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Abstract

‘We consider the flat flow solution, obtained via a discrete minimizing movement

scheme, to the volume preserving mean curvature flow starting from C!!-regular
set. We prove the consistency principle, which states that (any) flat flow solution
agrees with the classical solution as long as the latter exists. In particular the flat
flow solution is unique and smooth up to the first singular time. We obtain the result
by proving the full regularity for the discrete time approximation of the flat flow
such that the regularity estimates are stable with respect to the time discretization.
Our method can also be applied in the case of the mean curvature flow and thus
it provides an alternative proof, not relying on comparison principle, for the con-
sistency between the flat flow solution and the classical solution for C!:!-regular
initial sets.

S.

Contents

Introduction ... L L

1.1. Statement of the Main Theorem . . . . . . . . ... ... ... .......
1.2. An Overview of the Proof . . . . . . . .. ... ... ... ... ......

. Notation and Preliminary Results . . . . .. ... .. ... ... ........

2.1. Regular Sets and Tangential Differentiation . . . . . ... ... ... ...
2.2. Riemannian Geometry . . . . . . . . . ...
2.3. Functional and Geometric Inequalities . . . . . ... ... ... ... ...
2.4. Uniform Ball Condition and Signed Distance Function . . . .. ... ...

. Definition of the Flat Flow and the First Regularity Estimates . . . . ... ...
. Uniform Ball Condition for Short-Time . . . . . ... ... ...........

4.1. Two-Point Function Method . . . . . . . .. ... .. ... ... .....
4.2. Short-Time Uniform Ball Estimate . . . . . . ... ... ..........
Higher Regularity . . . . . . . . . .. ... .. .

References . . . . . . . . . . . e

Published online: 07 December 2023


http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-023-01944-y&domain=pdf
http://orcid.org/0000-0002-1310-4904

1 Page2of 58 Arch. Rational Mech. Anal. (2024) 248:1

1. Introduction

1.1. Statement of the Main Theorem

In this paper we consider the flat flow solution to the volume preserving mean
curvature flow, which is a weak notion of solution obtained via discrete minimizing
movement scheme. Our main goal is to prove the full regularity of the flat flow
up to the first singular time when the initial set is C!"!-regular. As a corollary we
obtain the consistency principle between the flat flow and the classical solution.

Let us begin by recalling that a smooth family of sets (E;);cj0,7) C R+
for some 7' > 0, is a solution to the volume preserving mean curvature flow if it
satisfies

Vi = —(Hg, — Hg,), (1.1)
v!here V; denotes the normal velocity, Hp, the mean curvature and
Hg, = f, g, He, dH" the integral average of the mean curvature of the evolv-

ing boundary  E;. An important feature is that (1.1) can be seen as a L>-gradient
flow of the surface area. Since it also preserves the volume, it can be regarded as
the evolutionary counterpart to the isoperimetric problem.

If the initial set Ey is regular enough, e.g. it satisfies interior and exterior ball
conditions, the equation (1.1) has a unique smooth solution for a short interval
of time [19]. The classical result by Huisken [28] states that for convex initial
sets the classical solution exists for all times and converges exponentially fast
to a sphere. Similarly, it follows from [19,44] that if the initial set is close to a
local minimum of the isoperimetric problem, the equation (1.1) does not develop
singularities and convergences exponentially fast. However, for generic initial sets
the equation (1.1) may develop singularities in finite time [40,41]. In fact, unlike the
standard mean curvature flow, (1.1) may develop singularities even in the plane and
the boundary may also collapse such that the curvature of the evolving boundary
stays uniformly bounded up to the singular time. It is therefore natural to find
a proper notion of weak solution for (1.1) which is defined for all times even if
the flow develops singularities. The crucial difference between (1.1) and the mean
curvature flow is that the former is nonlocal and does not satisfy the comparison
priciple. Therefore we cannot directly use the notion of viscosity solution to define
the level-set solution via the methods introduced by Chen-Giga-Goto [15] and
Evans-Spruck [20], although in [33] Kim-Kwon are able to find a viscosity solution
for (1.1) for star-shaped sets. Instead, we may use the gradient flow structure to
obtain a weak solution called flat flow via discrete minimizing movement scheme
as first introduced by Almgren-Taylor-Wang [3] and Luckhaus-Stiirzenhecker [36]
for the mean curvature flow, and then implemented to the volume preserving setting
(1.1) by Mugnai-Seis-Spadaro [43]. We give the precise definition in Section 3. The
existence of the flat flow solution of (1.1) is proven in [43] and the recent results
[16,23,31,32,42] indicate that it has the expected asymptotic behavior. Indeed, it
is proven in [31] that in the plane any flat flow solution of (1.1), starting from any
set of finite perimeter, converges exponentially fast to a union of equisize disks.

One of the main issues with the flat flow solution is that it has a priori very
low regularity. The second issue is that it is not clear if the procedure provides a
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solution to the equation (1.1) in some weak sense. The first issue is related to the
regularity and the second one is the problem of consistency, and it is rather clear
that these are closely related to each other. Indeed, the flat flow is obtained as a limit
of a discrete minimizing scheme, in the spirit of the Euler implicit method, where
the time disretization is led to zero. If the flow remains smooth enough, as the time
discretization goes to zero, then one can show that the limiting flat flow provides a
solution to the equation (1.1). However, the only case when this seems to be known
is the case when the initial set is convex. In this case the construction in [8], which
however is slightly different than [43], provides a flow of sets which remains convex
and thus gives a solution to (1.1). One may also define a distributional solution to
(1.1) (see [43]) and in a recent work Laux [34] proves that this notion of solution,
and in fact any gradient-flow calibration, agrees with the classical solution as long
as the latter exists (see also [26]).

The issue with regularity and consistency is better understood in the case of
the standard mean curvature flow. It is proven in [3] that the flat flow for the mean
curvature equation agrees with the classical solution as long as the latter exists. If
we are in a situation where the level-set solution is unique, i.e., it does not develop
fattening, then due to the result by Chambolle [12] we know that the flat flow
coincides with the level-set solution, see also [13,14]. We may then use the result
in [21] to conclude that the flat flow is a ’subsolution’ to the mean curvature flow in
the sense of Brakke and has the partial regularity proven in [9]. Thus we have the
consistency and partial regularity for the mean curvature flow when the flow does
not develop fattening. In addition, due to the recent result by DePhilippis-Laux [17]
together with the classical result in [36], we know that the flat flow is a distributional
solution to the mean curvature flow equation when the initial set is mean convex.

As we mentioned above, here we study the regularity of the flat flow solution
of (1.1) when the initial set is C'-!-regular, which is the same as to say that the set
satisfies interior and exterior ball conditions. Throughout the paper we will say that
an open set £ C R+ satisfies uniform ball condition (which we refer as UBC)
withradius » > 0if it satisfies interior and exterior ball condition with radius 7 > 0.
If we do not want to emphasize the radius r, we simply say that E satisfies UBC.
Our main theorem reads as follows:

Theorem 1.1. Assume that Eg C R"*! is an open and bounded set which satisfies
UBC with radius ro. There is time To > 0, which depends on ro and n, such that
any flat flow solution (E;);>0 of (1.1) starting from Eq satisfies UBC with radius
ro/2 forallt < To. This condition is open in the sense that if (E;);>¢ satisfies UBC
with radius v for all t < T, then there is § > 0 such that it satisfies UBC with
radius r/2 forallt < T + 6.

Moreover, the flat flow (E;);>0 becomes instantaneously smooth and remains
smooth as long as it satisfies UBC. To be more precise, if (E;);>¢ satisfies UBC
with radius r for allt < T, then for every k € N it holds that

sup (tk||HE[
1€(0,T]

”%.Ik(aEr)) = Ck, (12)

where Cy depends on T, n, k, r and |Ey|.
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In fact, we obtain even stronger result since we prove UBC and the estimate (1.2)
directly for the discrete approximative flat flow (E,h),zo such that the estimates
hold for all & < hg for constants independent of #. However, we choose to state
the regularity result only for the limiting flow since the precise statement, which
can be found in Theorem 4.7 and Theorem 5.2, is rather technical. The first part
of the theorem is related to the result by Swartz-Yip [47], where the authors prove
curvature bounds for the Merriman-Bence-Osher thresholding algorithm for the
mean curvature flow.

It is well-known that we have uniqueness among smooth solutions of (1.1).
Therefore an important consequence of Theorem 1.1 is the consistency between
the notion of flat flow solution and the classical solution of (1.1) when the initial
setis C1!-regular.

Corollary 1.2. Assume that Eg C R"*! is an open and bounded set which satisfies
UBC. Let (Et)te[O,T) C R™! be the classical solution of (1.1) starting from E,
where T > 0 is the maximal time of existence, and let (E;);>0 C Rt pe a flat
flow solution of (1.1) starting from Eq. Then

E;=FE; foralltel0,T).

Let us next briefly comment on the regularity estimate (1.2). The first part
of Theorem 1.1 (see Theorem 4.7 in Section 4) provides a bound on UBC for a
short time [0, 7p] and the proof of Theorem 4.7 also provides an estimate how the
curvature grows in time for the approximative flat flow (Eth) +>0. However, without
higher order regularity bounds we are not able to pass these growth-estimates to
the limit as 7 — 0. Therefore the results of Section 4 only imply the consistency
for a short time interval [0, Ty] (see the discussion at the end of Sect.5). Our main
motivation to prove (1.2) is to pass the previously mentioned curvature estimates
to the limit as 7 — 0 by Ascoli-Arzela theorem, and deduce that UBC is, in fact,
an open condition and therefore the flat flow agrees with the classical solution over
the whole maximal time of existence. Of course, in addition to that, (1.2) quantifies
the smoothing effect of the equation in a sharp way.

1.2. An Overview of the Proof

The proof of Theorem 1.1 is divided in three sections and therefore we give
here a short overview. We recall that in the minimizing movements scheme, for a
fixed time discretization step 4 > 0, we obtain a sequence of sets E ,il such that
Eg = Ey is the initial set and E,i’ 1 18 defined inductively as a minimizer of the
functional

1
Fn(E, E,i‘):P(E)—i-}—l/dEh dx + f||E|—

where dpn denotes the signed distance function and mo = |Ep|. A flat flow is
then defined as any cluster point of the discrete flow as & — 0. We first prove
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in Proposition 3.1 via energy comparison argument, that if E ,f satisfies UBC with
radius r( then the subsequent set E ,i‘ 1 satisfies the distance estimate

C
g | < gh on IE}, .

The above estimate is crucial as it implies that the speed of the discrete flow is
sublinear. It also implies a bound for the mean curvature and the regularity of E ,f 1
by applying the Allard’s regularity theory [2]. The most crucial part of the proof of
the main theorem is then to show that the subsequent set E ,}C’ 1 also satisfies UBC
with a quantified radius.

We solve this problem by adopting the two-point function method due to
Huisken [27] to the discrete setting (see also the works by Andrews [4] and Brendle
[10] for an overview of the topic). The idea is to double the variables and to study
the maximum and minimum values of the function

(x—y) v

S =T

forx #y € 0F Z The point is that the extremal values of § g} are related to the

maximal UBC radius of the set £ ,i’ (see Lemma4.1). We use the maximum principle
to prove the following familiar inequality (see Lemma 4.6):

1Sgp, e = 1Sg o
h

3
< ClISg -

By iterating the above estimate, we obtain that the sets £ ,’(’ satisfy UBC for all
k < Toh~!, where the constant Ty is related to the UBC of the initial set. This
implies the first part of Theorem 1.1 (see Theorem 4.7). An important technical
part in this argument is the discrete version of the formula for %UE, which we
derive in Lemma 4.4.

