-09

32. Wang, W.: Empowering web applications with WebAssembly: Are we there yet?
In: 2021 36th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). pp. 1301–1305. IEEE (2021)

33. wasmCloud Project: wasmCloud home page, https://wasmcloud.com/, retrieved
2022-11-30

34. Wen, E., Weber, G.: Wasmachine: Bring IoT up to speed with a WebAssembly OS.
In: 2020 IEEE International Conference on Pervasive Computing and Communi-
cations Workshops (PerCom Workshops). pp. 1–4. IEEE (2020)

https://github.com/wasm3/wasm3
https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/Memory
https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/Memory
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-case/
https://tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-case/
https://tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-case/
https://github.com/gorhill/uBlock
https://www.w3.org/TR/wasm-core-2/intro/introduction.html
https://www.w3.org/TR/wasm-core-2/intro/introduction.html
https://swagger.io/
https://www.infoworld.com/article/3678208/why-wasm-is-the-future-of-cloud-computing.html
https://www.infoworld.com/article/3678208/why-wasm-is-the-future-of-cloud-computing.html
https://wasmcloud.com/

	WebAssembly in IoT: Beyond Toy Examples

