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Consistency of the Flat Flow Solution to the
Volume Preserving Mean Curvature Flow

Vesa Julin & Joonas Niinikoski

Communicated by G. Dal Maso

Abstract

We consider the flat flow solution, obtained via a discrete minimizing movement
scheme, to the volume preserving mean curvature flow starting from C1,1-regular
set. We prove the consistency principle, which states that (any) flat flow solution
agrees with the classical solution as long as the latter exists. In particular the flat
flow solution is unique and smooth up to the first singular time. We obtain the result
by proving the full regularity for the discrete time approximation of the flat flow
such that the regularity estimates are stable with respect to the time discretization.
Our method can also be applied in the case of the mean curvature flow and thus
it provides an alternative proof, not relying on comparison principle, for the con-
sistency between the flat flow solution and the classical solution for C1,1-regular
initial sets.
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1. Introduction

1.1. Statement of the Main Theorem

In this paper we consider the flat flow solution to the volume preserving mean
curvature flow, which is a weak notion of solution obtained via discrete minimizing
movement scheme. Our main goal is to prove the full regularity of the flat flow
up to the first singular time when the initial set is C1,1-regular. As a corollary we
obtain the consistency principle between the flat flow and the classical solution.

Let us begin by recalling that a smooth family of sets (Et )t∈[0,T ) ⊂ R
n+1,

for some T > 0, is a solution to the volume preserving mean curvature flow if it
satisfies

Vt = −(HEt − H̄Et ), (1.1)

where Vt denotes the normal velocity, HEt the mean curvature and
H̄Et := ffl

∂Et
HEt dHn the integral average of the mean curvature of the evolv-

ing boundary ∂Et . An important feature is that (1.1) can be seen as a L2-gradient
flow of the surface area. Since it also preserves the volume, it can be regarded as
the evolutionary counterpart to the isoperimetric problem.

If the initial set E0 is regular enough, e.g. it satisfies interior and exterior ball
conditions, the equation (1.1) has a unique smooth solution for a short interval
of time [19]. The classical result by Huisken [28] states that for convex initial
sets the classical solution exists for all times and converges exponentially fast
to a sphere. Similarly, it follows from [19,44] that if the initial set is close to a
local minimum of the isoperimetric problem, the equation (1.1) does not develop
singularities and convergences exponentially fast. However, for generic initial sets
the equation (1.1) may develop singularities in finite time [40,41]. In fact, unlike the
standard mean curvature flow, (1.1) may develop singularities even in the plane and
the boundary may also collapse such that the curvature of the evolving boundary
stays uniformly bounded up to the singular time. It is therefore natural to find
a proper notion of weak solution for (1.1) which is defined for all times even if
the flow develops singularities. The crucial difference between (1.1) and the mean
curvature flow is that the former is nonlocal and does not satisfy the comparison
priciple. Therefore we cannot directly use the notion of viscosity solution to define
the level-set solution via the methods introduced by Chen-Giga-Goto [15] and
Evans-Spruck [20], although in [33] Kim-Kwon are able to find a viscosity solution
for (1.1) for star-shaped sets. Instead, we may use the gradient flow structure to
obtain a weak solution called flat flow via discrete minimizing movement scheme
as first introduced by Almgren-Taylor-Wang [3] and Luckhaus-Stürzenhecker [36]
for the mean curvature flow, and then implemented to the volume preserving setting
(1.1) by Mugnai-Seis-Spadaro [43]. We give the precise definition in Section 3. The
existence of the flat flow solution of (1.1) is proven in [43] and the recent results
[16,23,31,32,42] indicate that it has the expected asymptotic behavior. Indeed, it
is proven in [31] that in the plane any flat flow solution of (1.1), starting from any
set of finite perimeter, converges exponentially fast to a union of equisize disks.

One of the main issues with the flat flow solution is that it has a priori very
low regularity. The second issue is that it is not clear if the procedure provides a
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solution to the equation (1.1) in some weak sense. The first issue is related to the
regularity and the second one is the problem of consistency, and it is rather clear
that these are closely related to each other. Indeed, the flat flow is obtained as a limit
of a discrete minimizing scheme, in the spirit of the Euler implicit method, where
the time disretization is led to zero. If the flow remains smooth enough, as the time
discretization goes to zero, then one can show that the limiting flat flow provides a
solution to the equation (1.1). However, the only case when this seems to be known
is the case when the initial set is convex. In this case the construction in [8], which
however is slightly different than [43], provides a flow of sets which remains convex
and thus gives a solution to (1.1). One may also define a distributional solution to
(1.1) (see [43]) and in a recent work Laux [34] proves that this notion of solution,
and in fact any gradient-flow calibration, agrees with the classical solution as long
as the latter exists (see also [26]).

The issue with regularity and consistency is better understood in the case of
the standard mean curvature flow. It is proven in [3] that the flat flow for the mean
curvature equation agrees with the classical solution as long as the latter exists. If
we are in a situation where the level-set solution is unique, i.e., it does not develop
fattening, then due to the result by Chambolle [12] we know that the flat flow
coincides with the level-set solution, see also [13,14]. We may then use the result
in [21] to conclude that the flat flow is a ’subsolution’ to the mean curvature flow in
the sense of Brakke and has the partial regularity proven in [9]. Thus we have the
consistency and partial regularity for the mean curvature flow when the flow does
not develop fattening. In addition, due to the recent result by DePhilippis-Laux [17]
together with the classical result in [36], we know that the flat flow is a distributional
solution to the mean curvature flow equation when the initial set is mean convex.

As we mentioned above, here we study the regularity of the flat flow solution
of (1.1) when the initial set is C1,1-regular, which is the same as to say that the set
satisfies interior and exterior ball conditions. Throughout the paper we will say that
an open set E ⊂ R

n+1 satisfies uniform ball condition (which we refer as UBC)
with radius r > 0 if it satisfies interior and exterior ball condition with radius r > 0.
If we do not want to emphasize the radius r , we simply say that E satisfies UBC.
Our main theorem reads as follows:

Theorem 1.1. Assume that E0 ⊂ R
n+1 is an open and bounded set which satisfies

UBC with radius r0. There is time T0 > 0, which depends on r0 and n, such that
any flat flow solution (Et )t≥0 of (1.1) starting from E0 satisfies UBC with radius
r0/2 for all t ≤ T0. This condition is open in the sense that if (Et )t≥0 satisfies UBC
with radius r for all t ≤ T , then there is δ > 0 such that it satisfies UBC with
radius r/2 for all t < T + δ.

Moreover, the flat flow (Et )t≥0 becomes instantaneously smooth and remains
smooth as long as it satisfies UBC. To be more precise, if (Et )t≥0 satisfies UBC
with radius r for all t ≤ T , then for every k ∈ N it holds that

sup
t∈(0,T ]

(
tk‖HEt ‖2

Hk (∂Et )

) ≤ Ck, (1.2)

where Ck depends on T , n, k, r and |E0|.
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In fact, we obtain even stronger result since we prove UBC and the estimate (1.2)
directly for the discrete approximative flat flow (Eh

t )t≥0 such that the estimates
hold for all h ≤ h0 for constants independent of h. However, we choose to state
the regularity result only for the limiting flow since the precise statement, which
can be found in Theorem 4.7 and Theorem 5.2, is rather technical. The first part
of the theorem is related to the result by Swartz-Yip [47], where the authors prove
curvature bounds for the Merriman-Bence-Osher thresholding algorithm for the
mean curvature flow.

It is well-known that we have uniqueness among smooth solutions of (1.1).
Therefore an important consequence of Theorem 1.1 is the consistency between
the notion of flat flow solution and the classical solution of (1.1) when the initial
set is C1,1-regular.

Corollary 1.2. Assume that E0 ⊂ R
n+1 is an open and bounded set which satisfies

UBC. Let (Êt )t∈[0,T ) ⊂ R
n+1 be the classical solution of (1.1) starting from E0,

where T > 0 is the maximal time of existence, and let (Et )t≥0 ⊂ R
n+1 be a flat

flow solution of (1.1) starting from E0. Then

Êt = Et for all t ∈ [0, T ).

Let us next briefly comment on the regularity estimate (1.2). The first part
of Theorem 1.1 (see Theorem 4.7 in Section 4) provides a bound on UBC for a
short time [0, T0] and the proof of Theorem 4.7 also provides an estimate how the
curvature grows in time for the approximative flat flow (Eh

t )t≥0. However, without
higher order regularity bounds we are not able to pass these growth-estimates to
the limit as h → 0. Therefore the results of Section 4 only imply the consistency
for a short time interval [0, T0] (see the discussion at the end of Sect. 5). Our main
motivation to prove (1.2) is to pass the previously mentioned curvature estimates
to the limit as h → 0 by Ascoli-Arzela theorem, and deduce that UBC is, in fact,
an open condition and therefore the flat flow agrees with the classical solution over
the whole maximal time of existence. Of course, in addition to that, (1.2) quantifies
the smoothing effect of the equation in a sharp way.

1.2. An Overview of the Proof

The proof of Theorem 1.1 is divided in three sections and therefore we give
here a short overview. We recall that in the minimizing movements scheme, for a
fixed time discretization step h > 0, we obtain a sequence of sets Eh

k such that
Eh

0 = E0 is the initial set and Eh
k+1 is defined inductively as a minimizer of the

functional

Fh(E, Eh
k ) = P(E) + 1

h

ˆ

E
dEh

k
dx + 1√

h

∣∣|E | − m0
∣∣,

where dEh
k

denotes the signed distance function and m0 = |E0|. A flat flow is
then defined as any cluster point of the discrete flow as h → 0. We first prove
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in Proposition 3.1 via energy comparison argument, that if Eh
k satisfies UBC with

radius r0 then the subsequent set Eh
k+1 satisfies the distance estimate

|dEh
k
| ≤ C

r0
h on ∂Eh

k+1.

The above estimate is crucial as it implies that the speed of the discrete flow is
sublinear. It also implies a bound for the mean curvature and the regularity of Eh

k+1
by applying the Allard’s regularity theory [2]. The most crucial part of the proof of
the main theorem is then to show that the subsequent set Eh

k+1 also satisfies UBC
with a quantified radius.

We solve this problem by adopting the two-point function method due to
Huisken [27] to the discrete setting (see also the works by Andrews [4] and Brendle
[10] for an overview of the topic). The idea is to double the variables and to study
the maximum and minimum values of the function

SEh
k
(x, y) = (x − y) · ν(x)

|x − y|2

for x 	= y ∈ ∂Eh
k . The point is that the extremal values of SEh

k
are related to the

maximal UBC radius of the set Eh
k (see Lemma 4.1). We use the maximum principle

to prove the following familiar inequality (see Lemma 4.6):

‖SEh
k+1

‖L∞ − ‖SEh
k
‖L∞

h
≤ C‖SEh

k
‖3
L∞ .

By iterating the above estimate, we obtain that the sets Eh
k satisfy UBC for all

k ≤ T0h−1, where the constant T0 is related to the UBC of the initial set. This
implies the first part of Theorem 1.1 (see Theorem 4.7). An important technical
part in this argument is the discrete version of the formula for d

dt νEt which we
derive in Lemma 4.4.

The formula in Lemma 4.4 is, in fact, so simple that we are able to differentiate
it multiple times and obtain in Proposition 5.1 a discrete analog for the formula

d

dt
�k HEt = �k+1HEt + lower order terms, (1.3)

where � denotes the Laplace-Beltrami operator (see e.g. [38]). The lower order
terms are due to the nonlinearity of the equation (1.1) and we need the notation
and tools from differential geometry in order to control them. We stress that this
is the only part in the paper where we need to introduce higher order covariant
derivatives. After we have obtained the discrete version of the formula (1.3) and
bounded the lower order error terms, we may adopt the argument from [22] to the
discrete setting and obtain the full regularity of the flow. Finally, we point out that
the argument can be adopted to the case of the mean curvature flow essentially
without any modifications.
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2. Notation and Preliminary Results

Throughout this paper, Cn ∈ R+ stands for a generic dimensional constant
which may change from line to line. We denote the open ball with radius r centered
at x by Br (x) ⊂ R

n+1 and by Br if it is centered at the origin. We denote by
C(x, r, R) ⊂ R

n+1 the open cylinder

C(x, r, R) := Bn
r (x ′) × (−R + xn+1, R + xn+1),

where Bn
r ⊂ R

n denotes the n-dimensional ball and x = (x ′, xn+1) ∈ R
n × R. For

a given set E ⊂ R
n+1 and a radius r ∈ R+ we set its r -enlargement Nr (E) = {x ∈

R
n+1 : dist(x, E) < r}. Note that we may alternatively write this as the Minkowski

sum E + Br . The notation ∇k F stands for k:th order differential of a vector field
F : R

n+1 → R
m . For a matrix A ∈ R

k ⊗ R
k we denote by |A| its Frobenius norm√

Tr(ATA) and by |A|op its operator norm max{|A ξ | : ξ ∈ R
k, |ξ | = 1}.

If a set S ⊂ R
k is Lebesgue-measurable, we denote its k-dimensional Lebesgue

measure (or volume) by |S|. Given a non-empty set E ⊂ R
n+1 we denote the

distance function by distE (x) := inf y∈E |x − y| and the signed distance function
by dE : R

n+1 → R, which is defined as

dE (x) :=
{

distE (x), for x ∈ R
n+1 \ E

−distRn\E (x), for x ∈ E .
(2.1)

Then clearly it holds that dist∂E = |dE |. If for a given point x ∈ R
n+1 there is

a unique distance minimizer yx on ∂E (that is |x − yx | = dist∂E (x)), we denote
yx by π∂E (x) and call it the projection of x onto ∂E . For a set of finite perimeter
E ⊂ R

n+1 we denote its reduced boundary by ∂∗E . Then P(E; F) = Hn(∂∗E∩F)

for every Borel set F ⊂ R
n+1 and P(E) = Hn(∂∗E).

2.1. Regular Sets and Tangential Differentiation

We will mostly deal with regular and bounded sets E ⊂ R
n+1. As usual, a

bounded set E ⊂ R
n+1 is said to be Ck,α-regular, with k ≥ 1 and 0 ≤ α ≤ 1, if

for every x ∈ ∂E we find a cylinder C(x, r, R) and a function f ∈ Ck,α(Bn
r (x ′))

with | f − xn+1| < R such that, up to rotating the coordinates, we may write

int(E) ∩ C(x, r, R) = {y ∈ C(x, r, R) : yn+1 < f (y′)}.
In particular, ∂E is a compact and embedded Ck,α-hypersurface. Again, if α = 0,
we say that E is Ck-regular and if k = ∞, we say that E is smooth. If r and
R are independent of the choice of x and the Ck,α-norm of g has a bound, also
independent of x , then we say that E is uniformly Ck,α-regular. We denote the
outer unit normal by νE , or simply ν if the meaning is clear from the context.
Note that νE ∈ Ck−1,α(∂E; ∂B1). We always assume that the orientation of ∂E is
induced by νE . We define the matrix field P∂E : ∂E → R

n+1 ⊗ R
n+1 by setting

P∂E = I − νE ⊗ νE . For a given point x ∈ ∂E the map P∂E (x) is the orthogonal
projection onto the geometric tangent plane Gx∂E := 〈νE (x)〉⊥.
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For given a vector field F ∈ Cl(Rn+1; R
m) with 1 ≤ l ≤ k we define its

tangential differential along 	 = ∂E as a matrix field ∇τE F : ∂E → R
m ⊗ R

n+1

by setting
∇τE F = ∇FP∂E = ∇F − (∇FνE ) ⊗ νE . (2.2)

When the meaning is clear from the context, we abbreviate E from the notation
and write simply ∇τ F . In the case m = n + 1, the tangential divergence of F is
defined as divτ F = Tr(∇τ F) and the tangential Jacobian Jτ F of F is defined on
∂E as

Jτ F =
√

det
(
(∇τ F ◦ ιτ )T (∇τ F ◦ ιτ )

)
, (2.3)

where ιτ (x) at x ∈ ∂E is the inclusion Gx∂E ↪→ R
n+1. In the case m = 1,

the notation ∇τ F also stands for the tangential gradient P∂E∇F . Note that ∇τ F is
Cl−1-regular and independent of how F is extended beyond ∂E . On the other hand,
every G ∈ Cl(∂E, R

m), with 1 ≤ l ≤ k, admits a Cl -extension F : R
n → R

m so
we may extend the concept of tangential differential to concern G simply by setting
∇τG = ∇τ F and further define the other introduced concepts in a similar manner.

If E is Ck-regular for k ≥ 2, we may define its second fundamental form, with
respect to the orientation νE , as a matrix field BE : ∂E → R

n+1 ⊗ R
n+1 given by

BE (x) =
∑

i

λi (x)κi (x) ⊗ κi (x),

where the (unit) principal directions κ1(x), . . . , κn(x) ∈ 〈νE (x)〉⊥ and the princi-
pal curvatures λ1(x), . . . , λn(x) at x ∈ ∂E are given by the orientation νE . The
corresponding (scalar) mean curvature field HE is then given pointwise as the sum
of the principal curvatures, i.e., HE = Tr(BE ). Note that we may simply write

BE = ∇τ νE and HE = divτ νE . (2.4)

Finally, we define the tangential Hessian for given u ∈ C2(∂E) as ∇2
τ u = ∇τ (∇τu)

and further the tangential Laplacian or the Laplace-Beltrami of u as

�τu = divτ (∇τu) = Tr(∇2
τ u).

The tangential Laplacian�τ F for F ∈ C2(∂E; R
n+1) is defined as

∑
i �τ(F ·ei )ei .

We will need the following identities on ∂E :

�τ id = −HEνE and �τνE = −|BE |2νE +∇τ HE if E is C3 −regular. (2.5)

The importance of the mean curvature HE lies in the surface divergence theorem
which states that for every G ∈ C1(∂E; R

n+1) it holds that
ˆ

∂E
divτ G dHn =

ˆ

∂E
HE (G · νE ) dHn . (2.6)

The concept of mean curvature can be generalized to the setting of bounded sets
of finite perimeter in the varifold sense. Indeed, for a set of finite perimeter E ⊂
R
n+1, we may define the tangential divergence divτ F of F ∈ C1(Rn+1; R

n+1)

along ∂∗E in the same way as in the regular case by replacing the outer unit normal
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field with the measure theoretic normal field ∂∗E → ∂B1 which we also denote by
νE . Then, if E is a bounded set of finite perimeter and there is g ∈ L1(∂∗E,Hn|∂∗E )

such that ˆ

∂∗E
divτ F dHn =

ˆ

∂∗E
g(F · νE ) dHn (2.7)

for every F ∈ C1(Rn+1; R
n+1), we say that g is a generalized mean curvature

of E and denote it by HE . As mentioned, this is a concept from the context of
varifold theory for which we refer to [46] as a standard introduction. Since ∂∗E is
Hn-rectifiable set, one may treat the pair (∂∗E,Hn|∂∗E ) as an rectifiable integral
varifold of multiplicity one.

2.2. Riemannian Geometry

We need the notation related to Riemannian geometry and as an introduction to
the topic we refer to [35]. Let us assume that E ⊂ R

n+1 is a smooth and bounded
set and denote 	 = ∂E . Since 	 is embedded in R

n+1 it has natural metric g
induced by the Euclidean metric. Then (	, g) is a Riemannian manifold and we
denote the inner product on each tangent space X,Y ∈ Tx	 by 〈X,Y 〉, which we
may write in local coordinates as

〈X,Y 〉 = g(X,Y ) = gi j X
iY j .

