
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Reducing redundancy in the bottleneck representation of autoencoders

© 2024 The Authors. Published by Elsevier B.V.

Published version

Laakom, Firas; Raitoharju, Jenni; Iosifidis, Alexandros; Gabbouj, Moncef

Laakom, F., Raitoharju, J., Iosifidis, A., & Gabbouj, M. (2024). Reducing redundancy in the
bottleneck representation of autoencoders. Pattern Recognition Letters, 178, 202-208.
https://doi.org/10.1016/j.patrec.2024.01.013

2024

Pattern Recognition Letters 178 (2024) 202–208

A
0

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Reducing redundancy in the bottleneck representation of autoencoders
Firas Laakom a,∗, Jenni Raitoharju b,c, Alexandros Iosifidis d, Moncef Gabbouj a

a Faculty of Information Technology and Communication Sciences, Tampere University, Finland
b Faculty of Information Technology, University of Jyväskylä, Finland
c Quality of Information, Finnish Environment Institute, Finland
d Department of Electrical and Computer Engineering, Aarhus University, Denmark

A R T I C L E I N F O

Editor: Alexandru C. Telea

MSC:
68T01
68T10
94A08
68T99

Keywords:
Autoencoders
Unsupervised learning
Diversity
Feature representation
Dimensionality reduction
Image denoising
Image compression

A B S T R A C T

Autoencoders (AEs) are a type of unsupervised neural networks, which can be used to solve various tasks,
e.g., dimensionality reduction, image compression, and image denoising. An AE has two goals: (i) compress
the original input to a low-dimensional space at the bottleneck of the network topology using an encoder, (ii)
reconstruct the input from the representation at the bottleneck using a decoder. Both encoder and decoder
are optimized jointly by minimizing a distortion-based loss which implicitly forces the model to keep only the
information in input data required to reconstruct them and to reduce redundancies. In this paper, we propose
a scheme to explicitly penalize feature redundancies in the bottleneck representation. To this end, we propose
an additional loss term, based on the pairwise covariances of the network units, which complements the data
reconstruction loss forcing the encoder to learn a more diverse and richer representation of the input. We tested
our approach across different tasks, namely dimensionality reduction, image compression, and image denoising.
Experimental results show that the proposed loss leads consistently to superior performance compared to using
the standard AE loss.
1. Introduction

With the progress of data gathering techniques, high-dimensional
data are becoming available for training machine learning approaches.
The impracticality of working in high dimensional spaces due to the
curse of dimensionality and the understanding that the data in many
problems reside on manifolds with much lower dimensions than those
of the original space has led to the development of various approaches
which try to learn a mapping of the data representations in the original
space to more meaningful lower-dimensional representations.

Autoencoders (AEs) [1] are a powerful data-driven unsupervised
approach used to learn a compact representation of a given input dis-
tribution. An autoencoder focuses solely on finding a low-dimensional
representation, from which the input data can be reconstructed with
minimal distortion. Autoencoders have been applied successfully in
many tasks, such as transfer learning [2], anomaly detection [3],
dimensionality reduction [4], and compression [5].

To accomplish these tasks, an autoencoder has two different parts:
an encoder 𝑔(⋅), which maps an input 𝒙 ∈  to a compact low-
dimensional space 𝑔(𝒙), called the bottleneck representation, and a

∗ Corresponding author.
E-mail addresses: firas.laakom@tuni.fi (F. Laakom), jenni.k.raitoharju@jyu.fi (J. Raitoharju), ai@ece.au.dk (A. Iosifidis), moncef.gabbouj@tuni.fi

(M. Gabbouj).

decoder 𝑓 (⋅), which takes the output of the encoder as its input and uses
it to reconstruct the original input 𝑓◦𝑔(𝒙). Given a distortion metric 𝐷:
 ×  → R, which measures the difference between the original input
and the reconstructed input. Autoencoders are trained in an end-to-end
manner using gradient descent-based optimization [1] to minimize the
loss 𝐿 defined as the average distortion over the training data {𝒙𝑖}𝑁𝑖=1:

min
𝑓,𝑔

𝐿
(

{𝒙𝑖}𝑁𝑖=1
)

≜ min
𝑓,𝑔

1
𝑁

𝑁
∑

𝑖=1
𝐷(𝒙𝑖, 𝑓◦𝑔(𝒙𝑖)). (1)

Several extensions and regularization techniques have been proposed to
augment this loss [5,6] aiming at improving the mapping of the input
to a compressed representation at the bottleneck of the autoencoder so
that the original inputs can be better reconstructed from these compact
representations using the decoder.

By controlling the size of the bottleneck, one can explicitly control
the dimensionality of the representation and the compression rate [5].
A low size of the bottleneck increases the complexity of the task of
the decoder risking a higher distortion rate. This trade-off forces the
model to keep only those variations in the input data that are required
vailable online 15 January 2024
167-8655/© 2024 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.patrec.2024.01.013
Received 28 November 2022; Received in revised form 5 January 2024; Accepted 1
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

0 January 2024

https://www.elsevier.com/locate/patrec
https://www.elsevier.com/locate/patrec
mailto:firas.laakom@tuni.fi
mailto:jenni.k.raitoharju@jyu.fi
mailto:ai@ece.au.dk
mailto:moncef.gabbouj@tuni.fi
https://doi.org/10.1016/j.patrec.2024.01.013
https://doi.org/10.1016/j.patrec.2024.01.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2024.01.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Pattern Recognition Letters 178 (2024) 202–208F. Laakom et al.
Fig. 1. An illustration of how the autoencoder loss is computed using our approach.

to reconstruct the input and to avoid redundancies and noise within
the input. This is achieved implicitly by using error back-propagation
for minimizing the reconstruction error, i.e., distortion 𝐷.

