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SUMMARY STATEMENT 14 

We found evidence of pre-mating Darwinian sex roles despite limited sexual dimorphism. Our work 15 

highlights the value of studying both sexes and non-model systems in chemical communication 16 

research. 17 

 18 

ABSTRACT 19 

Chemical cues are widely used in intra- and interspecific communication, either as substances deposited 20 

in the substrate or as molecules diffused in water or air. Tardigrades are an emerging microscopic study 21 

system in which chemical communication and its role in reproduction are poorly known. Here, 22 

we assess sex differences in the detection of (a) short-range diffusing signals and (b) deposited cue 23 

trails during the mate-searching behaviour of freely moving virgin male and female Macrobiotus 24 

polonicus. We tracked individual behaviour (a) in simultaneous double-choice chambers, where live 25 

conspecifics of each sex were presented in water and (b) of freely moving pairs on agar without 26 

water. We found that males, but not females, preferentially associated with opposite-sex individuals in 27 

trials conducted in water. In contrast, neither sex detected nor followed cues deposited on agar. In 28 

conclusion, our study suggests that mate discrimination and approach are male-specific traits and are 29 

limited to waterborne chemical cues. These results support the existence of Darwinian sex roles in pre-30 

mating behaviour in an animal group with virtually non-existing sex differences in morphology or 31 

ecology.  32 

  33 
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INTRODUCTION 34 

 35 

Semiochemical communication is widespread and used by animals across multiple contexts, from 36 

finding food to attracting mates (Wyatt, 2014). Behavioural responses to conspecific chemical cues, 37 

and specifically sex discrimination, have been investigated in a wide range of taxa, both aquatic and 38 

terrestrial (Dunham and Oh, 1992; Bouchard, 2001; Cooper Jr. and Pèrez-Mellado, 2002; Park et al., 39 

2004; Hutter, Zala and Penn, 2011; Stamps and Shaw, 2019; Kudo, Fujii and Ishikawa, 2022). 40 

Importantly, sexually mature animals that fail to discriminate between the sexes and/or species incur a 41 

reproductive cost (Burdfield-Steel and Shuker, 2011; Lerch and Servedio, 2022). To find and/or attract 42 

a mate, animals can use two main types of chemical signals: (i) diffusing signals and/or (ii) trail 43 

deposited on the substrate. For instance, male copepods can find females using pheromone plumes that 44 

receptive females produce as trails or clouds (Bagøien and Kiørboe, 2005; Kiørboe, Bagøien and 45 

Thygesen, 2005). Similarly, both male and female apple snails can follow opposite-sex trails, and, in 46 

additions, males are attracted to waterborne sex pheromones of females (Takeichi, Hirai and Yusa, 47 

2007).  48 

Most studies examining the role of pheromones in sexual selection have focused on diffusing chemical 49 

signals used in long-range mate attraction and mate recognition (Johansson and Jones, 2007). 50 

Furthermore, there is a strong taxonomic bias towards insects and mammals (Brennan and Keverne, 51 

2004; De Pasqual et al., 2021), and on organisms with obvious male bias sexual dimorphism sensory 52 

organs and searching behaviour (Naka, 2018). However, such knowledge is non-existent or very limited 53 

for several animal groups, particularly micrometazoans such as the phylum Tardigrada. Tardigrades are 54 

a microscopic animal phylum categorized in the superclade Panarthropoda (Yoshida et al., 2017; 55 

Jørgensen, Kristensen and Møbjerg, 2018) yet largely neglected in behavioural ecology and 56 

evolutionary research. Even though individuals must be surrounded by water to be active, they 57 

colonised terrestrial environments, such as mosses and lichens, thanks to their cryptobiotic adaptations 58 

(Møbjerg and Neves, 2021). They have relatively simple sensory organs: some species present light-59 

sensitive eyes, but all have body segments containing cells with characteristics of mechanoreceptors 60 

and chemoreceptors (Møbjerg et al., 2018). Sexual dimorphism is mainly limited to a female bias in 61 

body size, with very few reported examples of secondary sexual characters (Gąsiorek et al., 2019; 62 