We extend the inner product in a natural way for tensors. Note that x · y denotes
the inner product of two vectors in R

n+1. We denote smooth vector fields on 	 by
T (	) and by a slight abuse of notation we denote smooth k:th order tensor fields
on 	 by T k(	). We write Xi for vectors and Zi for covectors in local coordinates.
We denote the Riemannian connection on 	 by ∇̃ and recall that for a function
u ∈ C∞(	) the covariant derivative ∇̃u is a 1-tensor field defined for X ∈ T (	)

as

∇̃u(X) = ∇̃Xu = Xu,

i.e., the derivative of u in the direction of X . The covariant derivative of a smooth
k-tensor field F ∈ T k(	), denoted by ∇̃F , is a (k + 1)-tensor field and for
Y1, . . . ,Yk, X ∈ T (	) we have the recursive formula

∇̃F(Y1, . . . ,Yk, X) = (∇̃X F)(Y1, . . . ,Yk), (2.8)

where

(∇̃X F)(Y1, . . . ,Yk) = XF(Y1, . . . ,Yk) −
k∑

i=1

F(Y1, . . . , ∇̃XYi , . . . ,Yk).

Here ∇̃XY is the covariant derivative of Y in the direction of X (see [35]) and
since ∇̃ is the Riemannian connection it holds that ∇̃XY = ∇̃Y X + [X,Y ] for
every X,Y ∈ T (	). We denote the k:th order covariant derivative of a function
u on 	 by ∇̃ku ∈ T k(	) and the Laplace-Beltrami operator by �. Note that for
functions it holds that �u = �τu. The notation ∇̃ik · · · ∇̃i1u means a coefficient
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of ∇̃ku in local coordinates. We may raise the index of ∇̃i u by using the inverse
of the metric tensor gi j as ∇̃ i u = gi j ∇̃ j u. We note that the tangential gradient of
u : 	 → R is equivalent to its covariant derivative in the sense that for every vector
field X ∈ T (	) we find a unique vector field X̃ : 	 → R

n+1 which satisfies
X̃ · νE = 0 and

∇̃Xu = ∇τu · X̃ .

Similarly it holds that ∇̃2u(X,Y ) = ∇2
τ u X̃ · Ỹ . Finally we recall that the notation

∇k always stands for the standard Euclidean k:th order differential for an ambient
function.

We define the Riemann curvature tensor R ∈ T 4(	) [35,39] via interchange
of covariant derivatives of a vector field Y i and a covector field Zi as

∇̃i ∇̃ j Y
s − ∇̃ j ∇̃i Y

s = Ri jkl g
ksY l ,

∇̃i ∇̃ j Zk − ∇̃ j ∇̃i Zk = Ri jkl g
ls Zs,

(2.9)

where we have used the Einstein summation convention. We may write the Riemann
tensor in local coordinates by using the second fundamental form B, which in the
Riemannian setting is understood to be 2-form, as

Ri jkl = Bik B jl − Bil B jk . (2.10)

We will also need Simon’s identity, which reads as

�Bi j = ∇̃i ∇̃ j H + HBil g
ls Bs j − |B|2Bi j . (2.11)

Let us next fix our notation for the function spaces. We define the Sobolev space
Wl,p(	) in a standard way for p ∈ [1,∞], see e.g. [6], denote the Hilbert space
Hl(	) = Wl,2(	) and define the associated norm for u ∈ Wl,p(	) as

‖u‖p
Wl,p(	)

=
l∑

k=0

ˆ

	

|∇̃ku|p dHn,

and, for p = ∞,

‖u‖Wl,∞(	) =
l∑

k=0

sup
x∈	

|∇̃ku|.

The above definition extends naturally for tensor fields. We adopt the convention
that ‖u‖H0(	) = ‖u‖L2(	) and denote ‖u‖Cm (	) = ‖u‖Wm,∞(	). We remark that
we may define the k:th order covariant derivative of a function u ∈ Ck(	) and the
space Wk,p(	) for k ≥ 2 as above assuming only that 	 (i.e. the set E for which
	 = ∂E) is Ck-regular.

Finally we adopt the notation S � T from [25,38] to denote a tensor formed by
contracting some indexes of tensors S and T using the coefficients of the metric
tensor gi j . This notation is useful as it implies

|S � T | ≤ C |S||T |,
where the constant C depends on the ’structure’ of S � T .
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2.3. Functional and Geometric Inequalities

We will need standard interpolation inequalities on smooth hypersurfaces. Since
we will apply them on the moving boundary given by the flow, we need to control
the constants in the inequalities. We begin with a simple interpolation on Hölder
norms.

Lemma 2.1. Let � ⊂ R
k be an open set and let u ∈ C1(�), then for every

α ∈ (0, 1)

‖u‖C0,α(�) ≤ 3‖u‖1−α
L∞(�)‖u‖α

C1(�)
.

Proof. The inequality follows from

|u(y) − u(x)|
|y − x |α ≤ |u(y) − u(x)|1−α

( |u(y) − u(x)|
|y − x |

)α

≤ 2‖u‖1−α
L∞(�)‖u‖α

C1(�)
.

��
We continue to introduce functional and geometric inequalities that we need in

order to prove the higher order regularity estimates stated at the end of Theorem 1.1.
As we already mentioned we do not need any deep results from differential geometry
in order to prove the estimate for UBC stated in the beginning of Theorem 1.1. It
is only when we deal with higher order derivatives, i.e., higher than two, we need
the notation of covariant derivatives. Recall that we always assume that 	 = ∂E
for a bounded set E ⊂ R

n+1.
Let us first recall the interpolation inequality with Sobolev-norms on embed-

ded surfaces. We use the result from [38, Proposition 6.5] which states that under
curvature bound the standard interpolation inequality holds for a uniform constant.

Proposition 2.2. Assume ‖B	‖L∞ ,Hn(	) ≤ C0 and 	 is Cm-regular for m ≥ 2.
Then for integers 0 ≤ k ≤ l ≤ m and numbers p, q, r ∈ [1,∞), there is θ ∈
[k/ l, 1] such that for every Cl-regular covariant tensor field T on 	 it holds

‖∇̃kT ‖L p(	) ≤ C‖T ‖θ
Wl,q (	)

‖T ‖1−θ
Lr (	)

for a constant C = C(k, l, n, p, q, r, θ,C0) ∈ R+ provided that the following
compatibility condition is satisfied

1

p
= k

n
+ θ

(
1

q
− l

n

)
+ 1

r
(1 − θ).

We denote an index vector by α ∈ N
k , i.e., α = (α1, . . . , αk) where αi ∈ N,

and define its norm by

|α| =
k∑

i=1

αi .

The following inequality is well-known but we prove it for the reader’s convenience:
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Proposition 2.3. Assume ‖B	‖L∞ ,Hn(	) ≤ C and 	 is Cm-regular for m ≥ 2.
Assume u1, . . . , ul are Cm-regular functions such that ‖ui‖L∞ ≤ C. Then for an
index vector α ∈ N

l with |α| ≤ k ≤ m and p ∈ (1,∞) it holds that

‖|∇̃α1u1| · · · |∇̃αl ul |‖L p(	) ≤ Ck

k∑

i=1

‖ui‖Wk,p(	).

Proof. Without loss of generality we may assume that |α| = k. We first use Hölder’s
inequality to get that

‖|∇̃α1u1| · · · |∇̃αl ul |‖L p(	) ≤ ‖∇̃α1u1‖
L

pk
α1

· · · ‖∇̃αl ul‖
L

pk
αl

.

By the interpolation inequality in Proposition 2.2 and by ‖ui‖L∞ ≤ C it holds that

‖∇̃αi u1‖
L

pk
αi

≤ C‖ui‖
αi
k
Wk,p‖ui‖1− αi

k
L∞ ≤ C‖ui‖

αi
k
Wk,p .

Hence we have

‖|∇̃α1u1| · · · |∇̃αl ul |‖L p(	) ≤ Ck‖u1‖
α1
k
Wk,p · · · ‖ul‖

αl
k
Wk,p .

Since α1 + · · · + αl = |α| = k, the claim follows, from Young’s inequality. ��

If u : R
n+1 → R is a regular function then its restriction on 	 is also regular.

In the next lemma we bound the covariant derivatives of u on 	 with the Euclidean
ones. The statement of the lemma is not optimal but it is sharp enough for our
purpose. In the proof we will repeatedly use the fact that the k:th order derivative
of the composition f ◦ h and the product f · g of functions f, g : R

m → R
k and

h : R
n → R

m can be written as

∇k( f ◦ h) =
∑

|α|≤k−1

∇1+α1h � · · · � ∇1+αk h � ∇1+αk+1 f

∇k( f · g) =
∑

i+ j=k

∇ i f � ∇ j g.
(2.12)

Lemma 2.4. Assume 	 is Ck+2-regular and u ∈ Ck+1(Rn+1). Then it holds for
all x ∈ 	 that

|∇̃k+1 u(x)| ≤ Ck

∑

|α|≤k

(
1 + |∇̃α1 BE (x)| · · · |∇̃αk BE (x)|) |∇1+αk+1u(x)|.

Recall that ∇̃k denotes the k:th order covariant derivative on 	 while ∇k is the
k:th order Euclidean derivative.
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Proof. The proof follows from basic theory of differential geometry and we merely
sketch it. Let us fix x ∈ 	 and choose the coordinates such that x = 0 and
νE (0) = en+1. Since 	 is Ck+2-regular hypersurface we may write it locally as a
graph of f ∈ Ck+2(Rn), i.e., 	 ∩ Br (0) ⊂ {(x, f (x)) : x ∈ R

n}. Note that since
νE (0) = en+1 then ∇Rn f (0) = 0.

We consider the graph coordinates �−1 : Bn
r → �−1(Bn

r ) ⊂ 	, �−1(x) =
(x, f (x)). We denote the points on R

n by x , the points on 	 by p, �(p) =(
x1(p), . . . , xn(p)

)
and U = �−1(Bn

r ). Then the chart
(
U, (xi )

)
determines co-

ordinate vector fields which we denote by ∂
∂xi

∣∣∣
p

and recall that they act on smooth

functions v : U → R at p = �(x) as

∂

∂xi

∣∣∣
p
v = ∇̃v

(
∂

∂xi

)
(p) = ∂i (v ◦ �−1)(x),

where ∂i denotes the standard partial derivative in R
n . It holds for the metric tensor

and for the Christoffel symbol �i
jk (see [35]) for x ∈ Bn

r that

gi j (x) = δi j + ∂i f (x)∂ j f (x) and �i
jk(x) = gil(x) ∂2

jk f (x)∂l f (x).

Moreover by the recursive formula (2.8) we may write the (k+1):th order covariant
derivative of u iteratively (see [35, Lemma 4.8]) as

∇̃k+1u

(
∂

∂xi1
, . . . ,

∂

∂xik
,

∂

∂x j

)
= ∂ j

(
∇̃ku

(
∂

∂xi1
, . . . ,

∂

∂xik

))

−
k∑

m=1

∇̃ku

(
∂

∂xi1
, . . . ,

∂

∂xl
, . . . ,

∂

∂xik

)
�l

j im .

(2.13)

Recall that ∇̃u
(

∂
∂xi

)
(p) = ∂

∂xi

∣
∣∣
p
u.

Using (2.12) we have

|∇k+1
Rn (u ◦ �−1)(0)| ≤ Ck

∑

|α|≤k

(
1 + |∇1+α1

Rn f (0)| · · · |∇1+αk
Rn f (0)|)|∇1+αk+1 u(0)|.

We use (2.13) and (2.12), and obtain after long but straightforward calculation that

|∇̃k+1 u(0)| ≤ Ck

∑

|α|≤k

(
1 + |∇1+α1

Rn f (0)| · · · |∇1+αk
Rn f (0)|)||∇1+αk+1 u(0)|.

Note that νE ◦ �−1 = (−∇Rn f,1)√
1+|∇Rn f |2 . We thus obtain by (2.12) that

|∇l+1
Rn f (0)| ≤ Cl

∑

|β|≤l

(
1 + |∇β1(νE ◦ �−1)| · · · |∇βl (νE ◦ �−1)|)

≤ Cl

∑

|β|≤l−1

(
1 + |∇̃β1 BE | · · · |∇̃βl BE |)

(2.14)

and the claim follows. ��
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Next we turn our focus on geometric inequalities on compact hypersufaces. Re-
call that by classical results e.g. from [6] it holds that ‖u‖H2(	) ≤ C(‖�u‖L2(	) +
‖u‖L2(	)) and e.g. in [22] it is proven that ‖u‖H2k (	) ≤ C(‖�u‖Hk (	)+‖u‖L2(	)).
We need these results with a quantitative control on the constant.

Lemma 2.5. Assume 	 is C2k+2-regular and ‖B	‖L∞ ,Hn(	) ≤ C. Then for all
u ∈ C2k+1(	) it holds

‖u‖H2k (	) ≤ Ck(‖�ku‖L2(	) + (1 + ‖B	‖H2k−1(	))‖u‖L∞(	))

and

‖u‖H2k+1(	) ≤ Ck(‖∇̃�ku‖L2(	) + (1 + ‖B	‖H2k (	))‖u‖L∞(	)).

Proof. We only prove the first inequality since the second follows from the same
argument. The proof is similar to [30, Proposition 2.11] but we sketch it for the
reader’s convenience. Denote l = 2k. We begin by noticing that we may interchange
the derivatives of the (l+1):th order covariant derivative of u by using (2.9), (2.10),
(2.13) and the curvature bound ‖B	‖L∞ ≤ C (see also [38, Proof of Lemma 7.3])

|∇̃il+1 · · · ∇̃im+1∇̃im · · · ∇̃i1u − ∇̃il+1 · · · ∇̃im ∇̃im+1 · · · ∇̃i1u|
≤ Cl

∑

|α|≤l−1

(1 + |∇̃α1 B	 | · · · |∇̃αl−1 B	 |)|∇̃αl u|.

We leave the details for the reader. This holds pointwise on 	 and we use it without
further mentioning. Let us denote F = ∇̃2k−2u and denote its components sim-
ply by Fβ , where β = (i1, . . . , i2k−2). Then it holds by divergence theorem, by
interchanging the derivatives and by Proposition 2.3
ˆ

	

|∇̃2ku|2 dHn =
ˆ

	

|∇̃2F |2 dHn

=
ˆ

	

∇̃i ∇̃ j Fβ∇̃ i ∇̃ j Fβ dHn = −
ˆ

	

∇̃ j Fβ∇̃i ∇̃ i ∇̃ j Fβ dHn

≤ −
ˆ

	

∇̃ j Fβ∇̃ j ∇̃i ∇̃ i Fβ dHn

+ Ck

∑

|α|≤l−1

ˆ

	

(1 + |∇̃α1 B	 |2 · · · |∇̃αl−1 B	 |2)|∇̃αl u|2 dHn

≤
ˆ

	

∇̃ j ∇̃ j Fβ∇̃i ∇̃ i Fβ dHn + Ck(‖u‖2
Hl−1(	)

+ ‖u‖2
L∞(	)‖B	‖2

Hl−1(	)
)

=
ˆ

	

|�∇̃2k−2u|2 dHn + Ck(‖u‖2
H2k−1(	)

+ ‖u‖2
L∞(	)‖B	‖2

H2k−1(	)
).

By interchanging the derivatives and arguing as above we obtain
ˆ

	

|�∇̃2k−2u|2 dHn ≤
ˆ

	

|∇̃2k−2�u|2 dHn

+Ck(‖u‖2
H2k−1(	)

+ ‖u‖2
L∞(	)‖B	‖2

H2k−1(	)
).
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By repeating the argument by replacing u with � j u, for j = 1, . . . , k − 1, we
deduce that
ˆ

	

|∇̃2ku|2 dHn ≤
ˆ

	

|�ku|2 dHn + Ck(‖u‖2
H2k−1(	)

+ ‖u‖2
L∞(	)‖B	‖2

H2k−1(	)
).

The claim follows from interpolation inequality (Proposition 2.2) as for θ ∈ (0, 1)

it holds that

‖u‖2
H2k−1(	)

≤ ‖u‖2θ
H2k (	)

‖u‖2(1−θ)
L∞(	) ≤ ε‖u‖2

H2k (	)
+ Cε‖u‖L∞(	),

where the last inequality follows from Young’s inequality. ��
Lemma 2.5 together with Simon’s identity (2.11), imply

Proposition 2.6. Assume that 	 is C2k+3-regular and that ‖B	‖L∞ ,Hn(	) ≤ C.
Then it holds that

‖B	‖H2k (	) ≤ Ck(1 + ‖�k H	‖L2(	))

and

‖B	‖H2k+1(	) ≤ Ck(1 + ‖∇̃�k H	‖L2(	)).

2.4. Uniform Ball Condition and Signed Distance Function

In this subsection, we recall some properties related to sets which satisfy UBC
as well as properties of signed distance function defined in (2.1). Most of them can
be found e.g. in [5,7] while others are more difficult to find. We recall that a set
E ⊂ R

n+1 satisfies UBC with given a radius r ∈ R+, if it simultaneously satisfies
the exterior and interior ball condition with radius r at every boundary point. That
is, for every x ∈ ∂E there are balls Br (x+) and Br (x−) such that

Br (x+) ⊂ R
n+1 \ E, Br (x−) ⊂ E and x ∈ ∂Br (x+) ∩ ∂Br (x−).

It is well known, for the experts at least, that UBC for a set implies its boundary being
a uniformlyC1,1-regular hypersurface. We need this property in a quantitative form
which states that if E ⊂ R

n+1 satisfies UBC with radius r , then it can be written
locally in a cylinder of width r/2 as a graph of a C1,1-function. Since this result is
not easy to find in the literature, we state it and provide a proof here.

Proposition 2.7. Assume E ⊂ R
n+1 satisfies UBC with radius r > 0. Then for

every point x ∈ ∂E we may, by rotating the coordinates if necessary, write the
interior of the set locally as a subgraph of a function g : Bn

r/2(x
′) → R, i.e.,

int(E) ∩ C(x, r/2, r) = {(y′, yn+1) ∈ C(x, r/2, r/2) : yn+1 < g(y′)} and

∂E ∩ C(x, r/2, r) = {(y′, g(y′)) : y′ ∈ Bn
r/2(x

′)}.
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The function g is C1,1-regular and it holds for all y′ ∈ Bn
r/2(x

′) and s ∈ (0, r/2]

|g(y′) − g(x ′)| ≤ |y′ − x ′|2
r + √

r2 − |y′ − x ′|2 ,

|∇g(y′)| ≤ |y′ − x ′|
r

(

1 −
( |y′ − x ′|

r

)2
)− 1

2

and

sup
y′

1, y
′
2 ∈ Bn

s (x ′)
y′

1 	= y′
2

|∇g(y′
2) − ∇g(y′

1)|
|y′

2 − y′
1|

≤ 1

r

(
1 −

( s
r

)2
)− 3

2

.

Moreover, the outer unit normal νE on ∂E is 1/r-Lipschitz continuous in Euclidean
metric.

Remark 2.8. We remark, that the converse of Proposition 2.7 also holds true. That is,
if E ⊂ R

n+1 is a set such that for every x ∈ ∂E , we may write its boundary locally,
by rotating the coordinates, as ∂E ∩C(x, r, 2r) ⊂ {(y′, g(y′)) : y′ ∈ Bn

r (x ′)} with
‖g‖C1,1(Bn

r (x ′)) ≤ C/r , then E satisfies UBC with radius c r , for a constant c > 0
which depends on n and C . This is fairly straightforward to show and we leave it
to the reader.

Proof of Proposition 2.7. We remark that UBC with r implies for every x ∈ ∂E
an existence of a unique unit vector νE (x) such that Br (x − rνE (x)) ⊂ E and
Br (x + rνE (x)) ⊂ R

n+1\E . Therefore, we have a vector field νE : ∂E → ∂B1
which later turns out to be the outer unit normal field of E . We first show that
νE is 1/r -Lipschitz continuous with respect to Euclidean distance. To this end,
fix x, y ∈ ∂E . By the previous observation Br (x + rνE (x)) ⊂ R

n+1\E and
Br (y − rνE (x)) ⊂ E so the balls are disjoint. Similarly, the balls Br (x − rνE (x))
and Br (y + rνE (y)) are disjoint. Hence the distances between the corresponding
centerpoints are at least 2r and we obtain the inequalities

4r2 ≤ |x − y + r(νE (x) + νE (y))|2 and

4r2 ≤ |x − y − r(νE (x) + νE (y))|2.
By summing the above inequalities gives us 8r2 ≤ 2|x − y|2 + 4r2

(1 + νE (x) · νE (y)) and, again, by subtracting and dividing terms we further obtain

1 − |x − y|2
2r2 ≤ νE (x) · νE (y) or equivalently |νE (x) − νE (y)|2 ≤ |x − y|2

r2 .

