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Abstract
Under certain restrictions on s, p, q , the Triebel-Lizorkin spaces can be viewed as generalised
fractional Sobolev spacesWs,p

q . In this article, we show that the Bourgain-Brezis-Mironescu
formula holds for Ws,p

q -seminorms in arbitrary domain. This addresses an open question
raised by Brazke-Schikorra-Yung (Calc Var Partial Differ Equ 62(2):41–33, (2023).

Mathematics Subject Classification 46E35 · 42B35

1 Introduction

Sobolev spaces arise naturally in the study of partial differential equations. They are defined
in terms of weak derivatives. For an open set � ⊆ R

N , and 1 ≤ p < ∞, the Sobolev space
W 1,p(�) is defined to be { f ∈ L p(�) | [ f ]W 1,p(�) < ∞}, where

[ f ]p
W 1,p(�)

:=
∫

�

|∇ f (x)|pdx .

Some closely related spaces are Triebel-Lizorkin spaces Fs
p,q(�), which are defined to be

{ f |� | f ∈ Fs
p,q(R

N )}, and are equipped with the norm [·]Fs
p,q (RN ). We shall not define

the norm [·]Fs
p,q (RN ) as it will not be necessary for the present article. Instead, we refer the

reader, for definition and classical results regarding Triebel-Lizorkin spaces, to [59], or more
modern references like [36, 56]. For 1 ≤ p, q < ∞, max{0, N (q−p)

pq } < s < 1, we have the
characterisation (see Theorem 1.2 of [55])

Fs
p,q(R

N ) :=
{
f ∈ Lmax{p,q}(RN )

∣∣∣ ‖ f ‖L p(RN ) + [ f ]Ws,p
q (RN ) < ∞

}
,
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where

[ f ]Ws,p
q (�) :=

(∫
�

(∫
�

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q
) 1

p

. (1)

In the special case of p = q , these spaces are related to the so-called fractional Sobolev
spaces Ws,p(�), defined by

Ws,p(�) :=
{
f ∈ L p(�)

∣∣∣ ‖ f ‖L p(�) + [ f ]Ws,p(�) < ∞
}

,

where [ f ]Ws,p(�) := [ f ]Ws,p
p (�). Of course, when� = R

N , or when� is fractional extension
domain (see [25]), we have Ws,p(�) = Fs

p,p(�).

Bourgain-Brezis-Mironescu [8] showed that for any smooth and bounded domain �,
1 ≤ p < ∞, and any f ∈ W 1,p(�),

lim
s→1−(1 − s)[ f ]pWs,p(�) = K‖∇ f ‖p

L p(�).

Conversely, for any f ∈ L p(�), if we have

lim
s→1−(1 − s)[ f ]pWs,p(�) < ∞,

then f ∈ W 1,p(�) if p > 1 and f ∈ BV (�) if p = 1. Later Dávila [23] extended this
result and proved that for any f ∈ BV (�), lims→1−(1 − s)[ f ]p

Ws,1(�)
= K |∇ f |(�). This

is commonly known as the Bourgain-Brezis-Mironescu formula (BBM formula for short).
The subject was further developed in [9, 10, 18, 47, 48, 53]. The BBM formula has been
generalised to Orlicz and generalised Orlicz setup in [1–3, 28, 31, 61], to variable exponent
setup in [30, 39], to magnetic Sobolev spaces [29, 49, 50, 52, 57], to anisotropic setup [37,
45, 51], to Riemannian manifolds in [42], to metric spaces in [24, 35], to Banach function
spaces in [22, 62]. Similar studies are possible in the context of Besov spaces also [41, 60].
More recent developments on this topic can be found in [14–17]. For further reading, we
refer the reader to [4, 6, 7, 11, 19, 21, 26, 32–34, 38, 46, 54].

Our first interest lies in works regarding the domain. That is, how far the smooth-bounded
condition, on the domain, can be relaxed. In this direction,wemention threeworks. The first is
due to Lioni-Spector [43, 44]. They showed that for an arbitrary domain�, and f ∈ L p(�),

lim
λ→0+ lim

s→1− (1 − s)
∫

�λ

∫
�λ

| f (x) − f (y)|p
|x − y|N+sp

dydx = K [ f ]p
W 1,p(�)

.

where

�λ := {x ∈ � | dist(x, ∂�) > λ} ∩ B(0, λ−1). (2)

The second result is due to the author with Bal-Roy [5], where it has been shown that the
BBM-formula [8], holds if we take � to be a W 1,p-extension domain. The third result is
due to Drelichman-Duran [27]. They showed that for 1 < p < ∞, and an arbitrary bounded
domain �, and any τ ∈ (0, 1), we have

lim
s→1− (1 − s)

∫
�

∫
B(x,τdist(x,∂�))

| f (x) − f (y)|p
|x − y|N+sp

dydx = K [ f ]p
W 1,p(�)

.