Gąsiorek, Kristensen and Kristensen, 2021) and parental care (Pilato et al., 2006). Of the ca. 1500 63 

tardigrade species described so far (Degma and Guidetti, 2023), mating behaviour has been described 64 

for only ten species (Sugiura and Matsumoto, 2021b), with only one showing secondary sexual 65 

dimorphism. Moreover, detailed records of both pre-mating and mating phases are described for only 66 

four species, of which none show secondary sexual characters (Bingemer, Hohberg and Schill, 2016; 67 

Sugiura et al., 2019; Bartel and Hohberg, 2020; Sugiura and Matsumoto, 2021a). Together, these studies 68 

suggest a crucial role of semiochemicals in intra-specific sexual contexts (i.e., mate attraction and sperm 69 

transfer) through diffusing cues. In addition, a recent study showed that tardigrades could detect 70 
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deposited chemical cues (trail) in inter-specific (i.e., predator-prey) contexts (Meyer et al., 2020). In 71 

this study, prey avoided areas previously occupied by predators while the latter preferred the areas 72 

occupied by prey. 73 

 74 

Chemical signals can serve as honest or deceptive indicators of quality, age, or other reproductive 75 

factors and may be used to compete for mates (Johansson and Jones, 2007). Typically, the female 76 

transmits signals, and the male responds, leading to a potential blind spot in research regarding female 77 

response to pheromones (Hare and Simmons, 2019). To address this, it is vital to study both sexes' 78 

reactions to chemical cues and their impact on mate-searching behaviour, which will also contribute to 79 

a broader understanding of the evolution of these signals. 80 

 81 

Using the gonochoristic tardigrade Macrobiotus polonicus Pilato, Kaczmarek, Michalczyk & Lisi, 2003 82 

we tested the role of both waterborne diffusing signals and deposited cue trails (in water-free 83 

environments) in sex discrimination and mate searching behaviours of both females and males. Since 84 

our study system shows limited sexual dimorphism in sensory morphology and ecology, we 85 

hypothesised that (i) both females and males would preferentially associate with the opposite sex, and 86 

that (ii) both sexes could detect and follow an opposite-sex deposited-trail cue. 87 

 88 

METHODS 89 

 90 

Culture 91 

We used two strains of a laboratory culture of the moss-living eutardigrade Macrobiotus polonicus 92 

(strain AT.002 (Stec et al., 2021) and IT S218). The second strain has been obtained from a moss sample 93 

collected in Anzola Emilia, Bologna, Italy (44°34'08.2"N, 11°10'44.1"E) in December 2019. Females 94 

of this species lay eggs freely in the environment (Pilato et al., 2003) and have a sperm storage organ 95 

(Vecchi et al., 2022). The mating behaviour of M. polonicus has not been described fully; however, we 96 

have observed sperm-release similar to what Sugiura et al. (2019) observed in closely related species. 97 

 98 

Tardigrades were kept in 5 cm-diameter plastic Petri dishes with a scraped bottom (to aid motility) filled 99 

with mineral water and fed ad libitum with algae (Chlorococcum hypnosporum and Chlorella sp.; 100 

Sciento UK) and rotifers (Lecane sp.) or nematodes (Panagrellus pycnus) according to what was 101 

available in culture, inside a climate chamber at 16 °C, 2:22 LD cycle. Half of the medium was partially 102 

changed weekly. Thanks to the transparent cuticle, the sex and reproductive state of M. polonicus can 103 

be determined non-invasively using light microscopy (400× magnification). 104 

 105 

All individuals used for this study were virgins. Virgin individuals were obtained by isolating eggs and 106 

then rearing hatchlings individually in 3 cm-diameter plastic Petri dishes, kept in the same conditions 107 
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as the main cultures. We determined the sexual maturity of individuals by observing motile sperm and 108 

mature oocytes in the male and female gonad, respectively. Each trial was conducted with individuals 109 

from the same strain (Experiment 1: n= 23 trials with AT.002 and n = 10 with IT S218; Experiment 2: 110 

n = 16 trials with AT.002 and n = 11 with IT S218). 111 

 112 

Experiment 1: Waterborne (diffusing) cues 113 

We used 33 focal individuals (16 females and 17 males) to test whether tardigrades could differentiate 114 

