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We study Poincaré-Wirtinger type inequalities in the framework of magnetic 
fractional Sobolev spaces. In the local case, Lieb et al. (2003) [19] showed that, 
if a bounded domain Ω is the union of two disjoint sets Γ and Λ, then the Lp-norm 
of a function calculated on Ω is dominated by the sum of magnetic seminorms of 
the function, calculated on Γ and Λ separately. We show that the straightforward 
generalisation of their result to nonlocal setup does not hold true in general. We 
provide an alternative formulation of the problem for the nonlocal case. As an 
auxiliary result, we also show that the set of eigenvalues of the magnetic fractional 
Laplacian is discrete.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The objective of this article is to study Poincaré type inequalities in punctured domains for magnetic frac-
tional Sobolev spaces. By Poincaré inequality in a domain Ω ⊆ RN , we generally understand an inequality 
of the form

‖f‖L2(Ω,R) ≤ C‖∇f‖L2(Ω,R), (1.1)

where C = C(N, Ω) > 0 is a constant. Clearly (1.1) fails when f : Ω → R is a non-zero constant function and 
Ω is bounded, but when we restrict f to certain subclasses of W 1,2(Ω, R) in order to “keep them away” from 
the one dimensional subspace of constant functions, the inequality does hold. There are two commonly used 
subspaces which are considered for this purpose: C∞

c (Ω, R), related to the Dirichlet eigenvalue problems 
(see [9, Chapter 5.8.1]) and the subspace of functions with the property 1

LN (Ω)
∫
Ω
f = 0, related to the 

Neumann eigenvalue problem (see [16, Theorem 8.11]). In the later case, the inequality is also referred to as 
Poincaré-Wirtinger inequality. This can be generalised further by taking p ≥ 1 and 1 ≤ q ≤ Np

N−p to be the 
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exponents of the right and left hand sides respectively in (1.1). It is then called Poincaré-Wirtinger-Sobolev 
inequality. Regarding this, we have the following theorem, known in literature:

Theorem 1.1 ([16, Theorem 8.11 and Theorem 8.12]). Let Ω (⊆ RN ) be a bounded domain with cone 

property. Let q ∈ [1, ∞] and p ∈
[
max

{
1, Nq

N+q

}
,∞

]
if q < ∞, p ∈ (N, ∞] if q = ∞. Let g ∈ Lp′(Ω, C), 

where 1
p + 1

p′ = 1, be such that 
∫
Ω
g = 1. Then there exists a constant Sp,q = Sp,q(Ω, g, p, q) > 0 such that for 

any f ∈ W 1,p(Ω, C),
∥∥∥∥∥∥f −

∫
Ω

fg

∥∥∥∥∥∥
Lq(Ω,C)

≤ Sp,q‖∇f‖Lp(Ω,C).

In the theory of electromagnetism, the vector potential A appears naturally as the vector field, up to 
translation by constants, for which curl(A) = B, where B denotes the electromagnetic field. The operator 
∇ + iA, defined by

(∇ + iA)f(x) := ∇f(x) + iA(x)f(x),

plays an important role in quantum mechanics, specifically in the study of Bose-Einstein condensations 
(BEC) and superfluidity. The map f 
→ ‖(∇ + iA)f‖Lp(Ω,C), where A is a vector field on Ω, gives a 
seminorm on the Sobolev spaces, which can be regarded as generalisations of the usual Sobolev seminorms: 
f 
→ ‖∇f‖Lp(Ω,C). Various generalisations of the standard Poincaré inequality serve as major tools in 
proving results in BEC and superfluidity, [17,18]; some require the splitting of the domains while others 
require replacing the role of the operator Δ by Δ + iA, A being the so called magnetic potential. For a 
detailed discussion on this, the reader is referred to [20].

In [19], some remarkable results in this direction were proved by Lieb-Seiringer-Yngvason. They gener-
alised Theorem 1.1 in two ways: The first generalisation comes through replacing the operator ∇ by ∇ + iA. 
It is given as follows:

Theorem 1.2 ([19, Theorem 2]). Let Ω (⊆ RN ) be a bounded domain with cone property and A : Ω → RN

be a bounded vector field on Ω. Let q ∈ [1, ∞]. Set r = max
{

1, qN
N+q

}
if q < ∞ and r > N if q = ∞. Take 

p ∈ (r, ∞]. Define the energy

Ep,q
A := inf

{‖(∇ + iA)f(x)‖Lp(Ω,C)

‖f‖Lq(Ω,C)

∣∣∣ f ∈ W 1,p(Ω,C) \ {0}
}
,

and the ground state manifold

Mp,q
A :=

{
f ∈ W 1,p(Ω,C)

∣∣∣ ‖(∇ + iA)f(x)‖Lp(Ω,C)

‖f‖Lq(Ω,C)
= Ep,q

A

}
.

Let 0 < δ ≤ 1. Then there exists a constant Sp,q
δ > 0 such that for any f ∈ W 1,p(Ω, C) with inf

φ∈Mp,q
A

‖f −

φ‖Lq(Ω,C) ≥ δ‖f‖Lq(Ω,C), one has

‖(∇ + iA)f‖Lp(Ω,C) ≥
(

1
Sp,q
δ

+ Ep,q
A

)
‖f‖Lq(Ω,C).

Observe that Theorem 1.2 is indeed a generalisation of Theorem 1.1, at least in the particular case, when 
g ≡ 1

N .
L (Ω)
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Remark 1.3. Let p, q, Ω as in Theorem 1.2 with p, q < ∞, A ≡ 0, for an arbitrary f1 ∈ Lq(Ω, C), denote 
f := f1 − 1

LN (Ω)
∫
Ω
f1. We have, for any c ∈ C,

|cLN (Ω)| = |
∫
Ω

(c− f)| ≤
∫
Ω

|f − c| ≤ ‖f − c‖Lq(Ω,C)(LN (Ω))
1
q′ ,

where we used Holder’s inequality. This gives

|c|LN (Ω)
1
q ≤ ‖f − c‖Lq(Ω,C).

We use this inequality to obtain

‖f‖Lq(Ω,C) ≤ ‖f − c‖Lq(Ω,C) + ‖c‖Lq(Ω,C)

= ‖f − c‖Lq(Ω,C) + |c|LN (Ω)
1
q

≤ 2‖f − c‖Lq(Ω,C).

This shows that inf
φ∈Mp,q

A

‖f − φ‖Lq(Ω,C) ≥ 1
2‖f‖Lq(Ω,C), as in the case A ≡ 0, Mp,q

A contains only constant 

functions. If we assume Theorem 1.2 to be true, we have
∥∥∥∥∥∥f1 −

1
LN (Ω)

∫
Ω

f1

∥∥∥∥∥∥
Lq(Ω,C)

≤ C‖∇f1‖Lp(Ω,C).

So, Theorem 1.2 is stronger than Theorem 1.1.

The second generalisation (as mentioned before Theorem 1.2) deals with the case of “punctured domains”.

Theorem 1.4 ([19, Theorem 3]). Let Ω, p, q, r, Ep,q
A and Mp,q

A be as in Theorem 1.2. Let Λ ⊆ Ω be measurable, 
Γ := Ω \Λ and take 0 < δ ≤ 1. Then for any ε > 0, there exists C = C(Ω, A, p, q, δ, ε) > 0 such that for any 
f ∈ W 1,p(Ω, C) with inf

φ∈Mp,q
A

‖f − φ‖Lq(Ω,C) ≥ δ‖f‖Lq(Ω,C),

‖(∇ + iA)f‖Lp(Λ,C) + C‖(∇ + iA)f‖Lr(Γ,C) ≥
(

1
Sp,q
δ + ε

+ Ep,q
A

)
‖f‖Lq(Ω,C)

where Sp,q
δ is the optimal constant in Theorem 1.2.