The second direction of work regarding the BBM-formula, that we are interested in,
is its extension for Triebel-Lizorkin spaces. The first work in this direction was done by
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Brazke-Schikorra-Yung [12]. They explained via examining thoroughly various constants of
embeddings that although Fs

p,p = Ws,p , when s ∈ (0, 1) and Fs
p,2 = W 1,p it makes sense

for the scaledWs,p seminorm to converge toW 1,p-seminorm, even when p 
= 2. They posed
the open problem (see [12, Question 1.12]) about the asymptotic constant in the identification
of the ‖ · ‖Ws,p

q
≈ ‖ · ‖Fs

p,q
.

The current article addresses this question by showing the asymptotic behaviour (as s →
1−) of Ws,p

q -seminorms. Similar studies has been done, when 1 < q < p < ∞, in [22]
for RN , and in [62, Theorem 6.1] for a special class of bounded extension domains (called
(ε,∞)-domains).

We concentrate our focus on the following seminorm (for some τ ∈ (0, 1))

[ f ]W̃ s,p
q (�)

:=
(∫

�

(∫
B(x,τdist(x,∂�))

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q
) 1

p

, (3)

as one can then extend the above question for arbitrary bounded domains, motivated by [27].
We go one step further and show that the boundedness of the domain is not necessary. Our
main results are the following:

Theorem 1 Let � ⊂ R
N be any open set τ ∈ (0, 1). Assume one of the following conditions

(1) 1 ≤ q ≤ p < ∞,
(2) 1 < p < q < ∞ with p ≤ N and q <

Np
N−p ,

(3) N < p < q < ∞.

Then there is a constant K = K (N , p, q) > 0 such that for any f ∈ W 1,p(�), we have,

lim
s→1−(1 − s)

p
q

∫
�

(∫
B(x,τdist(x,∂�))

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx = K
∫

�

|∇ f (x)|pdx . (4)

Theorem 2 Let� ⊂ R
N beanopen set, τ ∈ (0, 1)and1 ≤ p, q < ∞. If f ∈ L p(�)∩Lq(�)

is such that

L∗
p,q( f ) := lim

s→1−

∫
�

(
(1 − s)

∫
B(x,τdist(x,∂�))

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx < ∞,

then f ∈ W 1,p(�) when p > 1, and f ∈ BV (�) when p = 1.

Remark 3 Before proceeding further, let us discuss some difficulties that arise here, and
strategies for overcoming them. The proof of the main results roughly follow the outline of
[8]. However, there are certain obstacles to that path. The first obstacle arises when we want
to apply dominated convergence theorem to interchange limit and integral. Similar difficulty
was faced and overcome in [27], but we had to take a different route (see lemma 9) for this
purpose. The introduction of the second exponent q forces us to deviate from the usual route
again; The case q ≤ p is rather easy to handle, for the case p < q , a careful use of Sobolev
embedding is needed. To take into account the case where the domain � is unbounded, we
need to restrict the seminorm further and define some new fractional Sobolev spaces (see
eq. 5) and prove a version of the main result theorem 1 in that context (see theorem 14), and
then finally derive the proof of the main results from there.

The article is organised as follows: In section 2, we list some preliminary results, already
known in literature, which shall be useful for the proof of our main results. In section 3, we

123



   31 Page 4 of 17 K. Mohanta

introduce a variant of fractional Sobolev spaces and prove some relevant embedding results.
In section 4 we prove the main results in the context of these new spaces (see theorems 14
and 15). Finally in section 5, we prove theorems 1 and 2.

2 Preliminary results

For the sake of completeness, we first state the well-known Sobolev inequality (also known
as (q, p)-Poincaré inequality):

Lemma 4 Let 1 ≤ p, q ≤ ∞, τ ∈ (0, 1), and one of the following hold

(1) p < N, and q ≤ Np
N−p ,

(2) p = N, and q < ∞
(3) p > N.

Then there is a constants C = C(p, q, N ) > 0 such that the following holds for any
f ∈ W 1,p(B(0, t

τ
)):

1

t N

∫
B(0,t)

| f (y)|qdy ≤ C(N , p, q)tq
(

1

t N

∫
B(0,t)

|∇ f (y)|pdy
) q

p

+C(N , p, q)

(
1

t N

∫
B(0,t)

| f (y)|pdy
) q

p

.

The following lemma was established in [20] for 1 < p < ∞; the p ≥ 1 case can be
found in [58, Chapter-VI, Theorems 5 and 5’].

Lemma 5 Let � ⊆ R
N be an open set with Lipschitz boundary and 1 ≤ p < ∞. Then for

any f ∈ W 1,p(�) there is some f̃ ∈ W 1,p(RN ) such that f̃ |� = f and for some constant
C = C(N ,�, p),

‖ f̃ ‖W 1,p(RN ) ≤ C‖ f ‖W 1,p(�).