In the context of supervised neural networks, it has been shown
that reducing redundancy improves generalization [7–9]. Approaches
helping to reduce redundancy have been successfully applied, e.g., for
pruning [10]. In this paper, we propose to model the feature re-
dundancy in the bottleneck representation and minimize it explicitly.
To this end, we propose augmenting the loss 𝐿 using a redundancy
term computed as the sum of the pairwise covariance between the
bottleneck elements. The full scheme is illustrated in Fig. 1. We argue
that explicitly penalizing the pairwise covariance between the different
units in the bottleneck provides extra feedback for the encoder to avoid
redundancy and to learn a richer representation of the input data.

The contributions of this paper can be summarized as follows:

• We propose a scheme to avoid redundant features in the bottle-
neck representation of autoencoders.

• We propose to augment the autoencoder loss to explicitly penalize
the pairwise covariance between the features and learn a diverse
compressed embedding of the training data.

• The proposed penalty term acts as an unsupervised regularizer on
top of the encoder and can be integrated into any autoencoder-
based model in a plug-and-play manner.

• The proposed method is extensively evaluated over three tasks: di-
mensionality reduction, image compression, and image denoising.
Experimental results show consistent performance improvements
compared to the standard approach.

The rest of this paper is organized as follows. Section 2 provides
the background of autoencoders’ training strategies and a brief review
of different tasks considered in this work, i.e., dimensionality reduc-
tion, image compression, and image denoising. Section 3 describes
the proposed approach. Section 4 reports experimental results for the
dimensionality reduction task on the Madelon [11], ISOLET [12], and
P53 Mutants [13] datasets. Section 5 reports experimental results for
the image compression task on the MNIST [14] and CIFAR10 [15]
datasets. Section 6 evaluates our approach on the image denoising
task using the fashion MNIST [16] and CIFAR10 datasets. Section 7
concludes the paper.

2. Related work

Autoencoders are models trained to reconstruct their input, i.e., to
approximate the identity function 𝑓 (𝑥) ≈ 𝑥. While the identity function
seems a particularly trivial function to learn, enforcing certain con-
straints on the network topology and particularly using a low number
of units in the hidden layers [1] forces the model to learn to efficiently
represent the data in a much lower-dimensional space compared to
the original space [17,18]. This is a desired property in several tasks,
e.g., dimensionality reduction [4], compression [5,19], and image de-
noising [20,21]. In [3,22–24], different extensions of autoencoders
have been proposed to improve their performance in different contexts.
203
Several approaches based on reducing redundancy have been pro-
posed recently in different contexts [25–29]. In particular, in the con-
text of self-supervised learning, [26,28] proposed a training loss based
on the pairwise correlation between the features of two perturbed
variants of the same input. [9] proposed a data-dependent regularizer
based on the 𝐿2 distance between the units outputs in the last hidden
layer of CNNs and showed that such approach can reduce overfitting in
the context of supervised learning. In this paper, we explore a similar
direction in the context of unsupervised learning with autoencoders.
To the best of our knowledge, this is the first work that considers
reducing redundancy in this context. We show that it helps improve
the performance.

Dimensionality reduction refers to the problem of learning a map-
ping from a high-dimensional input space  ∈ R𝐷 into a lower-
dimensional space  ∈ R𝑑 , where 𝑑 ≪ 𝐷, while preserving features of
interest in the input data. Several linear [30–32] and non-linear [33–
36] approaches have been proposed to solve this task. Some are su-
pervised approaches, such as Linear Discriminant Analysis (LDA) and
its extensions [37], others are unsupervised methods [38], such as
Principal Component Analysis (PCA) [39]. Dimensionality reduction
is the most straightforward application of autoencoders [4,40], as the
mapping can be learned using an autoencoder by setting the size of the
bottleneck to 𝑑 units and training the model to reconstruct the input.

Image compression is an important task in many applications. Re-
cent advances in deep neural networks [1] have enabled efficient
modeling of high-dimensional data and led to outperforming traditional
image compression techniques [41,42]. Recently, there has been inter-
est in autoencoders to solve this task [5] due to their flexibility and
easiness of training.

Image denoising [43] refers to the task of trying to restore a clean
version of the image from its noisy corrupted counterpart. Due to
their plug-and-play network architectures, CNN-based autoencoders
have been widely adopted to solve this task [44,45]. In particular, an
autoencoder is trained using pairs of noisy and clean images. By taking
a noisy sample as input and setting its clean version as the target, the
model learns to keep only the important information from the image
and discard the noise.

3. Reducing the pairwise covariance within the bottleneck repre-
sentation

Autoencoders are a special type of neural networks trained to
achieve two objectives: (i) to compress an input into a low-dimensional
space, (ii) to reconstruct the original input from the low-dimensional
representation. This is achieved by minimizing the reconstruction loss
over the training data, which implicitly forces learning a concise ‘non-
redundant’ representation of the data. In this paper, we propose to
augment the reconstruction loss with an additional term designed to
explicitly minimize redundancy between the features learned at the
bottleneck.