(2.15)
In particular, νE is 1/r -Lipschitz.

For given a point x ∈ ∂E , we show the existence of g as claimed. Without loss of
generality we may assume x = 0 and νE (0) = en+1. Then it holds Br (−ren+1) ⊂
E and Br (ren+1) ⊂ R

n+1 \ E . Thus, for every y′ ∈ Bn
r/2 there is a number ty′ such

that (y′, ty′) ∈ ∂E and

|ty′ | ≤ r −
√
r2 − |y′|2 = |y′|2

r + √
r2 − |y′|2 . (2.16)
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In particular, |ty′ | < |y′|. Combining (2.15) and (2.16) yields

νE (y′, ty′) · en+1 ≥
√

1 −
( |y′|

r

)2
. (2.17)

Let us show that such a number ty′ is unique.
We suppose by contradiction there is sy′ ∈ (−r, r)\{ty′ } such that (y′, sy′) ∈

∂E . Without loss of generality, we may assume sy′ > ty′ . Since Br
(
(y′, ty′) +

rνE (y′, ty′)
) ⊂ R

n+1\E and (y′, sy′) ∈ ∂E , then the point (y′, sy′) is not in the
ball Br

(
(y′, ty′) + rνE (y′, ty′)

)
. Hence, we obtain

r2 ≤ |(y′, sy′) − (
(y′, ty′) + rνE (y′, ty′)

)|2
= (sy′ − ty′)2 − 2r(sy′ − ty′)νE (y′, ty′) · en+1 + r2.

We first subtract r2, then divide by sy′ − ty′ and finally use the estimates (2.16),
(2.17) as well as |y′| < r/2 to deduce

sy′ ≥ ty′ + 2rνE (y′, ty′) · en+1 ≥ −r + 3
√
r2 − |y′|2 > r −

√
r2 − |y′|2.

This implies together with sy′ < r that (y′, sy′) ∈ Br (ren+1) ⊂ R
n+1\E which, in

turn, contradicts (y′, sy′) ∈ ∂E and, hence, ty′ is a unique value in (−r, r) satisfying
(y′, ty′) ∈ ∂E .

Thus, the function g : Bn
r/2 → R, given by the relation g(y′) = ty′ , satisfies

int(E) ∩ C(0, r/2, r/2) = {(y′, yn+1) ∈ C(0, r/2, r/2) : yn+1 < g(y′)} and

∂E ∩ C(0, r/2, r/2) = {(y′, g(y′)) : y′ ∈ Bn
r/2}. (2.18)

Again, (2.16) gives us the bound on |g(y′)| as claimed. The condition (2.17) im-
plies that for every y′ ∈ Bn

r/2 there are open sets y′ ∈ V ⊂ Bn
r/2, (y′, g(y′)) ∈

U ⊂ C(0, r/2, r/2) and functions ψ+, ψ− ∈ C∞(V ) such that ∂Br ((y′, g(y′)) ±
rνE (y′, g(y′)) ∩ U are the graphs of ψ± respectively. Then ψ− ≤ g ≤ ψ+ in
V and ψ−(w) = g(w) = ψ+(w) implying the differentiability of g at y′ with
∇g(y′) = ∇ψ±(y′). Moreover, we deduce that νE (y′, g(y′)) is the outer unit nor-
mal of {(z′, zn+1) ∈ V × R : zn+1 > ψ+(z′)} at (y′, g(y′)) and thus

νE (y′, g(y′)) = (−∇ψ+(y′), 1)
√

1 + |∇ψ+(y′)|2) = (−∇g(y′), 1)
√

1 + |∇g(y′)|2 . (2.19)

Since now g and νE are continuous, (2.19) implies that ∇g is continuous too. Thus,
E is C1-regular and νE is the actual outer unit normal of E . We combine (2.17)
and (2.19) to observe

|∇g(y′)| ≤ |y′|
r

(

1 −
( |y′|

r

)2
)− 1

2

. (2.20)

To conclude the Lipschitz estimate, if y′
1, y

′
2 ∈ Bn

s for given s ∈ (0, r/2], then
the uniform ball condition implies that (y′

1, g(y
′
1)) /∈ Br ((y′

2, g(y
′
2))±rνE (y′

2, g(y
′
2))
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and (y′
2, g(y

′
2)) /∈ Br ((y′

1, g(y
′
1))±rνE (y′

1, g(y
′
1)). Hence, using (2.19), we obtain

the estimates

r2 ≤
∣
∣∣(y′

2, g(y
′
2)) ± r

(−∇g(y′
2), 1)

√
1 + |∇g(y′

2)|2
− (y′

1, g(y
′
1))

∣
∣∣
2

and

r2 ≤
∣∣∣(y′

1, g(y
′
1)) ± r

(−∇g(y′
1), 1)

√
1 + |∇g(y′

1)|2
− (y′

2, g(y
′
2))

∣∣∣
2
.

By summing these inequalities and simplifying, we have

±(y′
2 − y′

1) · (∇g(y′
2) − ∇g(y′

1))

≤
√

1 + |∇g(y′
2)|2 +

√
1 + |∇g(y′

1)|2
2r

(
|y′

2 − y′
1|2 + (g(y′

2) − g(y′
1))

2
)

.

Thus, by recalling, (2.20) we further estimate that

|(y′
2 − y′

1) · (∇g(y′
2) − ∇g(y′

1))|

≤
√

1 + |∇g(y′
2)|2 +

√
1 + |∇g(y′

1)|2
2r(

|y′
2 − y′

1|2 + (g(y′
2) − g(y′

1))
2
)

≤
√

1 + supBn
s
|∇g|2

r

(

1 + sup
Bn
s

|∇g|2
)

|y′
2 − y′

1|2

≤ 1

r

(
1 −

( s
r

)2
)− 3

2 |y′
2 − y′

1|2. (2.21)

The desired estimate then follows from (2.21) via a standard mollification argument.
��

We recall that a signed distance function dE of a non-empty set E ⊂ R
n+1

is always 1-Lipschitz and it is differentiable at x ∈ R
n \ ∂E exactly when the

projection π∂E (x) exists on ∂E . Again, UBC for E means the differentiability of
dE in a tubular neighborhood. Indeed, one may show that for a non-empty open set
E ⊂ R

n+1 and r ∈ R+ the conditions

(i) dE is differentiable in Nr (∂E) and
(ii) E satisfies UBC with radius r

are equivalent. In such a case, the projection π∂E onto ∂E is defined in Nr (∂E) as
a continuous map and the following fundamental identities hold in Nr (∂E):

π∂E = id − dE∇dE and ∇dE = νE ◦ π∂E . (2.22)

In particular, dE ∈ C1(Nr (∂E)). Further, it is fairly simple to conclude that for
every t ∈ (−r, r) the sublevel set Et = {x ∈ R

n+1 : dE (x) < t} has the level set
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{x ∈ R
n+1 : dE (x) = t} as the boundary and satisfies UBC with radius r − |t |.

Moreover, it holds that

dEt = dE − t and π∂Et = π∂E + tνE ◦ π∂E in Nr−|t |(∂Et ). (2.23)

We may then improve the regularity by showing ∇dE and π∂E are locally
Lipschitz continuous in Nr (∂E) and obtain quantitative estimates for the Lipschitz
constants in smaller tubes.

Lemma 2.9. Assume E ⊂ R
n+1 satisfies UBC with radius r > 0. Then for every

0 < ρ < r and x, y ∈ Nρ(∂E) it holds that

|π∂E (x) − π∂E (y)| ≤ r

r − ρ
|x − y| and |∇dE (x) − ∇dE (y)| ≤ 1

r − ρ
|x − y|.

Proof. It is enough to prove the first estimate, since the second estimate follows
from the first via Proposition 2.7 and the second identity of (2.22). We first show
that the estimates hold locally, i.e., for every x ∈ Nr (∂E),

Lip (π∂E , x) ≤ r

r − |dE (x)| (2.24)

To this end, we show that, for every x ∈ ∂E and y ∈ Br/4(x), it holds that

|π∂E (y) − x |2 ≤
(

1 + 4

r − |dE (y)| |dE (y)|
)

|y − x |2. (2.25)

We may assume that x = 0, νE (0) = en+1 and y /∈ E . Let g : Bn
r/2 → R be as

in Proposition 2.7. Since |y| < r/4, then y ∈ C(r/2, r/2, 0) implying |dE (y)| ≤
|yn+1 − gn(y′)| and, hence, we make a technical observation

d2
E (y) ≤ 2dE (y)(yn+1 − g(y′)). (2.26)

Thus, using Proposition 2.7, (2.22), (2.26) and Young’s inequality, we estimate that

|π∂E (y)|2 = |y|2 − 2dE (y) y · ∇dE (y) + d2
E (y)

= |y|2 − 2dE (y)yn+1 + d2
E (y) − 2dE (y) y · (∇dE (y) − en+1)

≤ |y|2 − 2dE (y)g(y′) − 2dE (y) y · (νE (π∂E (y)) − νE (0))

≤ |y|2 + 2
|dE (y)|

r
|y′|2 + 2

dE (y)

r
|y||π∂E (y)|

≤ |y|2 + 2
|dE (y)|

r
|y|2 + |dE (y)|

r
|y|2 + |dE (y)|

r
|π∂E (y)|2,

and (2.25) follows. Suppose next y1, y2 ∈ Bρ(x) for given x ∈ ∂E and 0 < ρ <

r/9. The sublevel set Et , for t = dE (y2), satisfies UBC with radius r − ρ and
y2 ∈ ∂Et . Since |y1 − y2| < 2ρ ≤ (r − ρ)/4, then by applying (2.25) for ∂Et we
have

|π∂Et (y1) − y2| ≤
(

1 + 8ρ

r − 2ρ

) 1
2 |y1 − y2|. (2.27)
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On the other hand, first recalling the second identity in (2.23) and then applying
Proposition 2.7 gives us

|π∂Et (y1) − y2|=|π∂Et (y1) − π∂Et (y2)|≥
(

1 − ρ

r

)
|π∂E (y1) − π∂E (y2)|,

so, by combining the estimate above with (2.27) yields Lip(x, π∂E ) = 1. Hence,
we deduce that

Lip(x, π∂Et ) = 1 (2.28)

for every t ∈ (−r, r) and x ∈ ∂Et . By using (2.23) and Proposition 2.7 similarly
as previous, we infer (2.24) from (2.28).

Finally, for the first estimate of the claim, we may assume x, y ∈ Nρ(∂E). Let
Jyx := {t x + (1 − t)y : t ∈ [0, 1]} be the line segment between them. If Jyx ⊂
Nρ(∂E), then the first estimate of the claim follows from (2.24). Otherwise, there
are 0 < t1 ≤ t2 < 1 such that t x+ (1− t)y ∈ Nρ(∂E) for every t ∈ [0, t1)∪ (t2, 1]
and zi = ti x + (1 − ti )y ∈ ∂Nρ(∂E) for i = 1, 2. Since dE (z1) = ρ = dE (z2),
then Proposition 2.7 and (2.22) imply

|π∂E (z1) − π∂E (z2)| ≤ r

r − ρ
|z1 − z2|.

On the other hand, due to (2.24) we have

|π∂E (x) − π∂E (z1)| ≤ r

r − ρ
|x − z1| and |π∂E (z2) − π∂E (y)| ≤ r

r − ρ
|z2 − y|

and we conclude the proof. ��
If E is Ck,α-regular, with k ≥ 2 and 0 ≤ α ≤ 1, then dE ∈ Ck,α(Nr (∂E)) and

π∂E ∈ Ck−1,α(Nr (∂E); R
n+1). In particular, (2.22) holds everywhere in Nr (∂E).

Then it holds
∇2dE = BE and �dE = HE on ∂E . (2.29)

In particular, we deduce from Lemma 2.9 and (2.29) that

‖HE‖L∞(∂E) ≤ n

r
and sup

∂E
|BE |op ≤ 1

r
. (2.30)

Differentiating ∇dE · ∇dE = 1 yields ∇2dE∇dE = 0 in Nr (∂E). Again, by
differentiating the first identity in (2.22) we obtain

∇π∂E = I − ∇dE ⊗ ∇dE − dE∇2dE in Nr (∂E). (2.31)

The second identity in (2.22) says that ∇dE = ∇dE ◦ π∂E in Nr (∂E). Thus, by
differentiating this and by using the properties of the distance function mentioned
before we have

∇2dE = (∇2dE )T = ∇π∂E (∇2dE ◦π∂E ) = (
I−dE∇2dE

)
(BE ◦π∂E ) in Nr (∂E).

(2.32)
We write this as

∇2dE
(
I + dE (BE ◦ π∂E )

) = BE ◦ π∂E .
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It follows from (2.30) that the matrix field I+dE (BE ◦π∂E ) is invertible inNr (∂E).
Therefore, we have

∇2dE = (BE ◦ π∂E )
(
I + dE (BE ◦ π∂E )

)−1 in Nr (∂E). (2.33)

By combining (2.22), (2.31), (2.29) and (2.33), we may decompose ∇π∂E as

∇π∂E = I−νE ◦π∂E⊗νE ◦π∂E−dE (BE ◦π∂E )
(
I+dE (BE ◦π∂E )

)−1 in Nr (∂E).

(2.34)
By using a fairly standard calibration argument (see e.g. [1, Lemma 4.1]) we

conclude that UBC implies so called �-minimizer condition.

Lemma 2.10. Assume that E ⊂ R
n+1 is an open and bounded set which satisfies

UBC with radius r > 0. Then for every set of finite perimeter F it holds that

P(E ∩ F) ≤ P(F) + n + 1

r
|F \ E | and

P(E ∪ F) ≤ P(F) + n + 1

r
|E \ F |.

In particular, P(E) ≤ n+1
r |E |.

Proof. The argument is a quantitative version of [1, Lemma 4.1]. We will prove
that for every set of finite perimeter F it holds that

P(E) ≤ P(F) + n + 1

r
|F�E |. (2.35)

Then the two inequalities in the statement follow by using (2.35) with E ∪ F and
E ∩ F in place of F and using the fact [37, Lemma 12.22] that

P(E ∪ F) + P(E ∩ F) ≤ P(E) + P(F).

The third inequality follows by using (2.35) with F = ∅.
By a standard approximation argument for the sets of finite perimeter [37, Thm

13.8 ] we may assume that F is smooth. In turn, we may approximate also E by a
sequence of smooth sets Ek in the C1-sense such that Ek satisfies UBC with radius
rk such that rk → r . Therefore, by simplicity we assume that also E is smooth.

For each k ∈ N we construct a vector-field Xk ∈ C0,1
0 (Rn+1; R

n+1) such that

(i) Xk = νE on ∂E ,
(ii) |Xk | ≤ 1 in R

n+1 and
(iii) ‖ div Xk‖L∞(Rn+1) ≤ (n + 1 + k−1)/r .

To this aim, we first define ηk : R → R by setting ηk(t) = max
{0, 1 − (1 + 1/k)|t |/r} and then set Xk = (ηk ◦dE )∇dE . Clearly Xk is a Lipschitz
continuous vector field supported in Nr/(1+k−1)(∂E) and satisfies the properties (i)
and (ii). We further compute that

div Xk = (ηk ◦ dE )�dE + η′
k ◦ dE in Nr/(1+k−1)(∂E) \ ∂E .
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Hence, it follows from Lemma 2.9, ∇2dE∇dE = 0 in Nr (∂E) as well as the
definition of ηk that | div Xk | ≤ (n + 1 + k−1)/r in Nr/(1+k−1)(∂E)\∂E . Since the

sets Nr/(1+k−1)(∂E) and Nr/(1+k−1)(∂E)\∂E agree in the L1-sense we infer that
Xk satisfies (iii). By using the properties (i) – (iii) for Xk as well as the divergence
theorem we estimate

P(E) − P(F) ≤
ˆ

∂E
Xk · νE dHn −

ˆ

∂F
Xk · νF dHn

=
ˆ

E
div Xk dx −

ˆ

F
div Xk dx ≤

ˆ

E�F
| div Xk | dx

≤ n + 1 + k−1

r
|F�E |,

and thus, by letting k → ∞, the above yields (2.35). ��
Suppose that E ′ is a connected component of a set E which satisfies UBC with

r . If |E ′| < ∞, then E ′ is bounded and we may control its diameter in terms of r and
|E ′|. Indeed, by the above approximation we may assume that E is smooth. Then
by (2.29) we have |HE | ≤ n/r on ∂E . Thus, combining Lemma 2.10 and Topping’s
generalization [48] of Simon’s diameter control [45] gives us the estimate

diam(E ′) ≤ Cn

ˆ

∂E ′
|HE ′ |n−1 dHn ≤ Cn

rn
|E ′| (2.36)

for a dimensional constant Cn ∈ R+. Finally, we need the following interpolation
result:

Lemma 2.11. Assume E ⊂ R
n+1 is an open and bounded set which satisfies UBC

with radius r > 0. If U is an open set containing ∂E and u ∈ C2(U ), then

‖∇τu‖2
L∞(∂E) ≤ 4‖u‖L∞(∂E)

(
sup
∂E

|∇2u|op + ‖∇τu‖L∞(∂E)

r

)
.

Proof. By the above approximation argument we may assume that E is smooth.
We first observe that for a bounded function f ∈ C2(R) it holds

‖ f ′‖2
L∞(R) ≤ 4‖ f ‖L∞(R)‖ f ′′‖L∞(R). (2.37)

Indeed, let us fix a t ∈ R+. We may assume that f ′(t) > 0, since otherwise we
consider the function − f instead of f . Let I be a maximal open interval containing
t such that f ′ > 0 in I so f is strictly increasing there. Then there is a decreasing
sequence (t̃i )i ∈ (inf I, t) converging to inf I such that f ′(t̃i ) → 0 as i → ∞.
Since f is strictly increasing in I , it is invertible there. Hence, we may compute,
for every i ∈ N,

| f ′(t)|2 − | f ′(t̃i )|2 =
ˆ t

t̃i

d

ds
( f ′(s))2ds

= 2
ˆ t

t̃i
f ′′(s) f ′(s)ds = 2

ˆ t

t̃i
f ′′( f −1( f (s))) f ′(s)ds
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= 2
ˆ f (t)

f (t̃i )
f ′′( f −1(τ ))dτ ≤ 4‖ f ‖L∞(R)‖ f ′′‖L∞(R),

and thus, by letting i → ∞, we obtain | f ′(t)|2 ≤ 4‖ f ‖L∞(R)‖ f ′′‖L∞(R), and
(2.37) follows.

Since ∂E is compact we find x ∈ ∂E such that |∇τu(x)| = ‖∇τu‖L∞(∂E).
We may assume that |∇τu(x)| > 0. The connected component of ∂E containing x
is geodesically complete and, hence, we find a smooth unit speed geodesic curve
γ : R → ∂E satisfying γ (0) = x and γ ′(0) = ∇τu(x)/|∇τu(x)|. Then we define
a C2-regular function f = u ◦ γ . Note that f ′(0) = ‖∇τu‖L∞(∂E) and that

f ′′ = γ ′ · (∇2u ◦ γ )γ ′ + γ ′′ · (∇τu ◦ γ ). (2.38)

By differentiating the identity 0 = dE ◦ γ twice and recalling the identities (2.22)
and (2.29) we obtain 0 = γ ′ · (BE ◦ γ )γ ′ + γ ′′ · (νE ◦ γ ). Since γ is a geodesic
curve, then |γ ′′ · (νE ◦ γ )| = |γ ′′| and hence we infer from the previous that
|γ ′′| ≤ |BE ◦ γ |op. By combing this with (2.38) and using (2.30) gives us

| f ′′| ≤
(
|∇2u ◦ γ |op + |BE ◦ γ |op|∇τu ◦ γ |

)
≤

(
sup
∂E

|∇2u|op + ‖∇τu‖L∞(∂E)

r

)
.