The following result can be found in Proposition 9.3 and Remark 6 of [13].

Lemma 6 Let � ⊆ R
N be open, 1 ≤ p < ∞, 1

p + 1
p′ = 1, and f ∈ L p(�). Assume that

there is constant C > 0 such that for any ϕ ∈ C∞
c (�)∣∣∣∣

∫
�

f (x)
∂ϕ(x)

∂xi
dx

∣∣∣∣ ≤ C‖ϕ‖L p′ (�)
for i = 1, 2, · · · , N .

Then f ∈ W 1,p(�) when 1 < p, and f ∈ BV (�) when p = 1.

Next we list a special case of Proposition 2/(ii) of [59, Chapter 2.3.3], combined with the
fact that W 1,p(RN ) = F1

p,2(R
N ).

Lemma 7 Let 1 ≤ p, q < ∞, s ∈ (0, 1). Then

W 1,p(RN ) ⊆ Fs
p,q(R

N ) = Ws,p
q (RN ).

The following result is taken from Lemma 8 of [5].

Lemma 8 Let � ⊆ R
N be open and λ > 0 be sufficiently small. Then there is a bounded

open set �∗
λ with smooth boundary such that �λ ⊆ �∗

λ ⊆ �, where �λ is as in (2).
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The next result can be found in Theorem 2.1 of [40]. It will play a crucial in this article.

Lemma 9 Let � ⊆ R
N , {�i }i∈N be such that � = ∪i�i , Fn, F ∈ L1(�) for n ∈ N be such

that for a.e. x ∈ �, Fn(x) → F(x) as n → ∞. Assume that

(1)

lim sup
n→∞

sup
x∈�i

|Fn(x) − F(x)| < ∞ for all i ∈ N,

(2)

lim inf
i→∞ lim sup

n→∞

∫
�\�i

Fn(x)dx = 0.

Then

lim
n→∞

∫
�

Fn(x)dx =
∫

�

F(x).

3 Fractional Sobolev space with restricted internal distance

Fix R > 0 and τ ∈ (0, 1) once and for all. Denote δx,R,τ = min{R, τdist(x, ∂�)}. We shall
often drop the R and τ in the above notation and write δx to denote δx,R,τ .

Remark 10 If the function x �→ dist(x, ∂�) is bounded in �, we can choose R > 0 large
enough, so that δx = τdist(x, ∂�). Then the particular case p = q of theorems 14 and 15 are
similar to the results proved in [27], but here � need not be a bounded domain; for example,
it can be a cylindrical domain or any open subset of RN \ ZN .

Define, for any open set � ⊆ R
N , 1 ≤ p, q < ∞, 0 < s < 1, Ŵ s,p

q (�) := { f ∈
L p(�) | [ f ]Ŵ s,p

q (�)
< ∞} where

[ f ]p
Ŵ s,p

q (�)
:=

∫
x∈�

(∫
y∈B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx . (5)

We shall need some embedding results for these new fractional Sobolev spaces for our
purpose. As expected, the case q ≤ p and p < q are treated separately.

Lemma 11 Let � ⊆ R
N be open and 1 ≤ q ≤ p < ∞. Assume either D = D̃ = � or,

for some 1
2R > α > 0, D = {x ∈ � | dist(x, ∂�) < α} with D̃ = {x ∈ � | dist(x, ∂�) <

2α or |x | > 1
2α }. Then there is a constant C = C(p, q, R,�, N ) such that for any f in

W 1,p(�),

(1 − s)
p
q

∫
x∈D

(∫
y∈B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx ≤ C[ f ]p
W 1,p(D̃)

. (6)

Proof We have

(1 − s)
p
q

∫
x∈D

(∫
y∈B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx

=(1 − s)
p
q

∫
x∈D

(∫
h∈B(0,δx )

| f (x + h) − f (x)|q
|h|N+sq

dh

) p
q

dx

123
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=(1 − s)
p
q

∫
x∈D

(∫
h∈B(0,δx )

| f (x + h) − f (x)|q
|h|p

dh

|h|N+sq−q

) p
q

dx

≤(1 − s)
p
q

∫
x∈D

(∫
h∈B(0,δx )

∫ 1

0
|∇ f (x + th)|qdt dh

|h|N+sq−q

) p
q

dx .

The last inequality follows from the absolute continuity on lines of the W 1,p-functions. We
now have, after a change of variable y = x + th, (using that B(x, tδx ) ⊂ B(x, δx ))

(1 − s)
p
q

∫
x∈D

(∫
y∈B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx

≤(1 − s)
p
q

∫
x∈D

(∫
y∈B(x,δx )

∫ 1

0
|∇ f (y)|q tsq−qdt

dy

|x − y|N+sq−q

) p
q

dx

= (1 − s)
p
q

(sq − q + 1)
p
q

∫
x∈D

(∫
y∈B(x,δx )

|∇ f (y)|q dy

|x − y|N+sq−q

) p
q

dx .