The formula in Lemma 4.4 is, in fact, so simple that we are able to differentiate
it multiple times and obtain in Proposition 5.1 a discrete analog for the formula

d ok ke
th Hg, = A" Hg, + lower order terms, (1.3)

where A denotes the Laplace-Beltrami operator (see e.g. [38]). The lower order
terms are due to the nonlinearity of the equation (1.1) and we need the notation
and tools from differential geometry in order to control them. We stress that this
is the only part in the paper where we need to introduce higher order covariant
derivatives. After we have obtained the discrete version of the formula (1.3) and
bounded the lower order error terms, we may adopt the argument from [22] to the
discrete setting and obtain the full regularity of the flow. Finally, we point out that
the argument can be adopted to the case of the mean curvature flow essentially
without any modifications.
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2. Notation and Preliminary Results

Throughout this paper, C,, € R, stands for a generic dimensional constant
which may change from line to line. We denote the open ball with radius r centered
at x by B.(x) c R*™! and by B, if it is centered at the origin. We denote by
C(x,r, R) ¢ R"*! the open cylinder

C(x,r, R) := B (x") X (=R + Xp41, R + xp41),

where B C R”" denotes the n-dimensional ball and x = (x', x,41) € R" x R. For
agivenset E C R"*! and aradius r € R we set its r-enlargement N, (E) = {x €
R™+! : dist(x, E) < r}. Note that we may alternatively write this as the Minkowski
sum E + B,. The notation VX F stands for k:th order differential of a vector field
F : R — R™ . For a matrix A € RF ® R* we denote by |.A| its Frobenius norm
VTr(AT A) and by |Alqp its operator norm max{|A£| : & € R¥, |&] = 1}.

Ifaset S C RFis Lebesgue-measurable, we denote its k-dimensional Lebesgue
measure (or volume) by |S|. Given a non-empty set E C R"*! we denote the
distance function by distg (x) := infycg [x — y| and the signed distance function
by dg : R"! — R, which is defined as

dp(x) = distg (x), for x € R*+1 \ E .1
T | —distg g (x), for x € E. '

Then clearly it holds that distyz = |dg|. If for a given point x € R"*! there is
a unique distance minimizer y, on 0 E (that is |x — y,| = distyg(x)), we denote
vy by mye (x) and call it the projection of x onto d E. For a set of finite perimeter
E C R"*! we denote its reduced boundary by 3* E. Then P(E; F) = H"(d*ENF)
for every Borel set F  R"*! and P(E) = H"(3*E).

2.1. Regular Sets and Tangential Differentiation

We will mostly deal with regular and bounded sets £ C R"*!. As usual, a
bounded set E C R"*! is said to be Ck’“—regular, withk > land0 < o < 1, if
for every x € dE we find a cylinder C(x, r, R) and a function f € C’““(B;’ (x"))
with | f — x,+1] < R such that, up to rotating the coordinates, we may write

int(E)NC(x,r,R) ={y € C(x,r,R) : yp41 < FONY.

In particular, d E is a compact and embedded C*®-hypersurface. Again, if @ = 0,
we say that E is C¥-regular and if k = oo, we say that E is smooth. If r and
R are independent of the choice of x and the CK%-norm of g has a bound, also
independent of x, then we say that E is uniformly C*“-regular. We denote the
outer unit normal by vg, or simply v if the meaning is clear from the context.
Note that vy € CK~ L (9E; 3B;). We always assume that the orientation of 9 E is
induced by vg. We define the matrix field Pyg : 9E — R"T! @ R"*+! by setting
Pyr =1 —vg ® vg. For a given point x € d E the map Pyg (x) is the orthogonal
projection onto the geometric tangent plane G JE = (vg(x))*.
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For given a vector field F € CLR™ ! R™) with 1 < [ < k we define its
tangential differential along ¥ = 9 E as a matrix field V., F : 0E — R" ® R +1
by setting

Vi F =VFPyg =VF — (VFvg) Q vg. (2.2)

When the meaning is clear from the context, we abbreviate E from the notation
and write simply V; F. In the case m = n + 1, the tangential divergence of F is
defined as div; F' = Tr(V, F) and the tangential Jacobian J; F of F is defined on
J0F as

JoF = \Jdet (Vo F o t0)T (Ve F otr)). 2.3)

where (;(x) at x € 9E is the inclusion G,0E <> R"H! In the case m = 1,
the notation V; F also stands for the rangential gradient PygV F. Note that V, F is
C!~!-regular and independent of how F is extended beyond 8 E.. On the other hand,
every G € Cl(aE, R™), with 1 <[ < k, admits a C!-extension F : R" — R™ so
we may extend the concept of tangential differential to concern G simply by setting
V.G = V. F and further define the other introduced concepts in a similar manner.

If E is C*-regular for k > 2, we may define its second fundamental form, with
respect to the orientation vg, as a matrix field Bg : 9E — R"T! @ R**! given by

Be(x) =) hi(x) (x) ® ki (x),

where the (unit) principal directions «1(x), ..., k,(x) € (Vg (x))* and the princi-
pal curvatures Aq(x), ..., A,(x) at x € dE are given by the orientation vg. The
corresponding (scalar) mean curvature field Hg is then given pointwise as the sum

of the principal curvatures, i.e., Hg = Tr(BEg). Note that we may simply write
Brp =V.vg and Hpg =div; vg. 2.4)

Finally, we define the tangential Hessian for givenu € C 2(QE) as Vfu = V:(Viu)
and further the tangential Laplacian or the Laplace-Beltrami of u as

Aru = div, (Vou) = Tr(VZu).

The tangential Laplacian A, F for F € C2(E; R"t1)isdefined as Zi A (F-¢)e;.
We will need the following identities on d E:

A;id = —Hpvg and A;vg = —|BE|2vE—|—V,HE if E is C3—regular. (2.5)

The importance of the mean curvature Hg lies in the surface divergence theorem
which states that for every G € C L@ E; R*1) it holds that

/ divdeH”:/ HEg(G - vg) dH". 2.6)
JE o0E

The concept of mean curvature can be generalized to the setting of bounded sets
of finite perimeter in the varifold sense. Indeed, for a set of finite perimeter £ C
R"*! we may define the tangential divergence div; F of F € C!(R**!; R**1)
along 0* E in the same way as in the regular case by replacing the outer unit normal
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field with the measure theoretic normal field 3* E — 9 B} which we also denote by
vg. Then, if E is abounded set of finite perimeter and there is g € LY(0*E, H" la+E)
such that

/ div,FdH"z/ g(F - vg)dH" Q2.7)
*E *E

for every F € C'(R"1; R**1), we say that g is a generalized mean curvature
of E and denote it by Hg. As mentioned, this is a concept from the context of
varifold theory for which we refer to [46] as a standard introduction. Since 9*E is
‘H"-rectifiable set, one may treat the pair (9*E, H"|y+g) as an rectifiable integral
varifold of multiplicity one.

2.2. Riemannian Geometry

We need the notation related to Riemannian geometry and as an introduction to
the topic we refer to [35]. Let us assume that E C R"*! is a smooth and bounded
set and denote ¥ = 9E. Since ¥ is embedded in R"*! it has natural metric g
induced by the Euclidean metric. Then (X, g) is a Riemannian manifold and we
denote the inner product on each tangent space X, Y € 7, X by (X, Y), which we
may write in local coordinates as

(X,Y)=g(X,Y)=g; X'V’

We extend the inner product in a natural way for tensors. Note that x - y denotes
the inner product of two vectors in R”"*!. We denote smooth vector fields on ¥ by
7 (%) and by a slight abuse of notation we denote smooth k:th order tensor fields
on X by 7 k(). We write X' for vectors and Z; for covectors in local coordinates.
We denote the Riemannian connection on ¥ by V and recall that for a function
u € C®(X) the covariant derivative Vi is a 1-tensor field defined for X € 7 (%)
as

Vu(X) = Vyu = Xu,

i.e., the derivative of u in the direction of X~ . The covariant derivative of a smooth
k-tensor field F € .7X(%), denoted by VF, is a (k + 1)-tensor field and for
Yi,..., Y, X € 7(X) we have the recursive formula

VFEWYy,...,Y, X) = (VxF)(Y1, ..., Y0, (2.8)

where

k
(VxF)(Y1,...,Y) = XF(Y,...,Y) — ZF(Yl, VXY Y.

i=1

Here %XY is the covariant derivative of Y in the direction of X (see [35]) and
since V is the Riemannian connection it holds that ﬁxY = 6yX + [X, Y] for
every X, Y € Z(X). We denote the k:th order covariant derivative of a function
uon ¥ by VFu € Z%(X) and the Laplace-Beltrami operator by A. Note that for
functions it holds that Au = A;u. The notation @,-k e @,’] u means a coefficient
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of V¥u in local coordinates. We may raise the index of V;u by using the inverse
of the metric tensor g/ as Viu = g'/Vv ju. We note that the tangential gradient of
u : ¥ — Risequivalent to its covariant derivative in the sense that for every vector
field X € .7 (X) we find a unique vector field X : ¥ — R"! which satisfies
X- vg = 0and

6Xu =V.u- X.

Similarly it holds that V2u(X, Y) = V2uX - Y. Finally we recall that the notation
V¥ always stands for the standard Euclidean k:th order differential for an ambient
function.

We define the Riemann curvature tensor R € 7*4(X) [35,39] via interchange

of covariant derivatives of a vector field Y and a covector field Z; as
ﬁﬁij—ﬁjﬁiYs =RijklgksY1, (2.9)
ViViZi —V;ViZy = Rijug" Zs, ‘

where we have used the Einstein summation convention. We may write the Riemann
tensor in local coordinates by using the second fundamental form B, which in the
Riemannian setting is understood to be 2-form, as

Rijr = BixBj; — BiiBjy. (2.10)
We will also need Simon’s identity, which reads as
AB;j = V;V;H + HB;g" By; — |B|*Bj;. (2.11)

Let us next fix our notation for the function spaces. We define the Sobolev space
WHP () in a standard way for p € [1, 0o], see e.g. [6], denote the Hilbert space
HI(E) = WZ'Z(E) and define the associated norm for u € Wl"’(Z) as

!
[ Z/Z IVFu|? dH",
k=0

and, for p = oo,

l
Tk
”M”W[oo(z) = Z sup |V M|
k:OXEZ

The above definition extends naturally for tensor fields. We adopt the convention
that ||”||H0(2) = ||u||L2(E) and denote ||ul|cm(z) = |lu|lwm.oo(x). We remark that
we may define the k:th order covariant derivative of a function u € C k(£) and the
space W5P () for k > 2 as above assuming only that ¥ (i.e. the set E for which
Y = 9E) is Ck-regular.

Finally we adopt the notation S » 7' from [25,38] to denote a tensor formed by
contracting some indexes of tensors S and 7' using the coefficients of the metric
tensor g;;. This notation is useful as it implies

|S*T| =< CISIIT],

where the constant C depends on the ’structure’ of S« 7.
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2.3. Functional and Geometric Inequalities

We will need standard interpolation inequalities on smooth hypersurfaces. Since
we will apply them on the moving boundary given by the flow, we need to control
the constants in the inequalities. We begin with a simple interpolation on Holder
norms.

Lemma 2.1. Let Q@ C R¥ be an open set and let u € C'(Q), then for every
aec0,1)

el o gy < 3lluell =g Iullr g
Proof. The inequality follows from

lu(y) —u)]

SR < u(y) — uo (M) < 2flull}>
ly — x|

o
|y_x| LOO(Q)HMHCI(Q)
O

We continue to introduce functional and geometric inequalities that we need in
order to prove the higher order regularity estimates stated at the end of Theorem 1.1.
As we already mentioned we do not need any deep results from differential geometry
in order to prove the estimate for UBC stated in the beginning of Theorem 1.1. It
is only when we deal with higher order derivatives, i.e., higher than two, we need
the notation of covariant derivatives. Recall that we always assume that ¥ = 0F
for a bounded set E R+,

Let us first recall the interpolation inequality with Sobolev-norms on embed-
ded surfaces. We use the result from [38, Proposition 6.5] which states that under
curvature bound the standard interpolation inequality holds for a uniform constant.