the sexes using diffusing signals. We created a choice chamber arena (Fig. 1A) consisting of an Ibidi 4-115 

well slide (Ibidi, Germany) and two fishing lure rings (4 mm inner diameter). The arena surface was 116 

coated with 250 µl of 1.5% agar (BD BACTO™ Agar, USA) with the placement of the lure rings 117 

following a printed scheme. We placed the lure rings with their edges at an 8 mm distance from each 118 

other, each 4 mm from the centre of the arena (distances same as in Bartel and Hohberg, 2020). When 119 

the agar was solidified, we added 1 ml of mineral water to flood the arena so chemical cues could diffuse 120 

within the chambers. This setup allowed us to provide the focal individual only with diffused chemical 121 

cues from the signallers since they could not see nor touch them. The signallers were able to move 122 

freely within the lure area. Some of them were used twice for two different focal individuals (one of 123 

each sex), with at least 12 h of interval between the two trials (i.e., the next day). Different arenas were 124 

used for every trial conducted on the same day, and all arenas were thoroughly cleaned at the end of 125 

each day.  126 

 127 

We placed the signallers inside the lure rings in darkness (swapping female and male sides between 128 

trials) and let them habituate for 30 min. Afterwards, we added the focal individual in the centre of the 129 

arena and filmed its behaviour for 30 min. A stereomicroscope with a diffused bottom light linked to a 130 

camera (and the S-EYE software) was used. Position tracking was done automatically (see video 131 

analyses section). The preferential association was assessed as latency to cross, and time spent within 132 

the critical area of the opposite sex signaller.  133 

 134 

 Experiment 2: Trail-deposited cues 135 

Individuals used in the first experiment were randomly grouped in mixed-sex pairs (both focals and 136 

signallers). We used 27 couples to test whether tardigrades could follow a trail-deposited cue. The 137 

individuals were placed in the same type of Ibidi chamber slides as in Experiment 1, but without water 138 

and the fishing lure rings. An ultra-thin continuous water film coat agar and the tardigrades which 139 

allowed them to move freely in the arena but limited any chemical cue to the tardigrades’ trails. We 140 

used the same microscope and camera setup as in the previous experiment. After starting the recording, 141 

we placed the first individual and waited (ca. five min) for it to move. Then, we added the second 142 

individual and continued recording for 30 min. The order of individuals (male vs. female) was alternated 143 

between trials. Position data for both individuals were obtained automatically (see video analyses 144 
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section). In addition, we documented in detail the number and type of all observed interactions (i.e., 145 

bumps and following behaviour).  146 

 147 

Video analyses 148 

To obtain the position of the focal individuals during each trial during both experiments, we analysed 149 

the videos in R v.4.2.0 with the function "trackR" from the package “trackR” (Garnier, 2022). The 150 

tracking was checked, and tracking position errors fixed with the function "trackFixer" of the same 151 

package.  152 

To determine whether the focal individuals were inside a critical area (dashed lines, Fig. 1A) for the 153 

waterborne-diffused cues, we applied a distance-to-centre function to the output (xy coordinates) given 154 

by trackR. For the trail-deposited cue experiment, we calculated the distance between individuals' paths 155 

every three seconds. Only those that differed by less than one body length distance from each other 156 

were considered to overlap (e.g., perpendicular overlap is excluded). We then assess the proportion of 157 

time the paths of both animals overlapped. 158 

 159 

Statistical analyses 160 

All statistical analyses were conducted in R v.4.2.0 (R Core Team, 2022). We ran generalised linear 161 

models using the "brm" function from the "brms" package v.2.17.5 (Bürkner, 2017). 162 

In the diffusing signal experiment: for the latency to cross the first critical area, the predictor was the 163 

sex of the focal individual, whereas, for the proportion of time spent inside a critical area, the predictor 164 

was included as four types of dyad interactions (focal-signallers): Female-Female, Female-Male, Male-165 

Female and Male-Male. The ID of the focal individual was included as a random variable. The focals 166 

that did not cross any critical area were removed from the analysis in both models. To test if the path of 167 

one sex overlapped more often with the path of the other, we used the sex as a predictor of the proportion 168 

of time an individual was on top of the other one's trace. We included the trial ID as a fixed effect for 169 

the trail data since the couples could interact. To assess if the absence of water affected motility, we 170 

compared the distance travelled in both experiments, where the focal individual's sex was the predictor. 171 