Note that in the above inequality, ∇ f is required to be defined only inside D̃. So, we shall
take a 0-extension of ∇ f outside D̃. Since we have p

q ≥ 1, we can use Young’s convolution
inequality to get

(1 − s)
p
q

∫
x∈D

(∫
y∈B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx

≤ (1 − s)
p
q

(sq − q + 1)
p
q

∫
x∈D

(∫
y∈B(x,R)

|∇ f (y)|q dy

|x − y|N+sq−q

) p
q

dx

≤ (1 − s)
p
q

(sq − q + 1)
p
q

∫
x∈D̃

|∇ f (x)|pdx
(∫

x∈B(0,R)

dx

|x |N+sq−q

) p
q

= Rp−sp

q
p
q

∫
x∈D̃

|∇ f (x)|pdx .

��
Lemma 12 Let � ⊆ R

N be open, 1 < p < q < ∞, and one of the following hold

(1) p < N, and q <
Np
N−p ,

(2) N ≤ p.

Assume either D = D̃ = � or, for some 1
2R > α > 0, D = {x ∈ � | dist(x, ∂�) <

α} and D̃ = {x ∈ � | dist(x, ∂�) < 2α or |x | > 1
2α }. Then there is a constant C =

C(N , R, p, q) > 0 such that for any f ∈ W 1,p(�), eq. (6) holds.

Proof Note that
∫ δx

t=|h|
dt

t N+sq+1 = 1

N + sq

(
1

|h|N+sq
− 1

δ
N+sq
x

)
,

which gives

1

|h|N+sq
= (N + sq)

∫ δx

t=|h|
dt

t N+sq+1 + δ
−N−sq
x .
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So, we can write

C(p, q)

∫
x∈D

(
(1 − s)

∫
h∈B(0,δx )

| f (x + h) − f (x)|q
|h|N+sq

dh

) p
q

dx

≤
∫
x∈D

(
(N + sq)(1 − s)

∫
h∈B(0,δx )

∫ δx

t=|h|
| f (x + h) − f (x)|q

t N+sq+1 dtdh

) p
q

dx

+
∫
x∈D

(
(1 − s)

∫
h∈B(0,δx )

| f (x + h) − f (x)|q
δ
N+sq
x

dh

) p
q

dx

=I1 + I2. (7)

According to either p < N or p ≥ N , fix β ∈ (0, 1), depending on p, q, N , such that
(q, β p)-type Poincaré inequality (lemma 4) is satisfied. We use this to estimate I1 below.
First, we change the order of integration between t and h, then apply lemma 4.

I1 =
∫
x∈D

(
(N + sq)(1 − s)

∫ δx

t=0

1

t N+sq+1

∫
h∈B(0,t)

| f (x + h) − f (x)|qdhdt
) p

q

dx

≤
∫
x∈D

(
(N + sq)(1 − s)

∫ δx

t=0

1

t sq+1−q

(
1

t N

∫
h∈B(x,t)

|∇ f (h)|β pdh

) q
β p

dt

) p
q

dx

+
∫
x∈D

(
(N + sq)(1 − s)

∫ δx

t=0

1

t sq+1

(
1

t N

∫
h∈B(0,t)

| f (x + h) − f (x)|β pdh

) q
β p

dt

) p
q

dx

= I1,1 + I1,2. (8)

As in the proof of the previous lemma, we shall take a 0-extension of ∇ f outside D̃. Now
using Hardy-Littelewood maximal inequality, we get

I1,1 ≤
∫
x∈D

(M |∇ f (x)|β p)
1
β

(
(N + sq)(1 − s)

∫ δx

t=0

1

t sq+1−q
dt

) p
q

dx

=C(N , p, q, R)

∫
x∈RN

(M |∇ f (x)|β p)
1
β dx

≤C(N , p, q, R)

∫
x∈D̃

|∇ f (x)|pdx . (9)

Again,

I1,2 ≤
∫
x∈D

(
(N + sq)(1 − s)

∫ δx

t=0

1

t sq+1−q

(
1

t N

∫
h∈B(0,t)

| f (x + h) − f (x)|β p

|h|β p
dh

) q
β p

dt

) p
q

dx

≤
∫
x∈D

(
(N + sq)(1 − s)

∫ δx

t=0

1

t sq+1−q

(∫ 1

r=0

1

t N

∫
h∈B(0,t)

|∇ f (x + rh)|β pdhdr

) q
β p

dt

) p
q

dx

=
∫
x∈D

(
(N + sq)(1 − s)

∫ δx

t=0

1

t sq+1−q

(∫ 1

r=0

1

(r t)N

∫
h∈B(x,r t)

|∇ f (h)|β pdhdr

) q
β p

dt

) p
q

dx

≤
∫
x∈RN

(M |∇ f (x)|β p)
1
β

(
(N + sq)(1 − s)

∫ R

t=0

1

t sq+1−q

(∫ 1

r=0
dr

) q
β p

dt

) p
q

dx

≤C(p, q, N , R)

∫
x∈D̃

|∇ f (x)|pdx . (10)
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Combining eqs. (9) and (10), we get

I1 ≤ C(p, q, N , R)‖∇ f ‖p

L p(D̃)
. (11)

Again, we can estimate I2, in similar way as above with δx in place of t . We have a better
estimate this time. Also, we can apply (q, p)-Poincaré inequality this time.

