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Abstract. Proliferation of the Internet of Things (IoT) has fundamen-
tally changed how different application environments are being used. IoT
networks are prone to malicious attacks similar to other networks. Ad-
ditionally, physical tampering, injection and capturing of the nodes are
more probable in IoT networks. Therefore, conventional security prac-
tices require substantial re-engineering for IoT networks. Here we present
an architecture that enables collective intelligence for IoT networks via
smart network nodes and blockchain technology. In this architecture,
various security related functionalities are distributed to network nodes
to detect tampered, captured and injected devices, recognize their move-
ments and prevent networks’ use as an attack surface. Nodes interact
with signaling, security information and data traffic. Security information
aids to distribute cyber-security functionalities across the IoT network
based on the device and/or application type. Every node in the proposed
IoT network does not need to have all the cyber-security functionalities,
but the network as a whole needs these functionalities.

Keywords: Distributed IoT networks · architecture · blockchain · AI ·
network security.

1 Introduction

The Internet of Things (IoT) is one of the most important technologies of the
last decades enabling data collection, data exchange, communication and control
actions between people, processes, and things. We can connect to the Internet
and control industrial and everyday objects. According to forecasts, the use of
IoT devices will continue to increase with time. For example, Cisco estimates
500 billion devices to be connected to the Internet by 2030, [4]. IoT Analytics
counts the number of IoT devices to exceed 30.9 billion units in year 2025, [11].
Statista forecasts that end-user spending on IoT solutions worldwide in 2025
will be 1567 billion US$ [15]. However, the number of security threats targeting
IoT devices and the occurrence of cyber security incidents have also increased.
The susceptibility to cyber threats is a serious concern for IoT networks and
⋆ Corresponding author.
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overlaid complex systems and forces the IoT actors to take countermeasures
against hostile cyber actions and attacks. Adversaries may penetrate networks,
disrupt or defeat the system defense using exploits available on the Internet, hang
on systems for a long time, and utilize data available on the systems. Therefore,
the growth of IoT usage will increase the need of new cyber security solutions.

Artificial intelligence (AI) could be used in enabling IoT networks and devices
to become smarter and ensure the IoT network’s security autonomously. AI-
based IoT applications with continuous machine learning (ML) algorithm are
capable of continually learning, interacting, and enhancing real-time cognition
capabilities of devices.

IoT edge networks do not yet formalize and exploit collective intelligence
(CI). CI encompasses task and information distribution, computational load bal-
ancing, code offloading, as well as instructing how and where to run CI. However,
there are also several significant challenges that must be addressed in CI. These
include the quality of data, the distribution of the computational workload and
functionalities, mathematical models of the CI, and the scalability and portabil-
ity of the solution.

Another critical cyber-security concern is related to the deployment of large-
scale IoT systems. The centralized architecture of existing IoT systems have
weaknesses such as single point of failure, high-cost of transmission and compu-
tation, and data loss. Additionally, due to the massive number of devices that
can belong to several users, the IoT systems need to ensure data ownership,
so that they can exercise complete control over the shared data. The coexis-
tence and collaboration of different technologies and the open standards and
protocols employed by the IoT may pose additional security risks. Despite the
heterogeneity and inherent computational power constraints of the IoT devices
and large scale of the IoT network, there is an increasing interest in autonomic
computing for device management, where each device is allowed to make signif-
icant decisions without the consent of others. In this case, sensors and devices
need to communicate with each other in a distributed way. This in turn leads
to many design challenges including limited scalability and high latency. These
challenges can be addressed by a secure and supervised distributed architec-
ture where the security platform intelligently divides processing load among the
nodes of the network. For this purpose, distributed ledger technology (DLT),
such as blockchain, may be utilized. According to [8] blockchain provides advan-
tages including decentralization, transparency, immutability, enhanced security,
anonymity, cost reduction and autonomy. DLT transactions are validated using
trust-free consensus algorithms that allow every node to participate in the con-
sensus, which increases the robustness and reliability of transactions compared
to absolute consensus methods used in centralized methods. Usage of DLT in
IoT networks eliminates the need of a single trusted authority, thereby enhancing
the potential for scalability and reliability.

Here we present a distributed IoT security architecture, SENTIENCE3, that
enables collective intelligence for IoT networks. The problem statement may be

3 EPO patent number EP23155296.9 pending.
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formulated as Can we and how do we embed satisfactory security controls for
computationally restricted heterogeneous network nodes to enable reliable, secure
and resilient platforms for rich ecosystems by applying computational intelli-
gence?. The main contributions of the paper are as follows.