Proposition 2.2. Assume || Bx || o, H"(X) < Co and X is C™-regular form > 2.
Then for integers 0 < k < | < m and numbers p,q,r € [1,0), there is 0 €
[k/1, 1] such that for every C!-regular covariant tensor field T on ¥ it holds

VT lLresy < CIT g 1T (s

for a constant C = C(k,l,n, p,q,r,0,Co) € Ry provided that the following
compatibility condition is satisfied

1 k 1 l 1
— =S40 (-—=)+-1-0.
P n q n r

We denote an index vector by o € NF, e, a = (aq, ..., o) where o; € N,
and define its norm by

k
|| =Zai.
i=1

The following inequality is well-known but we prove it for the reader’s convenience:
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Proposition 2.3. Assume ||Bx | p~, H"(X) < C and X is C™-regular for m > 2.
Assume uy, .. .,u; are C"-regular functions such that ||u;||p~ < C. Then for an
index vector o € N with | <k <mand p € (1, 00) it holds that

k
Nl 19wl oes) < Ce 3 i llwioce)-

i=1

Proof. Without loss of generality we may assume that || = k. We first use Holder’s
inequality to get that

VS url - IV urllliLesy < IV urll pec V¥l i
L1 L“

By the interpolation inequality in Proposition 2.2 and by ||u; ||z < C it holds that

Y &
1- k

~ % 9
19 tll g = Cllulge il o’ = Cluill -
1
Hence we have
~ ~ L3l a
IV ar ] 1Vl Lo (s) < Crllunlly, - Nl e -

Since a1 + - - - + oy = || = k, the claim follows, from Young’s inequality. O

If u : R"*! — R is a regular function then its restriction on X is also regular.
In the next lemma we bound the covariant derivatives of u on ¥ with the Euclidean
ones. The statement of the lemma is not optimal but it is sharp enough for our
purpose. In the proof we will repeatedly use the fact that the k:th order derivative
of the composition f o & and the product f - g of functions f, g : R” — R¥ and
h : R" — R™ can be written as

Vk(foh) = Z Vl+a'h*-~-*Vl+a’<h*vl+0‘k+1f
loe|<k—1

VE(fe)= ) VifxVig.

i-‘,—j:k

2.12)

Lemma 2.4. Assume ¥ is CKt2-regular and u € C**'(R**1). Then it holds for
all x € X that

VU < G Y (L4 V9 B (o] -+ [V B (o)) [V 4+ u(x)].

|| <k

Recall that V¥ denotes the k:th order covariant derivative on X while V¥ is the
k:th order Euclidean derivative.
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Proof. The proof follows from basic theory of differential geometry and we merely
sketch it. Let us fix x € X and choose the coordinates such that x = 0 and
vE(0) = e,41. Since X is C¥*2-regular hypersurface we may write it locally as a
graph of f € CK2(R"), ie., © N B.(0) C {(x, f(x)) : x € R"}. Note that since
vE(0) = e+ then Ve £(0) = 0.

We consider the graph coordinates ®~! : B — &~!1(B") c , 7! (x) =
(x, f(x)). We denote the points on R" by x, the points on X by p, ®(p) =
(xl(p), co,xn (p)) and U = CID_I(B;’). Then the chart (U, (xi)) determines co-

ordinate vector fields which we denote by %‘ and recall that they act on smooth
P

functions v : U — R at p = ®(x) as

oxt

v—Vv(aa >(p)—8(vod> Ho,

where 9; denotes the standard partial derivative in R". It holds for the metric tensor
and for the Christoffel symbol F; « (see [35]) for x € B;' that

gij(x) = 8ij + 0 f(x)0; f(x) and T (x) = g (x) 85, f (X)d f (x).

Moreover by the recursive formula (2.8) we may write the (k+ 1):th order covariant
derivative of u iteratively (see [35, Lemma 4.8]) as

- 0 0 0 - 0 0
Vk+llxt Ty seey Ty T 281 Vku Ty esey o
daxh ox dxJ dxh 0x
k
_ 2 :6/6“ 9 9 0 rt.
1 axit’ T axlT T gxik Jim®
m=

Recall that Vi ( ) (p) =
Using (2.12) we have

(2.13)

IVEH (o @) 0)] < Ci Y (1+ Vi FO)] -+ [Vt ™ F(O)) [V 41 u(0)].

oe| <k
We use (2.13) and (2.12), and obtain after long but straightforward calculation that

V)] < G D7 (14 Vi FO)] -+ [Vt ™ FO)) V441 u(0)].

la|<k

Note that vg o d~1 = “=Y&2L.D _ We thus obtain by (2.12) that
14| Vgn f12
Ve fOI<Cr Y (14 VP (e o @ D]+ VA (g 0 @71
1Bl=l

<G Y. (1+ VP Bg|--- VP BE))
IBl<l—1

(2.14)

and the claim follows. 0O
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Next we turn our focus on geometric inequalities on compact hypersufaces. Re-
call that by classical results e.g. from [6] it holds that [[u] 25y < C([[Aull 25y +
lullz2(x)) and e.g. in[22]itis proven that [[u| g« 5y < CUl AUl gresy+llullp2(s))-
We need these results with a quantitative control on the constant.

Lemma 2.5. Assume ¥ is C**T2-regular and || B || L~ , H" () < C. Then for all
u € C*HL(R) it holds

lell 2y < Cell A ull 2y + (1 + 1B | gaees gz el oo )

and

lull g sy < CelIV A ull 205y + 1+ 1B | g2 gsy) lul oo (z))-

Proof. We only prove the first inequality since the second follows from the same
argument. The proof is similar to [30, Proposition 2.11] but we sketch it for the
reader’s convenience. Denote ! = 2k. We begin by noticing that we may interchange
the derivatives of the (/ 4 1):th order covariant derivative of u by using (2.9), (2.10),
(2.13) and the curvature bound || By ||z~ < C (see also [38, Proof of Lemma 7.3])

|V

i1 6im"'ﬁilu_ﬁiml"'V \4 - Vijul
< Y 4199 Bg] |99 B ul.

loe|<l—1

o Vierl im im+l o

We leave the details for the reader. This holds pointwise on X and we use it without
further mentioning. Let us denote F = V22 and denote its components sim-
ply by Fg, where B = (i1, ..., i2k—2). Then it holds by divergence theorem, by
interchanging the derivatives and by Proposition 2.3

/Wz"mzd?i":/ IV2F > dH"
z z

:/ %ﬁjFﬁ'ﬁfFﬂdH"z—/ V,FgV;ViviFP an"
z z

IA

_/ , Fs I, PP dn
)

+Ce ) /(1+N“IBZF---W“l*lez)W“luFdH"
)

o] <I—1

< /2 VIV FgViVIFP dH" + Crllull 1 5y + Nl sy B 13001 5:))
= /E |AVH Ul dH" + Crlllull g gy + 1 F oo sy 1B 11 5))-

By interchanging the derivatives and arguing as above we obtain

/ |A@2k—2u|2dHn E/ I@Zk—zAl”Z dHn
z z

FCNull 3ot gy + Nl F ooy 1B 101 5)-
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By repeating the argument by replacing u with AJu, for j = 1,...,k — 1, we
deduce that

/E V% u? dH" < /Z | A ul dH" + Crelllul G ) + Nl oo () | B2 i 5)-
The claim follows from interpolation inequality (Proposition 2.2) as for 6§ € (0, 1)

it holds that

2 2 2(1-6 2
”u”HZk—l(E) = |Iu||1.}92k(2)||u||L(oo(Z)) = 8”””[{2]((2) + C8||M||L°°(2)s

where the last inequality follows from Young’s inequality. O

Lemma 2.5 together with Simon’s identity (2.11), imply

Proposition 2.6. Assume that ¥ is C***3-regular and that | Bx || .=, H"(£) < C.
Then it holds that

I1Bs |l g2ty < Ce(1+ | A*Hs [l 125:))
and

IBs |l g2e+1(xy < Ce(1+ VA Hg |l 125)).

2.4. Uniform Ball Condition and Signed Distance Function

In this subsection, we recall some properties related to sets which satisfy UBC
as well as properties of signed distance function defined in (2.1). Most of them can
be found e.g. in [5,7] while others are more difficult to find. We recall that a set
E C R™*! satisfies UBC with given a radius r € R, if it simultaneously satisfies
the exterior and interior ball condition with radius » at every boundary point. That
is, for every x € 0 FE there are balls B, (x4) and B, (x_) such that

B (x;) CR™\E, B.(x_) CE and x € dB,(x;) N 3By (x_).

Itis well known, for the experts at least, that UBC for a set implies its boundary being
auniformly C!-!-regular hypersurface. We need this property in a quantitative form
which states that if £ c R"H! satisfies UBC with radius r, then it can be written
locally in a cylinder of width /2 as a graph of a C!"!-function. Since this result is
not easy to find in the literature, we state it and provide a proof here.

Proposition 2.7. Assume E C R"*! satisfies UBC with radius r > 0. Then for
every point x € dE we may, by rotating the coordinates if necessary, write the
interior of the set locally as a subgraph of a function g : B:’/z x) = R ie,

int(E) NC(x,r/2,r) ={(), ynt1) € C(x,r/2,7/2) : yuy1 < g} and
IENCx,r/2,r) ={(,g0) Y € Bf/z(x/)}.
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The function g is C'-regular and it holds for all y' € Bf/z (x")yands € (0,r/2]

|y/_x/|2

r+ /r2 — |y/ _x/|2
1

|y/_x/| |y/_x/| 2\ 72
Vel < — 1- — and

Vg(yh) — Vg (y 1 SN2\~
sup | g(|y2/) /z,|’(y])| ! (1 3 (_) )
- r r
Vi, e B P2
yi# ¥
Moreover, the outer unit normal vg on 0 E is 1 /r-Lipschitz continuous in Euclidean
metric.

1g(y) — g(x)| <

[SI[%)

Remark 2.8. We remark, that the converse of Proposition 2.7 also holds true. That is,
if E ¢ R"*!is a set such that for every x € 9 E, we may write its boundary locally,
by rotating the coordinates, as dE N C(x, r, 2r) C {(y', g(y)) : y € B (x)} with
||g||C|_1(B;,(x/)) < C/r, then E satisfies UBC with radius c r, for a constant ¢ > 0
which depends on n and C. This is fairly straightforward to show and we leave it
to the reader.

Proof of Proposition 2.7. We remark that UBC with r implies for every x € dE
an existence of a unique unit vector vg(x) such that B,(x — rvg(x)) C E and
B, (x + rve(x)) ¢ R\ E. Therefore, we have a vector field vy : 9E — 0B
which later turns out to be the outer unit normal field of E. We first show that
vg is 1/r-Lipschitz continuous with respect to Euclidean distance. To this end,
fix x,y € 9E. By the previous observation B,(x + rvg(x)) C R"*\E and
B,(y —rvg(x)) C E so the balls are disjoint. Similarly, the balls B, (x — rvg(x))
and B,(y + rvg(y)) are disjoint. Hence the distances between the corresponding
centerpoints are at least 27 and we obtain the inequalities

4r < |x —y +r(ex) +ve(»)]* and
4rr < |x —y —r(px) + ve()I*

By summing the above inequalities gives us 872 < 2|x — y|> + 4r2

(1 +vge(x) - vg(y)) and, again, by subtracting and dividing terms we further obtain

=P
2r2

lx — yI?
r2
(2.15)

1 < vg(x)-vep(y) orequivalently |vg(x) —vp(y)[* <

In particular, vg is 1/r-Lipschitz.
For given apointx € d E, we show the existence of g as claimed. Without loss of
generality we may assume x = 0 and vg(0) = e;,4+1. Then it holds B, (—re;+1) C

E and B, (rep41) C R"T1\ E. Thus, for every y’ € Bf/z there is a number ¢,/ such
that (y’, ¢,/) € dE and

ly'I?
lty| <r —Jr2 =y = —F———. (2.16)
y r 4+ /r2 _ |y/|2
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In particular, |z,/| < [y’|. Combining (2.15) and (2.16) yields

/ [Y'1\2
VE(Y 1) - entt = (/1 — (7) . (2.17)

Let us show that such a number 7,/ is unique.
We suppose by contradiction there is s,y € (—r, r)\{y/} such that (y', s,/) €
0 E. Without loss of generality, we may assume s,» > f,s. Since B,((y’, ty) +
rve(y, ty/)) c R"™N\E and (y/, sy) € OE, then the point (y’, s,/) is not in the
ball B, ((y', /) + rve(y', 1y)). Hence, we obtain
P2 <10 s) = (O ) +rve (Y 1))
= (sy’ - ty/)z - 2r(sy/ - ty/)UE(y/s ty’) “enyl + rZ'

We first subtract r2, then divide by sy — t,, and finally use the estimates (2.16),
(2.17) as well as |y’| < r/2 to deduce

sy =ty +2rvE (Y ty) cen1 = —r + 3\ r2 = [y >r —/r2 = |y

This implies together with s,» < r that (', sy/) € Br(rep41) C R\ E which, in
turn, contradicts (y’, sy) € OF and, hence, ¢,/ is a unique value in (—r, r) satisfying
(', ty) € OE.