I2 =
∫
x∈D

(
(1 − s)

∫
h∈B(0,δx )

| f (x + h) − f (x)|q
δ
N+sq
x

dh

) p
q

dx

≤
∫
x∈D

(
(1 − s)

δ
sq
x

(
δ
p−N
x

∫
h∈B(0,δx )

|∇ f (x + h)|pdh + δ−N
x

∫
h∈B(0,δx )

| f (x + h) − f (x)|pdh
) q

p
) p

q

dx

≤
∫
x∈D

(1 − s)
p
q

δ
sp−p
x

((
δ−N
x

∫
h∈B(0,δx )

|∇ f (x + h)|pdh + δ−N
x

∫
h∈B(0,δx )

| f (x + h) − f (x)|p
|h|p dh

) q
p
) p

q

dx

≤
∫
x∈D

(1 − s)
p
q

δ
sp−p
x

(
δ−N
x

∫
h∈B(0,δx )

|∇ f (x + h)|pdh +
∫ 1

r=0

1

(rδx )N∫
h∈B(0,rδx )

|∇ f (x + h)|pdhdr
)
dx

≤ (1 − s)
p
q

∫
x∈D

δ
p−sp
x |∇ f (x)|pdx . (12)

Combing eqs. (7), (11) and (12),

∫
x∈D

(
(1 − s)

∫
h∈B(0,δx )

| f (x + h) − f (x)|q
|h|N+sq

dh

) p
q

dx ≤ C(N , p, q, R)‖∇ f ‖p

L p(D̃)
.

This proves the lemma. ��

4 BBM formula for Ŵs,p
q -seminorms

First, we state the following result whose proof can be found in the proof of Theorem of [8]
as the quantity δx is bounded by R.

Lemma 13 Let � ⊂ R
N be any open set, 1 ≤ q < ∞, 0 < s < 1. Then for any f ∈ C2(�),

we have for all x ∈ �,

lim
s→1−(1 − s)

∫
B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy = K |∇ f (x)|q . (13)

We now prove the following BBM-type results which are closely related with theorems 1
and 2.

Theorem 14 Let � ⊂ R
N be any open set. Assume one of the following conditions
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(1) 1 ≤ q ≤ p < ∞,
(2) 1 < p < q < ∞ with p ≤ N and q <

Np
N−p ,

(3) N < p < q < ∞.

Then there is a constant K = K (N , p, q) > 0 such that for any f ∈ W 1,p(�), we have for
all x ∈ �,

lim
s→1−(1 − s)

p
q

∫
�

(∫
B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx = K
∫

�

|∇ f (x)|pdx . (14)

Proof of Theorem 14 Step-1:We show that it is enough to prove eq. (14) for f ∈ W 1,p(�)∩
C2(�).
Let f ∈ W 1,p(�) and ε > 0 be fixed. Since C2(�) ∩ W 1,p(�) is dense in W 1,p(�), there
exists g ∈ C2(�) ∩ W 1,p(�) such that

[ f − g]W 1,p(�) < ε. (15)

Since we have assumed that eq. (14) holds for functions in C2(�) ∩ W 1,p(�), for s > 1
2 ,

we have ∣∣∣(1 − s)
1
q [g]s,p,q,�,R − K

1
p [g]W 1,p(�)

∣∣∣ < ε. (16)

Using triangle inequality, and then eq. (16) followed by eq. (15) and either lemma 11 or
lemma 12, we get

∣∣∣(1 − s)
1
q [ f ]s,p,q,�,R − K

1
p [ f ]W 1,p(�)

∣∣∣ ≤ (1 − s)
1
q

∣∣[ f ]s,p,q,�,R − [g]s,p,q,�,R
∣∣

+
∣∣∣(1 − s)

1
q [g]s,p,�,R − K

1
q [g]W 1,p(�)

∣∣∣ + K
1
q

∣∣[g]W 1,p(�) − [ f ]W 1,p(�)

∣∣
≤ (1 − s)

1
q [ f − g]s,p,q,�,R + ε + K

1
p [ f − g]W 1,p(�)

≤ [ f − g]W 1,p(�) + ε + K
1
p [ f − g]W 1,p(�)

≤ C(K , q)ε.