Given a training data set {𝒙𝑖}𝑁𝑖=1 and an encoder 𝑔(⋅) ∈ R𝐷, the
covariance between the 𝑖th and 𝑗th features, 𝑔𝑖 and 𝑔𝑗 , can be expressed
as follows:

𝐶(𝑔𝑖, 𝑔𝑗) =
1
𝑁

∑

𝑛

(

𝑔𝑖(𝒙𝑛) − 𝜇𝑖

)(

𝑔𝑗 (𝒙𝑛) − 𝜇𝑗

)

, (2)

where 𝜇𝑖 =
1
𝑁

∑

𝑛 𝑔𝑖(𝒙𝑛) is the average output of the 𝑖th unit. Our aim
is to minimize the redundancy of the bottleneck representations which
corresponds to minimizing the pairwise covariance between different
features. Thus, we augment the loss 𝐿

(

{𝒙𝑖}𝑁𝑖=1
)

as follows:

𝐿
(

{𝒙𝑖}𝑁𝑖=1
)

𝑎𝑢𝑔 ≜ 𝐿
(

{𝒙𝑖}𝑁𝑖=1
)

+ 𝛼
∑

𝑖≠𝑗
𝐶(𝑔𝑖, 𝑔𝑗)

= 1
𝑁
∑

𝐷(𝒙𝑖, 𝑓◦𝑔(𝒙𝑖)) (3)

𝑁 𝑖=1

Pattern Recognition Letters 178 (2024) 202–208F. Laakom et al.

c
r
e
t
O

l
s
i
l
a

u
d
C
p
i
C
c
a

b
u
t

b
s

Table 1
Statistics of the three datasets used in the dimensionality reduction experiments. #
Dim: dimensionality of the data. # Train: number of training samples. # Test: number
of test samples. d: projection dimension.

Dataset # Dim # Train # Test d

Madelon [11] 500 2000 1800 10
ISOLET [12] 617 6238 1559 10
P53 Mutants [13] 5408 21 811 9348 50

+ 𝛼
∑

𝑖≠𝑗

(1
𝑁

∑

𝑛
(𝑔𝑖(𝒙𝑛) − 𝜇𝑖)(𝑔𝑗 (𝒙𝑛) − 𝜇𝑗)

)

, (4)

where 𝛼 is a hyper-parameter used to control the contribution of the
additional term in the total loss. 𝐿𝑎𝑢𝑔 is composed of two terms, the first
term is the standard autoencoder loss that depends on both the encoder
and decoder parts to ensure that the autoencoder learns to reconstruct
the input, while the second term depends only on the encoder and its
aim is to promote the diversity of the learned features.

Intuitively, the proposed approach acts as an unsupervised regu-
larizer on top of the encoder providing extra feedback during train-
ing to reduce the redundancy of the encoder’s output. The proposed
scheme can be embedded into any autoencoder-based model as a plug-
in and optimized in a batch-manner, i.e., at each optimization step,
we can compute the pairwise covariance using the mini-batch samples.
Moreover, it is suitable for different learning strategies and different
topologies.

4. Experiments on dimensionality reduction

In this section, we consider the dimensionality reduction task using
an autoencoder. We test the proposed approach using three different
tabular datasets, namely Madelon [11], ISOLET [12], and P53 Mu-
tants [13]. The Madelon dataset [11] contains samples represented by
500-dimensional vectors grouped in 32 clusters placed on the vertices
of a five-dimensional hypercube. The ISOLET dataset [12] is composed
of alphabet-speech data from 150 different subjects. Each instance is
represented by a 617-feature vector complied using spectral coeffi-
cients, contour features, sonorant features, pre-sonorant features, and
post-sonorant features. The P53 Mutants dataset [13] is a large Biophys-
ical dataset with more than 30k samples in total and 5408 attributes
per instance. The feature representation is formed by combining the 2D
electrostatic and surface-based attributes with the 3D distance-based
attributes.

As the autoencoder topology, we use a simple architecture where
the encoder maps the input using two intermediate fully-connected
layers composed of 64 units with ReLU activation. Then, the bottleneck
representation of size 𝑑 is obtained using a fully-connected layer with
d units and Leaky ReLU [1] activation. Symmetrically, the decoder
is composed of two 64-dimensional fully-connected layers followed
by ReLU activation and an output layer with the same size as the
input using a sigmoid activation. The number of data dimensions,
cardinalities of the training and test sets, and the value of 𝑑 for each
dataset is specified in Table 1. For training, we use the Adam optimizer
with a learning rate of 10−2 and the mean square error as the standard
training loss 𝐿. The number of epochs and the batch size are set to 50
and 32, respectively, in all experiments. Each experiment is repeated
10 times and the mean and standard deviation of the root mean square
error (RMSE) on the test set are reported.

In Table 2, we report the experimental results obtained by training
the autoencoder using the standard loss and our proposed augmented
loss and different values for the hyper-parameter 𝛼, introduced in (4). It
an be seen that, by explicitly penalizing redundancy in the bottleneck
epresentations, the proposed approach consistently achieves lower
rrors compared to the standard approach on the three datasets. On
he Madelon dataset, the best performance is achieved using 𝛼 = 0.005.
204

n the ISOLET dataset, using 𝛼 = 0.1 leads to the highest improvement, o
Table 2
Reconstruction error on the three datasets used in the dimensionality reduction
experiments (average and standard deviation over 10 repetitions).

Madelon ISOLET P53 Mutants

Standard 0.14027 ± 0.00023 0.13143 ± 0.00259 0.02777 ± 0.00159
Ours (0.1) 0.14022 ± 0.00016 0.12993 ± 0.00283 0.02717 ± 0.00087
Ours (0.05) 0.14024 ± 0.00038 0.13081 ± 0.00366 0.02689 ± 0.00054
Ours (0.01) 0.14022 ± 0.00043 0.13101 ± 0.00204 0.02709 ± 0.00052
Ours (0.005) 0.14005 ± 0.00037 0.13135 ± 0.00267 0.02694 ± 0.00051

whereas, on the P53 Mutants dataset, the best performance is achieved
using 𝛼 = 0.05. It should be noted that while the performance gap
is not large compared to the standard approach, the improvement is
consistent on all the datasets and the different regularization rates.

In Fig. 2, we provide visualization results comparing the two ap-
proaches. We visualize the data in the projected space of the AE
trained with the standard loss and the proposed augmented loss using
t-SNE [35]. As can be seen, the AE trained with the augmented loss
provides a more compact representation of the classes. We also note
that by reducing redundancy, the learned embedding is more spread
over the projection space and contains fewer empty regions.