Thus, by observing ‖ f ‖L∞(R) ≤ ‖u‖L∞(∂E), the claim follows from (2.37). ��

3. Definition of the Flat Flow and the First Regularity Estimates

Let us begin by recalling the definition of the minimizing movements scheme
and the flat flow solution of (1.1) from [43]. Assume that E0 ⊂ R

n+1 is a bounded
set of finite perimeter. For given a time step h ∈ R+ we construct a parametrized
family (Eh

t )∞t≥0 of sets of finite perimeter by an iterative minimizing procedure
called minimizing movements, where

Eh
t = E0 for every 0 ≤ t < h and

Eh
t = Eh

h�t/h� is a minimizer of the functional Fh( · , Eh
t−h) for every t ≥ h.

(3.1)
Here for a generic bounded set of finite perimeter E ⊂ R

n+1 the functionalFh( · E),
in the class of the bounded set of finite perimeter, is defined as

Fh(F, E) = P(F) + 1

h

ˆ

F
dE dx + 1√

h

∣
∣|F | − m0

∣
∣, (3.2)

for m0 = |E0|. We call the family (Eh
t )∞t≥0, defined in (3.1), an approximative flat

flow solution of (1.1) starting from E0. We note that there is always a minimizer
for (3.2) but it might not be unique. By [43] we know that there is a subsequence
of approximative flat flows (Ehl

t )t≥0 which converges to a parametrized family
(Et )t≥0 for a.e. t in the L1-sense, where for every t > 0 the set Et is a set of finite
perimeter with |Et | = |E0|. Any such limit is called a flat flow solution of (1.1)
starting from E0.
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Let us turn our focus back on a generic minimizer of (3.2), where we assume
that |E | = m0. We then simply denote any minimizer for Fh( · E) by Eh

min. One
has to be careful in the definition of the functional in (3.2), since the sets of finite
perimeter are only defined up to measure zero. We avoid this issue by modifying
a set of finite perimeter in a L1(Rn+1) -negligible set and choose as in [37, Rmk
15.3] a representative which topological boundary agrees with the closure of its
measure theoretical boundary. Thus, we always use the convention ∂F = ∂∗F for
the initial set and the minimizers. We also remark that if E is empty, then we use
the convention dE = ∞ everywhere to ensure that Eh

min is empty too.
Next, we recall some basic properties regarding the minimizers. First, it is easy

to conclude P(Eh
min) ≤ P(E). Moreover, Eh

min satisfies the distance property

sup
Eh

min�E

|dE | ≤ γn
√
h (3.3)

for a dimensional constant γn ∈ R+, see [43, Prop 3.2]. Second, Eh
min has a gener-

alized mean curvature satisfying the Euler-Lagrange equation

dE
h

= −HEh
min

+ λh (3.4)

in the distributional sense (2.7) on ∂∗Eh
min, where the Lagrange multiplier satisfies

|λh | = 1/
√
h in the case |Eh

min| 	= m0, see [43, Lemma 3.7]. Third, it is easy
to see that Eh

min is always a so called (�, r) -minimizer with suitable �, r ∈ R+
satisfying �r ≤ 1 (see [37] for the definition). Thus, by the standard regularity
theory [37, Thm 26.5 and Thm 28.1] the reduced boundary ∂∗Eh

min is relatively
open in ∂Eh

min and an embedded C1,α-regular hypersurface with any 0 < α < 1/2,
and the Hausdorff dimension of the singular part ∂Eh

min \ ∂∗Eh
min is at most n − 7.

Thus, by standard Schauder estimates one may show that ∂∗Eh
min is in fact C2,α-

regular and (3.4) holds in the classical sense on ∂∗Eh
min. Consequently, we may

always consider Eh
min as an open set.

We may improve the distance estimate (3.3) as well as regularity properties of
Eh

min, if we impose more regularity on E . We divide our approach into two steps.
The first result states that if E is bounded and satisfies UBC with radius r0 > 0
and h is sufficiently small, then the left hand side of (3.3) is bounded linearly in
h, the Lagrange multiplier λh is bounded, the generalized mean curvature HEh

min
is

bounded in the L∞-sense and Eh
min has the volume m0.

Proposition 3.1. Assume E ⊂ R
n+1 is an open and bounded set of volume m0

which satisfies UBC with radius r0. There are positive numbers h0 = h0(n,m0, r0)

and C0 = C0(n,m0, r0) and a dimensional constant Cn ∈ R+ such that if h ≤ h0,
then

sup
Eh

min�E

|dE | ≤ Cn

r0
h, ‖HEh

min
‖L∞ + |λh | ≤ C0 and |Eh

min| = m0.
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Proof. We prove first part of the claim, i.e., the distance estimate. If |Eh
min�E | = 0,

then it follows from the openness of Eh
min and E as well as the property ∂Eh

min =
∂∗Eh

min and ∂E = ∂∗E that Eh
min�E = ∅ and there is nothing to prove. Thus, we

may assume that |Eh
min�E | > 0 and further set that

d+ = sup
Eh

min�E

dE and d− = inf
Eh

min�E
dE .

To conclude the first part of the claim, we show, under the assumption |Eh
min�E | >

0, the validity of the implication

√
h ≤ r0

max{n + 1, 8γn} �⇒ d− < 0 < d+ and d+ − d− ≤ 4(n + 1)

r0
h.

(3.5)
Thus, (3.5) and our earlier observation gives us the implication

√
h ≤ r0

max{n + 1, 8γn} �⇒ sup
Eh

min�E

|dE | ≤ 4(n + 1)

r0
h. (3.6)

To prove (3.5), we assume by contradiction that d− ≥ 0 which implies E ⊂
Eh

min due to the openness of E and, hence, |Eh
min\E | = |Eh

min�E | > 0. Using
(2.35) with r = r0, the previous observation, |E | = m0, and the assumption on h
yields

Fh(E, E) ≤ P(Eh
min) + 1

h

ˆ

E
dE dx + n + 1

r0
|Eh

min \ E |

< P(Eh
min) + 1

h

ˆ

Eh
min

dE dx + n + 1

r0
|Eh

min \ E |

= Fh(E
h
min, E) +

(
n + 1

r0
− 1√

h

)
|Eh

min \ E | ≤ Fh(E
h
min, E),

contradicting the minimality of Eh
min and, hence, d− < 0. Similarly we obtain

d+ > 0.
On the other hand,

√
h ≤ r0/(8γn) implies via (3.3) that Eh

min�E ⊂⊂ Nr0/4(∂E).
In particular, −r0/2 < d− < 0 < d+ < r0/2 and for every t ∈ (d−, d+) the sub-
level set Et = {x : dE (x) < t} satisfies UBC with r0/2 and |Eh

min\Et |, |Et\Eh
min| >

0. By using a suitable continuity argument, we infer from the previous that for ev-
ery t < d+, sufficiently close to d+, there is t̃ ∈ (d−, r+) such that |Eh

min\Et | =
|Et̃\Eh

min| > 0 and t̃ → d− as t → d+. For such a pair (t, t̃) we set

F = (Et ∩ Eh
min) ∪ Et̃ .

Clearly, F is a bounded set of finite perimeter and |F | = |Eh
min|. Thus, using F as

a competitor against Eh
min with respect to Fh( · E) we obtain

P(Eh
min) ≤ P(F) + 1

h

ˆ

Et̃\Eh
min

dE dx − 1

h

ˆ

Eh
min\Et

dE dx
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≤ P(F) + t̃

h
|Et̃ \ Eh

min| − t

h
|Eh

min \ Et |

= P(F) + t̃ − t

h
|Et̃ \ Eh

min|. (3.7)

In turn, applying Lemma 2.10 to Et and Et̃ gives us

P(F) = P((Et ∩ Eh
min) ∪ Et̃ )

≤ P(Et ∩ Eh
min) + n + 1

r0/2
|Et̃ \ Eh

min|

≤ P(Eh
min) + n + 1

r0/2
|Eh

min \ Et | + n + 1

r0/2
|Et̃ \ Eh

min|

= P(Eh
min) + 4(n + 1)

r0
|Et̃ \ Eh

min|. (3.8)

We combine (3.7) and (3.8) and recall |Et̃\Eh
min| > 0 to observe that

t − t̃

h
≤ 4(n + 1)

r0
.

Thus, by letting t → d+, we obtain the second estimate in (3.5).
To prove the second part of the claim, we denote by C a generic positive

constant which may change its value from the line to line but depends only on
n,m0 and r0. We fix any connected component Ei of E . By Lemma 2.10 and
(2.36) we have diam(Ei ) ≤ C and P(E) ≤ C . If E j is a connected component
of E distinct to Ei , then UBC with r0 guarantees dist(Ei , E j ) ≥ r0. Assuming
that

√
h ≤ r0/ max{n + 1, 8γn} we have, by (3.3), (3.6), openness of Eh

min and

∂∗Eh
min = ∂Eh

min, that Eh
min�E ⊂⊂ Nr0/4(∂E) and |dE/h| ≤ 4(n + 1)/r0 on

∂∗Eh
min. Again, we infer from the previous observations that for the intersection

Ẽ i = Eh
min ∩ (Ei + Br0/4) it holds ∂∗ Ẽ i = ∂∗Eh

min ∩ (Ei + Br0/4), HẼi =
HEh

min
|
∂∗ Ẽ i , diam(Ẽ i ) ≤ C + r0/2 ≤ C and |Ẽ i | ≥ |Br0/2|. Using the divergence

theorems and the Euler-Lagrange equation (3.4), which holds in the sense of (2.7)
on ∂∗ Ẽ i , we compute that

λh(n + 1)|Ẽ i | =
ˆ

∂∗Ei
λh(id · νẼ i ) dHn =

ˆ

∂∗ Ẽ i

(
HẼi + dE

h

)
(id · νẼ i ) dHn

= nP(Ẽ i ) +
ˆ

∂∗ Ẽ i

dE
h

(id · νẼ i ) dHn .

By translating the coordinates, we may assume 0 ∈ Ẽ i so |id| ≤ diam(Ẽ i ) ≤ C
on ∂∗Ei . Since we also have P(Ẽ i ) ≤ P(Eh

min) ≤ P(E) ≤ C , |Ẽ i | ≥ |Br0/2|
and |dE/h| ≤ 4(n + 1)/r0 on ∂∗ Ẽ i , we infer from the previous computation
|λh | ≤ C0 for C0 = C0(n,m0, r0) ∈ R+. Therefore, using the Euler-Lagrange
equation (3.4) and the first estimate again we have, by possibly increasing C0,
that ‖HEh

min
‖L∞(

∂∗Eh
min

) + |λh | ≤ C0. Finally, if |Eh
min| 	= m0, then |λh | = 1/

√
h.

Thus, assuming h ≤ (2C0)
−2 excludes this possibility and hence it must hold

|Eh
min| = m0. ��
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Proposition 3.1, allows us to deduce, via Allard’s regularity theorem, that the
singular set of minimizer is in fact empty. Further, standard Schauder estimates
gives us a quantitative, albeit non-sharp, UBC for a minimizer.

Lemma 3.2. Assume E ⊂ R
n+1 is an open and bounded set of volume m0 which

satisfies UBC with radius r0. There are positive numbers h0 = h0(n,m0, r0) and
c0 = c0(n,m0, r0) such that if h ≤ h0, then ∂E\∂E∗ = ∅, Eh

min is C3,α-regular
with any 0 < α < 1 and Eh

min satisfies UBC with radius c0h1/3. In particular,
(3.4) is satisfied in the classical sense on ∂Eh

min. Moreover, if E is Ck-regular, with
k ≥ 2, then Eh

min is Ck+2-regular.

Proof. We divide the proof into two steps. Recall that we may assume Eh
min to be

open. In the proof, C denotes a generic positive constant which may change its
value from line to line but it depends only on n,m0 and r0.
Step 1:By using Allard’s regularity theorem we show that the topological boundary
∂Eh

min agrees with the reduced boundary ∂∗Eh
min when h is sufficiently small. To

be more precise, we show that there exist positive numbers ρ = ρ(n,m0, r0) and
h1 = h1(n,m0, r0, ρ) such that if h ≤ h1 and x ∈ ∂Eh

min, then, by possibly rotating
the coordinates, there is a function f ∈ C1,1/3

(
Bn

ρ (x ′)
)

such that

C(x, ρ, 2ρ) ∩ Eh
min = {y ∈ C(x, ρ, 2ρ) : yn+1 < f (y)} (3.9)

and f satisfies the estimates

‖∇ f ‖L∞(Bn
ρ (x ′)) ≤ 1 and ‖∇ f ‖

C0, 1
3 (Bn

ρ (x ′))
≤ C. (3.10)

In particular, (3.9) implies that ∂∗E = ∂E and hence, by our earlier discussion,
we conclude that Eh

min is C2,α-regular with any 0 < α < 1/2. We may assume
that h1 is chosen so small that via Proposition 3.1 the boundary ∂Eh

min is contained
in Nr0/2(∂E). Since dE ∈ C1,1(Nr0/2(∂E)), then recalling the Euler-Lagrange
equation (3.4) we may write the generalized mean curvature of Eh

min as a restriction
of a C1,1-function to ∂Eh

min. Therefore, by using standard Schauder estimates, one
may show that Eh

min is actually C3,α-regular with any 0 < α < 1. Also, the same
method gives us Ck+2,α-regularity for any k ≥ 2, if E is already known to be
Ck,α-regular. This is well-known procedure and we leave it to the reader.

The claim of Step 1 follows essentially from [46, Thm 2.5.2], if we prove that
for every x ∈ ∂Eh

min and ε ∈ R+ there are positive numbers ρ = ρ(n,m0, r0, ε)

and h̃ = h̃(n,m0, r0, ρ, ε) such that if h ≤ h̃, then

Hn(Bρ(x) ∩ ∂∗Eh
min)

|Bn
ρ | ≤ 1 + ε and (3.11)

ρ
1
3

(ˆ

Bρ(x)∩∂∗Eh
min

|HEh
min

| 3n
2 dHn

) 2
3n

≤ ε. (3.12)
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We fix ε > 0 and initially assume h ≤ h0, where h0 is from Proposition 3.1. It

follows from Proposition 3.1 and the fact ∂Eh
min = ∂∗Eh

min that

(Eh
min ∪ E) \ (Eh

min ∩ E) ⊂ NCh(∂E). (3.13)

Thus, we may assume that (Eh
min ∪ E)\(Eh

min ∩ E) ⊂ Nr0/2(∂E) where the pro-
jection π∂E is well-defined. Proposition 3.1 also gives us |Eh

min| = m0. Next,
we fix x ∈ ∂Eh

min. Without loss of generality, we may assume π∂E (x) = 0 and
νE (0) = en+1. Then it follows from Proposition 2.7 that there is g ∈ C1,1(Bn

r0/2)

such that |g(y′)| < |y′|2/r0, |∇g(y′)| < 2|y′|/r0 for every y′ ∈ Bn
r0/2 and

C(0, r0/2, r0/2) ∩ E = {y ∈ C(0, r0/2, r0/2) : yn+1 < g(y′)}.
We have, for every 0 < ρ < r0/4, a density bound

P(E;C(0, ρ, r0/2)) =
ˆ

Bn
ρ

√
1 + |∇g|2 dy′ ≤ (1 + Cρ2)|Bn

ρ |. (3.14)

Suppose that y ∈ C(0, ρ, r0/2) ∩ ((Eh
min ∪ E)\(Eh

min ∩ E)) for 0 < ρ < r0/4.
Recalling (3.13), we may assume that π∂E (y) ∈ C(0, r0/2, r0/2) and since |∇g| ≤
C in Bn

r0/2 we estimate that

|yn+1 − g(y′)| ≤ |y − π∂E (y)| + |π∂E (y) − (y′, g(y′))|
≤ |y − π∂E (y)| + C |(π∂E (y))′ − y′| ≤ Ch.

It follows then from Fubini’s theorem that
∣∣∣C(0, ρ, r0/2) ∩

(
(Eh

min ∪ E) \ (Eh
min ∩ E)

)∣∣∣ ≤ Cρnh and (3.15)

Hn
(
∂C(0, ρ, r0/2) ∩

(
(Eh

min ∪ E) \ (Eh
min ∩ E)

))
≤ Cρn−1h (3.16)

for 0 < ρ < r0/4. We define for such ρ a comparison set Fρ by setting

Fρ = (Eh
min \ C(0, ρ, r0/2)) ∪ (E ∩ C(0, ρ, r0/2)),

and we make the following technical observations: first, since Eh
min ∩ E is open and

contained in Fρ , then Hn(∂∗Fρ ∩ (Eh
min ∩ E)) = 0. Second, ∂∗Fρ ⊂ Eh

min ∪ E .
With help of these, (3.14) and (3.16) we estimate

P(Fρ) = P(Fρ;C(0, ρ, r0/2)) + P(Fρ; ∂C(0, ρ, r0/2))

+ P(Fρ; R
n+1 \ C(0, ρ, r0/2))

= P(E;C(0, ρ, r0/2)) + Hn(∂∗Fρ ∩ ∂C(0, ρ, r0/2))

+ P(Eh
min; R

n+1 \ C(0, ρ, r0/2))

≤ P(E;C(0, ρ, r0/2)) + P(Eh
min; R

n+1 \ C(0, ρ, r0/2))

+ Hn
(
∂C(0, ρ, r0/2) ∩

(
(Eh

min ∪ E) \ (Eh
min ∩ E)

))



    1 Page 28 of 58 Arch. Rational Mech. Anal.           (2024) 248:1 

≤ (1 + Cρ2)|Bn
ρ | + P(Eh

min; R
n+1 \ C(0, ρ, r0/2)) + Cρn−1h.

Thus, the inequality Fh(Eh
min, E) ≤ Fh(Fρ, E), (3.13), (3.15), |Eh

min| = m0 and
the definition of Fρ yield

P(Eh
min;C(0, ρ, r0/2)) + 1

h

ˆ

C(0,ρ,r0/2))∩(Eh
min�E)

|dE | dx

≤ (1 + Cρ2)|Bn
ρ |n + 1√

h
||Fρ | − m0| + Cρn−1h

≤ (1 + Cρ2)|Bn
ρ | + 1√

h
|C(0, ρ, r0/2) ∩ (Eh

min�E)| + Cρn−1h

≤ (1 + Cρ2)|Bn
ρ | + C(ρn

√
h + ρn−1h).

Recall that for the fixed point x ∈ ∂Eh
min it holds x = dE (x)en+1 with |dE (x)| ≤

Ch. Thus we may assume Bρ(x) ⊂ C(0, ρ, r0/2) for 0 < ρ < r0/4. Hence, the
above estimate yields

P(Eh
min; Bρ(x)) ≤ (1 + Cρ2)|Bn

ρ | + C(ρn
√
h + ρn−1h). (3.17)

Moreover, it holds ‖HEh
min

‖L∞(∂∗Eh
min) ≤ C by Proposition 3.1, P(Eh

min) ≤ P(E)

and P(E) ≤ C by Lemma 2.10. Therefore,

ρ
1
3

(ˆ

Bρ(x)∩∂∗Eh
min

|HEh
min

| 3n
2 dHn

) 2
3n

≤ Cρ
1
3 .