The proof of step-1 follows.
Step-2:
In view of the previous step, it is now enough to assume that f ∈ C2(�) ∩ W 1,p(�) and
prove eq. (14). Let us take an arbitrary sequence sn ∈ (0, 1) such that sn → 1− as n → ∞.
Set

Fn(x) :=
(

(1 − sn)
∫
B(0,δx )

| f (x + h) − f (x)|p
|h|N+sn p

dh

) p
q

,

and

F(x) := K |∇ f (x)|p.
Also note that, lemma 13 implies that Fn → F pointwise a.e in �. To complete the proof, it
is enough to show that

lim
n→∞

∫
�

Fn(x)dx =
∫

�

F(x)dx .

We shall apply lemma 9 on Fn to show that the interchange of limit and integral is valid.
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For any i ∈ N, consider the sets �i := {x ∈ � | dist(x, ∂�) > 1
i } ∩ B(0, i). We need to

verify the the hypotheses of lemma 9. First, note that for x ∈ �i , h ∈ B(0, δx ), t ∈ (0, 1),
we have

dist(x + th, ∂�) > dist(x, ∂�) − |h| ≥ (1 − τ)dist(x, ∂�).

Thus x + th ∈ �i2 for i > 1
(1−τ)

. Thus, we have using triangle inequality and then mean
value inequality,

|Fn(x) − F(x)| =
∣∣∣∣∣
(

(1 − sn)
∫
B(0,δx )

| f (x + h) − f (x)|q
|h|N+snq

dh

) p
q − K |∇ f (x)|p

∣∣∣∣∣

≤ sup
y∈�i2

|∇ f (y)|p
(

(1 − sn)
∫
B(0,R)

dh

|h|N+snq−q

) p
q + K |∇ f (x)|p

≤ C(N , p, q, R) sup
y∈�i2

|∇ f (y)|p.

Since f is continuous in the closure of the bounded open set �i2 , we have the hypothesis (1)
of lemma 9 satisfied for sufficiently large i ∈ N.

Note that, to show that hypothesis (2) of lemma 9 is satisfied, it is enough to show that

lim
i→∞ lim

n→∞

∫
�\�2i

Fn(x)dx = 0.

We start with an arbitrary x ∈ � \ �2i , h ∈ B(0, δx ) and t ∈ (0, 1). There can be two cases:
Case:1 δx = dist(x, ∂�) < 1

2i .
We have dist(x+ th, ∂�) ≤ |x+ th−x |+dist(x, ∂�) < τ

2i + 1
2i < 1

i . Thus x+ th ∈ �\�i .
Case:2 |x | > 2i and 1

2i < δx = R < dist(x, ∂�). Moreover, we can assume R < i without
loss of generality.
We have |x + th| ≥ |x | − τ R ≥ 2i − τ R ≥ i . Thus x + th ∈ � \ B(0, i) ⊆ � \ �i . Hence
we always have

x + th ∈ � \ �i whenever x ∈ � \ �2i . (17)

From eq. (17), we get

lim
i→∞ lim

n→∞

∫
�\�2i

Fn(x)dx = lim
i→∞ lim

n→∞

∫
x∈�\�2i

(
(1 − sn)

∫
y∈B(x,δx )

| f (x) − f (y)|q
|x − y|N+snq

dy

) p
q

dx .

Now we apply lemma 11 or lemma 12 with D = � \ �2i (so that D̃ = � \ �i ) to get

lim
i→∞ lim

n→∞

∫
�\�2i

Fn(x)dx ≤ lim
i→∞ lim

n→∞C(p, q, R, N )[ f ]p
W 1,p(�\�i )

= lim
i→∞C(p, q, R, N )[ f ]p

W 1,p(�\�i )
= 0.

Hence we can integrate eq. (13) and interchange the limit and the integral to get the result.
��

Theorem 15 Let � ⊂ R
N be an open set. If f ∈ L p(�) ∩ L p(�) is such that

L p,q( f ) := lim
s→1−

∫
�

(
(1 − s)

∫
B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx < ∞,

then f ∈ W 1,p(�) when p > 1, and f ∈ BV (�) when p = 1.
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Proof of Theorem 15 We divide the proof into two parts. First, we prove it for a particular
case with a bit stronger assumptions, and then give the general proof.
Step-1: � is bounded with � ⊆ B(0, λ), and

L̃ p,q( f ) := lim
s→1−

∫
�

(
(1 − s)

∫
�

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx < ∞.

Extend f by 0, outside �. From the proof of Theorem 2 and 3 in [8] we can see that for
any i = 1, 2, · · · , N , and ϕ ∈ C∞

c (�),∣∣∣∣
∫

�

f (x)
∂ϕ(x)

∂xi
dx

∣∣∣∣ ≤ C(�, N , p, q)(1 − s)(J1,s + J2,s), (18)

where,

J1,s =
∫

�

∫
�

| f (x) − f (y)|
|x − y|1+N+sq−q

|ϕ(y)|dydx

and

J2,s =
∫
RN \�

∫
suppϕ

| f (y)||ϕ(y)|
|x − y|1+N+sq−q

dydx .