Dimensionality reduction is typically applied as a pre-processing
step to compile a compact feature representation that can be used to
solve another task, such as classification. Intuitively, learning diverse
and non-redundant features is crucial to achieve good performance
on the task of interest. Here, to further assess the quality of the
data representations learned using our approach, we conduct an extra
experiment by applying the 𝐾-Nearest Neighbor (𝐾-NN) classifier on
top of the bottleneck features. In Table 3, we report the classification
accuracy for 𝐾 = 3 and 𝐾 = 5. As can be seen, the bottleneck features
obtained using our approach yield consistently higher accuracy on the
three datasets. For example, for the Madelon dataset, using 𝛼 = 0.005
eads to 4.49% and 3.46% accuracy improvement compared to the
tandard approach when using 𝐾 = 3 and 𝐾 = 5, respectively. It
s interesting to note also that using the augmented loss consistently
eads to more stable performance compared to the standard approach,
s shown by the lower variances.

Moreover, for comparative purposes, we report results obtained by
sing WLD-reg [7], i.e., replacing the proposed regularizer with the
irect variant of WLD-reg on top of the bottleneck representation.1
onsistently with our results, WLD-reg also boosts performance com-
ared to the standard approach showing that reducing redundancy
n the bottleneck representation indeed helps to learn better features.
ompared to our approach, we also note that the use of pairwise
ovariance instead of the 𝐿2 distance leads to higher performance on
ll three datasets.

To further study the effect of the number of dimensions at the
ottleneck on performance, we conducted an additional experiment
sing the Isolet dataset. We plot the average accuracy over training
he AE using 10 random seeds for different values of 𝑑 in Fig. 2

(right). As can be seen, reducing redundancy improves performance
for the different bottleneck sizes. It is interesting to note also that the
performance gap is larger for small values of 𝑑. This can be explained
by the fact that, when a smaller number of dimensions is used, it is
more crucial to learn diverse features for solving the task.

5. Experiments on image compression

In this section, we consider the image compression task using an
autoencoder. We start by testing the proposed approach on the MNIST

1 We note that WLD-reg [7] is a diversity promoting regularizer designed to
e added on top of the last intermediate layer of a neural network in a standard
upervised learning setting and not designed for unsupervised learning on top
f the bottleneck of an autoencoder.

Pattern Recognition Letters 178 (2024) 202–208F. Laakom et al.
Fig. 2. t-SNE-based visualization of the ISOLET representations obtained by an AE trained by the standard approach (left) and the proposed approach (middle). Each color
corresponds to data from a specific class. Average (𝐾 = 3)-NN accuracy as a function of the dimension of the bottleneck size 𝑑 (right).
Table 3
Classification accuracy of Nearest Neighbor classifier applied on the bottleneck
representations (average and standard deviation over 10 repetitions).

Madelon
(𝐾 = 3)-NN (𝐾 = 5)-NN

Standard 69.33% ± 2.71 71.32% ± 2.82
WLD-reg [7] 70.83% ± 2.08 72.45% ± 2.01
Ours (0.1) 72.51% ± 1.73 74.08% ± 1.63
Ours (0.05) 73.52% ± 1.91 74.53% ± 1.49
Ours (0.01) 72.65% ± 2.21 74.50% ± 1.87
Ours (0.005) 73.82% ± 1.83 74.78% ± 1.78

ISOLET
(𝐾 = 3)-NN (𝐾 = 5)-NN

Standard 76.32% ± 1.85 77.70% ± 1.60
WLD-reg [7] 78.22% ± 0.64 79.73% ± 0.70
Ours (0.1) 78.35% ± 0.46 79.82% ± 0.47
Ours (0.05) 78.18% ± 0.40 79.43% ± 0.44
Ours (0.01) 78.96% ± 0.56 79.83% ± 0.54
Ours (0.005) 77.34% ± 0.66 79.29% ± 0.66

P53 Mutants
(𝐾 = 3)-NN (𝐾 = 5)-NN

Standard 56.42% ± 0.60 54.99% ± 0.48
WLD-reg [7] 56.29% ± 0.36 54.86% ± 0.46
Ours (0.1) 57.88% ± 0.46 56.18% ± 0.59
Ours (0.05) 56.17% ± 0.46 55.39% ± 1.09
Ours (0.01) 57.22% ± 0.50 55.65% ± 0.46
Ours (0.005) 56.83% ± 0.41 55.92% ± 0.46

dataset [14]. It contains grayscale images with resolution of 28 × 28
pixels, which are vectorized to form 784-dimensional vectors. The
dataset is split in 50,000 training and 10,000 test images.

For the autoencoder model, we use a simple architecture. The
encoder is composed of two fully-connected layers composed of 256 and
128 units, respectively. The final output of the encoder is composed of 𝑑
units, where 𝑑 is the size of the bottleneck. Similarly, the decoder part
takes the encoder’s output, maps it to an intermediate layer of 128 units,
then 256 units, and outputs a 784-vector. In all the layers, we use ReLU
activation except for the final layer, where sigmoid activation is used.

For training, we use the Adam optimizer with a learning rate of
10−2 and the mean square loss as the standard training loss 𝐿. We
train using 80% of the images in the original training set and hold
the remaining 20% of the images as a validation set. During training,
the model with the lowest mean square error on the validation set
is saved and used in the test phase. We repeat each experiment five
times and report the mean and standard deviation of the root-mean-
square error (RMSE) errors, the peak signal-to-noise ratio (PSNR), and
structural index similarity (SSIM) scores on the test set for the different
approaches. We experiment with two different bottleneck sizes, i.e., 𝑑 =
256 and 𝑑 = 64. The results for different bottleneck sizes are reported
in Table 4.