We used default priors for each response distribution type: Binomial (logit link) distribution for the 172 

proportion of time spent inside each critical area and the proportion of time an individual was on top of 173 

another one's path, Gaussian for the latency to cross the first critical area, and the distance travelled. 174 

The results are presented as back-transformed Bayesian posterior means and 95% high-density interval 175 

(HDI) using the "mean_hdi" function from the "tidybayes" package v.3.0.2 (Kay, 2022), computed from 176 

n = 4 well converging and uncorrelated chains with n = 4000 saved iterations each.  177 

 178 

RESULTS 179 

 180 

Experiment 1: Waterborne (diffusing) cues 181 
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In total, ten individuals (five females and five males) did not cross any critical area, and their latency to 182 

choose was recorded as 30 min (i.e., the maximum duration of the trials); (Fig. 1B). The first choice in 183 

both sexes was biased towards female signallers except for one focal individual of each sex (Fig. 1B). 184 

The latency to first cross a critical area was not significantly associated with the sex of the focal 185 

individual (n = 23, Bayesian mean estimate [95% HDI]: females = 7.54 [3.91, 10.99] min; males = 3.54 186 

[0.20, 6.77] min) (Fig. 1B). 187 

 188 

Females spent a very short but similar time next to either sex, whereas males showed a strong attraction 189 

to female signallers (female n = 12, mean of the proportion of time spent next to female [95% HDI] = 190 

0.107 [0.034, 0.22]; next to male = 0.08 [0.023, 0.164];  males n = 12, mean of the proportion of time 191 

spent next to females [95% HDI] = 0.540 [0.290, 0.778]; next to males = 0.008 [0.002, 0.018]); (Fig. 192 

1C). 193 

 194 

Experiment 2: Trail-deposited cues  195 

The proportion of time an individual spent on top of the other one's path was low (i.e. less than 1% of 196 

the experiment duration), and there were no differences between the sexes in this trait (n = 27, mean of 197 

the proportion of time a female is on top of a male's path [95% HDI] = 0.009 [0.007, 0.011]; a male is 198 

on top of a female's path = 0.006 [0.005, 0.008]); (Fig. 2A). 199 

 200 

Although we did not observe trail-following for either sex, we discovered other behaviours. First, 201 

individuals were randomly encountering each other, which we describe as a contact. We noted which 202 

sex was initiating the contact (i.e., the individual colliding into the other). Second, individuals followed 203 

each other after these collisions (see Movie 1 and Fig. 2B). Half of the couples (n = 15 of 27) collided 204 

at least once. In total, 24 contacts were recorded, with 1.6 contacts on average per couple (from 1 to 4 205 

contacts in one trial). Half of the contacts led to males moving together in tandem with females while 206 

keeping physical contact. This behaviour was more often observed when the male had initiated the 207 

contact (Fig. 2B). Females never expressed this behaviour, and when they moved away from the male, 208 

they stopped and then started moving in another direction.  209 

 210 

Lastly, we found no sex nor experiment-specific differences in activity level as measured by cumulative 211 

distance travelled (Fig. S1). 212 

 213 

DISCUSSION 214 

 215 

Signal type: waterborne (diffusing) vs deposited trail cues 216 

Our results confirm previous work (Bartel and Hohberg, 2020) that diffusing waterborne signals are 217 

used in tardigrade intraspecific chemical communication in a reproductive context. However, we show, 218 
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for the first time, sex-differences in this context (see next section). We found no evidence that 219 

tardigrades can detect sex-specific cues deposited on the agar surface. The latter contrasts with what 220 

was found in a predator-prey deposited cue detection context (Meyer et al., 2020). However, that study 221 

differs from ours not only in context but also substantially in methodology: they used much larger taxa, 222 

with multiple individuals as signallers and focals, longer times to deposit cues on a substrate, and non-223 

simultaneous response. Therefore, we cannot separate two potential explanations for our results: a lack 224 