Our aim in this paper is to present the appropriate nonlocal analogues of Theorems 1.2 and 1.4. Before 
proceeding further, let us first introduce our functional setup, which is the foundation for the work done in 
this article. For fixed open subset Ω ⊆ RN , s ∈ (0, 1), a vector field A : RN → RN , and p ≥ 1, we define 
the magnetic fractional Sobolev space

W s,p
A (Ω,C) := {f ∈ Lp(Ω,C)

∣∣∣ [f ]W s,p
A (Ω,C) < ∞},

where

[f ]W s,p
A (Ω,C) :=

⎛
⎝ ∫∫ |f(x) − ei(x−y)·A

(
x+y

2
)
f(y)|p

|x− y|N+sp
dxdy

⎞
⎠

1
p

Ω×Ω
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gives a seminorm on W s,p
A (Ω, C), the norm on the space is defined to be

‖f‖W s,p
A (Ω,C) :=

(
‖f‖pLp(Ω,C) + [f ]p

W s,p
A (Ω,C)

) 1
p

.

When A ≡ 0, we denote the above space, seminorm and norm by W s,p(Ω, C), [·]W s,p(Ω,C) and ‖ · ‖W s,p(Ω,C)
respectively. In [28], it has been shown that the Bourgain-Brezis-Mironescu formula holds for these spaces; 
that is with appropriate scaling the magnetic fractional seminorm converges to the magnetic seminorm. Thus 
these spaces can be viewed as the nonlocal analogues of the magnetic Sobolev spaces. Some fundamental 
results regarding fractional magnetic Sobolev spaces were studied in [7,26,11,23]. The special case where 
A ≡ 0 is the well-known fractional Sobolev space W s,p(Ω,C). For general results regarding W s,p(Ω,R), we 
refer the reader to [8] and the references therein.

To the best of our knowledge, fractional Poincaré-Wirtinger inequality was first established by Ponce 
[27] as an application of BBM formula (see [4]). In [14] a more general version of the result was proved. In 
the fractional magnetic Sobolev setup some Sobolev and Hardy-Sobolev type inequalities were studied in 
[13,22,21]. We shall prove the following result which, we believe, is known to the experts; the local variant 
of this result is well known (see [16, Chapter 8.8]).

Theorem 1.5 (Fractional Poincaré-Wirtinger-Sobolev inequality). Let Ω ⊆ RN be a bounded domain with 
Lipschitz boundary, s ∈ (0, 1), p ∈ [1, ∞), q ∈ [1, ∞], g ∈ Lp′(Ω) with 

∫
Ω
g = 1, where 1

p + 1
p′ = 1. Further, 

assume that one of the following three conditions hold:
(i) sp < N and q ≤ Np

N−sp ,
(ii) sp = N and q < ∞,
(iii) sp > N and q ≤ ∞.

Then there exists a constant C = C(Ω, g, p, q, s) > 0 such that for any f ∈ W s,p(Ω, C)
∥∥∥∥∥∥f −

∫
Ω

fg

∥∥∥∥∥∥
Lq(Ω,C)

≤ C[f ]W s,p(Ω,C).

Let us now state our main results, after introducing some terminologies required for formulating the 
statements. For s ∈ (0, 1), p ∈ [1, ∞) and q ∈ [1, ∞] we define the energy

Ep,q
s,A := inf

{ [f ]W s,p
A (Ω,C)

‖f‖Lq(Ω,C)

∣∣∣ f ∈ W s,p(Ω,C), f �= 0
}
.

The corresponding ground state manifold is defined to be

Mp,q
s,A :=

{
f ∈ W s,p(Ω,C)

∣∣∣ [f ]W s,p
A (Ω,C)

‖f‖Lq(Ω,C)
= Ep,q

s,A

}
.

We use the following notion of distance from the ground state manifold:

dqs,A(f) := inf
φ∈Mp,q

s,A

‖f − φ‖Lq(Ω,C).

Our first main result is a generalisation of Theorem 1.2 to the nonlocal case.

Theorem 1.6. Let Ω (⊆ RN ) be a bounded Lipschitz domain, A be a bounded vector field on the convex hull 
of Ω and s ∈ (0, 1). Assume that p ∈ [1, ∞) and q ∈ [1, ∞] satisfy one of the following three conditions:
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(i) sp < N and q < Np
N−sp ,

(ii) sp = N and q < ∞,
(iii) sp > N and q ≤ ∞.

Fix δ ∈ (0, 1]. Then there is a constant S = S(p, q, s, δ, Ω) > 0 such that ∀f ∈ W s,p(Ω, C) with dqs,A(f) ≥
δ‖f‖Lq(Ω,C),

‖f‖Lq(Ω,C) ≤ S
(
[f ]W s,p

A (Ω,C) − Ep,q
s,A‖f‖Lq(Ω,C)

)
. (1.2)

The best constant S in the above inequality is achieved. Consequently the ground state manifold Mp,q
s,A is 

nonempty.

Our second main result is a generalisation of Theorem 1.4 in the nonlocal setup. Before stating it let us 
make a small but important observation which confirms that one cannot expect a straightforward generali-
sation of Theorem 1.4. To see this, we provide the following example:

Example 1.7. We shall deal with the case A ≡ 0 here. For p, q ≥ 1, s ∈ (0, 1p ), take Ω = B(0, 1), Λ =
B(0, 12 ), Γ = B(0, 1) \ B(0, 12 ). Take f = χΛ ∈ W s,p(Ω, C) (see Lemma A.2). Then [f ]W s,p(Λ,C) =
[f ]W s,p(Γ,C) = 0 but ‖f‖Lq(Ω,C) > 0. So, no matter what is the value of C,

[f ]W s,p(Λ,C) + C[f ]W s,r(Γ,C)

‖f‖Lq(Ω,C)
= 0.

Hence an inequality of the form

[f ]W s,p(Λ,C) + C[f ]W s,r(Γ,C) ≥
(

1
S + ε

+ Ep,q
s,A

)
‖f‖Lq(Ω,C) (1.3)

can not be expected to hold in the nonlocal setup.

However one may ask what happens if we impose an additional condition: sp > 1, which is the required 
condition for the Dirichlet-type Poincaré inequality to hold in bounded domains (see [8,6,25,3] for details). 
Here the scenario does not change, as we can see from the following example. Before going to the example 
note that in the hypotheses of Theorem 1.4, we assumed 1 ≤ r < p.

Example 1.8. As before we are in the case A ≡ 0. Note that in this case, Ep,q
s,A = 0 and Mp,q

s,A is the one-
dimensional subspace consisting of constant functions. Let Ω = (−1, 1) × (0, 1)(⊆ R2), q ∈ (1, ∞), r ∈ [1, p). 
Fix s ∈ ( 1

p , 
1
r ). Set Λ := (−1, 0] × (0, 1) and Γ := (0, 1) × (0, 1). For ε > 0, we define fε : Ω → R by the 

formula

fε(x1, x2) :=

⎧⎪⎪⎨
⎪⎪⎩

2−3ε
2+ε , −1 < x ≤ 0
2−3ε
2+ε − 2(2−ε)

ε(2+ε)x1, 0 < x ≤ ε

−1, ε < x < 1.
(1.4)

Note that 
∫
Ω
fε(x)dx = 0, fε ∈ W 1,p(Ω, C) ⊆ W s,p(Ω, C), [fε]W s,p(Λ,C) = 0 for any ε > 0, and ‖fε‖Lq(Ω,C) →

1 as ε → 0. Moreover [fε]W s,r(Γ,C) → 0 as ε → 0 (see Appendix A for details). Hence the left hand side of 
the nonlocal analogue of the inequality (1.3) cannot just consist of the seminorms of the two components, 
even when we have sp > 1.
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Further, Examples 1.7 and 1.8 give us a hint on what should be the appropriate fractional analogue of 
Theorem 1.4, as it appears that, in the nonlocal case, the terms coming from integrating over Γ × Λ are 
non-negligible, and we must take them into account. This is clarified in our second main result:

Theorem 1.9. Let Ω (⊆ RN ) be a bounded open set with Lipschitz boundary, A be a bounded vector field on 
the convex hull of Ω, s ∈ (0, 1) and Λ ⊆ Ω. Assume 1 ≤ q ≤ ∞ and 1 ≤ r < p < ∞ are such that one of the 
following conditions holds:
(a) r = 1 and q < N

N−s ,
(b) sr > N and q = ∞,
(c) q < Nr

N−sr , sr < N and N
N−s ≤ q < ∞;

and that one of the following conditions holds:
(i) sp < N and q < Np

N−sp ,
(ii) sp = N and q < ∞,
(iii) sp > N and q ≤ ∞.