We note that the proposed approach consistently improves perfor-
mance compared to training with the standard loss, i.e., it leads to
lower RMSE values and higher PSNR and SSMI scores. For 𝑑 = 256, the
205
Table 4
RMSE, PSNR, and SSIM on the MNIST dataset (average and standard deviation over 5
repetitions).

RMSE ↓ PSNR ↑ SSIM ↑

784 → 256

Standard 0.0518 ± 0.0005 0.9631 ± 0.0016 26.43 ± 0.09
Ours (0.1) 0.0508 ± 0.0005 0.9641 ± 0.0010 26.57 ± 0.11
Ours (0.05) 0.0508 ± 0.0005 0.9636 ± 0.0007 26.58 ± 0.08
Ours (0.01) 0.0513 ± 0.0005 0.9647 ± 0.0013 26.49 ± 0.09
Ours (0.005) 0.0506 ± 0.0007 0.9635 ± 0.0012 26.61 ± 0.10

784 → 64

Standard 0.0596 ± 0.0021 0.9597 ± 0.0022 25.25 ± 0.29
Ours (0.1) 0.0584 ± 0.0010 0.9607 ± 0.0012 25.42 ± 0.16
Ours (0.05) 0.0588 ± 0.0018 0.9604 ± 0.0017 25.38 ± 0.25
Ours (0.01) 0.0593 ± 0.0010 0.9599 ± 0.0012 25.30 ± 0.15
Ours (0.005) 0.0588 ± 0.0009 0.9602 ± 0.0013 25.35 ± 0.13

Fig. 3. Visualization of digits reconstructed by an AE trained by using the standard
and the proposed training approaches. The first row contains the original inputs. Their
reconstructed versions corresponding to the standard approach are shown in the second
row, and the proposed approach in the third row.

lowest RMSE value is achieved using 𝛼 = 0.005, and the highest PSNR
and SSMI scores are obtained using 𝛼 = 0.01 and 𝛼 = 0.005, respectively.
For 𝑑 = 64, using 𝛼 = 0.1 leads to the best performance across all the
metrics. Fig. 3 provides visualization results of images reconstructed
from the representations learned using our approach for 𝑑 = 64. We
note that using the proposed augmented loss to train the AE leads to
reconstructed inputs with lower distortion.

We also evaluate our approach on the image compression task with
a more challenging dataset, namely the CIFAR10 Dataset [15]. The
dataset contains 32 × 32-pixel color images, which are vectorized to
form 3,072-dimensional vectors. For the model topology, we use two
hidden layers with 512 and 256 units and ReLU activation. For the
bottleneck size 𝑑, we experiment with two configurations, 𝑑 = 128
and 𝑑 = 256. All the models are trained with Adam optimizer with
a 10−2 learning rate and a batch size of 128 for 50 epochs. The average
and standard deviation of the different metrics over 10 random seeds
are provided in Table 5. Similar to the results on the MNIST dataset,

Pattern Recognition Letters 178 (2024) 202–208F. Laakom et al.
Table 5
RMSE, PSNR, and SSIM on the CIFAR10 dataset (average and standard deviation over
5 repetitions).

RMSE ↓ PSNR ↑ SSIM ↑

3072 → 256

Standard 0.0888 ± 0.0022 0.6601 ± 0.0068 21.5547 ± 0.2470
Ours (0.01) 0.0882 ± 0.0012 0.6637 ± 0.0064 21.6168 ± 0.1314
Ours (0.005) 0.0882 ± 0.0006 0.6628 ± 0.0060 21.6271 ± 0.0593
Ours (0.001) 0.0882 ± 0.0011 0.6613 ± 0.0068 21.6347 ± 0.1154
Ours (0.0005) 0.0877 ± 0.0011 0.6642 ± 0.0078 21.6829 ± 0.1156
Ours (0.0001) 0.0885 ± 0.0014 0.6610 ± 0.0060 21.5927 ± 0.1518

3072 → 128

Standard 0.0929 ± 0.0015 0.6151 ± 0.0100 21.2830 ± 0.1455
ours (0.01) 0.0920 ± 0.0010 0.6210 ± 0.0078 21.3765 ± 0.0920
ours (0.005) 0.0927 ± 0.0014 0.6144 ± 0.0089 21.3093 ± 0.1280
ours (0.001) 0.0917 ± 0.0009 0.6246 ± 0.0054 21.4150 ± 0.0888
ours (0.0005) 0.0923 ± 0.0016 0.6190 ± 0.0130 21.3436 ± 0.1527
ours (0.0001) 0.0926 ± 0.0019 0.6182 ± 0.0072 21.3184 ± 0.2070

Fig. 4. Original samples from the fashion MNIST dataset (top), and their noisy versions
using 𝛽 = 0.2 (bottom).

we note that the proposed approach consistently leads to performance
improvements. For 𝑑 = 256, the best performance is achieved by
using 𝛼 = 0.0005, whereas for 𝑑 = 128, 𝛼 = 0.001 leads to the best
performance.

6. Experiments on image denoising

In this section, we consider the image denoising task using an
autoencoder. We test the proposed approach using the fashion MNIST
dataset [16], which is an image dataset composed of 10 classes. Each
sample is a 28 × 28 gray-scale image. The dataset has a total of 60,000
training samples and 10,000 test samples. To construct a noisy dataset,
we add a random noise from the normal distribution 𝛽× (0, 1), where
𝛽 is a hyper-parameter controlling the noise rate. In Fig. 4, we provide
examples of original images and their noisy versions.

As the autoencoder model, we use a simple CNN-based architecture.
The encoder is composed of two convolutional layers, each of which has
16 and 4 filters, respectively, with kernel size 3 × 3. Symmetrically, the
decoder is composed of two transposed convolutional layers of sizes
4 and 16 and a final convolutional layer with one filter with kernel
size 3 × 3. All the layers have ReLU activation function except for the
last layer where we use a sigmoid activation. Each model is trained for
50 epochs using the mean square error loss and Adam optimizer. We
repeat each experiment five times and report the mean and standard
deviation of RMSE, PSNR, and SSMI scores for different noise rates.