Thus, the function g : B;‘/z — R, given by the relation g(y’) = t,/, satisfies

int(E) N C, 7/2,7/2) = {(y, yur1) € CO,r/2,7/2) : ypr1 < g(y)} and
AENC(0,r/2,r/2) ={(y,g()) : y € Bf/z}. (2.18)

Again, (2.16) gives us the bound on |g(y")| as claimed. The condition (2.17) im-
plies that for every y’ € B/, there are open sets y eV C By, ', g(y)) €
U c C(0,r/2,r/2) and functions ¥4, ¥r_ € C*(V) such that 3B, ((y’, g(y")) £
rve(y’, g(y")) N U are the graphs of ¥+ respectively. Then ¥_ < g < vy in
V and ¥_(w) = g(w) = ¥ (w) implying the differentiability of g at y’ with
Vg(y") = Vi (y). Moreover, we deduce that vg(y’, g(y')) is the outer unit nor-
mal of {(z/, zy11) € V xR : z,41 > ¥ (2)} at (y', g(y')) and thus

(=Vy+ (). D _ (=Yg 1)
VI+HIVULONP)  V1+1Ve()?

Since now g and vg are continuous, (2.19) implies that Vg is continuous too. Thus,
Eis C 1—regular and vg is the actual outer unit normal of E. We combine (2.17)

and (2.19) to observe
2 b
/ /
IVe(y)l < |i—| (1 - ('i—') ) . (2.20)

To conclude the Lipschitz estimate, if y|, y; € BY for given s € (0, r/2], then
the uniform ball condition implies that (], g(y1)) & B-((y5, §(¥5)Erve(y5, 8(¥5))

ve(y, 8() = (2.19)
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and (5, g(v3)) ¢ B-((y1, 8(¥))) £rve(y], g(y})). Hence, using (2.19), we obtain
the estimates

(=Vg(y). 1)

J1T+HIVEOHI1?

(=Vg(y). D

2
S (34,800
JUH1VEGDP

By summing these inequalities and simplifying, we have
(5 =D - (V) — Ve(y))

L+ VR 4/ 1+ Ve
S\/ : Zr‘/ - (195 = ¥ + 60 — g6?).

2
< |0 0B £ 7 —~ 01 801)| and

= |of g0 &7

Thus, by recalling, (2.20) we further estimate that
|7y — 1) - (Vg(yy) — VeyD)l

JUHIVEOPR + 14192012
<
- 2r
(Iyé —yiPP+ (g — g(yi))z)

1+ supgs Vel (

=

- 1+sup|Vg|2) Ivs — i1

n
B s

3
1 s\2\ 2
<- 1—(- —Ts 221
_r< r)) 19 = ¥4l (221)

The desired estimate then follows from (2.21) via a standard mollification argument.
O

We recall that a signed distance function dg of a non-empty set E C R"*!
is always 1-Lipschitz and it is differentiable at x € R" \ dE exactly when the
projection my£ (x) exists on d E. Again, UBC for E means the differentiability of
dg in a tubular neighborhood. Indeed, one may show that for a non-empty open set
E c R"*! and r € R, the conditions

(1) dg is differentiable in NV, (0 E) and
(i) E satisfies UBC with radius r

are equivalent. In such a case, the projection y¢ onto JE is defined in NV, (OE) as
a continuous map and the following fundamental identities hold in AV, (3E):

T9E = id — dEVdE and VdE = VE OTYHE. (222)

In particular, dg € C'(N;(dE)). Further, it is fairly simple to conclude that for
every t € (—r,r) the sublevel set E; = {x € R dp(x) < t} has the level set
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{x € R*1 : dp(x) = t} as the boundary and satisfies UBC with radius r — |].
Moreover, it holds that

dE, =drp —t and TyE, = TYE +IVE O THE in ./\/;.,|,|(3Et). (2.23)

We may then improve the regularity by showing Vdg and myg are locally
Lipschitz continuous in V; (3 E) and obtain quantitative estimates for the Lipschitz
constants in smaller tubes.

Lemma 2.9. Assume E C R"™t! satisfies UBC with radius r > 0. Then for every
0<p<randx,y € N,(E) it holds that

r 1
|y (x) — o (V)| < " _plx =yl and |Vdp(x) — Vdg(y)| < " _pl)c =yl

Proof. 1t is enough to prove the first estimate, since the second estimate follows
from the first via Proposition 2.7 and the second identity of (2.22). We first show
that the estimates hold locally, i.e., for every x € N, (9E),

. r
Llp (7T3E,x) S m (224)

To this end, we show that, for every x € dE and y € B,/4(x), it holds that

4
e (y) — x|* < (l + —IdE(y)|> ly — x| (2.25)
r—Ide(y)|

We may assume that x = 0, vE(0) = e,+1 and y ¢ E. Let g : B;'/z — R be as
in Proposition 2.7. Since |y| < r/4, then y € C(r/2,r/2,0) implying |dg(y)| <
|yne1 — gn ()] and, hence, we make a technical observation

dg(y) < 2dEg(y)ns1 — 8ON). (2.26)
Thus, using Proposition 2.7, (2.22), (2.26) and Young’s inequality, we estimate that
lae ()1 = 1y1> = 2de(y) y - Vdg(y) + d2(y)

= |y1> = 2dE (V) ynr1 + d2(y) = 2dE(y) y - (Vdg(y) — ent1)
< |yI> = 2dg(»g(y) = 2dp(y) y - Vg (maE(y)) — vE(0))

< |y + 24D E(”'| P2 E(y)|y||nag(y)|
d d d
<1y +2| E(y)|| 24 | Er()’)||y|2+| Er(Y)||naE(y)|2’

and (2.25) follows. Suppose next yi, y2» € B,(x) for givenx € 0E and 0 < p <
r/9. The sublevel set E;, for t = dg(y;), satisfies UBC with radius r — p and
y2 € E;. Since |y; — y2| < 2p < (r — p)/4, then by applying (2.25) for 0 E, we

have :

8p 2
ImaE, (1) — y2| < (1 + ) [y1 — y2l. (2.27)
r—2p
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On the other hand, first recalling the second identity in (2.23) and then applying
Proposition 2.7 gives us

o
I7aE, (y1) — y21=ImoE, (V1) — 7ok, (¥2)|= (1 - ;) I7aE(y1) — o (y2)I,

s0, by combining the estimate above with (2.27) yields Lip(x, myr) = 1. Hence,

we deduce that

Lip(x, myg,) = 1 (2.28)

forevery t € (—r,r) and x € 0E;. By using (2.23) and Proposition 2.7 similarly
as previous, we infer (2.24) from (2.28).

Finally, for the first estimate of the claim, we may assume x, y € N,(dE). Let
Jyx = {tx + (1 = 1)y : t € [0, 1]} be the line segment between them. If J,, C
N, (JE), then the first estimate of the claim follows from (2.24). Otherwise, there
are0 <1 <t < lsuchthattx+(1—1)y € N,(3E) foreveryt € [0, 1) U (2, 1]
and z; = tix + (1 — t;)y € IN,(IE) fori = 1,2. Since dg(z1) = p = dg(z2),
then Proposition 2.7 and (2.22) imply

|TaE(z1) —myE(22)| < lz1 — z2].

On the other hand, due to (2.24) we have
;

r—p

-
ImaE () — map @I = - — , lx — z1] and |73 E (z2) — moE (V)] = |22 = ¥l

and we conclude the proof. O

If E is C*%-regular, with k > 2and 0 < « < 1, then d € C**(N;(3E)) and
mag € CK LN (DE); R, In particular, (2.22) holds everywhere in NV, (0 E).
Then it holds

V2dg = Bg and Adp = Hg on OE. (2.29)
In particular, we deduce from Lemma 2.9 and (2.29) that
1

and sup|Bglop < —. (2.30)
OE

lHEl L~@E) <

NS

=N

Differentiating Vdg - Vdg = 1 yields V2dpVdg = 0in N, (QE). Again, by
differentiating the first identity in (2.22) we obtain

Vg =1 —Vdg ® Vdg — dEVZdE in N,(OFE). 2.31)

The second identity in (2.22) says that Vdg = Vdg o myg in N, (9E). Thus, by
differentiating this and by using the properties of the distance function mentioned
before we have

Vidg = (V2dp)" = Vmyp(Vidgpomye) = (I —deV3de)(Beomyg) in Ny (VE).
(2.32)
‘We write this as

Vsz(I +de(BE OJTaE)) = Bg omyE.
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It follows from (2.30) that the matrix field I +dg (B omyg) is invertible in NV, (0 E).
Therefore, we have

Vsz = (Bgo 7T3E)(I + dg(BE o]‘[aE))il in NV,(0E). (2.33)
By combining (2.22), (2.31), (2.29) and (2.33), we may decompose Vmyg as

Ve = I—onn'aE(X)onn'aE—dE(BEon'BE)(I—i—dE(BEon'aE))fl in NV, (0E).

(2.34)

By using a fairly standard calibration argument (see e.g. [1, Lemma 4.1]) we
conclude that UBC implies so called A-minimizer condition.

Lemma 2.10. Assume that E C R™*! is an open and bounded set which satisfies
UBC with radius r > 0. Then for every set of finite perimeter F it holds that

n—+1
P(ENF)<P(F)+ ——|F\ E| and
r
n+1
P(EUF) < P(F)+——|E\ F|.
r

In particular, P(E) < " |E|.

Proof. The argument is a quantitative version of [1, Lemma 4.1]. We will prove
that for every set of finite perimeter F it holds that

n+1
P(E) §P(F)+T|FAE|. (2.35)

Then the two inequalities in the statement follow by using (2.35) with £ U F and
E N F in place of F and using the fact [37, Lemma 12.22] that

P(EUF)+ P(ENF) < P(E) + P(F).

The third inequality follows by using (2.35) with F' = ¢.

By a standard approximation argument for the sets of finite perimeter [37, Thm
13.8 ] we may assume that F is smooth. In turn, we may approximate also E by a
sequence of smooth sets Ej in the C'-sense such that E}, satisfies UBC with radius
r such that ry — r. Therefore, by simplicity we assume that also E is smooth.

For each k € N we construct a vector-field X, € Cg’l (R"*+1; R+ guch that

(1) Xk = Vg On aE,
(i) | Xkl < 1in R"*t! and
(i) || div Xy ll ooty < (n+ L+k71) /7.