Fix δ ∈ (0, 1]. For any ε > 0 there is some C = C(Ω, A, s, p, q, δ, ε) > 0 such that for all f ∈ W s,p(Ω, C)
with dqs,A(f) ≥ δ‖f‖Lq(Ω,C),

⎛
⎝ ∫∫

Λ×Λ

|f(x) − ei(x−y)·A
(
x+y

2
)
f(y)|p

|x− y|N+sp
dxdy

⎞
⎠

1
p

+ C

⎛
⎜⎝ ∫∫

(Ω×Ω)\(Λ×Λ)

|f(x) − ei(x−y)·A
(
x+y

2
)
f(y)|r

|x− y|N+sr
dxdy

⎞
⎟⎠

1
r

≥
(

1
S + ε

+ Ep,q
s,A

)
‖f‖Lq(Ω,C),

where S is the best constant in Theorem 1.6.

Our technique of proving the Theorems 1.6 and 1.9 is motivated by the techniques used in [19], but is 
significantly different due to many reasons, one of which is the non-availability of embeddings of fractional 
Sobolev spaces of different exponents. Mironescu-Sickel [24] have shown that, unlike in the case s = 1, when 
s ∈ (0, 1), 1 ≤ r < p < ∞ and Ω is a bounded domain, the embedding W s,p(Ω, R) ⊆ W s,r(Ω, R) never hold. 
However, we have shown in Lemma 2.1 that if we take s1 < s2, W s2,p(Ω, C) ⊆ W s1,r(Ω, C). Similar results 
can also be found in [2]. However we provide an independent proof of this important result. Lemma 2.1 is 
used to overcome the non-availability of the embedding W s2,p(Ω, C) ⊆ W s1,r(Ω, C) in the Step-2/b in the 
proof of Theorem 1.9. However, in the process we lose information about the case sr < N with q = Nq

N−sq .
The magnetic fractional Sobolev spaces introduced above are the ideal spaces to study problems related 

to the so called regional magnetic fractional p-Laplacian (−Δp,A)s, which is defined by the formula:

(−Δp,A)sf(x) := pv

∫
Ω

|f(x) − ei(x−y)·A
(
x+y

2
)
f(y)|p−2(f(x) − ei(x−y)·A

(
x+y

2
)
f(y))

|x− y|N+sp
dy.

In the special case p = 2, it is called the regional magnetic fractional Laplacian, and it is the operator, on 
W s,2(Ω, C), associated with the quadratic form [·]W s,2

A (Ω,C). For the classical case A ≡ 0, this operator has 
been studied in recent works, for example, see [1,10,12,29,32]. The operator (−Δ2,A)s can be compared to 
the magnetic fractional Laplacian, whose definition is similar to that of (−Δ2,A)s as above, but the domain 
of integration being RN . Some recent works on this operator, for non-trivial A, can be found in [30,31,33]. 
In Section 4, we study the operator (−Δ2,A)s and prove that this is a self-adjoint operator with discrete 
spectrum. For s = 1, similar results can be found in [19].

The article is organised in the following way: in Section 2 we recall some known results, which we shall 
use in the later sections. In Section 3 we prove Theorems 1.5, 1.6 and 1.9. In Section 4, we introduce 
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the magnetic fractional Laplacian and discuss some of its basic properties. In Proposition 4.2, we prove 
Lemma 4.1 and Proposition 4.2 regarding the regional magnetic fractional Laplacian.

2. Some preliminary results

In this section we recall some results, which, up to some small modifications, are already known in 
literature. Throughout this article we shall use the following notations:

(1) LN will denote the N -dimensional Lebesgue/Hausdorff measure.
(2) C will stand for an arbitrary constant, which can change from line to line.
(3) SN−1 stands for the N − 1-dimensional sphere, centred at the origin.
(4) The notation fn ⇀ f would mean that fn converges to f weakly (in some space to be specified).

Lemma 2.1 (An embedding result). Let 0 < s1 < s2 < 1, 1 ≤ r ≤ p < ∞, Ω ⊆ RN and H ⊆ Ω × Ω. Let A
be a bounded vector field on the convex hull of Ω. Then for any f ∈ Lp(Ω, C)

∫∫
H

|f(x) − ei(x−y)·A
(
x+y

2
)
f(y)|r

|x− y|N+s1r
dxdy

≤

⎛
⎝∫∫

H

|f(x) − ei(x−y)·A
(
x+y

2
)
f(y)|p

|x− y|N+s2p
dxdy

⎞
⎠

r
p
⎛
⎝∫∫

H

|x− y|
Nr+s2rp−Np−s1rp

p−r dxdy

⎞
⎠

p−r
p

.

Moreover if Ω is bounded, then for some C = C(Ω, N, p, r) > 0,

[f ]rW s1,r
A (Ω,C) ≤

C(Ω, N, p, r)
(s2 − s1)

p−r
r

[f ]rW s2,p
A (Ω,C).

Proof. The case p = r is similar to the remaining part of the proof, also it is well known (see [8]), hence 
the proof is omitted. So we assume that pr > 1 and observe that 1

p
r

+ 1
p

p−r
= 1.

∫∫
H

|f(x) − ei(x−y)·A
(
x+y

2
)
f(y)|r

|x− y|N+s1r
dxdy

=
∫∫
H

|f(x) − ei(x−y)·A
(
x+y

2
)
f(y)|r

|x− y|Nr
p +s2r

|x− y|Nr
p +s2r−N−s1rdxdy

≤

⎛
⎝∫∫

H

|f(x) − ei(x−y)·A
(
x+y

2
)
f(y)|p

|x− y|N+s2p
dxdy

⎞
⎠

r
p
⎛
⎝∫∫

H

|x− y|
Nr+s2rp−Np−s1rp

p−r dxdy

⎞
⎠

p−r
p

.

Therefore, the first part is proved. Now for the second part, assume diam(Ω) < R and put H = Ω × Ω, in 
the above calculation, to get

[f ]rW s1,r
A (Ω,C) ≤[f ]rW s2,p

A (Ω,C)

⎛
⎜⎝∫ dy

∫
|t|

Nr+s2rp−Np−s1rp
p−r dt

⎞
⎟⎠

p−r
p

Ω B(0,R)
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=LN−1(SN−1)
p−r
p [f ]rW s2,p

A (Ω,C)L
N (Ω)

p−r
p

⎛
⎝ R∫

0

t
Nr+s2rp−Np−s1rp

p−r tN−1dt

⎞
⎠

p−r
p

=LN−1(SN−1)
p−r
p LN (Ω)

p−r
p [f ]rW s2,p

A (Ω,C)

⎛
⎝ R∫

0

t
(s2−s1)rp−p+r

p−r dt

⎞
⎠

p−r
p

=LN−1(SN−1)
p−r
p LN (Ω)

p−r
p [f ]rW s2,p

A (Ω,C)

(
p− r

(s2 − s1)rp
R

(s2−s1)rp
p−r

) p−r
p

≤C(Ω, N, p, r)
(s2 − s1)

p−r
p

[f ]rW s2,p
A (Ω,C). �

Lemma 2.2 (Ascoli-Arzelà theorem, [15, Theorem 4.4.8]). Let X be a compact metric space. Let C(X, C)
be given the sup norm metric. Then a set B ⊆ C(X, C) is compact if and only if B is bounded, closed and 
equicontinuous.