In Table 6, we report the experimental results for three different
noise rates, i.e., 𝛽 = 0.1, 𝛽 = 0.2, and 𝛽 = 0.4. Except for the hyper-
parameter 𝛼 = 0.01 with noise rates 𝛽 = 0.2 and 𝛽 = 0.4, we note
that our approach by explicitly minimizing the redundancy constantly
outperforms the standard approach across all metrics. For the noise rate
𝛽 = 0.1, the lowest RMSE value and the highest SSMI score are achieved
using our approach with 𝛼 = 0.05, while the best PSNR is achieved with
𝛼 = 0.005. For 𝛽 = 0.2, the best scores across all metrics correspond to
𝛼 = 0.005. For the extreme level of noise case, i.e., 𝛽 = 0.4, our approach
206
Table 6
RMSE, PSNR, and SSIM on the fashion MNIST dataset (average and standard deviation
over 5 repetitions).

RMSE ↓ PSNR ↑ SSIM ↑

𝛽 = 0.1

Standard 0.0796 ± 0.0016 0.7980 ± 0.0061 22.51 ± 0.19
Ours (0.1) 0.0786 ± 0.0009 0.8018 ± 0.0024 22.64 ± 0.13
Ours (0.05) 0.0772 ± 0.0018 0.8049 ± 0.0062 22.84 ± 0.25
Ours (0.01) 0.0779 ± 0.0019 0.8047 ± 0.0066 22.77 ± 0.27
Ours (0.005) 0.0774 ± 0.0012 0.8058 ± 0.0044 22.82 ± 0.18

𝛽 = 0.2

Standard 0.0941 ± 0.0026 0.7283 ± 0.0110 20.95 ± 0.25
Ours (0.1) 0.0934 ± 0.0021 0.7301 ± 0.0102 21.03 ± 0.19
Ours (0.05) 0.0933 ± 0.0020 0.7290 ± 0.0079 21.04 ± 0.19
Ours (0.01) 0.0975 ± 0.0034 0.7143 ± 0.1276 20.63 ± 0.31
Ours (0.005) 0.0922 ± 0.0012 0.7357 ± 0.0058 21.14 ± 0.13

𝛽 = 0.4

Standard 0.1262 ± 0.0021 0.5901 ± 0.0089 18.27 ± 0.16
Ours (0.1) 0.1258 ± 0.0021 0.5954 ± 0.0095 18.30 ± 0.15
Ours (0.05) 0.1260 ± 0.0016 0.5946 ± 0.0067 18.28 ± 0.12
Ours (0.01) 0.1266 ± 0.0014 0.5865 ± 0.0070 18.22 ± 0.09
Ours (0.005) 0.1260 ± 0.0017 0.5911 ± 0.0085 18.28 ± 0.13

Fig. 5. Visualization of images denoised by AEs trained by using the standard and the
proposed training approaches. The first row contains the original inputs. Their denoised
versions corresponding to the standard approach are shown in the second row and the
proposed approach in the third row. The last row contains the ground truth.

with 𝛼 = 0.1 achieves the best performance across the three metrics.
In Fig. 5, we present visual outputs for our approach. As shown, our
approach learns to efficiently discard the noise from the input images.

Next, we evaluate the performance of the proposed approach in
image denoising with a more challenging dataset, i.e., CIFAR10. We
use the same model topology and experimental protocol used for this
dataset in Section 5. We experiment with two levels of noise 𝛽 =
0.1 and 𝛽 = 0.2. The results over 10 random seeds are presented in
Table 7. As can be seen in Table 7, reducing features’ redundancy in
the bottleneck improves the performance of AE for both noise levels.
For 𝛽 = 0.1, using the augmented loss with 𝑎𝑙𝑝ℎ𝑎 = 0.005 achieved
the best performance, while for the high noise rate, i.e., 𝛽 = 0.2,
𝛼 = 0.0001 led to the best performance across the three metrics. With
the same hardware configuration, the standard autoencoder average
training time is on average 1, 297.7 milliseconds per epoch, whereas
using our approach takes on average 1, 301.9 milliseconds per epoch.
So adding our regularizer leads to performance improvement with less
than 0.33% additional time cost.

7. Conclusion

In this paper, we proposed a scheme for modeling redundancies
at the bottleneck of an autoencoder. We proposed to complement

Pattern Recognition Letters 178 (2024) 202–208F. Laakom et al.
Table 7
RMSE, PSNR, and SSIM on the CIFAR10 dataset (average and standard deviation over
5 repetitions).

RMSE ↓ PSNR ↑ SSIM ↑

𝛽 = 0.1

Standard 0.0954 ± 0.0019 0.6098 ± 0.0121 20.9243 ± 0.1734
Ours (0.01) 0.0948 ± 0.0016 0.6172 ± 0.0093 20.9703 ± 0.1550
Ours (0.005) 0.0940 ± 0.0010 0.6227 ± 0.0056 21.0411 ± 0.1021
Ours (0.001) 0.0952 ± 0.0018 0.6129 ± 0.0116 20.9325 ± 0.1651
Ours (0.0005) 0.0943 ± 0.0012 0.6190 ± 0.0085 21.0238 ± 0.1097
Ours (0.0001) 0.09489 ± 0.0012 0.6157 ± 0.0072 20.9644 ± 0.1102