To this aim, we first define nx : R — R by setting nx(f) = max
{0,1— (14 1/k)|t|/r}and thenset X; = (ny odg)Vdg. Clearly Xy is a Lipschitz
continuous vector field supported in AV, J4k-1) (0 E) and satisfies the properties (i)
and (ii). We further compute that
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Hence, it follows from Lemma 2.9, V2dgVdr = 0 in N, (3E) as well as the
definition of 7y that |div X;| < (n+14+k~1)/rin ./\/;,/(1+k—1)(8E)\8E. Since the
sets ./\/r/(Hk_])(BE) and ./\/r/(1+k_|>(8E)\8E agree in the L!-sense we infer that
X satisfies (iii). By using the properties (i) — (iii) for Xy as well as the divergence
theorem we estimate

P(E)—P(F)ff Xk-vEdH”—/ Xy - vp dH"
oE oF

:/divXkdx—/divXkdxf/ | div Xy | dx
E F EAF

1+ k!
< n+—+|FAE|,
r

and thus, by letting k — oo, the above yields (2.35). O

Suppose that E’ is a connected component of a set E which satisfies UBC with
r.If|E’| < oo, then E’is bounded and we may control its diameter in terms of 7 and
|E’|. Indeed, by the above approximation we may assume that E is smooth. Then
by (2.29) we have |Hg| < n/r on d E. Thus, combining Lemma 2.10 and Topping’s
generalization [48] of Simon’s diameter control [45] gives us the estimate

C
diam(E') < C,, /B ; |He "' dH" < r—;’|E’| (2.36)

for a dimensional constant C,, € R... Finally, we need the following interpolation
result:

Lemma 2.11. Assume E C R"*! is an open and bounded set which satisfies UBC
with radius r > 0. If U is an open set containing E and u € C*(U), then

IVeullLo@e
IVeul3 o) < 4lullzor) (sup (VP ulop + — ).
oE

Proof. By the above approximation argument we may assume that E is smooth.
We first observe that for a bounded function f € C 2(R) it holds

1 1R oy < 41 @l f o (2.37)

Indeed, let us fix a t € Ry. We may assume that f'() > 0, since otherwise we
consider the function — f instead of f. Let I be a maximal open interval containing
t such that f/ > 0in I so f is strictly increasing there. Then there is a decreasing
sequence (f;); € (inf I, t) converging to inf I such that f/(f;) — 0 asi — oo.
Since f is strictly increasing in /, it is invertible there. Hence, we may compute,
forevery i € N,

- rd
L OF — 1F G = / IO
[ s

i

t t
=2 / F7(s)f (s)ds =2 / FION P £ (s)ds
t t
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f® |
= 2/ ST @dr <4l flle@ I f e )

f@)

and thus, by letting i — oo, we obtain |f'(t)|> < 4| fllLeo®)ll f”llL>m®), and
(2.37) follows.

Since 0 E is compact we find x € 0E such that [Vu(x)| = [|Veullr=oE).
We may assume that |V u(x)| > 0. The connected component of d E containing x
is geodesically complete and, hence, we find a smooth unit speed geodesic curve
y : R — OE satisfying ¥ (0) = x and y'(0) = V;u(x)/|Vu(x)|. Then we define
a Cz-regular function f = u o y. Note that f(0) = ||Vyul|zE) and that

"=y - (Vuoy)y +v" (Viuoy). (2.38)

By differentiating the identity 0 = dg o y twice and recalling the identities (2.22)
and (2.29) we obtain 0 = y’ - (Bg o ¥)y’ + ¥” - (vg o y). Since y is a geodesic
curve, then |y” - (vg o ¥)| = |y”| and hence we infer from the previous that
ly”| < |BE o ¥lop. By combing this with (2.38) and using (2.30) gives us

IVeullLe e
|f”| < <|V2u o ¥lop + |BE © ¥|op|Vru oy|> < (sup|V2u|op+ %H .
AE

Thus, by observing || fllzoo®r) < llu|lLE), the claim follows from (2.37). O

3. Definition of the Flat Flow and the First Regularity Estimates

Let us begin by recalling the definition of the minimizing movements scheme
and the flat flow solution of (1.1) from [43]. Assume that Eq C R"*! is a bounded
set of finite perimeter. For given a time step 7 € R we construct a parametrized
family (E,h);’go of sets of finite perimeter by an iterative minimizing procedure
called minimizing movements, where

Eth = E( forevery 0 <t < h and
Ef’ = EZLt/hJ is a minimizer of the functional Fj( -, Eth_h) for every t > h.
3.1)
Here for a generic bounded set of finite perimeter E C R”*! the functional 7, (- E),
in the class of the bounded set of finite perimeter, is defined as

1 1
Fu(F,E) = P(F +—/d dx + —=|[F| — mo, 3.2
n(F, E) (F) 0/ ﬁ|ll 0 (3.2)

for mg = | Eg|. We call the family (Eth 2 - defined in (3.1), an approximative flat
flow solution of (1.1) starting from Eg. We note that there is always a minimizer
for (3.2) but it might not be unique. By [43] we know that there is a subsequence
of approximative flat flows (Elh ")t>0 which converges to a parametrized family
(E{)s>0 for a.e. t in the L!-sense, where for every t > O the set E/ is a set of finite
perimeter with |E;| = |Ep|. Any such limit is called a flat flow solution of (1.1)

starting from Ej.
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Let us turn our focus back on a generic minimizer of (3.2), where we assume
that |E| = mg. We then simply denote any minimizer for F,( - E) by Eﬁm. One
has to be careful in the definition of the functional in (3.2), since the sets of finite
perimeter are only defined up to measure zero. We avoid this issue by modifying
a set of finite perimeter in a L' (R"*1) -negligible set and choose as in [37, Rmk
15.3] a representative which topological boundary agrees with the closure of its
measure theoretical boundary. Thus, we always use the convention 9 F = 9* F for
the initial set and the minimizers. We also remark that if E is empty, then we use
the convention dg = oo everywhere to ensure that Eﬁ]in is empty too.

Next, we recall some basic properties regarding the minimizers. First, it is easy
to conclude P(E". ) < P(E). Moreover, E”. satisfies the distance property

min min

sup |dg| < yavh (3.3)
E" AE
for a dimensional constant y,, € R, see [43, Prop 3.2]. Second, Eglin has a gener-
alized mean curvature satisfying the Euler-Lagrange equation
dg
- =—Hp + Al (3.4)

in the distributional sense (2.7) on 0*E I’;in, where the Lagrange multiplier satisfies

A" = 1/« in the case |E". | # myo, see [43, Lemma 3.7]. Third, it is easy
to see that Eﬁlin is always a so called (A, r) -minimizer with suitable A, r € R4
satisfying Ar < 1 (see [37] for the definition). Thus, by the standard regularity
theory [37, Thm 26.5 and Thm 28.1] the reduced boundary B*Eﬁlin is relatively
open in BEI}I’lin and an embedded C'*-regular hypersurface with any 0 < o < 1/2,
and the Hausdorff dimension of the singular part BEglin \ a*E{;in isatmostn — 7.
Thus, by standard Schauder estimates one may show that B*EI’;in is in fact C%¢-
regular and (3.4) holds in the classical sense on 8*E[}]’ﬂm. Consequently, we may
always consider Eﬁlin as an open set.

We may improve the distance estimate (3.3) as well as regularity properties of
Eglin’ if we impose more regularity on E. We divide our approach into two steps.
The first result states that if E is bounded and satisfies UBC with radius r¢g > 0
and £ is sufficiently small, then the left hand side of (3.3) is bounded linearly in
h, the Lagrange multiplier A" is bounded, the generalized mean curvature H gh 18

bounded in the L>-sense and E".

has the volume my.

Proposition 3.1. Assume E C R™ ! is an open and bounded set of volume my
which satisfies UBC with radius ry. There are positive numbers ho = ho(n, mo, ro)
and Co = Co(n, mg, ro) and a dimensional constant C,, € Ry such that if h < hy,
then

Cy
h h
sup |dg| < —h, |Hgh |lre + 0" < Co and |EL;,| = mo.
Eh AE rO min

min
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Proof. We prove first part of the claim, i.e., the distance estimate. If |Emln AE | =0,
then it follows from the openness of E o, and E as well as the property 8Emm =
3*Eglin and 0E = 0*E that Efr’linAE = (0 and there is nothing to prove. Thus, we
may assume that |EgﬁnAE | > 0 and further set that

dy = sup dp and d_ = inf dg.
El AE EqinAE
To conclude the first part of the claim, we show, under the assumption |EmmAE | >
0, the validity of the implication
4 1
Jie—" 4 <0<dy anddy—d <20,
max{n + 1, 8y,} 1o
(3.5)
Thus, (3.5) and our earlier observation gives us the implication
4 1
e ap e <D, G
max{n + 1, 8y,} B AE ro

min

To prove (3.5), we assume by contradiction that d_ > 0 which implies E C
due to the openness of E and, hence, |Eh \E| = |Eh AE| > 0. Using

mln min min )
(2.35) with r = rg, the previous observation, |E| = mg, and the assumption on &

yields
1
FuE.B) = P(Elyy) + 5 [ dedr+ 2|k, \ E|

1
< P(E" )+ — /h dpdx + = |Emm\E|

min

n—+1 1
=F Emm,E +
h( ) ( T

and, hence, d_ < 0. Similarly we obtain

) |Em1n \ E| = fh(Emlnv )7

contradicting the minimality of Em
d+ > 0.

Onthe otherhand, v/A < ro/(8yy,) implies via (3.3) that EmmAE cC ./\fro/4(3E).
In particular, —r¢/2 < d_— < 0 < dy < rg/2 and for everyt € (d_, d4) the sub-
levelset E;, = {x : dp(x) < t}sat1sﬁesUBCw1thr0/2and|Emm\E,| |E,\Emm| >
0. By using a suitable continuity argument, we infer from the previous that for ev-
ery t < dy, sufficiently close to d, there is 7 € (d_, ry) such that |E". \E,| =
|E; \E" | >0and7 — d_ ast — d,. For such a pair (¢, f) we set

1n

min

min

= (E, N E",

min

YU E;.

Clearly, F is a bounded set of finite perimeter and |F| = |E h

min
a competitor against Efl‘lin with respect to Fj, (- E) we obtain

|. Thus, using F as

1 1
P(E" ) < P(F) + —/ dp dx — —/ dg dx
h JEAE" h Jeh \E,

min min
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<P(F)+_|E \Emlnl_ |Em1n\Et|

_P(F)+ g |E \ E

In turn, applying Lemma 2.10 to E; and E; gives us

(3.7)

min |

P(F)=P((E;NE" yU E~)

min

= P(E: N mm)+ IE \ Ey

/ min |

= P( mm)+7|Emm\Et|+ / |E \Emml
_P(Emm)—f- (r:_ )|E \E

We combine (3.7) and (3.8) and recall |E;\E

(3.8)

min |

mln| > ( to observe that

t—t 4(n + 1)
h 70

Thus, by letting t — d., we obtain the second estimate in (3.5).

To prove the second part of the claim, we denote by C a generic positive
constant which may change its value from the line to line but depends only on
n,mo and ro. We fix any connected component E' of E. By Lemma 2.10 and
(2.36) we have diam(E’) < C and P(E) < C.If E/ is a connected component
of E distinct to E?, then UBC with ro guarantees dist(E?, E/) > rg. Assuming
that VA < ro/ max{n + 1, 8y,} we have, by (3.3), (3.6), openness of Emln and

*EM = dE". that E". AE CC N;y4(dE) and |dg/h| < 4(n + 1)/rg on

min min’
d*E" Agaln we infer from the previous observations that for the intersection

min*
E' = E". 0 (E' + Byys) it holds 9*E" = 3*E". N (E' + Byya), Hpi =
Hpn |3*E,, dlam(E’) <C+ry/2 <Cand |E’| > | By ,2|. Using the divergence
theorems and the Euler-Lagrange equation (3.4), which holds in the sense of (2.7)

on *E!, we compute that

- dg
Ah(n+1)|E'|=/ .Ah(id~v5,-)dH"=/a ~ <HEI—|— )(1d V) dH"
* i

0*E!
=nP(El')+/ —E(id~v,;-.-)dH".
B*Ei I’l

By translating the coordinates, we may assume 0 € E' so |id| < diam(Ei) <C
on 9*E'. Since we also have P(E') < P(Eﬁlm) < P(E) < C, |El| > | By 2|
and |dg/h| < 4(n + 1)/ro on 9*E’, we infer from the previous computation
|Ah| < Cp for Cy = Co(n,mgp, rg) € Ry. Therefore, using the Euler-Lagrange
equation (3.4) and the first estimate again we have, by possibly increasing Co,

that | Hpn |l oc(gepn )+ M| < Co. Finally, if |[E". | # my, then [A"| = 1/+/h.

min
Thus, assuming & < (2Co)~2 excludes this possibility and hence it must hold
|E" | =mo. O

min
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Proposition 3.1, allows us to deduce, via Allard’s regularity theorem, that the
singular set of minimizer is in fact empty. Further, standard Schauder estimates
gives us a quantitative, albeit non-sharp, UBC for a minimizer.