We have the following result:

Lemma 2.3 (Compact embedding). Suppose Ω (⊆ RN ) is a bounded domain with Lipschitz boundary, s ∈
(0, 1), p ∈ [1, ∞) and q ∈ [1, ∞]. Assume that one of the following three conditions hold:
(i) sp < N and q < Np

N−sp ,
(ii) sp = N and q < ∞,
(iii) sp > N and q = ∞.

Then any bounded sequence in W s,p(Ω, C) has a convergent subsequence in Lq(Ω, C).

Sketch of the proof. The proof of the fact that W s,p(Ω, R) is compactly embedded in Lq(Ω, R), when hy-
potheses (i) or (ii) hold, goes exactly in the same way as the proof of [5, Theorem 9.16]. The main ingredients 
of this proof are continuous embedding results and Ascoli-Arzelà theorem. The nonlocal counterparts of the 
continuous embedding results can be found in [8, Theorem 6.10, 7.1, Corollary 7.2, Theorem 8.2].

It remains to check, whether we can conclude the same for C-valued function spaces. For this, note that 
if {fn} is a bounded sequence in W s,p(Ω, C), clearly Re(f) and Im(f) are bounded sequences in W s,p(Ω, R)
and hence have convergent subsequences in Lp(Ω, R). This implies that {fn} has a convergent subsequence 
in Lp(Ω, C). So we can replace R-valued function spaces with C-valued spaces. �
Lemma 2.4 ([8, Theorem 6.5]). Let s ∈ (0, 1) and p ∈ [1, ∞) be such that sp < n. Then there exists a positive 
constant C = C(n, p, s) such that, for any f ∈ W s,p(RN , R), we have

‖f‖
L

Np
N−sp (RN ,R)

≤ C[f ]W s,p(RN ,R).

Lemma 2.5 (Sobolev-type inequality). Let Ω be a bounded domain with Lipschitz boundary, s ∈ (0, 1), p ∈
[1, ∞) be such that sp < n. Then there exists a positive constant C = C(N, p, s, Ω, g) such that, for any 
f ∈ W s,p(Ω, C), we have

‖f‖
L

Np
N−sp (Ω,C)

≤ C‖f‖W s,p(Ω,C).

Proof. Let P : W s,p(Ω, R) → W s,p(RN , R) be the extension operator. We apply Lemma 2.4, on 
Re(f), Im(f), to get
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‖f‖
Np

N−sp

L
Np

N−sp (Ω,C)
=
∫
Ω

|f |
Np

N−sp =
∫
Ω

(
Re(f)2 + Im(f)2

) Np
2(N−sp)

≤C(N, p, s)

⎡
⎣∫
RN

|P (Re(f))|
Np

N−sp +
∫
RN

|P (Im(f))|
Np

N−sp

⎤
⎦

≤C(p,Ω, N, s)
[
‖P (Re(f))‖pW s,p(Ω,R) + ‖P (Im(f))‖pW s,p(Ω,R)

] Np
p(N−sp)

≤C(p,Ω, N, s)
[
‖Re(f)‖pW s,p(Ω,R) + ‖Im(f)‖pW s,p(Ω,R)

] Np
p(N−sp)

≤C(p,Ω, N, s)‖f‖
Np

(N−sp)
W s,p(Ω,C).

Consequently, the proof follows. �
In order to prove a Poincaré inequality for magnetic fractional Sobolev spaces for a class of functions 

which do not depend on A, we just need to prove it for the case A = 0 because we have the following 
diamagnetic inequality.

Lemma 2.6 (Pointwise diamagnetic inequality, [7, Remark 3.2]). For any x, y ∈ RN , A : RN → RN and for 
any f : U (⊆ RN ) → C which is finite almost everywhere, we have

||f(x)| − |f(y)|| ≤ |e−i(x−y)·A
(
x+y

2
)
f(x) − f(y)|

The next result for the special case Ω = RN can be found in [11, Lemma 3.6]; the proof in this case is 
similar. However, we give a sketch of the proof.

Lemma 2.7. If Ω (⊆ RN ) is an open set, A is a bounded vector field on the convex hull of Ω, s ∈ (0, 1) and 
1 ≤ p < ∞ then W s,p(Ω, C) = W s,p

A (Ω, C). Moreover for some C > 0

[f ]W s,p(Ω,C) ≤ C
(
[f ]W s,p

A (Ω,C) + ‖f‖Lp(Ω,C)

)
(2.1)

and

[f ]W s,p
A (Ω,C) ≤ C

(
[f ]W s,p(Ω,C) + ‖f‖Lp(Ω,C)

)
(2.2)

and therefore the two norms ‖.‖W s,p(Ω,C) and ‖.‖W s,p
A (Ω,C) are equivalent.

Proof. Let f ∈ W s,p
A (Ω, C). Then

[f ]pW s,p(Ω,C) =
∫∫

Ω×Ω

|f(x) − f(y)|p
|x− y|N+sp

dxdy

=
∫∫

Ω×Ω

|f(x) − ei(x−y)·A
(
x+y

2
)
f(y) + ei(x−y)·A

(
x+y

2
)
f(y) − f(y)|p

|x− y|N+sp
dxdy.

Now the numerator in the integrand is dominated by

2p−1(|f(x) − ei(x−y)·A
(
x+y

2
)
f(y)|p + |ei(x−y)·A

(
x+y

2
)
− 1|p|f(y)|p).
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Hence we can write

[f ]pW s,p(Ω,C) ≤2p−1[f ]p
W s,p

A (Ω,C)

+ 2p−1
∫

y∈Ω

|f(y)|p

⎡
⎢⎣ ∫

|x−y|≥1

|ei(x−y)·A
(
x+y

2
)
− 1|p

|x− y|N+sp
dx +

∫
|x−y|<1

|ei(x−y)·A
(
x+y

2
)
− 1|p

|x− y|N+sp
dx

⎤
⎥⎦ dy.

(2.3)

Note that the function θ 
→ eiθ has Lipschitz constant 1, and its image has diameter 2. Using this and the 
Cauchy-Schwartz inequality, it can be shown that

|ei(x−y)·A
(
x+y

2
)
− 1| ≤

{
2, |x− y| ≥ 1,
‖A‖∞|x− y|, |x− y| < 1.

Using this in (2.3) it follows that

[f ]pW s,p(Ω,C) ≤2p−1[f ]p
W s,p

A (Ω,C)

+ 2p−1
∫

y∈Ω

|f(y)|p

⎡
⎢⎣ ∫

|x−y|≥1

2p

|x− y|N+sp
dx +

∫
|x−y|<1

‖A‖∞|x− y|p−N−spdx

⎤
⎥⎦ dy

=2p−1
(

[f ]p
W s,p

A (Ω,C) +
[
2pLN−1(SN−1)

sp
+ ‖A‖∞LN−1(SN−1)

p− sp

]
‖f‖pLp(Ω,C)

)
.

The other inequality can be proved similarly. �
3. Main results

We start this section by proving Theorem 1.5.