𝛽 = 0.2

Standard 0.1001 ± 0.0012 0.5798 ± 0.0081 20.4497 ± 0.0972
Ours (0.01) 0.0996 ± 0.0013 0.5846 ± 0.0089 20.4900 ± 0.1155
Ours (0.005) 0.1000 ± 0.0015 0.5806 ± 0.0104 20.4597 ± 0.1118
Ours (0.001) 0.0999 ± 0.0014 0.5824 ± 0.0090 20.4626 ± 0.1118
Ours (0.0005) 0.0997 ± 0.0015 0.5814 ± 0.0111 20.4881 ± 0.1206
Ours (0.0001) 0.0992 ± 0.0015 0.5884 ± 0.0081 20.5186 ± 0.1370

the training loss with an extra regularization term, which explicitly
penalizes the pairwise covariances of the units at the encoder’s output
and, thus, forces it to learn more diverse and compact representations
for the input samples. The proposed approach can be interpreted as an
unsupervised regularizer on top of the encoder and can be integrated
into any autoencoder-based model in a plug-and-play manner. We em-
pirically demonstrated the effectiveness of our approach across multiple
tasks, namely dimensionality reduction, compression, and denoising.
We showed that it improves performance compared to the standard
approach, with minimal training time cost increase. Even though the
proposed regularizer consistently improves the performance of au-
toencoders, its key limitation is the marginal improvement in certain
tasks, as shown in the results, e.g., Table 2. Future directions include
proposing more efficient redundancy modeling techniques to further
improve the performance of autoencoders and exploring redundancy
reduction strategies for variational autoencoders.

CRediT authorship contribution statement

Firas Laakom: Conceptualization, Methodology, Writing – original
draft. Jenni Raitoharju: Supervision, Writing – review & editing.
Alexandros Iosifidis: Supervision, Writing – review & editing. Moncef
Gabbouj: Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work has been supported by the Academy of Finland Awcha
project DN 334566 and NSF-Business Finland Center for Big Learning
project AMALIA. The work of Jenni Raitoharju was supported by the
Academy of Finland (projects 324475 and 333497).

References

[1] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, MIT Press,
2016.

[2] F. Zhuang, X. Cheng, P. Luo, S.J. Pan, Q. He, Supervised representation learning:
Transfer learning with deep autoencoders, in: Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.
207
[3] C. Zhou, R.C. Paffenroth, Anomaly detection with robust deep autoencoders, in:
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2017.

[4] S. Petscharnig, M. Lux, S. Chatzichristofis, Dimensionality reduction for image
features using deep learning and autoencoders, in: The 15th International
Workshop on Content-Based Multimedia Indexing, 2017.

[5] L. Theis, W. Shi, A. Cunningham, F. Huszár, Lossy image compression with
compressive autoencoders, 2017, arXiv preprint arXiv:1703.00395.

[6] G.D. Cavalcanti, L.S. Oliveira, T.J. Moura, G.V. Carvalho, Combining diversity
measures for ensemble pruning, Pattern Recognit. Lett. (2016).

[7] F. Laakom, J. Raitoharju, A. Iosifidis, M. Gabbouj, WLD-reg: A data-dependent
within-layer diversity regularizer, in: the 37th AAAI Conference on Artificial
Intelligence, 2023.

[8] M. Cogswell, F. Ahmed, R.B. Girshick, L. Zitnick, D. Batra, Reducing overfitting
in deep networks by decorrelating representations, in: International Conference
on Learning Representations, 2016.

[9] F. Laakom, J. Raitoharju, A. Iosifidis, M. Gabbouj, On feature diversity in
energy-based models, in: Energy Based Models Workshop-ICLR, 2021.

[10] H. Ide, T. Kobayashi, K. Watanabe, T. Kurita, Robust pruning for efficient CNNs,
Pattern Recognit. Lett. (2020).

[11] I. Guyon, Madelon, 2008, UCI Machine Learning Repository.
[12] R. Cole, M. Fanty, ISOLET, 1994, UCI Machine Learning Repository.
[13] R. Lathrop, p53 Mutants, 2010, UCI Machine Learning Repository.
[14] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to

document recognition, Proc. IEEE (1998).
[15] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny

images, Technical report, University of Toronto, 2009.
[16] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms, 2017, arXiv preprint arXiv:1708.
07747.

[17] J. Guo, X. Yuan, P. Xu, H. Bai, B. Liu, Improved image clustering with deep
semantic embedding, Pattern Recognit. Lett. (2020).

[18] Y. Sang, J. Sang, M.S. Alam, Image encryption based on logistic chaotic systems
and deep autoencoder, Pattern Recognit. Lett. (2022).

[19] A. Golinski, R. Pourreza, Y. Yang, G. Sautiere, T.S. Cohen, Feedback recurrent
autoencoder for video compression, in: Asian Conference on Computer Vision,
2020.

[20] X. Ye, L. Wang, H. Xing, L. Huang, Denoising hybrid noises in image with
stacked autoencoder, in: 2015 IEEE International Conference on Information and
Automation, IEEE, 2015.

[21] L. Gondara, Medical image denoising using convolutional denoising autoen-
coders, in: 2016 IEEE 16th International Conference on Data Mining Workshops,
ICDMW, IEEE, 2016.

[22] M. Patacchiola, P. Fox-Roberts, E. Rosten, Y-autoencoders: Disentangling latent
representations via sequential encoding, Pattern Recognit. Lett. (2020).

[23] J. Deng, Z. Zhang, E. Marchi, B. Schuller, Sparse autoencoder-based feature
transfer learning for speech emotion recognition, in: Humaine Association
Conference on Affective Computing and Intelligent Interaction, 2013.

[24] P. Baldi, Autoencoders, unsupervised learning, and deep architectures, in:
ICML Workshop on Unsupervised and Transfer Learning, JMLR Workshop and
Conference Proceedings, 2012.

[25] A. Jeffares, T. Liu, J. Crabbé, F. Imrie, M. van der Schaar, TANGOS: Regularizing
tabular neural networks through gradient orthogonalization and specialization,
2023, arXiv preprint arXiv:2303.05506.