of sex-specific signal or an inability to detect cues from a single signaller. Our observation of the 225 

interactions between individuals suggests that, in the absence of water, the detection of conspecifics is 226 

compromised. Only in half of the trials did the individuals interact, and of those, only one-third did so 227 

more than once (Fig. 2B). In addition, we did not observe any instances of trail-matching behaviour by 228 

either sex as assessed by the very rare (1%) spatial overlap of trails (Fig. 2A). Therefore, physical 229 

encounters appear to be random in the absence of water. 230 

 231 

However, the behaviour observed after these physical encounters is insightful: only males followed 232 

females and mostly by maintaining physical contact (see Movie 1). In their natural habitat, the encounter 233 

rate can be quite variable: in another Macrobiotus species, the number of sexually mature females 234 

showed a seasonal 7-fold change (Schuster and Greven, 2013). Therefore, males might have evolved 235 

this following behaviour to improve their mating opportunities. Furthermore, this behaviour might also 236 

be linked to the potential assessment of female receptivity and/or mating status using cues only 237 

detectable in close range. For example, it is well established that cuticular hydrocarbons (CHCs), in 238 

addition to their contribution to desiccation resistance (Hadley, 1981), have a key role in mate choice  239 

in the sister phylum to Tardigrada – Arthropoda (reviewed in Ingleby, 2015). Our current knowledge 240 

on tardigrade cuticle is mostly limited to interspecific morphological differences and their potential role 241 

in anhydrobiotic ability (reviewed in Czerneková and Vinopal, 2021). Unfortunately, the presence of 242 

CHCs in tardigrades (and their potential role in reproduction) remains unknown.  243 

 244 

In many polyandrous species, males locate and establish a permanent association with immature 245 

females, i.e., pre-copulatory mate guarding (Parker, 1974). For example, male beetles are known to 246 

mount females for several hours during the day to defend the females from intruding males (Arakaki et 247 

al., 2004). Similarly, pre-copulatory mate guarding could explain our own observation of the males' 248 

following behaviour. However, in our experiments, females were ready-to-mate (i.e., eggs are visible 249 

in the ovary; see Poprawa, Schlechte-Wełnicz and Hyra, 2015), and not immature, as is usually the case 250 

in pre-copulatory mate guarding.  251 

 252 

The biology of our study system can also explain the differences seen in cue type responses. Tardigrades 253 

need a thin layer of water to be active, but mating in eutardigrades that lay free eggs requires that sperm 254 

be released into the environment, which then swim towards the female cloaca (reviewed in Sugiura and 255 

https://www.zotero.org/google-docs/?MGZ5a0
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Matsumoto, 2021b). Thus, mating requires water to be present between individuals rather than just 256 

covering the cuticle. Therefore, it would not be surprising if pre-mating reproductive behaviours, such 257 

as sex discrimination or mate choice, are mediated by waterborne chemical cues and not by following 258 

a deposited trail cue. In fact, trail following is a widespread feature of chemical communication in 259 

aquatic environments, from crustaceans to fish (reviewed in Kamio, Yambe and Fusetani, 2022). 260 

 261 

Sex differences in response to waterborne signal 262 

In accordance with previous mating observations (reviewed in Sugiura and Matsumoto, 2021b), our 263 

data quantitatively support male-biased mate-searching and mating initiation behaviours. When 264 

waterborne cues were available, males and females had a similar latency to approach one of the 265 

signallers (Fig. 1B), irrespective of the sex of the signaller (Fig. 1B). However, males spent significantly 266 

more time next to female signallers, whereas females showed no sex-based preference (Fig. 1C). These 267 

results suggest that tardigrades can discriminate between the sexes, with males preferentially 268 

associating with females. 269 

 270 

There are many examples in the literature of males being attracted to opposite-sex chemical cues 271 

(Gomez-Diaz and Benton, 2013). In contrast, much less is known about the converse female response 272 

(Karlsson Green and Madjidian, 2011; Hare and Simmons, 2019). The latter might be a consequence 273 

of the focus on species with sexually dimorphic sensory apparatus (Naka, 2018), which is not the case 274 

in tardigrades (Møbjerg et al., 2018). In taxa without obvious sensory sexual dimorphism, both 275 

attraction (e.g. Passos et al., 2013) and insensitivity to male chemical signals were observed (e.g.  276 