Proof of Theorem 1.5. First, we shall assume that one of the conditions (i), (ii) (iii) in the hypothesis of 
Lemma 2.3 holds, so that we can apply the compact embedding results. Without loss of generality, we can 
assume that LN (Ω) = 1. Note, that if we prove this result for q ≥ p, then the proof for the case q < p follows 
immediately as Ω is bounded and we have the embedding of Lq-spaces via Hölder inequality. So, we assume 
q ≥ p and suppose the statement of the theorem is false. Then we shall get a sequence of non-zero functions 
{fn}n≥1 in W s,p(Ω, C), where we can assume, without loss of generality, ‖fn −

∫
Ω
fng‖Lq(Ω,C) = 1 for all n, 

such that [fn]W s,p(Ω,C) → 0 as n → ∞. Set ψn = fn −
∫
Ω
fng. By Hölder’s inequality, ‖ψn‖Lp(Ω,C) ≤ 1 is 

uniformly bounded, and hence ‖ψn‖W s,p(Ω,C) is uniformly bounded. So, we apply Lemma 2.3 to conclude 
that, up to a subsequence, ψn converges to some ψ in Lq(Ω, C) and hence in L1(Ω, C). Clearly,

‖ψ‖Lq(Ω,C) = 1. (3.1)

Also,
∣∣∣∣∣∣
∫

ψg

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

ψng −
∫

ψg

∣∣∣∣∣∣ ≤
∫

|ψn − ψ||g| ≤ ‖ψn − ψ‖Lq‖g‖Lq′ → 0. (3.2)

Ω Ω Ω Ω



K. Bal et al. / J. Math. Anal. Appl. 535 (2024) 128103 11
Now since ψn converges to ψ strongly in Lq(Ω, C), up to a subsequence, we can assume that ψn → ψ a.e. 
pointwise. Using Fatou’s lemma, we get

0 = lim
n→∞

[ψn]W s,p
A (Ω,C) ≥ [ψ]W s,p

A (Ω,C).

This implies ψ is a constant almost everywhere in Ω; furthermore, (3.1) implies that this constant is not 0. 
This and (3.2) implies 

∫
Ω
g = 0. This is a contradiction to the hypothesis on g.

Next we consider the remaining case, that is sp < N with q = Np
N−sp . The result follows from Lemma 2.5

and the above case, as shown in the following calculation:

∥∥∥∥∥∥f −
∫
Ω

fg

∥∥∥∥∥∥
Lq(Ω,C)

≤C

∥∥∥∥∥∥f −
∫
Ω

fg

∥∥∥∥∥∥
W s,p(Ω,C)

=C

⎛
⎜⎝[f ]pW s,p(Ω,C) +

∥∥∥∥∥∥f −
∫
Ω

fg

∥∥∥∥∥∥
Lp(Ω,C)

⎞
⎟⎠

1
p

≤ C[f ]W s,p(Ω,C). �

Lemma 3.1. Let Ω be a bounded domain in RN with Lipschitz boundary, A be a bounded vector field in 
the convex hull of Ω, p, q ≥ 1, s ∈ (0, 1). Assume that for a sequence of functions fn, {‖fn‖Lq(Ω,C)}n and 
{[fn]W s,p

A (Ω,C)}n are bounded sequences. Then {‖fn‖W s,p(Ω,C)} is also a bounded sequence.

Proof. Lemma 2.6 implies that {[|fn|]W s,p(Ω,C)}n is bounded. Theorem 1.5, with the choice g ≡ 1
LN (Ω) , and 

Hölder’s inequality gives

‖fn‖Lp(Ω,C) ≤ ‖|fn| −
∫
Ω

|fn|g‖Lp(Ω,C) + ‖
∫
Ω

|fn|g‖Lp(Ω,C) ≤ C[|fn|]W s,p(Ω,C) + C‖fn‖Lq(Ω,C).

Therefore, the sequence {‖fn‖Lp(Ω,C)}n is bounded. Lemma 2.7, then, implies that {[fn]W s,p(Ω,C)} is 
bounded and consequently {‖fn‖W s,p(Ω,C)} is bounded. �
Proof of Theorem 1.6. We prove this result by method of contradiction. Suppose the statement of the 
theorem is false. Then there exist choices of p, q, s, δ and Ω, satisfying the hypotheses of the theo-
rem, such that there is a sequence of functions fn ∈ W s,p(Ω, C) such that dqA(fn) ≥ δ‖fn‖Lq(Ω,C) but 
lim
n→∞

[fn]W s,p
A (Ω,C) = Ep,q

s,A‖fn‖Lq(Ω,C). We normalize the sequence by considering { fn
‖fn‖Lq(Ω,C)

}n and still 
call it fn, so that now it satisfies ‖fn‖Lq(Ω,C) = 1, dqA(fn) ≥ δ and lim

n→∞
[fn]W s,p

A (Ω,C) = Ep,q
s,A. Now is 

{[fn]W s,p
A (Ω,C)} is bounded. Lemma 3.1 implies that {fn} is actually bounded in W s,p(Ω, C) with respect 

to its full norm. Hence, by Lemma 2.3, there is some f ∈ Lq(Ω, C) and a subsequence of {fn} (without loss 
of generality, we assume it to be {fn} itself) such that fn → f strongly in Lq(Ω, C), giving ‖f‖Lq(Ω,C) = 1
and dqs,A(f) ≥ δ. Passing to a subsequence, we can assume fn → f pointwise a.e. Finally using the fact 
lim
n→∞

[fn]W s,p
A (Ω,C) = Ep,q

s,A, Fatou’s lemma and the definition of Ep,q
s,A we get

Ep,q
s,A = lim

n→∞
[fn]W s,p

A (Ω,C) ≥ [f ]W s,p
A (Ω,C) ≥ Ep,q

s,A‖f‖Lq(Ω,C) = Ep,q
s,A.

This shows that f ∈ Mp,q
s,A-which is a contradiction to the fact dqs,A(f) ≥ δ for all n. Hence the first part of 

the theorem is proved.
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Now we show that the best constant S in (1.2) is achieved. First note that (1.2) can be rewritten as

(
1
S

+ Ep,q
s,A

)
≤

[f ]W s,p
A (Ω,C)

‖f‖Lq(Ω,C)
. (3.3)

If S is the best possible constant, by definition, we have

1
S

= inf
f∈W

s,p
A

(Ω,C)

dq
s,A(f)≥δ‖f‖Lq(Ω,C)

[f ]W s,p
A (Ω,C)

‖f‖Lq(Ω,C)
− Ep,q

s,A > 0.

So achievement of best constant S in (1.2) is equivalent to showing that the infimum (say ξ), taken over all 
f ∈ W s,p

A (Ω, C) with dqs,A(f) ≥ δ‖f‖Lq(Ω,C), of RHS of (3.3) is minimum. If this is not the case, then there 
exist a sequence {gn} in W s,p

A (Ω, C), with ‖gn‖Lq(Ω,C) = 1 and dqs,A(gn) ≥ 1, such that [f ]W s,p
A (Ω,C) → ξ. 

As in the previous part we can use the same argument to show that there exists g ∈ W s,p
A (Ω, C) such that 

gn → g in Lp(Ω, C), strongly together with ‖g‖Lq(Ω,C) = 1. Again, as above, use of weak lower semicontinuity 
gives

ξ = lim
n→∞

[gn]W s,p
A (Ω,C) ≥ [g]W s,p

A (Ω,C).