Lemma 3.2. Assume E C Rt is an open and bounded set of volume mq which
satisfies UBC with radius ro. There are positive numbers ho = ho(n, mo, ro) and
co = co(n, my, ro) such that ifh < hg, then 9E\OE™ = @, Eglm is C>%-regular
min Satisfies UBC with radius coh'3. In particular,

h . .~k .
(3.4) is satisfied in the classical sense on dE ;. Moreover, if E is C*-regular, with

k > 2, then E". is C**2-regular.

with any 0 < « < 1 and E"

Proof. We divide the proof into two steps. Recall that we may assume Emlrl to be
open. In the proof, C denotes a generic positive constant which may change its
value from line to line but it depends only on n, m¢ and ry.

Step 1: By using Allard’s regularity theorem we show that the topological boundary
8E , agrees with the reduced boundary 9*E mm when £ is sufficiently small. To
be more precise, we show that there exist positive numbers p = p(n, mg, ro) and
hi = hy(n, mg, ro, p) suchthatifh < hyandx € BEIﬁ‘lin, then, by possibly rotating
the coordinates, there is a function f € C1'1/3 (B (x")) such that

C(x, p,2p) N Epyiy = {y € C(x, p,2p) : yuy1 < f(1)} (3.9
and f satisfies the estimates

\% copr(xy) < 1 d IV <C. 3.10
IV fllzoe sy and [[V£]l 3(Bn(,))_C (3.10)

In particular, (3.9) implies that 0*E = 9 E and hence, by our earlier discussion,
we conclude that Erﬁ‘lm is C>%-regular with any 0 < « < 1/2. We may assume

that hy is chosen so small that V1a Proposition 3.1 the boundary aEmm is contained
ro/2(0E). Since dp € cl (/\/}0 2(0E)), then recalling the Euler-Lagrange
equatlon (3.4) we may write the generalized mean curvature of Emm as arestriction

of a C1!-function to 8E1};m Therefore, by using standard Schauder estimates, one
may show that E”. is actually C>“-regular with any 0 < « < 1. Also, the same
method gives us Cl}‘“""-regularity for any k > 2, if E is already known to be
C*“_regular. This is well-known procedure and we leave it to the reader.

The claim of Step 1 follows essentially from [46, Thm 2.5.2], if we prove that
for every x € aEmm and ¢ € R, there are positive numbers p = p(n, mo, ro, €)

and i = h(n, mo, ro, p, €) such that if 1 < ﬁ, then

H"(B No*E"
(Bo (@) min) _ | | ¢ and 3.11)
A

3
(/ 5. e |Hgn. |2 dH") <e. (3.12)
)N+ EN min

min

i)
wl—
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We fix ¢ > 0 and initially assume & < hg, where h( is from Proposition 3.1. It
follows from Proposition 3.1 and the fact BEmm = 9*E"  that

min

(Eh

min

UE)\ (E", NE) C Nep(OE). (3.13)

Thus, we may assume that (Emln U E)\(Emln
jection myg is well-defined. Proposition 3.1 also gives us |E

NE)C /\fro/g(aE) where the pro-
mln| = myg. Next,

we fix x € aEr’}m Without loss of generality, we may assume myg(x) = 0 and

vE(0) = ep41. Then it follows from Proposition 2.7 that there is g € C L 1(B'0 /2)
such that |g(y")| < |y’ | /10, IVg(y)| < 2|y'|/ro for every y' € By ro/2 and

C(0,r0/2,10/2) N E = {y € C(0,70/2,70/2) : yn+1 < g}

We have, for every 0 < p < ro/4, a density bound

P(E; C(0, p,r0/2) = / V1+1VglPdy' < (14 Cp?)|Bjl. (3.14)
B;

Suppose that y € C(0, p, r9/2) N ((Emln UF)\(Eﬁlin NE)) for0 < p < ro/4.
Recalling (3.13), we may assume that g (y) € C(0, r9/2, ro/2) and since |[Vg| <
Cin B} 02 We estimate that

i1 — &N < ly =W + [mae(y) — V', g
<ly—meM|+ Cl(mse(y)) — Y| < Ch.

It follows then from Fubini’s theorem that
‘C(O, . 70/2) N ((Ef;nn UE)\ (E. N E))‘ <Cp'h and  (3.15)
" <8C(O, p.70/2) N ((Ely UE) \ (Elyy 0 E))) <Cp"'h (3.16)
for 0 < p < ro/4. We define for such p a comparison set F,, by setting

Fy = (Epin \ C(0, p, 0/2)) U (E N C(0, p, r0/2)),

min
and we make the following technical observations: first, since Emm N E is open and

contained in F,, then H"(3*F, N (E" N E)) = 0. Second, 9" F, C E' UE.

min min

With help of these, (3.14) and (3.16) we estimate

P(Fy) = P(Fp; C(0, p, 10/2)) + P(Fp; 3C(0, p,r0/2))
+ P(Fp; R"™1\ €0, p,10/2))
= P(E; C(0, p,r0/2)) + H"(3*F, N 3C(0, p, r0/2))
+ P(Epyin; R"\ €0, p, r0/2))
< P(E; C(0, p, 70/2)) + P(Epiy; R"1\ €0, p,70/2))

+ 1" (€0, p. 10/ N ((ELy UE)\ (Elyy N E)) )
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< (1+CpH|B)| + P(EL,: R\ C0, p,70/2)) + Cp"'h.

min’®

Thus, the inequality 77, (E”
the definition of F, yield

E) < Fi(F,, E), 3.13), 3.15), |E". | = mg and

min’ min

1
P(E!,: €O, p.ro/2) + ~ /
h Jc,p,r0/2)0(E",, AE)

min

lde|dx

2 n 1 n—1
< (1 +Cp)IByln + —=IFp| —mo| + Cp"""h

\/_
\/—IC(0 p.r0/2) N (E}

< (1+CPAB) + C(o"VI + p" ).

AE)| +Cp" 'h

min

< (1+CpHBIl+

Recall that for the fixed point x € BEmm itholdsx = dg(x)en+1 with |dg (x)| <
Ch. Thus we may assume B,(x) C C(0, p,r9/2) for 0 < p < ro/4. Hence, the
above estimate yields

P(E}i: Bo(x) < (1+ Cp*)|Bi| + C(" Vi + p"~'h). (3.17)

Moreover, it holds || H ||Loo(a*Eh. ) = C by Proposition 3.1, P(Eglm) < P(E)
and P(E) < C by Lemma 2.10. Therefore,

2

3n
(/ . |Hh|2d7‘(”> < Cps3.
(X)NI*E min

W=
W=

0

min

We infer from the previous estimate and (3.17) the existence of numbers hand p
satisfying (3.11) and (3.12).

Step 2: We assume that 2 < hj and fix x € 8Emm ‘We may assume that x = 0 and
Vgh (0) = e;41. According to Step 1, up to a possible rotation of the coordinates,
there is f € C3(BZ1 (x")) with f(0) = Vf(0) = 0 satisfying (3.9) and (3.10).
We use Schauder estimate in a quantitative manner to prove there is a positive
ho = ho(n, mg, ro) < hp such that i < hg implies

_1
||V2f||L°0(B;/2) <Ch73. (3.18)

Once we have proven (3.18) then the claim that E". satisfies UBC with radius

min
coh'/3 follows in a straightforward manner as we discussed in Remark 2.8.

Thus, we are left to prove (3.18). We may write Hpi  in local coordinates as

min

the mean curvature of the subgraph {(y, y,11: Y € By, yny1 < f ()}, that is,

Vs

H /’ V) — —di 5
Eg;m(y SO v (W

) () = =Tr (AOHVE ().
(3.19)
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It follows from (3.10) that A is uniformly elliptic and bounded in the C%!/3-sense.
To be more precise, we have

f A >1/C and A <
ylan Egg (Y)E-£>1/C an max AL 1 o ’%<Bz> <
Thus, by using standard Schauder interior estimate [24], (3.10) and (3.19), we
obtain

V2l .1 (II I o1 ..+ ||f||L°c<Bg)>

Cr3(By, ) C™3(Bp)

<C (IIMII 0, ;(Bn + 1>7 (3.20)
where u : Bj — R" is given by u(y) = HEﬁm(y/’ f ). We may assume &
is chosen sufficiently small so that via Proposition 3.1 we have |[u|| 7 Br) = C.
Again, (3.10) implies |Vu(y')| < CWTHEQM (', f(y")| forevery y’ € Bj. Onthe
other hand, by (tangentially) differentiating the Euler-Lagrange equality (3.4) we
0btain|VrHEgﬂn(y’, FON| < 1/hforeveryy’ € Bj.Hence, [ VullLsr) < C/h
and since ||M||L°0(Bg) < C, assuming & < 1 yields ||”||C1(Bg) < C/h. Again,

1/3

Lemma 2.1 yields ||”||C0»1/3(Bg) < Ch™'/? and hence, by recalling (3.20), we

conclude the existence of iy = ho(n, mo, ro) satisfying (3.18) forallh < hg. O

Remark 3.3. We may replace the exponent 1/3 with a generic 0 < o < 1 in the
proof of Lemma 3.2. Then, naturally, /¢ and cg also depend on «. UBC with radius
ro for E and UBC with radius coh'/? for Erlfmn imply together with the distance
estimate of Proposition 3.1 and (2.22) that there is hg = ho(n, mo, ro) such that
if h < hg, then Vdg - vpn > 0 on JE". and the projection myg is injective on

min min
h
IE min*

4. Uniform Ball Condition for Short-Time

In this section, we adopt the two-point function method to prove that if the
initial set Eq satisfies UBC with radius ro, then there are positive numbers /¢ and
To such that

h <hy = E! satisfies UBC with radius ro/2 for 0 < ¢ < Tp, (4.1)

where the approximative flow (E ,h) >0 starting from Ey is defined as in (3.1). For
more precise statement, see Theorem 4.7 at the end of the section. As we have seen in
Lemma 3.2, UBC for an initial set is crucial, as it guarantees that the corresponding
minimizer of the energy (3.2) has improved regularity and an initial quantitative
bound on UBC although the latter depends on /. In this section, we improve the
previous non-sharp estimate on UBC for the minimizer by showing the minimizer
satisfies almost the same UBC as the initial set.

The original idea of the two-point function goes back to [27], where it is used
to study the regularity of the classical solution to the mean curvature flow. We
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refer to [10] for a comprehensive overview of the topic and mention also the works
[4,11, 18] which have inspired us. Here we will show that the method can be applied
to the approximative flat flow at the level of discrete time scale. We will assume
that the approximative flat flow is related to the volume preserving mean curvature
flow but the arguments hold with essentially no modifications also in the case of
the mean curvature flow.

4.1. Two-Point Function Method

The main idea is to double the variables and, given a set E C R"*! satisfying
UBGC, to study the function Sg defined for (x, y) € 0E x 0E with x # y as

(x =y -vek)

4.2
Ix — yI? 42

SE(x,y) =
It is known, but we will include the proof below, that the maximum value of |Sg| is
explicitly related to the maximal UBC for E. In other words, doubling the variables
allows us to quantify the maximal UBC via the function Sg. It is interesting that the
idea of doubling the variables is also used in [29] to study regularity of solutions
of nonlinear PDEs.
For the next lemma we note that if a set E satisfies UBC with radius r, then it
satisfies UBC with every 0 < p < r. We define rg to be the supremum of such
radii and recalling our previous discussion we may write this as

rg = sup{r > 0 : dg is differentiable in N, (3E)}. 4.3)

Note that rg > 0. We use the abbreviation ||Sg|p~ = sup{|Se(x,y)| : x,y €
0E, x # y}.

Lemma 4.1. Let E C R"*! be an open and bounded set satisfying UBC. Then it
holds that

1 [v(x) —v(y)l
2||SellLe = E and ?yl

where rg is defined in (4.3). In the case E is Cz—regular, we also have |HE|, |BE| <
2n||Sg|lL~ on OE.