Ratterman, Rosenthal and Jones, 2009). This could be due to a lower female than male sensitivity to 277 

pheromones. Invertebrates, including insects and crustaceans, have specialised chemosensory organs, 278 

such as antennae, that detect environmental chemicals (Su, Menuz and Carlson, 2009). For example, 279 

male moths and beetles have larger and more complex antennae than females, which allow them to 280 

detect pheromones from farther away and with greater precision (Jourdan et al., 1995; Symonds, 281 

Johnson and Elgar, 2012). These differences in chemical sensory organs may be related to differences 282 

in reproductive behaviour and communication between the sexes in invertebrates. Unfortunately, most 283 

studies focus on female pheromones and male responsiveness to them (Doall et al., 1998; Marco et al., 284 

1998; Winfrey and Fincke, 2017; Stamps and Shaw, 2019; Liu et al., 2022). Thus, the biases towards 285 

research on males and conspicuous visual ornaments has left a blind spot regarding female olfactory 286 

ornaments (Hare and Simmons, 2019). 287 

 288 

Another non-exclusive explanation could be that females do not gain advantages from responding to 289 

chemical cues released by males but are equally attracted to both sexes via aggregating pheromones. 290 

These long-range pheromones are emitted by and attractive to both sexes (Wertheim et al., 2005). 291 

Individuals may aggregate for the benefit of living in a group, for example by avoiding predation (Raveh 292 
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et al., 2019), or aiding feeding (Tanaka, Frommen and Kohda, 2018) and reproduction (Roff et al., 293 

2017). They are also essential for internally fertilising aquatic animals (Wyatt, 2014), and tardigrades 294 

could rely on them to find mates. For example, barnacle cyprids, the mobile larval form of barnacle, 295 

release a pheromone that attracts other cyprids to the location. This behaviour is thought to be an 296 

adaptation that increases the chances of successful settlement by bringing together many individuals in 297 

a small area. This pheromone also plays an essential role in the reproductive process by helping to 298 

gather conspecific cyprids in the same location to increase the future chances of fertilisation 299 

(Matsumura, Nagano and Fusetani, 1998). 300 

 301 

Conclusion 302 

This study provides the first step in understanding intersexual communication in tardigrades by 303 

comparing distinct types of chemical signals, and the behavioural response of both sexes to them. 304 

Tardigrades were able to detect conspecifics using waterborne signals but did not respond to deposited 305 

trail cues. Moreover, females and males behaved differently: females showed no sex-based preferences 306 

(if any), whereas males discriminated sex through waterborne signals, showing a strong preference to 307 

associate with females. Furthermore, in the absence of waterborne cues, males (but not females) can 308 

follow opposite-sex individuals, but only while maintaining direct body contact. Our results align with 309 

the very limited literature about reproductive behaviour, especially regarding the pre-copulatory stage, 310 

in tardigrades. Future work should focus on identifying the chemical compounds used in intersexual 311 

communication in this understudied phylum. 312 
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FIGURES 509 

 510 

Figure 1: A. Photograph of the arena (choice-chamber) setup from above (total size 511 

21.6 × 11.4 mm, lure rings chambers 4 mm inner diameter). Dashed line: critical area. B. Latency to 512 

first cross a side for focal females (n = 16) and males (n = 17); five individuals of each sex (grey) did 513 

not spend time inside a critical area (non-crosser). C. Proportion of time spent inside each critical area 514 

(female n = 11, male n = 12, non-crossers are excluded). Black dots represent means of posterior 515 

distributions, whereas vertical lines represent the 95% high-density intervals. 516 

 517 

Figure 2: A. Proportion of time when paths of both individuals overlapped (n = 27 trials). Black dots 518 

represent means of posterior distributions, whereas vertical lines represent 95% high-density intervals. 519 

Grey lines connect the two individuals used in the same trial. B. Following behaviour observed 520 

according to the individual who initiated a contact during the trail experiment (n = 24 recorded 521 

contacts). Only males showed this behaviour. The colour refers to the sex that initiate the contact. 522 