By definition of ξ, the above inequality is actually an equality and the proof concludes.
To see the last part of the theorem, let, if possible, Mp,q

s,A be empty. Then dqs,A(f) = +∞, as it is the 
infimum of an empty set. Hence the condition dqs,A(f) ≥ δ‖f‖Lq(Ω,C) holds for any δ > 0 and for any 
f ∈ Lp(Ω, C). We can then apply (1.2) to any positive constant function (note that they all have the same 
W s,p

A -seminorm). This contradicts the strict positivity of S. �
Lemma 3.2. Let Ω, p, q be as in Theorem 1.5 and let 0 < δ0 ≤ δ < 1. Then there is a constant S1 =
S1(Ω, δ0, p, q) > 0 such that ∀ f ∈ W s,p(Ω, C) with LN ({x 

∣∣∣ f(x) �= 0}) ≤ LN (Ω)(1 − δ) we have

‖f‖Lq(Ω,C) ≤ S1[f ]W s,p(Ω,C). (3.4)

Proof. Theorem 1.5 and Hölder’s inequality imply

‖f‖Lq(Ω,C) ≤

∥∥∥∥∥∥f − 1
LN (Ω)

∫
Ω

f

∥∥∥∥∥∥
Lq(Ω,C)

+

∥∥∥∥∥∥
1

LN (Ω)

∫
Ω

f

∥∥∥∥∥∥
Lq(Ω,C)

=

∥∥∥∥∥∥f − 1
LN (Ω)

∫
Ω

f

∥∥∥∥∥∥
Lq(Ω,C)

+
(
LN (Ω)

) 1
q−1

∣∣∣∣∣∣
∫
Ω

f

∣∣∣∣∣∣
≤C[f ]W s,p(Ω,C) +

(
LN (Ω)

) 1
q−1 ‖f‖Lq(Ω,C)

(
LN ({x

∣∣∣ f(x) �= 0})
)1− 1

q

≤C[f ]W s,p(Ω,C) + (1 − δ)1−
1
q ‖f‖Lq(Ω,C).

Hence

‖f‖Lq(Ω,C) ≤
C

1 − (1 − δ)1−
1
q

[f ]W s,p(Ω,C) ≤
C

1 − (1 − δ0)1−
1
q

[f ]W s,p(Ω,C).

This proves the lemma. �
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Proof of Theorem 1.9. Let, if possible, the statement of the theorem not be true. Then ∃ ε > 0 such that 
there are three sequences: Cn > 0 with Cn → ∞, measurable subsets Λn ⊆ Ω and fn ∈ W s,p(Ω, C) with 
‖fn‖Lq(Ω,C) = 1 and dqs,A(fn) ≥ δ but

⎛
⎝ ∫∫

Λn×Λn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

|x− y|N+sp
dxdy

⎞
⎠

1
p

+ Cn

⎛
⎜⎝ ∫∫

(Ω×Ω)\(Λn×Λn)

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r

|x− y|N+sr
dxdy

⎞
⎟⎠

1
r

<

(
1

S + ε
+ Ep,q

s,A

)
. (3.5)

From this equation, it immediately follows that

∫∫
(Ω×Ω)\(Λn×Λn)

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r

|x− y|N+sr
dxdy → 0 as n → ∞, (3.6)

and

∫∫
Λn×Λn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

|x− y|N+sp
dxdy is bounded as n → ∞. (3.7)

Since Ω is bounded, we assume diam(Ω) < R. The proof of the theorem is divided into the following three 
steps.
Step-1: Λn × Λn and (Ω × Ω) \ (Λn × Λn) can be replaced by some λn (⊆ Ω × Ω) and γn = (Ω × Ω) \ λn

respectively, such that

∞∑
n=1

L2N (γn) < ∞ (3.8)

but still analogues for (3.6), (3.7) hold.
Let us consider the set

γn :=
{

(x, y) ∈ (Ω × Ω) \ (Λn × Λn)
∣∣∣ |fn(x) − ei(x−y)·A

(
x+y

2
)
fn(y)|

|x− y|Nr +s

≥

⎛
⎜⎝ ∫∫

(Ω×Ω)\(Λn×Λn)

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r

|x− y|N+sr
dxdy

⎞
⎟⎠

1
2r
⎫⎪⎪⎬
⎪⎪⎭

and λn := (Ω × Ω) \ γn. Then,

∫∫
(Ω×Ω)\(Λn×Λn)

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r

|x− y|N+sr
dxdy ≥

∫∫
γn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r

|x− y|N+sr
dxdy

≥L2N (γn)
( ∫∫
(Ω×Ω)\(Λn×Λn)

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r

|x− y|N+sr
dxdy

) 1
2
.
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This shows that L2N (γn) → 0 as n → ∞. Passing to a subsequence we can, without loss of generality, assume 
that (3.8) holds. Note that in the second term in the LHS of (3.5), the domain is going to be replaced by 
a smaller one, hence we need not worry about it. Therefore, we turn our attention to the first term of the 
LHS and show that the extra integral which is needed to be added there does not disrupt the inequality. 
Since diam(Ω) < R,

∫∫
((Ω×Ω)\(Λn×Λn))\γn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

|x− y|N+sp
dxdy

=
∫∫

((Ω×Ω)\(Λn×Λn))\γn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

RN+sp
(

|x−y|
R

)N+sp
dxdy

≤C

∫∫
((Ω×Ω)\(Λn×Λn))\γn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

RN+sp
(

|x−y|
R

)Np
r +sp

dxdy

≤C(R, p, r, s)CL2N (Ω × Ω)
( ∫∫
(Ω×Ω)\(Λn×Λn)

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r

|x− y|N+sr
dxdy

) p
2r → 0.

Therefore, (3.5) can be rewritten as

⎛
⎝∫∫

λn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

|x− y|N+sp
dxdy

⎞
⎠

1
p

+ Cn

⎛
⎝∫∫

γn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r

|x− y|N+sr
dxdy

⎞
⎠

1
r

<

(
1

S + ε
+ Ep,q

s,A

)
. (3.9)

This implies (similarly as (3.6) and (3.7))

∫∫
γn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r

|x− y|N+sr
dxdy → 0 as n → ∞ (3.10)

and
∫∫
λn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

|x− y|N+sp
dxdy is bounded as n → ∞ (3.11)

as before.
Step-2: fn → f strongly in Lq(Ω, C).
Case-I: Assume that condition (a) or (b) in the hypotheses holds. That is q < N

N−s (then we have r = 1) or 
q = ∞ (then sr ≥ N).

Since r < p, (3.10) and (3.11) imply that [fn]W s,r
A (Ω,C) is uniformly bounded. Lemma 3.1 implies that 

‖fn‖W s,r(Ω,C) is bounded. Thus we can apply Lemma 2.3 to complete the step.

Case-II: Assume that condition (c) in the hypotheses holds. Then q ∈
[

N
N−s ,∞

)
, sr < N and q < Nr

N−sr .

Step-2/a: fn ⇀ f in Lq(Ω, C) for some f .
Since the sequence {fn} is bounded in Lq(Ω, C) and hence there is a subsequence, still denoted by fn, 

and an f ∈ Lq(Ω, C), such that fn ⇀ f in Lq(Ω, C).
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Step-2/b: There exists η0 > 0 such that for any η0 > η > 0, there exists suitable α > 0 such that 
[fn]Wαs,r (Ω, C) is bounded, hence, up to a subsequence, it converges to some f ∈ Lq−η(Ω, C).

Note that 1 ≤ r < q < Nr
N−sr < ∞. Choose η > 0, small enough, such that q − r − η > 0 which implies 

q− η > 1. Fix α ∈
(

N(q−r−η)
sr(q−η) ,min

{
1, N

sr

})
. This gives αsr < N and 1 < q− η < Nr

N−αsr . Hence Lemma 2.3
gives

Wαs,r(Ω,C) is compactly embedded in Lq−η(Ω,C). (3.12)

Note that both the terms in the LHS of (3.9) are bounded. Since α ∈ (0, 1) and αr < r ≤ p, applying 
Lemma 2.1, we get that the terms

⎛
⎝∫∫

λn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r

|x− y|N+αsr
dxdy

⎞
⎠

1
r

and

⎛
⎝∫∫

γn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r

|x− y|N+αsr
dxdy

⎞
⎠

1
r

are bounded. This implies that {fn} is bounded in Wαs,r(Ω, C). By (3.12), {fn} has a strongly convergent 
subsequence in Lq−η(Ω, C), which we assume to be itself, converging to f . (Note that this f is actually 
what we talked about in step-2/a.)
Step-2/c: Estimates on q norm of fn to show that fn → f in Lq(Ω, C).