– A private-by-design and scalable blockchain-based collective intelligence sys-
tem with distributed blacklisting and trust scoring protocol.

– An AI-based signaling protocol that enables collective intelligence.
– A security analysis of the presented architecture.

The organization of the rest of the paper is as follows. Section 2 presents an
overview of AI-based distributed IoT security solutions available in the literature.
Section 3 presents the proposed system architecture, blacklisting and signaling
protocol. Section IV provides a discussion on advantages and disadvantages of
the presented solutions. Section V presents the conclusions of the paper.

2 Literature review

Mohamudally [12] provides a comparative study of mathematical models for
CI and a discussion of their suitability for implementation on mobile devices.
Additionally, a framework for modeling CI systems using graph theory and ar-
tificial neural networks is proposed. Radanliev et al. [14] proposes a dynamic
and self-adaptive cyber risk analytics system using AI/ML as well as real-time
intelligence. The usage of edge computing nodes and AI/ML technology mi-
grated to the periphery of the Internet, along with local IoT networks, enables a
comprehensive and systematic understanding of the opportunities and threats.
Joseph et al. [6] proposed a self-organizing IoT system architecture that relies
on blockchain and its related features in order to achieve aspects of end-to-end
IoT security.

Konstantinos et a. [9] propose a design method and cognitive platform that
incorporate various technologies including Public Key Infrastructure (PKI), block-
chain, and AI to support a unified and integrated approach towards data privacy,
security and safety of Industrial IoT systems. The proposed system analyzes the
IoT topology and signal metadata in relation to the relevant safety profiles. The
aim is to exploit the cyber-physical representation of the system-of-systems in
conjunction with security and safety policies to provide real-time risk mapping
for static analysis and continuous monitoring to assess safety issues and take
appropriate response actions.

An et al. [1] proposes a novel blockchain based anomaly detection architecture
and method for IoT networks to overcome the problems of data resource sharing
and collective learning in IoT. IoT devices with abnormal HTTP traffic are
detected efficiently and accurately using the proposed clustering and autoencoder
methods. This architecture allows detection models to be shared among users,
effectively solving the problem of collective learning. Multiple joint detection
methods can also be effective in improving the ability to detect anomalies.
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Li et al. [10] examines network architectures that may be utilized in future 6G
networks to support intelligent IoT. Furthermore, in order to facilitate the shar-
ing of learning and training results in the intelligent IoT, the authors introduce
and adopt a novel method called collective reinforcement learning (CRL) that is
inspired by the collective learning of humans. Blockchain, mobile edge comput-
ing and cloud computing are applied to enhance data security and computing
efficiency.

An et al. [1] provide a mechanism for sharing detection models and Li et
al. [10] sharing training models. None of the aforementioned works study study
collective intelligence by AI signaling, distributed blacklisting via anomaly detec-
tion and blockchain network, the mitigation of security threats, or the disaster
recovery, which are addressed in this paper.

3 An Architecture for Collective Intelligence

3.1 System Architecture

Here we propose a secure, blockchain-based architecture for enabling collective
intelligence in zero-trust IoT networks. In the proposed system, resource con-
strained nodes combine jointly cyber-security information and defend against
cyber threats. Intelligent security related computing, detection, and prevention
algorithms are distributed to network nodes. Nodes interact with signaling, AI
and data traffic (see Fig. 1).

Fig. 1. Network nodes with signaling, data and AI traffic.

Data traffic refers to the actual payload, such as sensor readings, being trans-
mitted over the network. Signaling refers to the exchange of control information
between network elements to establish, maintain, or modify communication. AI
traffic consists of information analyzed from received traffic and information
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from security algorithms. Analysis of the traffic is performed in the cloud servers,
routers and IoT nodes. Solid lines in Fig. 1 describe signaling traffic. Signaling
traffic of the external connections is not shown. Dashed and dotted lines describe
AI and data traffic, respectively.

The usage of IoT and blockchain with AI enable collective intelligence and
allow real-time decision making. This facilitates the identification and mitigation
of cyber-security threats, reduction of system failures, optimization of data flow,
and provides re-routing options for disaster recovery. This is achieved with the
IoT device registration to the network, collection of data from devices, detection
of threats from the data anomalies, security incident publication to blockchain,
and collective actions on detected threats. Collective action on detected security
threats includes, e.g., blacklisting and removing malicious IoT devices from the
network, applying load balancing rules to divide computation, retrieving back-up
data and re-routing the data flow.