We infer from the previous estimate and (3.17) the existence of numbers h̃ and ρ

satisfying (3.11) and (3.12).
Step 2: We assume that h ≤ h1 and fix x ∈ ∂Eh

min. We may assume that x = 0 and
νEh

min
(0) = en+1. According to Step 1, up to a possible rotation of the coordinates,

there is f ∈ C3(Bn
ρ1

(x ′)) with f (0) = ∇ f (0) = 0 satisfying (3.9) and (3.10).
We use Schauder estimate in a quantitative manner to prove there is a positive
h0 = h0(n,m0, r0) ≤ h1 such that h ≤ h0 implies

‖∇2 f ‖L∞(Bn
ρ/2)

≤ Ch− 1
3 . (3.18)

Once we have proven (3.18) then the claim that Eh
min satisfies UBC with radius

c0h1/3 follows in a straightforward manner as we discussed in Remark 2.8.
Thus, we are left to prove (3.18). We may write HEh

min
in local coordinates as

the mean curvature of the subgraph {(y′, yn+1 : y′ ∈ Bn
ρ , yn+1 < f (y′)}, that is,

HEh
min

(y′, f (y′)) = − div

(
∇ f

√
1 + |∇ f |2

)

(y′) = −Tr
(
A(y′)∇2 f (y′)

)
.

(3.19)
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It follows from (3.10) that A is uniformly elliptic and bounded in the C0,1/3-sense.
To be more precise, we have

inf
y′∈Bn

ρ

min
ξ∈∂Bn

1

A(y′)ξ · ξ ≥ 1/C and max
i j

‖[A]i j‖
C0, 1

3 (Bn
ρ )

≤ C.

Thus, by using standard Schauder interior estimate [24], (3.10) and (3.19), we
obtain

‖∇2 f ‖
C0, 1

3 (Bn
ρ/2)

≤ C

(
‖u‖

C0, 1
3 (Bn

ρ )
+ ‖ f ‖L∞(Bn

ρ )

)

≤ C

(
‖u‖

C0, 1
3 (Bn

ρ )
+ 1

)
, (3.20)

where u : Bn
ρ1

→ R
n is given by u(y′) = HEh

min
(y′, f (y′)). We may assume h

is chosen sufficiently small so that via Proposition 3.1 we have ‖u‖L∞(Bn
ρ ) ≤ C .

Again, (3.10) implies |∇u(y′)| ≤ C |∇τ HEh
min

(y′, f (y′))| for every y′ ∈ Bn
ρ . On the

other hand, by (tangentially) differentiating the Euler-Lagrange equality (3.4) we
obtain |∇τ HEh

min
(y′, f (y′))| ≤ 1/h for every y′ ∈ Bn

ρ . Hence, ‖∇u‖L∞(Bn
ρ ) ≤ C/h

and since ‖u‖L∞(Bn
ρ ) ≤ C , assuming h ≤ 1 yields ‖u‖C1(Bn

ρ ) ≤ C/h. Again,

Lemma 2.1 yields ‖u‖C0,1/3(Bn
ρ ) ≤ Ch−1/3 and hence, by recalling (3.20), we

conclude the existence of h0 = h0(n,m0, r0) satisfying (3.18) for all h ≤ h0. ��
Remark 3.3. We may replace the exponent 1/3 with a generic 0 < α < 1 in the
proof of Lemma 3.2. Then, naturally, h0 and c0 also depend on α. UBC with radius
r0 for E and UBC with radius c0h1/3 for Eh

min imply together with the distance
estimate of Proposition 3.1 and (2.22) that there is h0 = h0(n,m0, r0) such that
if h ≤ h0, then ∇dE · νEh

min
> 0 on ∂Eh

min and the projection π∂E is injective on

∂Eh
min.

4. Uniform Ball Condition for Short-Time

In this section, we adopt the two-point function method to prove that if the
initial set E0 satisfies UBC with radius r0, then there are positive numbers h0 and
T0 such that

h ≤ h0 �⇒ Eh
t satisfies UBC with radius r0/2 for 0 ≤ t ≤ T0, (4.1)

where the approximative flow (Eh
t )t≥0 starting from E0 is defined as in (3.1). For

more precise statement, see Theorem 4.7 at the end of the section. As we have seen in
Lemma 3.2, UBC for an initial set is crucial, as it guarantees that the corresponding
minimizer of the energy (3.2) has improved regularity and an initial quantitative
bound on UBC although the latter depends on h. In this section, we improve the
previous non-sharp estimate on UBC for the minimizer by showing the minimizer
satisfies almost the same UBC as the initial set.

The original idea of the two-point function goes back to [27], where it is used
to study the regularity of the classical solution to the mean curvature flow. We
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refer to [10] for a comprehensive overview of the topic and mention also the works
[4,11,18] which have inspired us. Here we will show that the method can be applied
to the approximative flat flow at the level of discrete time scale. We will assume
that the approximative flat flow is related to the volume preserving mean curvature
flow but the arguments hold with essentially no modifications also in the case of
the mean curvature flow.

4.1. Two-Point Function Method

The main idea is to double the variables and, given a set E ⊂ R
n+1 satisfying

UBC, to study the function SE defined for (x, y) ∈ ∂E × ∂E with x 	= y as

SE (x, y) := (x − y) · νE (x)

|x − y|2 . (4.2)

It is known, but we will include the proof below, that the maximum value of |SE | is
explicitly related to the maximal UBC for E . In other words, doubling the variables
allows us to quantify the maximal UBC via the function SE . It is interesting that the
idea of doubling the variables is also used in [29] to study regularity of solutions
of nonlinear PDEs.

For the next lemma we note that if a set E satisfies UBC with radius r , then it
satisfies UBC with every 0 < ρ < r . We define rE to be the supremum of such
radii and recalling our previous discussion we may write this as

rE = sup{r > 0 : dE is differentiable in Nr (∂E)}. (4.3)

Note that rE > 0. We use the abbreviation ‖SE‖L∞ := sup{|SE (x, y)| : x, y ∈
∂E, x 	= y}.
Lemma 4.1. Let E ⊂ R

n+1 be an open and bounded set satisfying UBC. Then it
holds that

2‖SE‖L∞ = 1

rE
and

|ν(x) − ν(y)|
|x − y| ≤ 2‖SE‖L∞ for every x, y ∈ ∂E with x 	= y,

where rE is defined in (4.3). In the case E is C2-regular, we also have |HE |, |BE | ≤
2n‖SE‖L∞ on ∂E.

Proof. Let us first show 2‖SE‖L∞ ≥ 1/rE . First of all, we infer from the bound-
edness of E that rE < ∞. Since E does not satisfy UBC with given a radius
r ∈ (rE ,∞), there is z ∈ Nr (∂E) such that dE is not differentiable at z. Hence,
there are distinct points x, y ∈ ∂E such that |z − x | = |dE (z)| = |z − y|. With-
out loss of generality, we may assume z = 0 which implies |x | = |y| < r and
νE (x) = ±x/|x |. Thus,

|SE (x, y)| =
∣
∣∣∣
〈x/|x |, x − y〉

|x − y|2
∣
∣∣∣ = 1

|x |
∣
∣∣∣
|x |2 − 〈x, y〉

|x − y|2
∣
∣∣∣

= 1

2|x |
∣∣∣∣
|x |2 − 2〈x, y〉 + |y|2

|x − y|2
∣∣∣∣
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= 1

2|dE (x)| >
1

2r

and we conclude the inequality 2‖SE‖L∞ ≥ 1/rE .
To conclude the opposite estimate, we choose 0 < r < rE . Let x, y ∈ ∂E be

distinct points. Since E satisfies UBC with r , we have |dE (x ± rνE (x))| = r and,
hence,

r2 ≤ |x ± rνE (x) − y|2 = r2 ± 2r〈νE (x), x − y〉 + |x − y|2.
By subtracting and dividing terms we obtain ±2SE (x, y) ≤ 1/r . We let r → rE
to obtain 2‖SE‖L∞ ≤ 1/rE . Thus, 2‖SE‖L∞ = 1/rE . The rest of the claim is a
direct consequence of the previous identity, (2.30) and Proposition 2.7. ��

An obvious consequence of Lemma 4.1 is that for every open and bounded set
E ⊂ R

n+1 it holds
‖SE‖L∞ ≥ c0 (4.4)

for a positive constant c0 = c0(n, |E |).
We will also use the regularized version of SE , which we define for any ε ∈ R+

as SE,ε : ∂E × ∂E → R,

SE,ε(x, y) := (x − y) · νE (x)

|x − y|2 + ε
. (4.5)

As in the case of SE , we use the abbreviation ‖SE,ε‖L∞ = max{|SE,ε(x, y)| :
(x, y) ∈ ∂E × ∂E}. The idea behind considering SE,ε instead of SE is that, on the
one hand, SE,ε → S pointwise in ∂E × ∂E\{(x, x) : x ∈ ∂E} as ε tends to zero
(in particular, ‖SE,ε‖L∞ ↑ ‖SE‖L∞ ) and, on the other hand, we may differentiate
SE,ε on the product ∂E × ∂E provided that E is sufficiently regular. The following
calculations are similar to [4,18] but we give them in order to be self-consistent.

Let us first differentiate SE,ε in the case E is C2-regular. In the computations,
the notations ∇x

τ and ∇ y
τ stand for the tangential differentiation along ∂E with

respect to x and y -variables respectively. Recalling the basic identities (2.4) as
well as observing BEνE = 0 and ∇τ id = P∂E on ∂E we compute

∇x
τ SE,ε(x, y) = ∇x

τ

(
(x − y) · νE (x)

)

|x − y|2 + ε
− (x − y) · νE (x)

(|x − y|2 + ε)2 ∇x
τ |x − y|2

= BE (x)(x − y) − 2SE,ε(x, y) P∂E (x)(x − y)

|x − y|2 + ε
.

(4.6)

and

∇ y
τ SE,ε(x, y) = ∇ y

τ

(
(x − y) · νE (x)

)

|x − y|2 + ε
− (x − y) · νE (x)

(|x − y|2 + ε)2 ∇ y
τ |x − y|2

= P∂E (y)
( − νE (x) + 2SE,ε(x, y)(x − y)

)

|x − y|2 + ε

(4.7)

for every (x, y) ∈ ∂E × ∂E . We immediately obtain the following identities at
critical points:
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Lemma 4.2. Let E ⊂ R
n+1 be a bounded and C2-regular set. Assume (x, y) ∈

∂E × ∂E is a local maximum or a local minimum point of SE,ε defined in (4.5).
Then it holds that

BE (x)(x − y) = 2SE,ε(x, y)P∂E (x)(x − y) and (4.8)

P∂E (y)νE (x) = 2SE,ε(x, y)P∂E (y)(x − y). (4.9)

Moreover, the condition rE >
√

ε implies

νE (y) = νE (x) − 2SE,ε(x, y)(x − y)
(
νE (x) − 2SE,ε(x, y)(x − y)

) · νE (y)
. (4.10)

Proof. Since (x, y) is a critical point for the functions SE,ε(x, · ) and SE,ε( · y),
then the equality (4.8) follows from (4.6) and the equality (4.9) follows from (4.7).
Using P∂E (y) = I − νE (y) ⊗ νE (y) and (4.9) we have

νE (x) − 2SE,ε(x, y)(x − y) = [(
νE (x) − 2SE,ε(x, y)(x − y)

) · νE (y)
]
νE (y).

The equality (4.10) thus follows once we show that

νE (x) − 2SE,ε(x, y)(x − y) 	= 0. (4.11)

We argue by contradiction and assume νE (x) = 2SE,ε(x, y)(x − y). Then it holds
SE,ε(x, y) 	= 0 and the definition of SE,ε(x, y) implies

SE,ε(x, y) = (x − y) · νE (x)

|x − y|2 + ε
= 2SE,ε(x, y)

|x − y|2
|x − y|2 + ε

.

Therefore, we have |x− y| = √
ε. On the other hand, the contradiction assumption,

the definition of SE,ε and Lemma 4.1 together yield that

1 = |νE (x)| = 2|SE,ε(x, y)| |x − y| = 2|SE,ε(x, y)|√ε ≤ 2‖SE‖L∞
√

ε =
√

ε

rE
,

which is impossible, by the assumption that rE >
√

ε. ��
If E has higher regularity and ε is sufficiently small, we may naturally extract

more information at local extreme points. Indeed, if E is C3-regular, then by max-
imum principle at a local maximum (minimum) point (x, y) ∈ ∂E × ∂E of SE,ε it
holds that

�x
τ SE,ε(x, y) + 2 divxτ ∇ y

τ SE,ε(x, y) + �y
τ SE,ε(x, y)

(≥)≤ 0. (4.12)

We calculate the LHS of (4.12) in the next lemma.

Lemma 4.3. Let E ⊂ R
n+1 be a bounded and C3-regular set with rE >

√
ε. At a

local maximum (minimum) point (x, y) ∈ ∂E × ∂E of SE,ε it holds that

∇τ HE (x) · (x − y)

|x − y|2 + ε
+ (νE (x) · νE (y)) HE (y) − HE (x)

|x − y|2 + ε

(≥)≤ |BE (x)|2SE,ε(x, y) − 2HE (x)S2
E,ε(x, y) − 2HE (y)SE,ε(y, x)SE,ε(x, y).
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Proof. First, we compute the terms on the LHS of (4.12) by taking tangential diver-
gences of (4.6) and (4.7) with respect to x and y -variables. In the computations, we
use the identities (2.5) and the fact that the gradients ∇x

τ SE,ε(x, y) and ∇ y
τ SE,ε(x, y)

vanish. Omitting all the details we obtain by straightforward calculation

�x
τ SE,ε(x, y) = divxτ (∇x

τ SE,ε(x, y))

= divxτ

(
BE (x)(x − y) − 2SE,ε(x, y) P∂E (x)(x − y)

|x − y|2 + ε

)

= ∇τ HE (x) · (x − y)

|x − y|2 + ε
+ HE (x)

|x − y|2 + ε
− 2SE,ε(x, y)

n

|x − y|2 + ε

− |BE |2SE,ε(x, y) + 2S2
E,ε(x, y) HE (x),

�y
τ SE,ε(x, y) = divy

τ (∇ y
τ SE,ε(x, y))

= divy
τ

(
− P∂E (y)νE (x) + 2SE,ε(x, y) P∂E (y)(x − y)

|x − y|2 + ε

)

= (νE (x) · νE (y)) HE (y)

|x − y|2 + ε
− 2SE,ε(x, y)

n

|x − y|2 + ε

+ 2SE,ε(x, y)SE,ε(y, x) HE (y)

and

divxτ ∇ y
τ SE,ε(x, y) = divxτ

(
− P∂E (y)νE (x) + 2SE,ε(x, y) P∂E (y)(x − y)

|x − y|2 + ε

)

= − HE (x)

|x − y|2 + ε
+

(
BE (x)νE (y)

) · νE (y)

|x − y|2 + ε

+ 2SE,ε(x, y)
n

|x − y|2 + ε

− 2SE,ε(x, y)

(
P∂E (x)νE (y)

) · νE (y)

|x − y|2 + ε
.

Collecting the terms and applying the inequality (4.12), we obtain that at a local
maximum (minimum) point it holds that

0
(≤)≥ ∇τ HE (x) · (x − y)

|x − y|2 + ε
+ (νE (x) · νE (y)) HE (y) − HE (x)

|x − y|2 + ε

− |BE |2SE,ε(x, y) + 2S2
E,ε(x, y) HE (x) + 2SE,ε(x, y)SE,ε(y, x) HE (y)

+ 2

(
BE (x)νE (y)

) · νE (y)

|x − y|2 + ε
− 4SE,ε(x, y)

(
P∂E (x)νE (y)

) · νE (y)

|x − y|2 + ε
.

The claim follows once we show that the last line above vanishes, i.e., that

(
BE (x)νE (y)

) · νE (y) = 2SE,ε(x, y)
(
P∂E (x)νE (y)

) · νE (y). (4.13)
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Since rE >
√

ε, this follows by first applying the equalities (4.8) and (4.10) in
Lemma 4.2 and recalling BE (x)νE (x) = 0:

BE (x)νE (y) = −2SE,ε(x, y)
BE (x)(x − y)

(
νE (x) − 2SE,ε(x, y)(x − y)

) · νE (y)

= −4S2
E,ε(x, y)

P∂E (x)(x − y)
(
νE (x) − 2SE,ε(x, y)(x − y)

) · νE (y)
.

Then we use (4.10) to deduce that

P∂E (x)νE (y) = −2SE,ε(x, y)
P∂E (x)(x − y)

(
νE (x) − 2SE,ε(x, y)(x − y)

) · νE (y)
,

and (4.13) follows. ��
In conclusion, by combining Lemma 4.1 and Lemma 4.3, we obtain that if a

bounded C3-regular set E ⊂ R
n+1 satisfies rE >

√
ε, then at a local maximum

(minimum) point (x, y) ∈ ∂E × ∂E of SE,ε it holds that

+
(−)

(∇τ HE (x) · (x − y)

|x − y|2 + ε
+ (νE (x) · νE (y)) HE (y) − HE (x)

|x − y|2 + ε

)
≤ Cn‖SE‖3

L∞ .

(4.14)

4.2. Short-Time Uniform Ball Estimate

Let us turn our focus on how to prove (4.1) for an approximative flat flow
solution (Eh

t )t≥0 defined in (3.1) when the initial set E0 satisfies UBC with given
a radius r0. Assuming we may control the evolution of the quantity ‖SEh

t
‖L∞ , then

thanks to Lemma 4.1 we also control (from below) the maximal UBC for Eh
t .

We motivate ourselves by considering first the continuous and embedded set-
ting. Assume (Et )t is a smooth flow and let νt and Vt denote the outer unit normal
of Et and the normal velocity of the flow on ∂Et respectively. Then one may use
the fact that for fixed t there is a smooth normal parametrization (�t

s)s of the flow
such that �t

0 = id and ∂s�
t
s = [Vs νs] ◦ �t

s . This follows essentially from [5, Thm
8]. It is straightforward to calculate that for such a parametrization

d

ds
�t

t+s

∣
∣∣∣
s=0

= Vt νt and
d

ds
(νEt+s ◦ �t

t+s)

∣
∣∣∣
s=0

= −∇τVt on ∂Et . (4.15)

In the case of volume preserving mean curvature flow, we have Vs = −(Hs − H̄s),
where Hs is the scalar mean curvature on ∂Es and H̄s its integral average over ∂Es .
If x and y are distinct points on ∂Et , then by using (4.15) and the previous identity,
we may compute

d

ds
SEt+s (�

t
s(x),�

t
s(y))

∣
∣
∣∣
s=0

= ∇τ HE (x) · (x − y)

|x − y|2 + (νE (x) · νE (y)) HE (y) − HE (x)

|x − y|2
+ Rt (x, y),

(4.16)
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where the remainder term Rt (x, y) has a bound |Rt (x, y)| ≤ Cn‖SEt ‖3
L∞ . Suppose

that ‖SEt ‖L∞ = ±SEt (x, y) and the function s �→ ‖SEt+s‖L∞ is differentiable at
s = 0, then we deduce

d

ds
‖SEt+s‖L∞

∣∣∣∣
s=0

= ± d

ds
SEt+s (�

t
s(x),�

t
s(y))

∣∣∣∣
s=0

.

Again, the estimate (4.14) also holds for SE when the points are distinct. Thus, by
possibly increasing Cn , we infer from above and (4.16) that

‖SEt+s‖L∞ − ‖SEt ‖L∞

s
≤ Cn‖SEt ‖3

L∞ , (4.17)

provided that s 	= 0 is sufficiently small.
The idea is to mimic the previous argument in the discrete setting for an ap-

proximative flat flow (Eh
t )t≥0. To this end, we need to approximate the two-point

functional by its ε-regularized version. We consider the element Eh
t and its conse-

quent set Eh
t+s . For sake of brevity, we use the shorthand notations E1 = Eh

t and
E2 = Eh

t+s for the rest of the subsection. First, we want to find a discrete version
of the equalities in (4.15). Suppose that an element E1 satisfies UBC and h is so
small that by the discussion of the previous section we have that E2 is C1-regular
set, ∂E2 ⊂ NrE1

(∂E1) and ∇dE1 · νE2 > 0 on ∂E2 are satisfied.
Then it is natural to project the boundary ∂E2 to ∂E1 by the projection π∂E1

and, hence, using the identities in (2.22) we have

id − π∂E1

h
= dE1

h
(νE2 ◦ π∂E1) on ∂E2,

which can be seen as a discrete time counterpart of the first identity in (4.15). In
the next simple but crucial lemma, we derive a relation between νE2 and νE1 ◦π∂E1

for x ∈ ∂E2.