Take M > 1 such that M−q < LN (Ω)(1 − 1
2 ) and define, for x ∈ Ω,

fM
n (x) = min{M, |fn(x)|} and hM

n (x) = |fn(x)| − fM
n (x) ≥ 0.

Now observe that

|fn(x)| > M if and only if hM
n (x) �= 0.

We use this fact to derive,

LN
(
|fn|−1((M,∞))

)
=LN ({x ∈ Ω

∣∣∣ hM
n (x) �= 0}) (3.13)

=
∫

hM
n (x) �=0

dx ≤
‖fn‖qLq(Ω,C)

Mq
≤ M−q < LN (Ω)(1 − 1

2).

Choose suitable s1 ∈ (0, s), r1 ∈ [1, r) such that s1r1 < N and q = Nr1
N−s1r1

. We apply Lemma 3.2 on 
W s1,r1(Ω, C) and Lq(Ω, C). So,

‖hM
n ‖Lq(Ω,C) ≤ S1(Ω, N, s, q, r)[hM

n ]W s1,r1 (Ω,C). (3.14)

Define HM
n := (Ω × Ω) \ {(x, y) ∈ Ω × Ω 

∣∣∣ |fn(x)|, |fn(y)| ≤ M}. We use symmetry of the integrand and 
Lemma 2.6 in the following computation

[hM
n ]r1W s1,r1 (Ω,C) =

∫∫
Ω×Ω

|hM
n (x) − hM

n (y)|r1
|x− y|N+s1r1

dxdy

=
∫∫

Ω×Ω

|hM
n (x) − hM

n (y)|r1
|x− y|N+s1r1

dxdy + 2
∫∫

Ω×Ω

|hM
n (x) − hM

n (y)|r1
|x− y|N+s1r1

dxdy
|fn(x)|, |fn(y)|≥M |fn(x)|≥M>|fn(y)|
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+
∫∫

Ω×Ω\HM
n

|hM
n (x) − hM

n (y)|r1
|x− y|N+s1r1

dxdy

=
∫∫

Ω×Ω
|fn(x)|, |fn(y)|≥M

||fn(x)| − |fn(y)||r1
|x− y|N+s1r1

dxdy + 2
∫∫

Ω×Ω
|fn(x)|≥M>|fn(y)|

||fn(x)| −M |r1
|x− y|N+s1r1

dxdy

≤
∫∫

Ω×Ω
|fn(x)|, |fn(y)|≥M

||fn(x)| − |fn(y)||r1
|x− y|N+s1r1

dxdy + 2
∫∫

Ω×Ω
|fn(x)|≥M>|fn(y)|

||fn(x)| − |fn(y)||r1
|x− y|N+s1r1

dxdy

=
∫∫
HM

n

||fn(x)| − |fn(y)||r1
|x− y|N+s1r1

dxdy

≤
∫∫
HM

n

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r1

|x− y|N+s1r1
dxdy

≤
∫∫

HM
n ∩λn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r1

|x− y|N+s1r1
dxdy +

∫∫
HM

n ∩γn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r1

|x− y|N+s1r1
dxdy.

Since r1 < r, Lemma 2.1 and (3.10) imply that the last term converges to 0. Thus the above calculation 
and (3.14) then imply

lim sup
n→∞

‖hM
n ‖r1Lq(Ω,C)

≤Sr1
1 lim sup

n→∞
[hM

n ]r1W s1,r1 (Ω,C)

≤Sr1
1 lim sup

n→∞

∫∫
HM

n ∩λn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|r1

|x− y|N+s1r1
dxdy

≤Sr1
1 lim sup

n→∞

⎛
⎝∫∫

λn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

|x− y|N+sp
dxdy

⎞
⎠

r1
p

⎛
⎜⎝∫∫

HM
n

|x− y|−N+ sr1p−s1r1p
p−r1 dxdy

⎞
⎟⎠

p−r1
p

≤Sr1
1

(
1

S + ε
+ Ep,q

s,A

)r1

lim sup
n→∞

⎛
⎜⎝∫∫

HM
n

|x− y|−N+ sr1p−s1r1p
p−r1 dxdy

⎞
⎟⎠

p−r1
p

.

It is clear that HM
n is the disjoint union of following three sets:(

|fn|−1([M,∞)) × |fn|−1([M,∞))
)
, 
(
|fn|−1([M,∞)) × |fn|−1([0,M))

)
and(

|fn|−1([0,M)) × |fn|−1([M,∞))
)
. Along with this decomposition of HM

n , we use (3.13) to get

∫∫
HM

n

|x− y|−N+ sr1p−s1r1p
p−r1 dxdy ≤

∫∫
|fn|−1([M,∞))×B(x,R)

|x− y|−N+ sr1p−s1r1p
p−r1 dxdy

+ 2
∫∫

|fn|−1([M,∞))×B(x,R)

|x− y|−N+ sr1p−s1r1p
p−r1 dxdy

≤ C(N, p, r, s, R)M−q.
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In the above calculation, we have used the facts that diam(Ω) < R and s1 < s. Now we have

lim sup
n→∞

‖hM
n ‖Lq(Ω,C) ≤ S1

(
1

S + ε
+ Ep,q

s,A

)
M

q(r1−p)
pr1 . (3.15)

Therefore (3.5) and the triangle inequality of Lq-norm gives

∫
Ω

|f |q−η = lim
n→∞

∫
Ω

|fn|q−η ≥ lim
n→∞

∫
Ω

|fM
n |q−η ≥ M−η lim

n→∞

∫
Ω

|fM
n |q

≥M−η lim
n→∞

[
‖fn‖Lq(Ω,C) − ‖hM

n ‖Lq(Ω,C)
]q

≥M−η

(
1 − S1

(
1

S + ε
+ Ep,q

s,A

)
M

q(r1−p)
pr1

)q

,

which after taking the limit as η → 0 and then M → ∞ gives (recall that r1 < p)

∫
Ω

|f |q ≥ 1 and hence
∫
Ω

|f |q = 1.

So, fn ⇀ f and ‖fn‖Lq(Ω,C) → ‖f‖Lq(Ω,C), implying the strong convergence fn → f in Lq(Ω, C).

Step-3: The strong convergence fn → f in Lq(Ω, C) gives a contradiction.
Now the fact that fn → f in Lq(Ω, C) implies that fn(x) → f(x) for almost all x ∈ Ω. For fixed k ∈ N, 

set Σk := (Ω × Ω) \ (γk ∪ γk+1 ∪ · · · ). Then for n ≥ k, we have, using Fatou’s lemma in the last inequality,

lim inf
n→∞

∫∫
λn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

|x− y|N+sp
dxdy = lim inf

n→∞

∫∫
(Ω×Ω)\γn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

|x− y|N+sp
dxdy

≥ lim inf
n→∞

∫∫
Σk

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

|x− y|N+sp
dxdy

≥
∫∫
Σk

|f(x) − ei(x−y)·A
(
x+y

2
)
f(y)|p

|x− y|N+sp
dxdy.