We estimate J1,s using Fubuni’s theorem to change the order of integration, then using
Hölder’s inequality twice, first with respect to the measure dx

|x−y|N+sq−q and then with respect
to dy. We get

J1,s ≤
∫

�

(∫
�

| f (x) − f (y)|q
|x − y|q+N+sq−q

dx

) 1
q

(∫
�

|ϕ(y)|q ′

|x − y|N+sq−q
dx

) 1
q′
dy

≤
(∫

�

(∫
�

| f (x) − f (y)|q
|x − y|N+sq

dx

) p
q

dy

) 1
p

⎛
⎜⎝

∫
�

(∫
�

|ϕ(y)|q ′

|x − y|N+sq−q
dx

) p′
q′
dy

⎞
⎟⎠

1
p′

≤
(∫

�

(∫
�

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx

) 1
p

⎛
⎝

∫
�

|ϕ(y)|p′
(∫

B(0,λ)

dx

|x − y|N+sq−q

) p′
q′
dy

⎞
⎠

1
p′

= C(p, q, N , λ)(1 − s)
−1
q′

(∫
�

(∫
�

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx

) 1
p

‖ϕ‖L p′ (�)

Now using the hypothesis of Step-1, we have

(1 − s)J1,s ≤ C(p, q, N , λ)L̃ p,q( f )‖ϕ‖L p′ (�)
. (19)

Using Hölder’s inequality, we estimate J2,s as in [8] to get

(1 − s)J2,s ≤ C(N , p, q, λ)‖ϕ‖L p′ (�)
‖ f ‖L p(�) (20)

Using eqs. (18) to (20), we get∣∣∣∣
∫

�

f (x)
∂ϕ(x)

∂xi

∣∣∣∣ ≤ C(�, N , p, q, λ, f )‖ϕ‖L p′ (�)
,

Hence by lemma 6, the result follows.
Step-2:We now prove the theorem in full generality.
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For 1 < p < ∞, define X1,p(�) := W 1,p(�), and X1,1(�) := BV (�). Using lemma 8,
choose an increasing sequence of bounded open sets {�n}n with smooth boundary such that
∪n�n = �, and dist(x, ∂�) > 1

n , for x ∈ �n . From the hypothesis, it follows that

lim
s→1−

∫
x∈�n

(
(1 − s)

∫
y∈�n∩B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx < ∞.

We also have, for s > 1
2 , and R > 1

n ,

∫
�n

(∫
�n\B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx ≤
∫

�n

(∫
�n , |x−y|> 1

n

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx

≤ n
Np
q +sp

∫
�n

(∫
�n , |x−y|> 1

n

| f (x) − f (y)|qdy
) p

q

dx

≤ C(n, N , p, q)
[
‖ f ‖p

L p(�n )
|�n |

p
q + ‖ f ‖p

Lq (�n )
|�n |

]
.

Since, we have f ∈ L p(�) ∩ L p(�) frfom the hypotheses, and �n are bounded domains,
we have

lim
s→1−

∫
�n

(
(1 − s)

∫
�n

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx < ∞.

From Step-1, we can conclude that f ∈ X1,p(�n) for all n. Further the X1,p-seminorms are
uniformly bounded (independent of n) as can be seen from the following calculation, where
we use theorem 14,

K [ f ]p
X1,p(�n)

= lim
s→1−

∫
x∈�n

(
(1 − s)

∫
y∈B(x,δx,�n )

| f (x) − f (y)|p
|x − y|N+sp

dy

) p
q

dx

≤ lim
s→1−

∫
x∈�

(
(1 − s)

∫
y∈B(x,δx )

| f (x) − f (y)|p
|x − y|N+sp

dy

) p
q

dx

= L p,q( f ) < ∞.

The proof follows from the observation that K [ f ]p
X1,p(�)

= supn K [ f ]p
X1,p(�n)

. ��

5 Proofs of Theorems 1 and 2

Note that theorem 2 is a straightforward consequence of theorem 15, as L p,q( f ) ≤ L∗
p,q( f ).

theorem 1 is also a consequence of theorem 14, but it requires a bit more work. To complete
the proof of theorem 1, we only need the following lemma:

Lemma 16 Let � ⊆ R
N be an open set, 1 ≤ p < ∞, τ ∈ (0, 1), f ∈ W 1,p(�) and R > 0.

Assume one of the following conditions

(1) 1 ≤ q ≤ Np
N−p with p < N,

(2) 1 ≤ q < ∞ with p ≥ N.

Then eq. (14) implies eq. (4).