Lemma 4.4. Assume that E1 ⊂ R
n+1 is an open set satisfying UBC, E2 is a C1-

regular set such that ∂E2 ⊂ NrE1
(∂E) and ∇dE1 · νE2 > 0 on ∂E2. Then

νE1 ◦ π∂E1 = ∇τ2dE1 +
√

1 − |∇τ2dE1 |2 νE2 on ∂E2.

Proof. By using the second identity of (2.22) for dE1 , as well as the definition of a
tangential gradient, the following holds on ∂E2:

νE1 ◦ π∂E1 = ∇dE1 = P∂E2∇dE1 + (∇dE1 · νE2)νE2 = ∇τ2dE1 + (∇dE1 · νE2)νE2 .

Since |νE1 ◦ π∂E1 | = 1 = |νE2 | and ∇τ2dE1 · νE2 = 0, then the previous decom-
position implies |∇dE1 · νE2 | = √

1 − |∇τ2dE1 |2. Thus, the claim follows from the
assumption ∇dE1 · νE2 > 0 on ∂E2. ��
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The equality in the statement of Lemma 4.4 gives us a discrete analog for the
second equality in (4.15) as

νE2 − νE1 ◦ π∂E1 = −∇τ2dE1 + |∇τ2dE1 |2
1 + √

1 − |∇τ2dE1 |2
νE2 on ∂E2. (4.18)

or equivalently

νE2 − νE1 ◦ π∂E1 = −
(

1
√

1 − |∇τ2dE1 |2
)

∇τ2dE1

+ |∇τ2dE1 |2√
1 − |∇τ2dE1 |2 + 1 − |∇τ2dE1 |2

νE1 ◦ π∂E1 on ∂E2,

(4.19)
which will be useful later. We need yet one technical lemma related to the projection
π∂E1 on the consequent boundary ∂E2.

Lemma 4.5. Let E1, E2 ⊂ R
n+1 be open and bounded sets satisfying UBC. If

∂E2 ⊂ NrE1/2(∂E1), then for any x, y ∈ ∂E2 satisfying π∂E1(x) 	= π∂E1(y) it
holds that
∣∣
∣|π∂E1(x) − π∂E1(y)|2 − |x − y|2

∣∣
∣

≤ C0‖dE1‖L∞(∂E2)

(
‖SE1‖L∞ + ‖SE2‖L∞ + ‖dE1‖L∞(∂E2)‖SE2‖2

L∞
)

|x − y|2,

where C0 ≥ 1 is a universal constant.

Proof. First, we obtain from (2.22) and the definition of SE1 that

|π∂E1(x) − π∂E1(y)|2 − |x − y|2
= −2dE1(x)SE1(π∂E1(x), π∂E1(y))|π∂E1(x) − π∂E1(y)|2

− 2dE1(y)SE1(π∂E1(y), π∂E1(x))|π∂E1(x) − π∂E1(y)|2
− ∣

∣dE1(x)(νE1 ◦ π∂E1)(x) − dE1(y)(νE1 ◦ π∂E1)(y)
∣
∣2

.

Thus,
∣∣∣|π∂E1(x) − π∂E1(y)|2 − |x − y|2

∣∣∣

≤ 4‖dE1‖L∞(∂E2)‖SE1‖L∞|π∂E1(x) − π∂E1(y)|2
+ 2|dE1(x)|2|(νE1 ◦ π∂E1)(x) − (νE1 ◦ π∂E1)(y)|2 + 2|dE1(x) − dE1(y)|2

≤ 4‖dE1‖L∞(∂E2)‖SE1‖L∞|π∂E1(x) − π∂E1(y)|2
+ 2‖dE1‖2

L∞(∂E2)
|(νE1 ◦ π∂E1)(x) − (νE1 ◦ π∂E1)(y)|2

+ 2|dE1(x) − dE1(y)|2.
The normal νE1 is 1/rE1 -Lipschitz continuous by Proposition 2.7 and π∂E1 is 2-
Lipschitz continuous in NrE1/2(∂E1) by Lemma 2.9. On the other hand, recalling
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Lemma 4.1 we conclude ‖dE1‖L∞(∂E2)‖SE1‖L∞ ≤ 1/4. Hence, we infer from the
previous estimate that
∣
∣∣|π∂E1 (x)−π∂E1 (y)|2−|x−y|2

∣
∣∣ ≤ 24‖dE1‖L∞(∂E2)‖SE1‖L∞ |x−y|2 + 2|dE1 (x) − dE1 (y)|2.

(4.20)

Thus, we are left to estimate the term |dE1(x) − dE1(y)|2 on the boundary ∂E2.
We divide this into two cases. First, suppose that |x − y| ≥ rE2/2. Then using

Lemma 4.1 we obtain

|dE1(x)−dE1(y)|2 ≤ 4‖dE1‖2
L∞(∂E2)

r2
E2

|x−y|2 ≤ 16‖dE1‖2
L∞(∂E2)

‖SE2‖2
L∞|x−y|2.

(4.21)
Suppose then |x−y| < rE1/2. We define aC1-extension d̃E1 : NrE2

(∂E2) → R

of the restrictiondE1 |∂E2 by setting d̃E1 = dE1◦π∂E2 . Then∇d̃E1 = ∇π∂E2∇τ2dE1◦
π∂E2 and by Lemma 2.9 |∇π∂E2 |op ≤ 2 in NrE2 /2(∂E2) so that |∇d̃E1 |
≤ 2‖∇τ2 d̃E1‖L∞(∂E2). Since the line segment Jyx belongs to NrE2 /2(∂E2), we
have

|dE1(x) − dE1(y)|2 ≤ 4‖∇τ2dE1‖2
L∞(∂E2)

|x − y|2. (4.22)

By Lemma 2.9 we have |∇2dE1 |op ≤ 2/rE1 in NrE1
(∂E1). Therefore, by using

Lemma 2.11 and Lemma 4.1 we get an estimate

‖∇τ2dE1‖2
L∞(∂E2)

≤ 4‖dE1‖L∞(∂E2)

(

sup
∂E2

|∇2dE1 |op + ‖∇τdE1‖L∞(∂E2)

rE2

)

≤ 16‖dE1‖L∞(∂E2)

(‖SE1‖L∞ + ‖SE2‖L∞
)
. (4.23)

Thus, we gather the estimate as claimed from (4.20), (4.21), (4.22) and the estimate
above. ��

We are now ready prove an analogous estimate to (4.17) in the discrete setting.

Lemma 4.6. Assume that E1 ⊂ R
n+1 is an open and bounded set, with |E1| = m0,

which satisfies UBC with radius r0 ∈ R+. Let E2 be any minimizer of the energy
Fh( · E1) defined in (3.2). Then there is h0 = h0(n,m0, r0) such that for h ≤ h0
E2 is C3-regular and

‖SE2‖L∞ − ‖SE1‖L∞

h
≤ Cn‖SE1‖3

L∞ .

If in addition E1 is Ck-regular, then E2 is Ck+2-regular.

Proof. As previously,C = C(n,m0, r0) > 0 may change from line to line. We find
h0 = h0(n,m0, r0) ∈ R+ such that assuming h ≤ h0 implies that the conclusions
of Proposition 3.1, Lemma 3.2 and Remark 3.3 are valid. Let us quickly summarize
what we have achieved so far. First, E2 is open and bounded, C3-regular set, or
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Ck+2-regular set provided that E1 is Ck-regular, and it satisfies UBC with radius
c0h1/3 for a constant c0 = c0(n,m0, r0) > 0. Hence, by Lemma 4.1 we have apriori
estimate

‖SE2‖L∞ ≤ Ch− 1
3 . (4.24)

Second, ∂E2 is “close" to ∂E1. To be more precise, we have ‖dE1‖L∞(E2) ≤ Cnh/r0
and we may assume that ∂E2 ⊂ Nr0/2(∂E1). Moreover, it holds that ∇dE1 ·νE2 > 0
on ∂E2 and π∂E1 is injective on ∂E2. Third, we have the Euler-Lagrange equation
(3.4) on ∂E2 in the classical sense.

Thus, we assume that h ≤ h0. We might need to shrink h0 but always in a way
that we preserve the dependency h0 = h0(n,m0, r0). By combining the estimate
‖dE1‖L∞(E2) ≤ Cnh/r0 from Proposition 3.1 with Lemma 4.1 and (4.24) and by
possibly shrinking h0 we obtain

‖dE1‖L∞(E2)

h
≤ Cn‖SE1‖L∞ and ‖SE2‖L∞‖dE1‖L∞(E2) ≤ 1. (4.25)

Then, by (3.4), Lemma 4.1 and the first estimate in (4.25), the Lagrange multiplier
λh can be controlled as

|λh | ≤ ‖dE1‖L∞(E2)

h
+ ‖HE2‖L∞(∂E2) ≤ Cn(‖SE1‖L∞ + ‖SE2‖L∞). (4.26)

The claim follows once we show

‖SE2‖L∞ − ‖SE1‖L∞

h
≤ Cn

(
‖SE1‖3

L∞ + ‖SE2‖3
L∞

)
. (4.27)

Indeed, assuming the above holds true we have by Lemma 4.1 and (4.24)

‖SE2‖L∞ − ‖SE1‖L∞ ≤ Cnr
−3
0 h + Ch

1
3 ‖SE2‖L∞

and, hence, recalling (4.4) and shrinking h0, if neccessary, we obtain ‖SE2‖L∞ ≤
2‖SE1‖L∞ . Thus, reiterating the previous inequality via (4.27) yields the claim.

To prove (4.27), we initially fix any ε < r2
E2

and choose (x, y) ∈ ∂E2 × ∂E2
such that |SE2,ε(x, y)| = ‖SE2,ε‖L∞ . Since ‖SE2,ε‖L∞ > 0, then x 	= y and,
hence, the injectivity of π∂E1 on ∂E2 ensures that π∂E1(x) 	= π∂E1(x). In order to
simplify our notations, we write π = π∂E1 and H2 = HE2 for short. By using the
definition in (4.5), the identities (2.22) and (4.18) as well as the Euler-Lagrange
equation we may decompose the difference quotient as

1

h

(
SE2,ε(x, y) − SE1,ε(π(x), π(y))

)

= (x − y) · ∇τ2 H2(x)

|x − y|2 + ε

+
(
νE1(x) · νE2(y)

)
H2(y) − H2(x)

|x − y|2 + ε

+ 1

h

|∇τ2dE1(x)|2
1 + √

1 − |∇τ2dE1(x)|2
SE2,ε(x, y)
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+
(

λh − dE1(y)

2h

) |νE1(x) − νE1(y)|2
|x − y|2 + ε

+ dE1(y)

2h

|νE1(π(x)) − νE1(π(y))|2
|x − y|2 + ε

+ 1

h

( |π(x) − π(y)|2 − |x − y|2
|x − y|2 + ε

)
SE1,ε(π(x), π(y)). (4.28)

Next, we estimate the last four terms on the RHS. First, since ∂E2 ⊂ Nr0/2(∂E) ⊂
NrE1 /2(∂E1), we have the estimate (4.23) for ‖∇τ2dE1‖2

L∞(∂E2)
and, hence, recall-

ing the first estimate in (4.25) we have
∣∣∣
∣∣
1

h

|∇τ2dE1(x)|2
1 + √

1 − |∇τ2dE1(x)|2
SE2,ε(x, y)

∣∣∣
∣∣

≤ 16‖dE1‖∂E2

h

(
‖SE1‖L∞‖SE2‖L∞ + ‖SE2‖2

L∞
)

≤ Cn

(
‖SE1‖3

L∞ + ‖SE2‖3
L∞

)
.

(4.29)

For the next term, we use Lemma 4.1, the first estimate in (4.25) and (4.26) to
obtain
∣∣∣
∣

(
λh − dE1(y)

2h

) |νE1(x) − νE1(y)|2
|x − y|2 + ε

∣∣∣
∣ ≤Cn

(
|λh | + ‖SE1‖L∞(∂E1)

)
‖SE2‖2

L∞(∂E2)

≤Cn

(
‖SE1‖3

L∞(∂E1)
+ ‖SE2‖3

L∞(∂E2)

)
.

(4.30)
By Proposition 2.7 νE1 is 1/r0-Lipschitz and by Lemma 2.9 π is 2-Lipschitz con-
tinuous in Nr0/2(∂E1). Thus, by Lemma 4.1 and the first inequality in (4.25), we
estimate the second last term as

∣∣∣
∣
dE1(y)

2h

|νE1(π(x)) − νE1(π(y))|2
|x − y|2 + ε

∣∣∣
∣ ≤Cn‖SE1‖L∞

1

r2
0

|π(x) − π(y)|2
|x − y|2

≤Cn‖SE1‖3
L∞ .

(4.31)

Finally, by using Lemma 4.5 and the identities in (4.25), we have

∣∣
∣∣
1

h

( |π(x) − π(y)|2 − |x − y|2
|x − y|2 + ε

)
SE1,ε(π(x), π(y))

∣∣
∣∣

≤ Cn
‖dE1‖L∞(∂E2)

h

(
‖SE1‖L∞ + ‖SE2‖L∞ + ‖dE1‖L∞(∂E2)‖SE2‖2

L∞
)

‖SE1‖L∞

≤ Cn

(
‖SE1‖3

L∞ + ‖SE2‖3
L∞

)
.

(4.32)
We infer from (4.28), (4.29), (4.30), (4.31) and (4.32) the expression

SE2,ε(x, y) − SE1,ε(π(x), π(y))

h
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= (x − y) · ∇τ2 H2(x)

|x − y|2 + ε
+

(
νE1(x) · νE2(y)

)
H2(y) − H2(x)

|x − y|2 + ε

+ R,

where for the remainder term it holds |R| ≤ Cn
(‖SE1‖3

L∞ + ‖SE2‖3
L∞

)
. Since

(x, y) is a maximum (or minimum) point for SE2,ε, then we conclude from (4.14)

‖SE2,ε‖L∞ − ‖SE1,ε‖L∞

h
≤ Cn

(
‖SE1‖3

L∞ + ‖SE2‖3
L∞

)
.

Since now ‖SEi ,ε‖L∞ ↑ ‖SEi ,ε‖L∞ for i = 1, 2 as ε tends to zero, the above yields
(4.27) and we conclude the proof. ��

We may now prove the main result of this section which is the UBC estimate
for the approximative flat flow.

Theorem 4.7. Let E0 ⊂ R
n+1 be an open andbounded setwhich satisfiesUBCwith

radius r0 ∈ R+ and let m0 denote its volume. There are h0 = h0(n,m0, r0) ∈ R+
and T0 = T0(n, r0) ∈ R+ such that if h ≤ h0, then any approximative flat flow
(Eh

t )t≥0 of (1.1) starting from E0 satisfies UBC with radius r0/2 for all t ≤ T0.
Moreover, Eh

t is C1+2�t/h�-regular for every 0 ≤ t ≤ T0.

Proof. By a slight abuse of notation, we set h0 to be as in Lemma 4.6 for the
parameters n, m0 and r0/2. Then we choose

T0 = r2
0

4Cn
, (4.33)

where the dimensional constant is the same as in Lemma 4.6. We assume that h ≤ h0
and consider an approximative flat flow (Eh

t )t≥0 starting from E0 obtained via the
minimizing movements scheme (3.1). We may assume h ≤ T0, since otherwise the
proof is trivial. Since E0 satisfies UBC with radius r0, we have by Lemma 4.1 that
‖SE0‖L∞ = 1/(2r0). Then we set

K = sup

{
k ∈ N : Eh

t satisfies UBC with ‖SEh
lh
‖L∞ ≤ 1

r0
for 0 ≤ l ≤ k

}
.

Note that if Ek
kh is a bounded set satisfying UBC with ‖SEh

k
‖L∞ ≤ 1/r0, then thanks

to Lemma 4.1 we know that it satisfies UBC with radius r0/2. Thus, it follows from
the construction of (Eh

t )t≥0, the choice of h0, and Lemma 4.6 that Eh
(k+1)h is a

bounded C3-regular set satisfying

‖SEh
(k+1)h

‖L∞ ≤ ‖SEh
k
‖L∞ + Cnh‖SEh

k
‖3
L∞ ≤ ‖SEh

k
‖L∞ + Cnr

−3
0 h.

Since h0 ≤ T0, then the choices in (4.33) imply that K is well-defined. By summing
the above from k = 0 to k = K we obtain

1

r0
≤ ‖SEh

(K+1)h
‖L∞ ≤ ‖SE0‖L∞ + Cn

r3
0

(K + 1)h = 1

2r0
+ Cn

r3
0

(K + 1)h.

This yields K ≥ �T0/h� and, hence, it follows from the construction (3.1) that Eh
t

satisfies UBC with radius r0/2 for every 0 ≤ t ≤ T0. The last claim then follows
directly from Lemma 4.6. ��
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5. Higher Regularity

In this section we utilize the short-time UBC from previous section and prove
the full regularity of the flat flow solution of (1.1). It is well known that the classical
solution for the mean curvature flow is well defined as long as the second funda-
mental form stays bounded [39]. For the volume preserving flow this is not enough
as the flow may develop singularities even if it stays regular [40,41]. However, if
the flow in addition satisfies UBC then these singularities do not occur. In this sec-
tion we show that the approximative flat flow becomes instantaneously smooth and
stays smooth as long as it satisfies UBC. We will prove this via energy estimates.

Our starting point is the formula in Lemma 4.4, which for sets E1 and E2 as in
the lemma, gives the formula which relates their normals as

νE1 ◦ π∂E1 = ∇τ2dE1 +
√

1 − |∇τ2dE1 |2 νE2 on ∂E2.

Recall that ∇τ2 denotes the tangential gradient on ∂E2. Assume now further that
E2 is a minimizer of the functional Fh( · E1) defined in (3.2). We may use the
Euler-Lagrange equation (3.4) and have

νE1 ◦ π∂E1 = −h ∇τ2 HE2 +
√

1 − |∇τ2dE1 |2 νE2 on ∂E2. (5.1)

This identity is simple enough for us to differentiate multiple times and this in turn
gives us formula which is the discrete analog of the identity (see e.g. [38, Lemma
3.5])

d

dt
�k HEt = �k+1HEt + lower order terms. (5.2)

Let us, for the sake of clarification, show how we obtain the discrete version of
(5.2) for k = 0 from (5.1), which reads as follows

√
1 − |∇τ2dE1 |2HE2 − HE1 ◦ π∂E1

= h �τ2 HE2 + h2 A2(·)∇τ2 HE2 · ∇τ2 HE2 + a1(·)dE1 on ∂E2, (5.3)

where the function a1(·) and the matrix field A2(·) depend smoothly on dE1 , νE1 ◦
π∂E1 νE2 , BE1 ◦ π∂E1 and BE2 . In particular, since E1 and E2 satisfy UBC with
radius r0/2, then a1(·) and A2(·) are uniformly bounded.

Indeed, by applying the tangential divergence on (5.1) we have

divτ2

(
νE1 ◦ π∂E1

) = −h �τ2 HE2 +
√

1 − |∇τ2dE1 |2 HE2 on ∂E2.

In order to calculate the LHS, we use (2.22), (2.32) and (2.33) to obtain

∇(
νE1 ◦ π∂E1

) = ∇2dE1 = BE1 ◦ π∂E1(I + dE1 BE1 ◦ π∂E1)
−1

= BE1 ◦ π∂E1 − dE1

(
I + dE1 BE1 ◦ π∂E1

)−1
(BE1 ◦ π∂E1)

2

which holds in the tubular neighborhood Nr0(∂E1), where we also used the fact

(BE1 ◦ π∂E1)(I + dE1 BE1 ◦ π∂E1)
−1 = (I + dE1 BE1 ◦ π∂E1)

−1(BE1 ◦ π∂E1).
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Again from (5.1) we have

νE2 = 1
√

1 − |∇τ2dE1 |2
(
h ∇τ2 HE2 + νE1 ◦ π∂E1

)

on ∂E2. Using the above identities and the fact BE1νE1 = 0 on ∂E1, we have the
following equality on ∂E2

divτ2

(
νE1 ◦ π∂E1

) = Tr
(
(I − νE2 ⊗ νE2)∇2dE1

)

= HE1 ◦ π∂E1 − dE1 Tr
( (

I + dE1 BE1 ◦ π∂E1

)−1
(BE1 ◦ π∂E1)

2)

− h2

1 − |∇τ2dE1 |2
( (

I + dE1 BE1 ◦ π∂E1

)−1
(BE1 ◦ π∂E1)

)∇τ2 HE2 · ∇τ2 HE2 .