< 2||SEllr~ forevery x,y € 0E withx # y,

Proof. Let us first show 2||Sg|lp~ > 1/rg. First of all, we infer from the bound-
edness of E that rg < oo. Since E does not satisfy UBC with given a radius
r € (rg, 00), there is z € N, (9E) such that dg is not differentiable at z. Hence,
there are distinct points x, y € dFE such that |z — x| = |[dg(2)| = |z — y|. With-
out loss of generality, we may assume z = O which implies |x| = |y| < r and
vE(x) = £x/|x|. Thus,

(x/Ix], x — y)
lx — yI?
x| —2(x, y) + |y
lx —yI?

1

|x|

ISE(x, y)I =

x> — (x, ) ‘
lx — y?

1
20|
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1 1
= ———> —
2ldg(x)|  2r

and we conclude the inequality 2||Sg ||z~ > 1/rE.

To conclude the opposite estimate, we choose 0 < r < rg. Letx,y € 9E be
distinct points. Since E satisfies UBC with r, we have |dg(x £ rvg(x))| = r and,
hence,

P2 <|x£rvp(x) —yP> =r? £2r(vp(x), x — y) + |x — v~

By subtracting and dividing terms we obtain £2Sg(x,y) < 1/r. We letr — rg
to obtain 2||Sg|lpee < 1/rg. Thus, 2||Sg|L = 1/rg. The rest of the claim is a
direct consequence of the previous identity, (2.30) and Proposition 2.7. O

An obvious consequence of Lemma 4.1 is that for every open and bounded set
E C R"" it holds
ISEllL= = co (4.4)

for a positive constant ¢y = co(n, |E|).

We will also use the regularized version of Sg, which we define for any ¢ € R4
as Sget 0E X 0E — R,

(x —y) - vE(x)
Spelroy) 1= S = 4.5)

As in the case of Sg, we use the abbreviation ||Sg.¢|rc = max{|Sg(x, y)| :
(x,y) € E x OE}. The idea behind considering Sk . instead of Sg is that, on the
one hand, Sg . — S pointwise in E x dE\{(x,x) : x € dE} as € tends to zero
(in particular, ||Sg ¢llze 1 |SEllL>) and, on the other hand, we may differentiate
SE.c on the product 9 E x d E provided that E is sufficiently regular. The following
calculations are similar to [4, 18] but we give them in order to be self-consistent.

Let us first differentiate Sg . in the case E is C?-regular. In the computations,
the notations Vy and V7 stand for the tangential differentiation along dE with
respect to x and y -variables respectively. Recalling the basic identities (2.4) as
well as observing BEvg = 0 and V;id = Pyg on d E we compute

VI(x =y ve@®)  (x—y)-vp(x)_,

ViSeet ) = T T e 4.6)
_ Be()(& —y) = 28k.(x. y) Pip(x)(x — y) ‘
Ix —yl2+¢ '
and
, Vi((x =) - vE®)  (x—y)-ve(x) _,
ViSEe ) = e T e 4.7)
4.7
B Pye(W( = vE®) 4+ 28E o (x, y)(x — ¥))
B lx—yl>+e

for every (x,y) € 0E x dE. We immediately obtain the following identities at
critical points:
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Lemma 4.2. Let E C R"! be a bounded and C?*-regular set. Assume (x,y) €

0E x 0E is a local maximum or a local minimum point of Sg . defined in (4.5).
Then it holds that

BE(xX)(x —y) =28g s (x, ) Pye(x)(x — y) and (4.8)
Py ()vE(x) = 28g ¢ (x, y) Pap (¥) (x — y). (4.9)
Moreover, the condition rg > +/€ implies

VE(X) =2SE(x,y)(x —y)
VE(X) = 2Sg6(x, ) (x — ¥)) - vE(y)

VE(Y) = ( (4.10)

Proof. Since (x, y) is a critical point for the functions Sg ¢(x, - ) and Sg (- y),
then the equality (4.8) follows from (4.6) and the equality (4.9) follows from (4.7).
Using Pyp(y) =1 —ve(y) ® vg(y) and (4.9) we have

VE(X) =28 o (x, ) (x — ) = [(vE() — 28E.6(x, ) (x — ) - vE(W ] vE(Y).
The equality (4.10) thus follows once we show that
VE(X) = 28g 6 (x, y)(x —y) # 0. (4.11)

We argue by contradiction and assume vg (x) = 2Sg ¢(x, y)(x — y). Then it holds
SE.e(x,y) # 0 and the definition of Sg . (x, y) implies

(x —¥) - vE(x) Ix — y|?

S ,Y) = =125 S Y)————.
E,é‘(-x y) |x—y|2+8 E,&‘(-x J’) |x—y|2+8

Therefore, we have |x — y| = 4/¢. On the other hand, the contradiction assumption,
the definition of Sg . and Lemma 4.1 together yield that

€
1= vg(0)| = 2[Sge(x, V)| 1x — ¥ = 2ISE,e(x, Ve < 2[ISell=/e = :/—;
which is impossible, by the assumption that rg > /e. O

If E has higher regularity and ¢ is sufficiently small, we may naturally extract
more information at local extreme points. Indeed, if E is C3-regular, then by max-
imum principle at a local maximum (minimum) point (x, y) € dE x dE of Sg ¢ it
holds that

. , (=)
ATSE ¢(x, y) +2divi VISE o (x, y) + ALSE £ (x,y) < 0. (4.12)
We calculate the LHS of (4.12) in the next lemma.

Lemma 4.3. Let E C R"! be a bounded and C3-regular set withrg > \/e. Ata
local maximum (minimum) point (x,y) € 0E x 0E of Sg ¢ it holds that

ViHp(x)-(x —y)  (vekx)-ve(y) He(y) — Hp(x)
lx—yl2+e Ix —y|2+e

(=)
< IBE()*SEe(x,y) — 2HE(x)SE ,(x,y) = 2HE(3)SE e (3, X)SE ¢ (x, ¥).
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Proof. First, we compute the terms on the LHS of (4.12) by taking tangential diver-
gences of (4.6) and (4.7) with respect to x and y -variables. In the computations, we
use the identities (2.5) and the fact that the gradients VI Sg . (x, y) and vys Ee(x,y)
vanish. Omitting all the details we obtain by straightforward calculation

ATSge(x,y) =dive (Vi Sge(x, )
_ div® (BE(X)(X =) = 28g.e(x, y) Pyp(x)(x — y))

lx —yP>+e
VeHg(x) - (x =) Hg(x) 5 n
= 5 5 —28pe(x, ) ———5—
lx —yl*+e¢ [x —ylc+e¢ lx —yl*+e¢

— |BEPSE.e(x, y) +28% ,(x. y) HE (%),

A¥SE,8(X9 )’) = diV%(V%)SE,S(-x9 )’))

_dwy(_Pmﬂva@)+2SaA&y)Em00@-—W)
S X —y[>+e

_ (px) - ve(y)) HE(y)
B Ix—yl>+¢
+ 28, (x, y)SE,e(y, x) HE(Y)

n
—28 ) L —
E,S(x J’)|x_y|2+8

and

P, 2Sg.e(x,y) P, —
divE VY S o (x, y) = div® (_ 9E(WVE(X) + 286 (x, y) Pyp(y)(x y))

x —y>+e
HE(x) (BE@)VE®)) - vE®D)
lx —yI>+e lx —yI>+e

+ 2SE,€(-X7 )’)

S L
X —yI>+e
(Pae()vE(Y)) - vE(Y)

— 28 (x,
E,s( y) |x—y|2+8

Collecting the terms and applying the inequality (4.12), we obtain that at a local
maximum (minimum) point it holds that

0 = ViHg(x) - (x —y) (vg(x)-ve(y)) He(y) — Hg(x)
T —yP+e lx =yl +e
— |BEI*SE.e(x, y) + 285 ((x, ¥) HE(x) + 28k (x, ) SE.c (v, X) HE(Y)
Z(BE(X)VE()’)) “vE(Y) (Pye()vE()) - vE(Y)
lx—yP2+e x—yRP+e

- 4SE,6(X1 y)

The claim follows once we show that the last line above vanishes, i.e., that

(BE)VE®)) - vE(Y) = 2SE,:(x, (P (X)VED)) - vE(D). (4.13)
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Since rg > 4/, this follows by first applying the equalities (4.8) and (4.10) in
Lemma 4.2 and recalling Bg (x)ve(x) = O:

Bp(x)(x —y)

(vE(xX) = 2SEe(x, y)(x — ) - vE(Y)
Pye(x)(x —y)

(VE() = 28E e (x, Y)(x — ¥)) - vE(Y)

Bp(x)ve(y) = =28g.e(x, y)

= —4S%’£(x, y)

Then we use (4.10) to deduce that

Pyp(x)(x —y)
VE(X) = 28g (X, ) (x — ¥)) - ve(y)

Pyp(x)ve(y) = —28g ¢« (x, y)(

and (4.13) follows. O

In conclusion, by combining Lemma 4.1 and Lemma 4.3, we obtain that if a
bounded C3-regulax set £ C R"H! gsatisfies rp > /€, then at a local maximum
(minimum) point (x, y) € 0E x dE of Sg . it holds that

N (VzHECﬂ~(x-y) (EX) - vE(Y)) He(y) — HE(x)
O =P +e lx —y2+e

) < CullSE|3 0.
(4.14)

4.2. Short-Time Uniform Ball Estimate

Let us turn our focus on how to prove (4.1) for an approximative flat flow
solution (Eth)rzo defined in (3.1) when the initial set E( satisfies UBC with given
aradius ro. Assuming we may control the evolution of the quantity || S £ || zo<, then

thanks to Lemma 4.1 we also control (from below) the maximal UBC for Elh

We motivate ourselves by considering first the continuous and embedded set-
ting. Assume (E;); is a smooth flow and let v; and V; denote the outer unit normal
of E; and the normal velocity of the flow on 0 E; respectively. Then one may use
the fact that for fixed ¢ there is a smooth normal parametrization (®'); of the flow
such that ®f, = id and 3, P} = [V, v] o @Y. This follows essentially from [5, Thm
8]. It is straightforward to calculate that for such a parametrization

d d
acbi_‘_s =V,v and E(UE’“ o d.) =—V.V, on JE;. (4.15)
s=0 s=0
In the case of volume preserving mean curvature flow, we have Vy, = —(H; — H,),

where H, is the scalar mean curvature on 9 E and H; its integral average over d E.
If x and y are distinct points on d E;, then by using (4.15) and the previous identity,
we may compute

iSE,+:(®§(X)7 oo = V. Hg(x) - (; -y (e(x)-ve®)) HEZ(}’) — Hg(x)
ds 5=0 [x — ¥l [x =yl

+ Rt(xs )’),
(4.16)
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where the remainder term R; (x, y) has abound |R;(x, y)| < C,||SE, ||3L°°' Suppose
that ||Sg, L~ = £SE, (x, y) and the function s - ||SE,,, |l is differentiable at
s = 0, then we deduce

dllS [ —ﬂ:dS (D (x), DL(y))
— 00 =+— x),
dS EI+S L $=0 ds EH—S s S y 520

Again, the estimate (4.14) also holds for Sg when the points are distinct. Thus, by
possibly increasing C,, we infer from above and (4.16) that

ISE, ., llLe — 1SE, I Lo

- < CallSE, 3005 (4.17)

provided that s # 0 is sufficiently small.

The idea is to mimic the previous argument in the discrete setting for an ap-
proximative flat flow (E lh) >0. To this end, we need to approximate the two-point
functional by its e-regularized version. We consider the element E th and its conse-
quent set EI', ;. For sake of brevity, we use the shorthand notations E; = E and
E, = E! ', s for the rest of the subsection. First, we want to find a discrete version
of the equalities in (4.15). Suppose that an element E satisfies UBC and 4 is so
small that by the discussion of the previous section we have that E5 is C!-regular
set, 0E» C J\/rE1 (0Ey) and VdE, - vE, > 0 on 0 E; are satisfied.

Then it is natural to project the boundary 0 E to d E by the projection myE,
and, hence, using the identities in (2.22) we have

id—n’aE dE
TI = TI(UE2 O7T3E]) on 8E2,

which can be seen as a discrete time counterpart of the first identity in (4.15). In
the next simple but crucial lemma, we derive a relation between vg, and vg, oy E,
for x € 0E,.