The main components of the system architecture include IoT clients, com-
munication and blockchain network, distributed monitoring, threat detection
/ prevention, blockchain, CI, zero-trust, load balancing and recovery systems.
The system architecture is designed in according to the Zero-Trust Architec-
ture (ZTA) and the National Institute of Standards and Technology (NIST)
Cybersecurity Framework. ZTA requires users of the network to be authenti-
cated, authorized, and validated before being granted access to applications and
data. Here this is achieved by identity and access management, network seg-
mentation, least priviledge principle, microsegmentation, continuous monitoring
and analytics, endpoint security, data encryption, zero-trust access, device behav-
ior analytics, and incident response. The NIST Cybersecurity Framework was
used to assist risk identification, secure delivery of services, and detection of and
response to incidents.

The layers of the system architecture with the main functionality of the
each layer is depicted in Fig. 2. Security algorithms and computational load are
distributed between AI-blockchain nodes, routers and IoT clients to decentralize
the computational load. Distribution is guided by time, computational capability
and energy principles. Traffic monitoring and detection is distributed to different
network nodes by time and energy division based scheduling. Nodes receive alarm
information by the AI traffic.

3.2 AI Information Signaling and AI Layer

In the SENTIENCE architecture, intelligent security related functionalities are
distributed to different network nodes, where each node has one or more cyber-
security functionalities. The aim is to avoid each node requiring to have unneces-
sarily all the functionalities, but the network as a whole has the functionalities.
The network awareness, collective intelligence, is distributed among the nodes.
The AI layer handles AI messages between IoT devices and the cloud. It defines
how AI messages are sent and received by nodes, as well as the cyber-security
functionalities each device possesses, where these functionalities and the device
status are kept track of in the cloud.
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Fig. 2. Layered architecture.

AI plays a critical role in improving the security and reliability of IoT net-
works through the data analysis. This allows IoT networks to proactively identify
and respond to abnormal behavior or potential security threats. In order to de-
tect anomalies and assign trust scores to devices, AI algorithms can learn from
historical data, adapt to changing conditions, and continuously enhance their
accuracy with time.

AI messages include device fingerprint, battery level, feedback about interac-
tions with other network nodes, average processor load, tampering information,
misuse and anomaly detection information, port scanning information, traffic la-
tency, nodes responsiveness, smart contract information, network configuration
information, location data, error logs, and optional fields for forthcoming use.

A device fingerprint may include device specific information such as device
type, supported security and communications protocols, and MAC address. It is
required for AI level topological device grouping and work load distribution. Bat-
tery level and processor(s) load are needed for work load distribution. Tampering
information note if the node is on the target of side channel attack, tampering or
movement. Nodes detect intrusions by misuse and anomaly detection techniques
and they report all the security events in AI messages. IoT nodes have also
built-in feature to do port scanning and they report all the unnecessary open
ports. Latency and nodes responsiveness are included to the traffic information
fields of the AI message. AI signaling messages are also used for smart contract
information delivery and configuration of information delivery. There are also
reserved fields for the forthcoming use.

AI messages are used in securing the IoT network by updating network ac-
cess rules, keeping the disaster recovery configuration up-to-date, detecting and
mitigating security attacks in real-time, sharing feedback about other nodes in
the network, and re-routing network traffic for disaster recovery. AI messages
are encrypted and hashed.
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3.3 A Scalable, Private by Design Blockchain Architecture

Blockchain is an attractive option for the decentralized secure architecture. Its’
transactions are validated by trust-free consensus algorithms that allow every
node to participate in the consensus, which increases the robustness and relia-
bility of transactions as well as scalability and reliability compared to absolute
consensus methods.

Fig. 3. Sequence chart of AI traffic for an injected IoT client.

The two most popular consensus algorithms, Proof of Work (PoW) and Proof
of Stake (PoS), are computationally intensive and not suitable for IoT scenarios.
Therefore, lightweight consensus algorithms are required for IoT–blockchain in-
tegration. A simple voting mechanism, e.g., Proof of Authority (PoA), Practical
Byzantine Fault Tolerance (PBFT), or Proof of Elapsed Time (PoET) could be
used as the consensus algorithm for the block validation and transactions cre-
ation, where public-key cryptography is used as an encryption mechanism. The
Lightning Network, a “layer 2” payment protocol designed to be layered on top
of a blockchain-based cryptocurrency, such as bitcoin, could also be utilized to
meet resource and power constraints of IoT networks, [13]. It has several de-
sirable properties by design and was conceived to enable scalability and high
transaction rates.
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The SENTIENCE utilizes the private-by-design blockchain architecture based
on [7] that ensures the intelligent supervision of all the necessary events in the
consensus protocol distributed across the IoT network. This traceability is nec-
essary to guarantee reliability and robustness of the system. Smart contracts are
used in enabling and automating interactions between the system and the IoT
devices. A separate virtual database is used for logging interactions between IoT
devices and the blockchain.