In order to prove this, we first prove a bit more general result.
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Proposition 17 Let� ⊆ R
N be an open set, 1 ≤ p, q < ∞, τ ∈ (0, 1), f ∈ L p(�)∩Lq(�)

and R > 0. Additionally, in the case p < q, assume that for some s0 ∈ (0, 1),

∫
�

(∫
R≤|h|≤τdist(x,∂�)

| f (x + h) − f (x)|q
|h|N+s0q

dh

) p
q

dx < ∞. (21)

Then eq. (14) implies eq. (4).

Proof of Proposition 17 Note that, since

∫
�

(∫
B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx ≤
∫

�

(∫
B(x,τdist(x,∂�))

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx,

from eq. (14) we have

lim
s→1−(1 − s)

p
q

∫
�

(∫
B(x,τdist(x,∂�))

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx ≥ K
∫

�

|∇ f (x)|pdx .

We focus on the reverse inequality. Observe that for x, y ∈ �, δx < |x − y| ≤ τdist(x, ∂�)

implies R < |x − y| ≤ τdist(x, ∂�). Hence we can write, using triangle inequality for
L p-norms,

(∫
�

(∫
B(x,τdist(x,∂�))

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx

) 1
p

=
(∫

�

(∫
B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy +
∫

δx≤|x−y|≤τdist(x,∂�)

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx

) 1
p

≤
(∫

�

(∫
B(x,δx )

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx

) 1
p

+
(∫

�

(∫
R≤|x−y|≤τdist(x,∂�)

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx

) 1
p

=: I
1
p
1 + I

1
p
2 .

In order to complete the proof, in view of eq. (14), we need to show that I2 is bounded as
s → 1−. We estimate I2 in two separate cases.
Case-1: 1 ≤ q ≤ p < ∞.
Using Minkowsky’s integral inequality and taking the 0-extension of f outside �, we have

I
q
p
2 ≤

(∫
�

(∫
R≤|h|≤τdist(x,∂�)

| f (x + h) − f (x)|q
|h|N+sq

dh

) p
q

dx

) q
p

≤
∫
RN

(∫
�

| f (x + h) − f (x)|p
|h| Np

q +sp
χB(0,τdist(x,∂�))\B(0,R)(h)dx

) q
p

dh

≤
∫

|h|≥R

1

|h|N+sq

(∫
�

| f (x + h) − f (x)|pdx
) q

p

dh

≤ C(p, q)

∫
|h|≥R

1

|h|N+sq

(∫
�

| f (x)|pdx
) q

p

dh
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≤ C(p, q, R, N )‖ f ‖qL p(�).

Hence the proof follows in this case.
Case-2: 1 ≤ p ≤ q < ∞.
From eq. (21) we get that there is some λ f > 0 such that for s ∈ (s0, 1),

I2 ≤
∫

�

(∫
R≤|h|≤τdist(x,∂�)

| f (x + h) − f (x)|q
|h|N+s0q

dh

) p
q

dx

≤ 2
∫

�∩B(0,λ f )

(∫
R≤|h|≤τdist(x,∂�)

| f (x + h) − f (x)|q
|h|N+s0q

dh

) p
q

dx .

Using Hölder’s inequality, we get

I2 ≤ 2λ
N (1− p

q )

f

(∫
�∩B(0,λ f )

∫
R≤|h|≤τdist(x,∂�)

| f (x + h) − f (x)|q
|h|N+s0q

dhdx

) p
q

.

Now we can proceed as in Case-1 to show that

I2 ≤ C(N , p, q, R, f )‖ f ‖p
Lq (�).

This completes the proof. ��

Now we can prove lemma 16 and thereby complete the proof of theorem 1.

Proof of lemma 16 By the standard embedding theorems, we already know that f ∈ Lq(�).
In order to prove the statement, we need to show that when p < q , eq. (21) holds. Let �1 be
a smooth domain such that

{x ∈ � | dist(x, ∂�) > R} ⊆ �1 ⊆ �.

Clearly �1 is a W 1,p-extension domain (by lemma 5). Let f̃ ∈ W 1,p(RN ) be an extension
of f |�1 , that is

‖ f̃ ‖W 1,p(RN ) ≤ C(p, q, N ,�)‖ f ‖W 1,p(�1)
≤ C(p, q, N ,�)‖ f ‖W 1,p(�) < ∞.

This, along with lemma 7

∫
�

(∫
R≤|h|≤τdist(x,∂�)

| f (x + h) − f (x)|q
|h|N+sq

dh

) p
q

dx

=
∫

�1

(∫
R≤|h|≤τdist(x,∂�)

| f (x + h) − f (x)|q
|h|N+sq

dh

) p
q

dx

≤
∫
RN

(∫
RN

| f̃ (x + h) − f̃ (x)|q
|h|N+sq

dh

) p
q

dx

< ∞.

��
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