The equation (5.3) then follows from the previous calculations and from the identity

(νE1 ◦ π∂E1) · νE2 =
√

1 − |∇τ2dE1 |2 on ∂E2, (5.4)

which is a direct consequence of Lemma 4.4.
We may differentiate the equality (5.3) further and obtain a discrete version

of (5.2) for every order k. This will produce several nonlinear error terms which
have rather complicated structure. However, by introducing sufficiently efficient
notation we are able to identify the structure of these error terms and by using UBC
and the interpolation inequality from Proposition 2.2 we are able to reproduce the
argument from [22] in the discrete setting. The following proposition is the core of
the proof for the higher order regularity.

Proposition 5.1. Assume that E1 ⊂ R
n+1 is an open and bounded set, with |E1| =

m0, which satisfies UBC with radius r0 and let E2 be any minimizer of Fh( · E1)

defined in (3.2). There is h0 = h0(n,m0, r0) such that if h ≤ h0 and E1 is C2m+3-
regular for m = 0, 1, 2, . . . then

�m
τ2
HE2 − (�m

τ1
HE1) ◦ π∂E1 = h �m+1

τ2
HE2 + h R2m and

∇τ2�
m
τ2
HE2 − (∇τ1�

m
τ1
HE1) ◦ π∂E1

= h ∇τ2�
m+1
τ2

HE2 − ∂νE2
(�m

τ1
HE1 ◦ π∂E1)νE2 + h R2m+1

on ∂E2 and the error term Rl for l = 0, 1, 2, . . . satisfies the estimate

‖Rl‖2
L2(∂E2)

≤ Cl

(
1 + ‖BE2‖2

Hl+1(∂E2)
+ ‖BE1‖2

Hl (∂E1)

)
,

where Cl = Cl(l, n,m0, r0).

We note that so far we have not used any results from differential geometry. In
fact, we need the notation from geometry only to prove Proposition 5.1. Therefore,
instead of giving the proof of Proposition 5.1, which is technically challenging, we
show first how we may use it to obtain the regularity estimate (1.2) in the statement
of Theorem 1.1. Here is the main result of this section.
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Theorem 5.2. Let E0 be an open and bounded set, with |E0| = m0, and let (Eh
t )t≥0

be an approximative flat flow starting from E0 defined in (3.1). For given r0 ∈ R+
there is h0 = h0(n,m0, r0) ∈ R+ such that if h ≤ h0, Eh

t satisfies UBCwith radius
r0 in [0, T ] and if (l + 2)h ≤ T for a given l ∈ N ∪ {0}, then we have

sup
t∈[(l+2)h,T ]

(
(t − lh)l‖HEh

t
‖2
Hl (∂Eh

t )

)
+
ˆ T

(l+2)h
(t − lh)l‖HEh

t
‖2
Hl+1(∂Eh

t )
dt ≤ C,

for a constant C = C(l, n,m0, r0, T ).

Proof. In the proof,C andCm denote a positive real number which may change their
values but always in a manner that we have the dependenciesC = C(n,m0, r0) and
Cm = Cm(m, n,m0, r0, T ). We use the abbreviation Ek = Eh

kh for k = 0, 1, 2, . . .

First, by Proposition 3.1, Lemma 3.2, Remark 3.3 and Theorem 4.7, we find
h0 = h0(n,m0, r0) > 0 such that if h ≤ h0 and Ek is C2k+1-regular, bounded
set of volume m0, which satisfies uniform ball condition with radius r0, then the
consequent set Ek+1 is C2k+3-regular, bounded and of volume m0, with

‖dEk‖L∞(∂Ek+1) ≤ Ch < r0/2.

Moreover, Ek+1 satisfies UBC with radius r0/2 and the projection π∂Ek : ∂Ek+1 →
∂Ek is injective. We may then prove that, for k ≥ 1, π∂Ek : ∂Ek+1 → ∂Ek is a
diffeomorphism with

Jτk+1π∂Ek ≥ 1 − Ch > 0 on ∂Ek+1, (5.5)

where the tangential Jacobian Jτk+1π∂Ek of π∂Ek on ∂Ek+1 is defined in (2.3).
Indeed, since ∂Ek+1 ⊂ Nr0/2(∂Ek), then π∂Ek is C1-regular map on ∂Ek+1. Re-
calling the injectivity of the projection we are remain to prove (5.5). By (2.31) we
may write

∇π∂Ek+1 = I − ∇dEk ⊗ ∇dEk − dEk∇2dEk on ∂Ek+1.

Thus, it follows from the definition in (2.3) and ∇2dEk∇dEk = 0 in Nr0(∂Ek) that
for given a point x ∈ ∂Ek+1 there is an orthonormal basis v1, . . . , vn of Gx∂Ek+1
such that

Jτk+1π∂Ek (x) =
n∏

i=1

∣∣∣
(
I − ∇dEk (x) ⊗ ∇dEk (x) − dEk (x)∇2dEk (x)

)
vi

∣∣∣

=
n∏

i=1

(
1−(∇dEk (x) · vi )

2−2dEk (x)∇2dEk (x)vi · vi + |dEk (x)|2|∇2dEk (x)vi |2
) 1

2
.

Since ∂Ek+1 ⊂ Nr0/2(∂Ek), then Lemma 2.9 yields sup∂Ek+1
|∇2dEk |op ≤ C .

Further, since Ek+1 satisfies UBC with radius r0/2, then by Lemma 2.11 and by
the previous estimates we deduce

|∇dEk (x) · vi |2 ≤ |∇τ2dEk (x)|2
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≤ 4‖dEk‖L∞(∂Ek+1)

(

sup
∂Ek+1

|∇2dEk |op + ‖∇dEk‖L∞(∂Ek+1)

r0/2

)

≤ Ch.

Therefore, by combining the previous observations and shrinking h0, if needed, we
obtain (5.5). Again, by possibly shrinking h0, we may assume that the implications
of Proposition 5.1 hold true for the parameters m0 and r0/2.

Let us from now on assume that the sets Eh
t satisfy UBC with radius r0 for

every t ∈ [0, T ]. Let us denote K = �T/h�. Then the previous discussion holds for
every Ek and k = 0, 1, 2, . . . , K . For the sake of presentation, we use abbreviations
‖BEk‖L2 = ‖BEk‖L2(∂Ek )

, ‖BEk‖H2m = ‖BEk‖H2m (∂Ek )
etc.

After the initialization, we prove the claim by induction and to this aim we begin
by proving the main regularity estimates. We claim that for every m = 0, 1, 2, . . . ,
with m ≤ K − 2, and every k = m + 1,m + 2, . . . , K it holds that

‖�m
τk+1

HEk+1‖2
L2 ≤ (1 + Cmh)‖�m

τk
HEk‖2

L2 − h‖∇τk+1�
m
τk+1

HEk+1‖2
L2 + Cmh

(5.6)
and

‖∇τk+1�
m
τk+1

HEk+1‖2
L2 ≤ (1+Cmh)‖∇τk�

m
τk
HEk‖2

L2 −h‖�m+1
τk+1

HEk+1‖2
L2 +Cmh.

(5.7)
We first prove (5.6) and fixm. Recall that for k ≥ m+1 the set Ek isC2m+3-regular.
Therefore, by Proposition 5.1, it holds for every k = m + 1,m + 2, . . . , K that

�m
τk+1

HEk+1 − (�m
τk
HEk ) ◦ π∂Ek = h �m+1

τk+1
HEk+1 + h R2m,k on ∂Ek+1,

where the remainder term R2m,k satisfies

‖R2m,k‖2
L2 ≤ Cm

(
1 + ‖BEk+1‖2

H2m+1 + ‖BEk‖2
H2m

)
.

Again, since Ek and Ek+1 satisfy UBC with radius r0/2 and |Ek | = m0 = |Ek+1|,
then ‖BEk‖L∞ , ‖BEk‖L∞ ≤ C by (2.30) and P(Ek), P(Ek+1) ≤ C by Lemma
2.10. Therefore, we may use Proposition 2.6 and Young’s inequality to deduce that

‖BEk‖2
H2m ≤ Cm

(
1 + ‖�m

τk
HEk‖2

L2

)
and

‖BEk+1‖2
H2m+1 ≤ Cm

(
1 + ‖∇τk+1�

m
τk+1

HEk+1‖2
L2

)
. (5.8)
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We also observe that ‖�m
τk+1

HEk+1‖2
L2 ≤ Cm‖BEk+1‖H2m . Let ε ∈ (0, 1) be a

number which we will choose later. By using the previous observations, (5.5),
Young’s inequality, and integration by parts we estimate as follows:

‖�m
τk+1

HEk+1‖2
L2 − ‖�m

τk
HEk ‖2

L2

≤
ˆ

∂Ek+1

|�m
τk+1

HEk+1 |2 − |�m
τk
HEk ◦ π∂Ek |2 dHn + Ch

ˆ

∂Ek+1

|�m
τk
HEk ◦ π∂Ek |2 dHn

≤
ˆ

∂Ek+1

|�m
τk+1

HEk+1 |2 − |�m
τk
HEk ◦ π∂Ek |2 dHn + Ch

1 − Ch
‖�m

τk
HEk ‖2

L2

≤ 2
ˆ

∂Ek+1

�m
τk+1

HEk+1 (�
m
τk+1

HEk+1 − �m
τk
HEk ◦ π∂Ek ) dHn + Ch ‖�m

τk
HEk ‖2

L2

= 2h
ˆ

∂Ek+1

�m
τk+1

HEk+1 (�
m+1
τk+1

HEk+1 + R2m,k) dHn + Ch ‖�m
τk
HEk ‖2

L2

≤ −2h‖∇τk+1�
m
τk+1

HEk+1‖2
L2 + εh ‖R2m,k‖2

L2 + h

ε
‖�m

τk+1
HEk+1‖2

L2 + Ch ‖�m
τk
HEk ‖2

L2

≤ −2h‖∇τk+1�
m
τk+1

HEk+1‖2
L2

+ Cmh

(
ε‖BEk+1‖2

H2m+1 + 1

ε
‖BEk+1‖2

H2m

)
+ Cmh

(
1 + ‖�m

τk
HEk ‖2

L2

)

≤ −2h‖∇τk+1�
m
τk+1

HEk+1‖2
L2 + Cmh

(
ε‖∇τk+1�

m
τk+1

HEk+1‖2
L2 + 1

ε
‖BEk+1‖2

H2m

)

+ Cmh
(
1 + ‖�m

τk
HEk ‖2

L2

)
.

By choosing ε = (1 + Cm)−1/2, the previous estimate yields

‖�m
τk+1

HEk+1‖2
L2 − ‖�m

τk
HEk‖2

L2

≤ −3h

2
‖∇τk+1�

m
τk+1

HEk+1‖2
L2 + Cmh ‖BEk+1‖2

H2m + Cmh
(
1 + ‖�m

τk
HEk‖2

L2

)
.

(5.9)
Since ‖BEk+1‖L∞ , P(Ek+1) ≤ C , we may use Proposition 2.2 to find θ =

θ(m, n) ∈ (0, 1) such that

‖BEk+1‖2
H2m ≤ Cm‖BEk+1‖2θ

H2m+1‖BEk+1‖2(1−θ)
L∞ ≤ Cmε ‖BEk+1‖2

H2m+1 + Cmε− θ
1−θ

for any ε ∈ (0, 1), where the last inequality follows from Young’s inequality and
the curvature bound. Thus, by combing the above with (5.9) and (5.8) the estimate
(5.6) follows with a suitable choice of ε.

Let us then prove (5.7). The argument is similar than above and we only point out
the main differences. Now Proposition 5.1 gives for every k = m+1,m+2, . . . , K
the formula

∇τk+1�
m
τk+1

HEk+1 − (∇τk�
m
τk
HEk ) ◦ π∂Ek

= h ∇τk+1�
m+1
τk+1

HEk+1 − ∂νEk+1
(�m

τk
HEk ◦ π∂Ek )νEk+1 + h R2m+1,k on ∂Ek+1,

where

‖R2m+1,k‖2
L2 ≤ Cm

(
1 + ‖BEk+1‖2

H2m+2 + ‖BEk‖2
H2m+1

)
,
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and, again, by using Proposition 2.6 and Young’s inequality we have estimates

‖BEk‖2
H2m+1 ≤ Cm(1 + ‖∇τk�

m
τk
HEk‖2

L2) and

‖BEk+1‖2
H2m+2 ≤ Cm

(
1 + ‖�m+1

τk+1
HEk+1‖2

L2

)
.

We use the previous observations, the Cauchy-Schwarz inequality, the estimate
‖∇τk+1�

m
τk+1

HEk+1‖L2 ≤ Cm‖BEk+1‖2
H2m+1 and argue as in proving (5.6) to deduce

that

‖∇τk+1�
m
τk+1

HEk‖2
L2 − ‖∇τk�

m
τk
HEk‖2

L2

≤
ˆ

∂Ek+1

|∇τk+1�
m
τk+1

HEk+1 |2 − |∇τk�
m
τk
HEk ◦ π∂Ek |2 dHn + Ch ‖∇τk�

m
τk
HEk‖2

L2

≤ 2
ˆ

∂Ek+1

∇τk+1�
m
τk+1

HEk+1 · (∇τk+1�
m
τk+1

HEk+1 − ∇τk�
m
τk
HEk ◦ π∂Ek ) dHn

+ Ch ‖∇τk�
m
τk
HEk‖2

L2

≤ −2h‖�m+1
τk+1

HEk+1‖L2 + εh ‖R2m+1,k‖2
L2(∂Ek+1)

+ Cm

ε
h ‖BEk+1‖2

H2m+1

+ Ch ‖∇τk�
m
τk
HEk‖2

L2

≤ −2h‖�m+1
τk+1

HEk+1‖L2

+ Cmh

(
ε ‖�m+1

τk+1
HEk+1‖2

L2 + 1

ε
‖BEk+1‖2

H2m+1

)
+ Cmh

(
1 + ‖∇τk�

m
τk
HEk‖2

L2

)

≤ −3h

2
‖�m+1

τk+1
HEk+1‖L2 + Cmh ‖BEk+1‖2

H2m+1 + Cmh
(
1 + ‖∇τk�

m
τk
HEk‖2

L2

)
.

Again, Proposition 2.2 implies that there is θ = θ(m, n) ∈ (0, 1) such that

‖BEk+1‖2
H2m+1 ≤ Cm‖BEk+1‖2θ

H2m+2‖BEk+1‖2(1−θ)
L∞

and we may proceed as previously to obtain (5.7).
Let us then prove the claim by induction. To be more precise, under the as-

sumption h ≤ h0, we claim that, for every l ∈ N ∪ {0} it holds that

max
l+2≤k≤K

(
(k − (l + 1))h

)l‖HEk‖2
Hl +

K∑

k=l+2

h
(
(k − (l + 1))h

)l‖HEk‖2
Hl+1 dt ≤ Cl

(5.10)
forCl = Cl(l, n,m0, r0, T ), provided that (l+2)h ≤ T . Since t−lh ≤ 3�t/h�h−
3(l + 1)h for every t ≥ (l + 2)h, then by multiplying (5.10) by 3l and recalling the
definition for the approximative solution in (3.1), we obtain the statement of the
theorem.

Let us consider first the case l = 0. Since P(Ek), ‖BEk‖L∞ ≤ C , then
‖HEk‖L2 ≤ C for every k = 0, 1, . . . , K . By combining this with (5.6) gives
us that for every k = 1, 2, . . . , K − 1

‖HEk+1‖2
L2 − ‖HEk‖2

L2 ≤ −h‖∇τk+1 HEk+1‖2
L2 + Ch.
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We sum over k = 1, 2, . . . , K − 1 and use ‖HEk‖L2 ≤ C as well as Kh ≤ T to
obtain

‖HEK ‖2
L2 +

K−1∑

k=1

h‖∇τk+1 HEk+1‖2
L2 ≤ ‖HE1‖2

L2 + CKh ≤ CT .

Thus, we conclude that (5.10) holds in the case l = 0.
Let us then assume that (5.10) holds for l − 1, where l ∈ N. We assume that

(l + 2)h ≤ T and prove (5.10) for l. To this aim, we denote K ′ = K − l and
E ′
k = Ek+l . Again, let τk denote the tangential differentiation along ∂E ′

k . Thus, the
induction assumption reads as

max
1≤k≤K ′(kh)l−1‖HE ′

k
‖2
Hl−1 +

K ′∑

k=1

h(kh)l−1‖HE ′
k
‖2
Hl (∂Eh

t )
≤ Cl−1. (5.11)

We divide the argument into two cases depending whether l is even or odd.
Let us first assume that l is even and thus is of the form l = 2m form = 1, 2, . . . .

By binomial expansion it holds (k + 1)2m − k2m ≤ 2m(k + 1)2m−1. Therefore, by
multiplying (5.6) by k2mh2m we deduce, for every k = 0, 1, 2, . . . , K ′,
(k + 1)2mh2m‖�m

τk+1
HE ′

k+1
‖2
L2 − k2mh2m‖�m

τk
HE ′

k
‖2
L2

= (
(k + 1)2m − k2m)

h2m‖�m
τk+1

HE ′
k+1

‖2
L2

+ k2mh2m(‖�m
τk+1

HE ′
k+1

‖2
L2 − ‖�m

τk
HE ′

k
‖2
L2

)

≤ 2m(k + 1)2m−1h2m‖�m
τk+1

HE ′
k+1

‖2
L2 + Cmk

2mh2m+1
(

1 + ‖�m
τk
HE ′

k
‖2
L2

)

− k2mh2m+1‖∇τk+1�
m
τk+1

HE ′
k+1

‖2
L2 .

Fix any j = 2, . . . K ′. Summing the previous estimate from k = 0 to k = j − 1
and using the fact K ′h ≤ T yields

j2mh2m‖�m
τ j
HE ′

j
‖2
L2

≤ Cm

j−1∑

k=0

(k + 1)2m−1h2m‖�m
τk+1

HE ′
k+1

‖2
L2

+ Cm

j−1∑

k=0

(kh)k2m−1h2m‖�m
τk
HE ′

k
‖2
L2 + Cm

j−1∑

k=0

h k2mh2m

−
j−1∑

k=0

k2mh2m+1‖∇τk+1�
m
τ HE ′

k+1
‖2
L2

≤ Cm(1 + T )

j∑

k=1

k2m−1h2m‖�m
τk
HE ′

k
‖2
L2

+ Cm

ˆ K ′h

0
s2m ds −

j∑

k=1

h (k − 1)2mh2m‖∇τk�
m
τk
HE ′

k
‖2
L2
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≤ Cm(1 + T )

K ′∑

k=1

h k2m−1h2m−1‖�m
τk
HE ′

k
‖2
L2

+ CmT
2m+1 −

j∑

k=1

h (k − 1)2mh2m‖∇τk�
m
τk
HE ′

k
‖2
L2 .

Thus, reordering the previous estimate and using the induction assumption (5.11)
gives us

( j − 1)2mh2m‖�m
τ j
HE ′

j
‖2
L2 +

j∑

k=1

h (k − 1)2mh2m‖∇τk�
m
τk
HE ′

k
‖2
L2

≤Cm(1 + T )

K ′∑

k=1

k2m−1h2m‖�m
τk
HE ′

k
‖2
L2 + CmT

2m+1

≤Cm(1 + T )

K ′∑

k=1

h(kh)l−1‖HE ′
k
‖2
Hl + CmT

2m+1

≤CmCl−1 + CmT
2m+1.