The consensus mechanism classifies the IoT device transactions as public
and private. Public transactions are visible to every node in the IoT network,
whereas private transactions are accessible only to the nodes that are a part of
the transactions. Nodes in the private blockchain network are pre-authenticated
using the security protocol described in 3.5 prior to joining the network. There-
fore, maintaining consensus does not require complex proof to be carried out.
A simple voting mechanism is used as the consensus algorithm for the block
validation and creation for both public and private transactions. Network traffic
and device data that could be used by malicious actors for exploiting weaknesses
of the network, like trust scores of IoT nodes, are stored privately in a private
database in the AI-blockchain nodes, whereas the list of blacklisted devices is
kept publicly on the public blockchain database. By applying this approach,
strict controls are enforced and lateral movement within the network is limited,
thus reducing the impact of a potential security breach.

The Transaction Manager is a key module mainly responsible for storing
and allowing access to encrypted transaction data. Every AI-blockchain node,
whether sender or receiver, has its own transaction manager. It performs anomaly
detection and acts as a gateway to distribute private information to other nodes
in the network that will encrypt private transactions and handle IoT trans-
actions. The encryption and decryption module will encrypt and decrypt the
payload by generating the asymmetric keys and returning them to Transaction
Manager. To process the public and private transactions by the AI-blockchain
nodes, working layers of blockchain are modified so that for private transactions
only the allowed authorized node takes part in communication. Similarly, block
validation and block generation logic are modified so that instead of using global
root check, it uses global public state root in the blockchain header. For private
transaction block validation and creation, logic is altered to handle private trans-
actions. However, still each node is able to demonstrate that it has the same set
of transactions as other nodes, since the block validation process also includes
a check of the global transaction hash, namely, the hash of all transactions in a
block, both public and private ones.

For scalability purposes, a sharding mechanism, such as the one proposed
in [3], could be utilized. Blockchain sharding refers to the division of the entire
blockchain network into several smaller sub-networks, known as shards. Each
shard contains data that is unique to it, as well as being independent of other
shards on the network. Each sub-network has its own consensus process for
creating blocks. Due to the multiple shards in the network, blocks are generated
faster than they would be in a network without shards. The number of shards can
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Fig. 4. A private-by-design blockchain architecture based on [7]

be increased as demand for the application grows, thereby allowing the system
to allocate resources dynamically.

3.4 Zero Trust, Blacklisting, Trust Scoring and Anomaly Detection

Once an IoT client is registered in the IoT network, it can communicate with
other IoT clients. Based on our previous work in [16] and [2], malicious IoT clients
are blacklisted in a distributed way by AI-blockchain nodes via the blockchain-
based IoT network security system using anomaly detection techniques and the
blockchain network.

Fig. 3 describes a case when a malicious client is injected to the IoT network.
The malicious client (client A) requests to connect to a registered neighboring
IoT client (client B). The client B checks whether the malicious IoT client is
blacklisted or registered to the IoT network against the ledger via the blockchain
network. If the client A is blacklisted, client B terminates the connection. If the
client A is already registered, client B connects and interacts with it. If the
client A is not blacklisted and is not registered to the IoT network, client B
forwards the request to the AI-blockchain node via the router. After receiving
the registration request from the registered client B, the AI-blockchain node
initiates the registration process of client A. Firstly it performs a blacklist and
registration check. If the client A is not blacklisted and is not registered, it then
performs a whitelist check. If the client A passes the device whitelist check, it
adds the client A to the IoT network by assigning a public key pair and creating
an entry in the ledger. The AI-blockchain node shares the key pair with client
A and completes the registration process. After registration is completed, the
malicious IoT client can access the IoT network.

All network traffic is continuously monitored by AI-blockchain nodes. If any
AI-blockchain node detects an anomalous behavior of the malicious IoT node, it
publishes its finding on the ledger via the blockchain network. If and when AI-
blockchain nodes have consensus on the anomalous behavior, then the malicious
IoT client is added to the blacklist via the blockchain network. Similarly, AI-
blockchain nodes may detect an IoT client to be offline, e.g., due to a physical
attack or battery depletion. If this client is not detected for a predefined period,
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then it is added to a list of compromised clients. Therefore, it is required that
clients inform the AI-blockchain server about their presence in the network.