This holds for any k ∈ N. Also Σk ⊆ Σk+1 ⊆ Ω × Ω and L2N (
⋃∞

k=0 Σk) = L2N (Ω × Ω) by (3.8). Therefore

lim inf
n→∞

∫∫
λn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

|x− y|N+sp
dxdy ≥

∫∫
Ω×Ω

|f(x) − ei(x−y)·A
(
x+y

2
)
f(y)|p

|x− y|N+sp
dxdy. (3.16)

Since fn → f in Lq(Ω, C), we have dqs,A(f) ≥ δ‖f‖Lq(Ω,C) = δ. Now Theorem 1.6 and (3.16) imply

lim inf
n→∞

⎛
⎝ ∫∫

λn

|fn(x) − ei(x−y)·A
(
x+y

2
)
fn(y)|p

|x− y|N+sp
dxdy

⎞
⎠

1
p

≥
(

1
S

+ Ep,q
s,A

)

which contradicts (3.9) and hence the proof follows. �
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4. The magnetic fractional Laplacian operator

In this section, we consider the case p = 2. A shall, denote a bounded, vector field on the convex hull of 
the domain Ω. We first observe the following:

Lemma 4.1. (−Δ2,A)s is a self adjoint operator on L2(Ω, C).

Proof. The result follows from the following calculation:

< (−Δp,A)sf, g >=
∫∫

Ω×Ω

(f(x) − ei(x−y)·A
(
x+y

2
)
f(y))

|x− y|N+2s g(x)dydx

=
∫∫

Ω×Ω

(f(x) − ei(x−y)·A
(
x+y

2
)
f(y))

2|x− y|N+2s g(x)dydx +
∫∫

Ω×Ω

(f(y) − ei(y−x)·A
(
x+y

2
)
f(x))

2|x− y|N+2s g(y)dydx

=
∫∫

Ω×Ω

(f(x) − ei(x−y)·A
(
x+y

2
)
f(y))(g(x) − ei(y−x)·A

(
x+y

2
)
g(y))

2|x− y|N+2s dydx

=
∫∫

Ω×Ω

(g(x) − ei(y−x)·A
(
x+y

2
)
g(y))

2|x− y|N+2s f(x)dydx−
∫∫

Ω×Ω

(g(x)ei(x−y)·A
(
x+y

2
)
− g(y))

2|x− y|N+2s f(y)dydx

=
∫∫

Ω×Ω

(g(x) − ei(y−x)·A
(
x+y

2
)
g(y))

|x− y|N+2s f(x)dydx

=
∫
Ω

f(x)(−Δp,A)sg(x)dx =< f, (−Δp,A)sg > . �

We define E1 :=
√

E2,2
s,A to be the first eigenvalue of (−Δ2,A)s and we denote the corresponding eigen-

function by φ1. Since the eigenvectors of a self-adjoint operator, on a Hilbert space, form an orthonormal 
basis, consecutive eigenpairs (En, φn) of (−Δ2,A)s can be defined iteratively, as follows: if (En, φn) is the 
n’th eigenpair, we define

En+1 := inf

⎧⎨
⎩[f ]2

W s,2
A (Ω,C)

∣∣∣ ‖f‖L2(Ω,C) = 1,
∫
Ω

fφj = 0 for all 1 ≤ j ≤ n

⎫⎬
⎭ .

Lemma 2.3 ensures that a minimizer of En+1, which we call φn+1, must exist.

Proposition 4.2. Let Ω ⊆ RN be a bounded Lipschitz domain. The set of eigenvalues of (−Δ2,A)s in 
W s,2(Ω, C) is discrete.

Proof. If possible, let the statement not be true. Then there exists some E ∈ (0, ∞) such that there 
are infinitely many (all the) eigenvalues of (−Δ2,A)s below E. We consider the corresponding sequence 
of eigenfunctions {φn}n in W s,2(Ω, C). Then φn are all of unit L2-norm and [φn]2

W s,2
A (Ω,C) ≤ E. We use 

this fact in the following calculation, where the first line is achieved by adding and subtracting the term 
φn(y)eiA( x+y

2 ·(x−y)) in the numerator of the integrand.

[φn]2W s,2(Ω,C) =
∫∫ |φn(x) − φn(y)|2

|x− y|N+2s dxdy
Ω×Ω
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≤C

∫∫
Ω×Ω

|φn(x) − φn(y)eiA( x+y
2 )·(x−y)|2

|x− y|N+2s dxdy + C

∫
Ω

|φ(y)|2
∫
Ω

|eiA( x+y
2 )·(x−y) − 1|2

|x− y|N+2s dxdy

=C[φn]2
W s,2

A (Ω,C) + C‖φ‖2
L2(Ω,C) ≤ CE + C.

This implies that {φn}n is a bounded sequence in W s,2(Ω, C). By Lemma 2.3, we then, conclude that up 
to a subsequence, the sequence of orthonormal functions, {φn}n, converges in L2(Ω, C). This indeed is a 
contradiction and hence the result follows. �
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Appendix A

Lemma A.1. For the sequence of functions, fε, defined in (1.4),

[fε]W s,r(Γ,C) → 0 as ε → 0.

Proof. Denoting Γ1 := (0, ε] × (0, 1) and Γ2 := (ε, 1) × (0, 1), we have

[fε]rW s,r(Γ,C) =
∫∫

Γ1×Γ1

|fε(x) − fε(y)|r
|x− y|2+sr

dxdy + 2
∫∫

Γ1×Γ2

|fε(x) − fε(y)|r
|x− y|2+sr

dxdy

=2
∫∫

Γ1×Γ

|fε(x) − fε(y)|r
|x− y|2+sr

dxdy

=2
∫

x∈Γ1

∫
y∈Γ

|x−y|<ε

|fε(x) − fε(y)|r
|x− y|2+sr

dydx + 2
∫

x∈Γ1

∫
y∈Γ

|x−y|≥ε

|fε(x) − fε(y)|r
|x− y|2+sr

dydx

=2
∫

x∈Γ1

(I1(x) + I2(x)) dx.

Note that fε is a Lipschitz function with Lipschitz constant 2(2−ε)
ε(2+ε) . Also |fε| ≤ 1 on Γ. We are going to use 

these facts in the following two estimates.

I1(x) =
∫

y∈Γ

|fε(x) − fε(y)|r
|x− y|2+sr

dy ≤ Cε−r

∫
y∈Γ

dy

|x− y|2+sr−r
≤ C

εr

ε∫
t=0

tr−sr−1dt = Cε−sr.
|x−y|<ε |x−y|<ε
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I2(x) =
∫

y∈Γ
|x−y|≥ε

|fε(x) − fε(y)|r
|x− y|2+sr

dy ≤
∫

y∈Γ
|x−y|≥ε

dy

|x− y|2+sr
≤ C

2∫
t=ε

t−sr−1dt = C(ε−sr − 2−sr).

Combining the above three calculations, we get

[fε]rW s,r(Γ,C) ≤ 2C(2ε1−sr − 2−srε) → 0 as ε → 0. �
Lemma A.2. Let Ω = B(0, 1), Γ = B(0, 1) \B(0, 12 ), Λ = B(0, 12 ) and f = χΛ. Then f ∈ W s,p(Ω), provided 
sp < 1.

Proof. The proof follows from the following calculation:

1
2 [f ]pW s,p(Ω) =

∫
x∈Λ

∫
y∈Γ

dy

|x− y|N+sp
dx =

∫
x∈Λ

∫
y∈−x+Γ

dy

|y|N+sp
dx ≤ C(N)

∫
x∈Λ

2∫
r= 1

2−|x|

rN−1dr

rN+sp
dx

=C(N, s, p)
∫

x∈B(0, 12 )

((
1
2 − |x|

)−sp

− 2−sp

)
dx ≤ C(N, s, p)

1
2∫

r=0

(
1
2 − r

)−sp

rN−1dr

≤C(N, s, p)

1
2∫

r=0

(
1
2 − r

)−sp

dr ≤ C(N, s, p)

1
2∫

r=0

r−spdr < ∞,

where the last inequality follows from the hypothesis sp < 1. �
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