After substituting E ′
k = Ek+l and reindexing we have for every j = l +

2, . . . , K

(
( j − (l + 1))h

)l‖�m
τ j
HEk‖2

L2 +
j∑

k=l+1

h
(
(k − (l + 1))h

)l‖∇τk�
m
τk
HEk‖2

L2

≤ CmCl−1 + CmT
2m+1.

Since we have ‖BEk‖L∞ , P(Ek) ≤ C for every k ≤ K , then by combining the
estimates of Proposition 2.6 with the previous estimate and using Kh ≤ T we
obtain (5.10).

The case when l is odd is similar. In this case, we have l = 2m + 1 for some
m ∈ N ∪ {0}. Thus, by using (5.7) in the place of (5.6) we may proceed as in the
previous case. ��

Let us then focus on Proposition 5.1. We will begin by proving two technical
lemmas which involve high order derivatives of dE and π∂E . To overcome the
technicalities we adopt the notation where Ai denotes a generic tensor field, which
depends on the distance function, the normal and the second fundamental form in
a smooth way, i.e.,

Ai = Ai (dE , νE ◦ π∂E , BE ◦ π∂E ) in Nr/2(∂E). (5.12)

We also adopt here the notation S � T to denote a tensor formed by contraction on
some indexes of tensors S and T . If the set E satisfies UBC, then the quantities
dE , νE and BE ◦π∂E are uniformly bounded inNr/2(∂E), we may treat Ai in (5.12)
as a bounded coefficient.
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It is immediate that it holds for x ∈ ∂E and u ∈ C2(∂E) that

∇(u ◦ π∂E )(x) = ∇τu(x) and �Rn+1(u ◦ π∂E )(x) = �τu(x).

Let us then derive related formulas for points x ∈ Nr/2(∂E) outside ∂E .

Lemma 5.3. Assume E ⊂ R
n+1, with 	 = ∂E, is bounded and C3-regular set

which satisfies UBC with radius r . Then it holds for u ∈ C2(∂E) inNr/2(∂E) that

∇(u ◦ π∂E ) = ∇(u ◦ π∂E ) ◦ π∂E − dE∇2dE∇(u ◦ π∂E ) ◦ π∂E

and

∇2(u ◦ π∂E ) =(P∂E ◦ π∂E )(∇2(u ◦ π∂E ) ◦ π∂E )

− ∇dE ⊗ ∇2dE∇(u ◦ π∂E ) ◦ π∂E

+ dE A1 � ∇2(u ◦ π∂E ) ◦ π∂E

+ dE A2 � ∇(BE ◦ π∂E ) ◦ π∂E � ∇(u ◦ π∂E ) ◦ π∂E

where A1, A2 are tensor fields as in (5.12). Moreover, if 	 is in addition Ck+2-
regular and u ∈ Ck(	) for k ∈ N, then for all x ∈ Nr/2(∂E) we may estimate

|∇k(u ◦ π∂E )(x)|
≤ Ck

∑

|α|≤k

(
1 + |∇̃α1

	 BE (π∂E (x))| · · · |∇̃αk−1
	 BE (π∂E (x))|) |∇̃αk

	 u(π∂E (x))|.

Here ∇̃	 denotes the covariant derivative on 	.

Proof. Let us denote û = u ◦ π∂E and π = π∂E for short. Since π is projection it
holds

û(x) = û(π(x))

for all x ∈ Nr/2(∂E). By differentiating this we obtain

∇û(x) = ∇π(x)∇û(π(x)).

The first claim then follows from (2.31) and from ∇û · (νE ◦ π) = 0. The second
claim follows by differentiating the first and by writing ∇2dE (x),∇3dE (x) and
∇π in a geometric way by using (2.33) and (2.34).

In order to prove the third claim we observe that we may write the second
equality simply as

∇2û(x) = A1(x) � ∇2û
(
π(x)

) + A2(x) � ∇(BE ◦ π)(π∂E (x)) � ∇û(π(x)).

By differentiating this (k − 2)-times and by using (2.12) and (2.34) we deduce that

|∇k û(x)| ≤ Ck

∑

|α|≤k

C
(
1 + |∇α1 (BE ◦ π)(π(x))| · · · |∇αk−1 (BE ◦ π)(π(x))|)|∇αk û(π(x))|.
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The claim follows once we show that for all y ∈ 	 it holds that

|∇l û(y)| ≤ Cl

∑

|β|≤l

(
1 + |∇̃β1 BE (y)| · · · |∇̃βl BE (y)|)|∇̄βl+1u(y)|, (5.13)

which is the opposite estimate as to that of Lemma 2.4.
We argue as in the proof of Lemma 2.4 and assume y = 0, νE (0) = en+1 and

write the surface 	 locally as a graph of f , i.e., 	 ∩ Br ⊂ {(x ′, f (x ′)) : x ′ ∈ R
n}

and extended f to R
n+1 trivially as f (x ′, xn+1) = f (x ′). We may then write the

metric tensor and the Christoffel symbols in coordinates as

gi j (x
′) = δi j + ∂i f (x

′)∂ j f (x
′) and �i

jk(x
′) = gil(x ′)∂2

jk f (x
′)∂l f (x ′).

Since νE = (−∇Rn f,1)√
1+|∇Rn f |2 and ∇û · (νE ◦ π) = 0, we have

∂n+1û(y) =
n∑

i=1

∂i f (π(y)) · ∂i û(y). (5.14)

Let us denote the lth order differential of the function x ′ → û(x ′, 0) as ∇l
Rn û. Then

by applying first (5.14) and (2.12), and then (2.14) we deduce that

|∇l û(0)| ≤ Cl

∑

|β|≤l−1

(
1 + |∇β1(∇ f ◦ π)(0)| · · · |∇βl−1(∇ f ◦ π)(0)|)|∇1+βl

Rn û(0)|

≤ Cl

∑

|γ |≤l−1

(
1 + |∇̃γ1 BE (0))| · · · |∇̃γl−1 BE (0)|)|∇1+γl

Rn û(0)|.

Denote the local chart given by the coordinate parametrization by �, i.e.,
�−1(x ′) = (x ′, f (x ′)) and note that û(�−1(x ′)) = u(�−1(x ′)). Fix an index
vector β = (β1, . . . , βn, 0) with |β| = m. Then by (2.12) and (2.14) we obtain
after straightforward calculations

|∇β (u ◦ �−1)(0)| ≥ |∇β û(0)| − Cm

∑

|γ |≤m−1

(
1 + |∇1+γ1 f (0)| · · · |∇1+γm−1 f (0)|)||∇γm û(0)|

≥ |∇β û(0)| − Cm

∑

|γ |≤m−1

(
1 + |∇̃γ1 BE (0)| · · · |∇̃γm−1 BE (0)|)||∇γm û(0)|.

From here we deduce by an inductive argument that

|∇β û(0)| ≤ Cm

∑

|γ |≤m

(
1 + |∇̃γ1 BE (0)| · · · |∇̃γm BE (0)|)||∇γm+1 (u ◦ �−1)(0)|.

Finally using the definition of the covariant derivative and the expression of the
Christoffel symbols we obtain arguing as in the proof of Lemma 2.4 that

|∇m (u ◦ �−1)(0)| ≤ Cm

∑

|γ |≤m

(
1 + |∇̃γ1 BE (0)| · · · |∇̃γm BE (0)|)||∇̃γm+1 u(0)|.

Hence, we have (5.13) and the third claim follows. ��
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Let us from now on assume E1, E2 ⊂ R
n+1 are as in Proposition 5.1. We write

the equality (5.3) by using the Euler-Lagrange equation (3.4) as

HE2 − HE1 ◦ π∂E1 = h �τ2 HE2 + h ρ0(·) (5.15)

on ∂E2, where the error function is of the form

ρ0(x) = A1(x) + h A2(x) � ∇τ2 HE2(x) � ∇τ2 HE2(x). (5.16)

Here and in the rest of the section Ai (·) denotes a tensor field which depends
smoothly on dE1 , νE1 ◦ π∂E1 , νE2 , BE1 ◦ π∂E1 and on BE2 . i.e.,

Ai (x) = Ai
(
dE1(x), νE1(π∂E1(x)), νE2(x), BE1(π∂E1(x)), BE2(x)

)
. (5.17)

The following lemma is a consequence of Lemma 5.3.

Lemma 5.4. Assume that the sets E1, E2 ⊂ R
n+1 are as in Proposition 5.1. Then

it holds for u ∈ C2(∂E1) on ∂E2

�τ2(u ◦ π∂E1) =�τ1u ◦ π∂E1 + h A1 � ∇2(u ◦ π∂E1) ◦ π∂E1

+ h2 A2 � ∇2(u ◦ π∂E1) ◦ π∂E1 � ∇τ2 HE2 � ∇τ2 HE2

+ h A3 � ∇(BE1 ◦ π∂E1) ◦ π∂E1 � ∇(u ◦ π∂E1) ◦ π∂E1

+ h A4 � ∇τ2 BE2 � ∇(u ◦ π∂E1) ◦ π∂E1 .

Proof. Let us denote û = u ◦ π∂E1 and π = π∂E1 for short. Recall that we may
write the Laplace-Beltrami on ∂E2 as

�τ2 û = �Rn+1 û − (∇2û νE2 · νE2) − HE2∂νE2
û, (5.18)

where �Rn+1 û = Tr(∇2û) denotes the Euclidean Laplacian. Recall that P∂E1 =
I −νE1 ⊗νE1 stands for the projection on the (geometric) tangent space. We deduce
by applying the trace on the second equality in Lemma 5.3, by ∇2dE1∇dE1 = 0,
and by the Euler-Lagrange equation (3.4) that it holds on ∂E2

�Rn+1 û = Tr(∇2û) = �τ1u ◦ π + h A1 � (∇2û ◦ π)

+ h A3 � ∇(BE1 ◦ π) ◦ π � (∇û ◦ π).
(5.19)

Similarly, we have

(∇2û νE2) · νE2 = (
(P∂E1 ◦ π)(∇2û ◦ π) νE2

) · νE2

− (∇dE1 · νE2)
(∇2dE1(∇û ◦ π) · νE2

)

+ h Ã1 � (∇2û ◦ π) + h Ã3 � ∇(BE1 ◦ π) ◦ π � (∇û ◦ π).

(5.20)
We write

(
(P∂E1 ◦ π)(∇2û ◦ π) νE2

) · νE2

= (
(P∂E1 ◦ π)(∇2û ◦ π) (νE2 − νE1 ◦ π)

) · (νE2 − νE1 ◦ π)
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and

(∇dE1 · νE2)
(∇2dE1(∇û ◦ π) · νE2

)

= (∇dE1 · νE2)
(∇2dE1(∇û ◦ π) · (νE2 − νE1 ◦ π)

)
.

We then use (4.19) to write νE2 − νE1 ◦ π as

νE2 − νE1 ◦ π = a1∇τ2dE1 + a2 (νE1 ◦ π)

for functions a1 and a2 which depend on |∇τ2dE1(x)|2. Therefore we may write
(5.20) by the Euler-Lagrange equation (3.4) as

(∇2û νE2) · νE2 = h A1 � (∇2û ◦ π)

+ h2 A2 � (∇2û ◦ π) � ∇τ2 HE2 � ∇τ2 HE2

+ h A3 � ∇(BE1 ◦ π) ◦ π � (∇û ◦ π)

+ h A4 � ∇τ2 HE2 � (∇û ◦ π).

(5.21)

We use the first equality in Lemma 5.3, (4.19) and the Euler-Lagrange equation
(3.4) to write on ∂E2

∂νE2
û = (∇û ◦ π) · νE2 + h A3 � (∇û ◦ π)

= (∇û ◦ π) · (νE2 − νE1 ◦ π) + h A3 � (∇û ◦ π)

= h A4 � ∇τ2 HE2 � (∇û ◦ π) + h A3 � (∇û ◦ π).

(5.22)

The claim then follows from (5.18), (5.19), (5.21) and (5.22). ��
We may now prove Proposition 5.1.

Proof of Proposition 5.1. We prove only the first equality since the second follows
by differentiating the first. We point out that since E1 is C2m+3-regular, then by
Lemma 3.2 the set E2 is C2m+5-regular. In particular, we have the necessary regu-
larity for the proceeding calculations. To that aim we recall that by (5.15) it holds

HE2 − HE1 ◦ π∂E1 = h �τ2 HE2 + h ρ0 on ∂E2, (5.23)

where

ρ0(x) = A1(x) + h A2(x) � ∇τ2 HE2(x) � ∇τ2 HE2(x).

We differentiate (5.23), use Lemma 5.4 and have on ∂E2

�τ2 HE2(x) − �τ1 HE1 ◦ π∂E1 = h �2
τ2
HE2 + hρ2 + h �τ2ρ0,

where

ρ2 = A1 � ∇2(HE1 ◦ π∂E1) ◦ π∂E1

+ h A2 � ∇2(HE1 ◦ π∂E1) ◦ π∂E1 � ∇τ2 HE2 � ∇τ2 HE2

+ A3 � ∇(BE1 ◦ π∂E1) ◦ π∂E1 � ∇(HE1 ◦ π∂E1) ◦ π∂E1

+ A4 � ∇τ2 BE2 � ∇(HE1 ◦ π∂E1) ◦ π∂E1 .
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We continue and deduce by an iterative argument that it holds on ∂E2

�m
τ2
HE2 − �τ1 H

m
E1

◦ π∂E1 = h �m+1
τ2

HE2 + h
m∑

k=0

�m−k
τ2

ρ2k,

where ρ0 is defined in (5.16) and ρ2k for k ≥ 1 is

ρ2k = A1 � ∇2(�k−1
τ1

HE1 ◦ π∂E1) ◦ π∂E1

+ h A2 � ∇2(�k−1
τ1

HE1 ◦ π∂E1) ◦ π∂E1 � ∇τ2 HE2 � ∇τ2 HE2

+ A3 � ∇(BE1 ◦ π∂E1) ◦ π∂E1 � ∇(�k−1
τ1

HE1 ◦ π∂E1) ◦ π∂E1

+ A4 � ∇τ2 BE2 � ∇(�k−1
τ1

HE1 ◦ π∂E1) ◦ π∂E1 .

We have thus derived a formula for the error terms in the statement of Proposition
5.1, i.e., we have

R2m(x) =
m∑

k=0

�m−k
τ2

ρ2k(x).

We need to estimate the norm ‖R2m‖L2(	2)
, where 	2 = ∂E2. The idea is that the

total amount of derivatives acting on the curvature terms in �m−k
τ2

ρ2k is for most
of the terms at most 2m. The only difference is the second row in the definition of
ρ2k , which total amount of derivatives is higher but it has an extra h as a coefficient.
Therefore we need to treat this term more carefully.

Recall that the tensor fields Ai (·) depend on dE1 , νE1 ◦ π∂E1 , νE2 , BE1 ◦ π∂E1

and on BE2 as stated in (5.17). Denote π = π∂E1 for short. We use repeatedly
(2.12), Lemma 2.4 and the last inequality in Lemma 5.3 and obtain after long but
straightforward calculations the following pointwise estimate for all x ∈ ∂E2:

∣∣�m−k
τ2

ρ2k(x)
∣∣ ≤ C + C

∑

|α|≤2m

|∇̃α1 B	2(x)| · · · |∇̃α2m B	2(x)|

+ C
∑

|α|≤2m

|∇̃α1 B	1(π(x))| · · · |∇̃α2m B	1(π(x))|

+ Ch
∑

|α|≤2m

(|∇̃α1 B	2(x)| + |∇̃α1 B	1(π(x))|) · · ·

(|∇̃α2m B	2(x)| + |∇̃α2m B	1(π(x))|) · · ·
· · · |∇̃1+α2m+1 HE2(x)| |∇̃1+α2m+2 HE2(x)|.

(5.24)

We use the uniform curvature bounds ‖B	1‖L∞ , ‖B	2‖L∞ ≤ C and Proposition
2.3 to estimate

∑

|α|≤2m

‖|∇̃α1 B	2(x)| · · · |∇̃α2m B	2(x)|‖L2(	2)
≤ C‖B	2‖H2m (	2)
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and
∑

|α|≤2m

‖|∇̃α1 B	1(π(x))| · · · |∇̃α2m B	1(π(x))|‖L2(	2)

≤ C
∑

|α|≤2m

‖|∇̃α1 B	1(y)| · · · |∇̃α2m B	1(y)|‖L2(	1)
≤ C‖B	1‖H2m (	1)

.

We are left with the last term in (5.24). As we already mentioned, this term has
different scaling with respect to h. We use the Euler-Lagrange equation (3.4), (4.23)
and ‖dE1‖L∞(∂E2) ≤ Ch from Proposition 3.1 to deduce that

‖∇̃HE2‖2
L∞(	2)

≤ C

h
.

Therefore we have, by Proposition 2.3, that

h
∑

|α|≤2m

‖(|∇̃α1 B	2(x)| + |∇̃α1 B	1(π(x))|) · · ·

(|∇̃α2m B	2(x)| + |∇̃α2m B	1(π(x))|) · · ·
· · · |∇̃1+α2m+1 HE2(x)| |∇̃1+α2m+2 HE2(x)|‖L2(	2)

≤ Ch‖∇̃HE2‖2
L∞(	2)

(‖B	1‖H2m (	1)
+ ‖B	2‖H2m (	2)

)

+ Ch‖∇̃HE2‖L∞(	2)‖HE2‖H2m+1(	2)

≤ C‖B	1‖H2m (	1)
+ C‖B	2‖H2m (	2)

+ C
√
h‖HE2‖H2m+1(	2)

≤ C‖B	1‖H2m (	1)
+ C‖B	2‖H2m+1(	2)

when h ≤ 1, and the claim follows. ��
Let us conclude this section by discussing briefly how we obtain Theorem 1.1

and Corollary 1.2 from the results in Sects. 4 and 5. We obtain first from Lemma
4.6 and from Theorem 4.7 that the approximative flow (Eh

t )k satisfies UBC with
radius r0/2 for t ≤ T0 and we have

‖SEh
t+h

‖L∞ − ‖SEh
t
‖L∞

h
≤ Cn‖SEh

t
‖3
L∞ . (5.25)

Then we use Theorem 5.2 to deduce that for t ∈ [δ, T0] the sets Eh
t are uniformlyC3-

regular when h is small enough. By Ascoli-Arzela theorem we may pass the estimate
(5.25) to the limit as h → 0 and conclude that the function t �→ sups≤t ‖SEs‖L∞
is locally Lipschitz continuous and satisfies

d

dt

(
sup
s≤t

‖SEs‖L∞
) ≤ Cn

(
sup
s≤t

‖SEs‖L∞
)3 (5.26)

for almost every t ≥ 0 as long as sups≤t ‖SEs‖L∞ remains bounded. The inequality
(5.26) implies that UBC is an open condition in time. To be more precise if the flat
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flow (Eh
t )t , starting from E0, satisfies supt≤T ‖SEt ‖L∞ ≤ C , then by (5.26) there

is δ > 0 such that

sup
t≤T+δ

‖SEt ‖L∞ ≤ 2C.

This together with the estimate in Theorem 5.2 implies Theorem 1.1.
The consistency principle follows from the regularity in a rather straightfor-

ward way. Indeed, we obtain by the uniform regularity of the approximate flat
flow (Eh

t )t∈[0,T ] and by the Euler-Lagrange equation (3.4) that the signed distance
function satisfies

∂t dEt (x) = �Rn+1dEt (π∂Et (x)) + f (t)

for t ≤ T and for x in a neighborhood of ∂Et , where f (t) is a bounded function ot
time. From here we may conclude that the flat flow satisfies

Vt = −HEt + f (t).

Since the flat flow preserves the volume then necessarily f (t) = ffl
∂Et

HEt dHn

and thus it is a solution to (1.1).
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