A malicious client may stay silent without advertising itself and eavesdrops
communication. Therefore, the data traffic is encrypted for confidentiality rea-
sons and to prevent eavesdropping and man in the middle (MitM) attacks. Ad-
ditionally, in order to prevent registered malicious IoT clients from adding new
malicious IoT clients, the AI-blockchain node also performs regular blacklist and
registration checks. Power deprivation attacks are also possible by increased ra-
dio interference. The malicious client may also attempt to detect the topology of
the networks by listening to the signaling traffic. The network depicted in Fig. 1
is assumed to consists of the trusted clients. The network itself can be analyzed
using a trust metric to rate individual clients as well as AI-blockchain nodes.

3.5 Threat Detection

The SENTIENCE architecture provides distributed threat and incident detec-
tion solution for misuses, malware and anomalies. In traditional host-based
anomaly detection systems, a system call sequence is analyzed in order to model
normal behavior of an application. Using the model, the current sequence is
examined for anomalous behavior, which may indicate an attack. However, it
is shown that sequence-based systems are susceptible to evasion. As a mitiga-
tion method, multiple anomaly detection methods, including host-based event
anomaly detection, signature-based anomaly detection, and network traffic-based
anomaly detection could be jointly used.

4 Security Analysis of the SENTIENCE Architecture

Blockchain threat models relevant to IoT network security can be categorized as
identity-based, manipulation-based, cryptanalytic, reputation-based and service-
based attacks [5]. The SENTIENCE architecture is potentially resilient to all
attack types based on the security analysis provided in Table 1. The channel
model is depicted in Fig. 5.

5 Discussion about SENTIENCE Architecture

The presented architecture enables a cyber-secure IoT ecosystem. The intelligent
IoT network nodes collectively detect malicious IoT devices, monitor traffic, de-
tect and prevent threats, secure transactions, protect data and deliver awareness
information among the nodes. The system also prevents its’ use as an attack sur-
face and performs disaster recovery.

The architecture has the several advantages. It enhances security with strong
access control and real-time identification of malicious or suspicious activities.
Its’ blacklisting decisions are fair, transparent and reliable. The immutability
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Fig. 5. Channel model

and tamper-resistance of transactions and device identities are ensured by lever-
aging blockchain technology and device fingerprinting based on Physical Un-
clonable Functions (PUFs). The use of consensus algorithms, such as PoA and
PoET strengthens the network’s resilience to Sybil attacks. Network node pro-
vides feedback about other nodes in the network by monitoring and evaluating
QoS metrics, such as latency, throughput, reliability, and availability.

The architecture also has some challenges. Despite the distributed load, in-
creased activities of the IoT nodes increase energy consumption. As a mitiga-
tion technique, energy harvesting may be an option. Collective decision mak-
ing, consensus protocols and inter-device communications, particularly with the
blockchain network, introduces latency. Blockchain-based systems have also higher
computational costs due to consensus and cryptographic operations. As tradi-
tional systems do not involve distributed consensus, their computational cost
is generally lower. Lightweight consensus algorithms, such as PoA and POET,
and sharding can be used to reduce the complexity. Security and privacy issues
may arise as a result of increased interaction of IoT devices in the blockchain.
This could be mitigated by developing new standards for blockchain-based IoT
communications and security protocols. Blockchain-based systems may incur a
higher storage cost. Nodes participating in the blockchain network maintain a
copy of the entire blockchain, resulting in data redundancy. The governance and
administration of SENTIENCE, including distribution of cyber-security func-
tionalities across the network, trust scoring and blacklisting decisions, require
careful management.Therefore, it is essential to establish governance policies,
dispute resolution mechanisms, as well as ensuring transparency and account-
ability.

6 Conclusions

This paper presents an architecture to enable collective intelligence in distributed
IoT networks. The architecture is based on the zero-trust and NCSF guide-
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lines. In the presented solution, various intelligent security functionalities are
distributed amongst nodes, where each node has one or more cyber-security
functionalities. Nodes interact not only with signaling and data traffic but also
with the AI traffic, to transfer security information in the network.

The architecture introduces networking and processing overheads for inter-
device communications and collective decision making with AI signaling and
the blockchain network. Challenges may arise from managing and optimizing
the distribution of tasks amongst nodes and minimizing power consumption and
latency.

Future work includes the creation of performance and accuracy metrics for
the architecture and the validation of the architecture, as well as contributing
to the standardization of blockchain-based IoT communications and improved
security protocols that are suitable for IoT devices.
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