[26] J. Zbontar, L. Jing, I. Misra, Y. LeCun, S. Deny, Barlow twins: Self-supervised
learning via redundancy reduction, in: The 38th International Conference on
Machine Learning, 2021.

[27] F. Laakom, J. Raitoharju, A. Iosifidis, M. Gabbouj, Efficient CNN with uncorre-
lated bag of features pooling, in: 2022 IEEE Symposium Series on Computational
Intelligence, SSCI, IEEE, 2022.

[28] A. Bardes, J. Ponce, Y. LeCun, Vicreg: Variance-invariance-covariance reg-
ularization for self-supervised learning, 2021, arXiv preprint arXiv:2105.
04906.

[29] F. Laakom, J. Raitoharju, A. Iosifidis, M. Gabbouj, Learning distinct features
helps, provably, in: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Springer, 2023.

[30] W. Zhao, R. Chellappa, P.J. Phillips, Subspace Linear Discriminant Analysis for
Face Recognition, Citeseer, 1999.

[31] Y. Koren, L. Carmel, Robust linear dimensionality reduction, IEEE Trans. Vis.
Comput. Graph. (2004).

[32] F. Laakom, J. Raitoharju, N. Passalis, A. Iosifidis, M. Gabbouj, Graph embedding
with data uncertainty, IEEE Access (2022).

[33] D. DeMers, G.W. Cottrell, Non-linear dimensionality reduction, in: Advances in
Neural Information Processing Systems, Citeseer, 1993.

[34] Y.-R. Yeh, S.-Y. Huang, Y.-J. Lee, Nonlinear dimension reduction with kernel
sliced inverse regression, IEEE Trans. Knowl. Data Eng. (2008).

[35] L. Van der Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res.
(2008).

[36] L. McInnes, J. Healy, J. Melville, Umap: Uniform manifold approximation and
projection for dimension reduction, 2018, arXiv preprint arXiv:1802.03426.

http://refhub.elsevier.com/S0167-8655(24)00012-6/sb1
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb1
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb1
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb2
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb2
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb2
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb2
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb2
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb3
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb3
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb3
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb3
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb3
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb4
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb4
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb4
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb4
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb4
http://arxiv.org/abs/1703.00395
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb6
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb6
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb6
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb7
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb7
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb7
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb7
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb7
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb8
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb8
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb8
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb8
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb8
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb9
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb9
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb9
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb10
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb10
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb10
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb11
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb12
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb13
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb14
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb14
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb14
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb15
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb15
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb15
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb17
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb17
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb17
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb18
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb18
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb18
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb19
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb19
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb19
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb19
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb19
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb20
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb20
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb20
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb20
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb20
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb21
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb21
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb21
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb21
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb21
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb22
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb22
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb22
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb23
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb23
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb23
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb23
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb23
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb24
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb24
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb24
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb24
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb24
http://arxiv.org/abs/2303.05506
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb26
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb26
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb26
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb26
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb26
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb27
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb27
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb27
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb27
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb27
http://arxiv.org/abs/2105.04906
http://arxiv.org/abs/2105.04906
http://arxiv.org/abs/2105.04906
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb29
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb29
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb29
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb29
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb29
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb30
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb30
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb30
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb31
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb31
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb31
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb32
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb32
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb32
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb33
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb33
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb33
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb34
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb34
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb34
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb35
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb35
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb35
http://arxiv.org/abs/1802.03426

Pattern Recognition Letters 178 (2024) 202–208F. Laakom et al.
[37] A. Iosifidis, A. Tefas, I. Pitas, On the optimal class representation in linear
discriminant analysis, IEEE Trans. Neural Netw. Learn. Syst. (2013).

[38] A.C. Kumar, Analysis of unsupervised dimensionality reduction techniques,
Comput. Sci. Inf. Syst. (2009).

[39] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemometr. Intell.
Laboratory Syst. (1987).

[40] S.A. Thomas, A.M. Race, R.T. Steven, I.S. Gilmore, J. Bunch, Dimensionality
reduction of mass spectrometry imaging data using autoencoders, in: IEEE
Symposium Series on Computational Intelligence, SSCI, 2016.

[41] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor, M.
Covell, Full resolution image compression with recurrent neural networks, in:
IEEE Conference on Computer Vision and Pattern Recognition, 2017.
208
[42] J. Ballé, V. Laparra, E.P. Simoncelli, End-to-end optimization of nonlinear
transform codes for perceptual quality, in: 2016 Picture Coding Symposium, PCS,
IEEE, 2016.

[43] K. Gupta, S. Gupta, Image denoising techniques-a review paper, IJITEE (2013).
[44] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, C.-W. Lin, Deep learning on image

denoising: An overview, Neural Netw. (2020).
[45] J. Garcia-Gonzalez, J.M. Ortiz-de Lazcano-Lobato, R.M. Luque-Baena, M.A.

Molina-Cabello, E. López-Rubio, Foreground detection by probabilistic modeling
of the features discovered by stacked denoising autoencoders in noisy video
sequences, Pattern Recognit. Lett. (2019).

http://refhub.elsevier.com/S0167-8655(24)00012-6/sb37
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb37
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb37
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb38
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb38
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb38
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb39
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb39
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb39
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb40
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb40
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb40
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb40
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb40
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb41
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb41
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb41
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb41
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb41
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb42
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb42
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb42
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb42
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb42
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb43
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb44
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb44
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb44
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb45
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb45
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb45
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb45
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb45
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb45
http://refhub.elsevier.com/S0167-8655(24)00012-6/sb45

	Reducing redundancy in the bottleneck representation of autoencoders
	Introduction
	Related work
	Reducing the pairwise covariance within the bottleneck representation
	Experiments on dimensionality reduction
	Experiments on image compression
	Experiments on image denoising
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