Lemma 4.4. Assume that Ey C R"! is an open set satisfying UBC, E; is a C'-
regular set such that 0 Ey C /\/rE1 (0E) and Vdg, - vE, > 00on 0E,. Then

VE, OTQHE, = Vrsz1 + ,/] — |v12d51|2 VE, On 0E>.

Proof. By using the second identity of (2.22) for d,, as well as the definition of a
tangential gradient, the following holds on d E>:

VE, 0 myE, = Vdg, = Pyg,Vdg, + (Vdg, - vE,)VE, = Vi,dg, + (VdE, - VE,)VE,.
Since |vg, o myE, | = 1 = |vEg,| and Vi, dE, - vE, = 0, then the previous decom-

position implies |Vdg, - vg,| = /1 — |Vr,dE, |*. Thus, the claim follows from the
assumption Vdg, - v, > 0Oon 90E;. O
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The equality in the statement of Lemma 4.4 gives us a discrete analog for the
second equality in (4.15) as

Ve dE, 2

1++/1—|Ve,dg,|?

VE, — VE, OT3E, = _Vrszl + VE, on d0E;. (4.18)

or equivalently

1
VE, — VE; O TTYE; = — (— Vi, dE,

V1= |Vedg, |?
|Ve,dE, *
1 - |V‘rsz1 |2 + 1 - |vr2dE1 |2

VE, o yE, on JE7,

(4.19)
which will be useful later. We need yet one technical lemma related to the projection
7y E, on the consequent boundary 0 E».

Lemma 4.5. Let E{, E» C R""! be open and bounded sets satisfying UBC. If
VE> C Ny, 2(3E0), then for any x,y € dE satisfying mwyg, (x) # mwor, (y) it
holds that

o, () = 7o, DI = x = P
< Coldg ey (I8 1 + IS5l + Mgl ISE 3 ) 1 = ¥I2,
where Cy > 1 is a universal constant.

Proof. First, we obtain from (2.22) and the definition of Sg, that

7o, (¥) — 7o, (I — |x — ¥
= —2dg, (x)Sg, (aE, (X), map, ) |TaE, (¥) — w9, (V)
— 2dE, (¥)SEg, (TaE, (¥), ToE, (X)) |TaE, (X) — o, (V)|
— |dE, () WE, 0 7o) (X) — dig, (Vg 0 TaE) Y]
Thus,

170, () = o, ) — b = P

< 40\dg, ll=@En | SE, I |maE, (¥) — TaE, (M)

+2ldg, () P|(vE, © ToE,)(x) — (v, © g, )(WI* + 2ldE, (x) — dE, ()
< 40\dg, ll=@En | Sk, I lmaE, (¥) — TaE, (DI

+ 20dE, 2o a0y | (VE, © TaE) (X) — (VE, © TaE) (W)

+ 2ldE, (x) — dg, ().

The normal vg, is 1/rg,-Lipschitz continuous by Proposition 2.7 and 7y g, is 2-
Lipschitz continuous in -/erl ,2(0E7) by Lemma 2.9. On the other hand, recalling
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Lemma 4.1 we conclude ||dg, L= 5 E,) |ISE, Iz < 1/4. Hence, we infer from the
previous estimate that

7o g, (1) = 7o, P = |x —y1?| < 241ldE, lL@E) ISE, I 1x—yI* + 2IdE, (x) — dE, (D)
(4.20)

Thus, we are left to estimate the term |dg, (x) — dE, (y)I2 on the boundary 0 E».
We divide this into two cases. First, suppose that [x — y| > rg, /2. Then using
Lemma 4.1 we obtain

4||dE1 ”%oo OE
i, (x)—dg, (V)* < T(%—yﬁ < 16lldE, 709 1) I1SEs 1 700 [X = ¥1.
E
’ ) .21
Suppose then |[x—y| < rg, /2.WedeﬁneaCl-extensiondE] :./\/,E2 (0Er) — R
of therestrictiondg, | g, by settinga7E1 = dEg,omyE,. Then Va'~E1 = VmyE, Vo, dE, 0
myE, and by Lemma 2.9 |Vmgg,lop < 2 in A/,E2/2(8E2) so that |Vdg,|

< 2||szc?E] L~ @E,). Since the line segment Jy, belongs to /\f,Ez/z(BEz), we
have

ldE, (x) = dg, (DI < 4 Veydi 7oz, X — ¥ (4.22)
By Lemma 2.9 we have |V2dEl lop < 2/7E, in J\/rE1 (0E1). Therefore, by using
Lemma 2.11 and Lemma 4.1 we get an estimate
IVerdEy 1oy
IVedE, ||Loo(aE2>)

< 4dE, L@ E) (sup IV2dE, lop +
0E, TE,

< 16lldg, =@y (ISE Iz + 1SE, l22) - (4.23)

Thus, we gather the estimate as claimed from (4.20), (4.21), (4.22) and the estimate
above. 0O

We are now ready prove an analogous estimate to (4.17) in the discrete setting.

Lemma 4.6. Assume that E; C R" isan open and bounded set, with |E1| = my,
which satisfies UBC with radius ro € Ry. Let Ey be any minimizer of the energy
Fn( - Ey) defined in (3.2). Then there is ho = ho(n, mg, ro) such that for h < hgy
Ej is C3-regular and

[SEyllLoe — ISE, oo
h

3
< CallSE, lI700-

If in addition E\ is C*-regular, then E; is CKt2-regular:

Proof. As previously, C = C(n, mg, ro) > 0 may change from line to line. We find
ho = ho(n, mg, ro) € Ry such that assuming 7 < ho implies that the conclusions
of Proposition 3.1, Lemma 3.2 and Remark 3.3 are valid. Let us quickly summarize
what we have achieved so far. First, E> is open and bounded, C3—regular set, or
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C**+2_regular set provided that E; is C¥-regular, and it satisfies UBC with radius
cohl/3 foraconstant ¢y = co(n, mo, ro) > 0. Hence, by Lemma 4.1 we have apriori
estimate 1

ISEllLe = Ch™3. (4.24)

Second, d £ is “close" to d E1. To be more precise, we have ||dg, || Lo (g,) < Cuh/ro
and we may assume that d E» C N, /2(d E1). Moreover, it holds that Vdg, -vg, > 0
on dE; and g, is injective on d E5. Third, we have the Euler-Lagrange equation
(3.4) on 0 E> in the classical sense.

Thus, we assume that 7 < ho. We might need to shrink ¢ but always in a way
that we preserve the dependency hoy = ho(n, mg, ro). By combining the estimate
ldE, L (Ey) < Cynh/ro from Proposition 3.1 with Lemma 4.1 and (4.24) and by
possibly shrinking .o we obtain

dE, |l Lk
S < 1Sk e and ISk, i I, ey < 1. (425)

Then, by (3.4), Lemma 4.1 and the first estimate in (4.25), the Lagrange multiplier
2! can be controlled as

| < dE, ||I:°O(E2)

+ 1HE L @Ey) < Ca(lSE e + ISE, lIzee).  (4.26)

The claim follows once we show

ISEs lzoe — ISk llzee
h

<G (ISe i +ISel3) . @2D)
Indeed, assuming the above holds true we have by Lemma 4.1 and (4.24)

. 1
ISyl — 1Sk, I < Curg h + Ch3(|Sky || o

and, hence, recalling (4.4) and shrinking /¢, if neccessary, we obtain || Sg, | <
2||Sg, . Thus, reiterating the previous inequality via (4.27) yields the claim.

To prove (4.27), we initially fix any ¢ < r1252 and choose (x,y) € 0Ey x 0E;
such that [Sg, «(x, )| = [ISE,.ellLec. Since ||Sg, ¢llLe > 0, then x # y and,
hence, the injectivity of wyg, on d E; ensures that 7wy, (x) # 7wy, (x). In order to
simplify our notations, we write w = myg, and H, = HE, for short. By using the
definition in (4.5), the identities (2.22) and (4.18) as well as the Euler-Lagrange
equation we may decompose the difference quotient as

1
E(SEzﬁ(x,y)—-SEhs(n(x),n(y)ﬂ
=) Valh @

Ix —y|*>+¢
(vE, (X) - vE, () Ha(y) — Ha(x)
+
Ix —y|>+e
1 Ve, dg, (x)[?

- SEye(x,y)
h1+4 1= Vyde, 02
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N <Ah B dEI(y>) e, (x) — vE, ()]
2h lx —y2+e
de, () Ve, (T (X)) — vE, ()]
2h lx —y> +e
L@ —aWPE ==y
h Ix —yI>+e

+

) SEre(m(x), m(y)).  (4.28)

Next, we estimate the last four terms on the RHS. First, since 0 E, C MO 12E) C
./\/}El 12(0E1), we have the estimate (4.23) for ||V, dE, ||%oo(aE2) and, hence, recall-
ing the first estimate in (4.25) we have

1 |Vude WP

h1+/1—|Vdg (x)?
_ 16lde, lloE,
- h

Co (IS5 I + 1S3 -

SEz,s(x’ y)

(4.29)
(1SE e lSga i + 1Sk 1)

IA

For the next term, we use Lemma 4.1, the first estimate in (4.25) and (4.26) to
obtain

(Ah Cde, () vE,(x) = ve, (DI
2h Ix —yl>+e

< o (11 + 1S, o) ) 158 13 o)

= Ca (IS5 Woqoizyy + ISE M o))
(4.30)
By Proposition 2.7 vg, is 1/ro-Lipschitz and by Lemma 2.9 7 is 2-Lipschitz con-
tinuous in ./\/ro ,2(0E7). Thus, by Lemma 4.1 and the first inequality in (4.25), we
estimate the second last term as

dg, (y) [ve, (m(x)) — v, (T ()
2h x —y|2+e

1 |m(x) — ()
< CallSE, I -

rg = yl? (4.31)
<CullSg, 1} -

Finally, by using Lemma 4.5 and the identities in (4.25), we have

1 () —a )P = |x =y
h lx —y|2+e¢
<c, ldE, |l Lo E)
h
3 3
= Go (IS& I + 1S53

) SE1.e(T(0), n(y))‘
(1Sl + 1SEs 1 + I, Newon 1B, 13 ) 1S, aoe

(4.32)
We infer from (4.28), (4.29), (4.30), (4.31) and (4.32) the expression

SEye(x, ) = Spe(m(x), m(¥))
h
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=) Vo) | (vE () vE, () Ha(y) — Ha(x)
=P+ x— Y2 +e
+ Ra

where for the remainder term it holds |R| < C, (IISE1 II%oo + IISEZIIiDQ). Since
(x, y) is a maximum (or minimum) point for Sg, ., then we conclude from (4.14)

1SEs ellLoe — IISE el
h
Since now ||Sg; ¢l 1 [ISE; ellLe fori =1, 2 as e tends to zero, the above yields
(4.27) and we conclude the proof. O

< Co (IS5 I3 + 1S i) -

We may now prove the main result of this section which is the UBC estimate
for the approximative flat flow.

Theorem 4.7. Let Eg C R"! be an open and bounded set which satisfies UBC with
radius ro € Ry and let mo denote its volume. There are ho = ho(n, mg, ro) € R4
and Ty = To(n, rg) € Ry such that if h < hy, then any approximative flat flow
(Eth),zo of (1.1) starting from Ey satisfies UBC with radius ro/2 for all t < Ty.
Moreover, Eth is C1+2W’”-regularfor every0 <t <Ty.

Proof. By a slight abuse of notation, we set s to be as in Lemma 4.6 for the
parameters n, mq and ro/2. Then we choose
3
Ty = , (4.33)
4C,
where the dimensional constant is the same as in Lemma 4.6. We assume that 2 < hg
and consider an approximative flat flow (Eth) (>0 starting from E( obtained via the
minimizing movements scheme (3.1). We may assume # < Ty, since otherwise the
proof is trivial. Since Ey satisfies UBC with radius ry, we have by Lemma 4.1 that
|SEy e = 1/(2rp). Then we set

1
K = sup {k eN: Elh satisfies UBC with ||SE1]1h lpoo < — for 0 <1 < k}.
ro

Note that if E,’(‘h is abounded set satisfying UBC with || SE/'Z lLoe < 1/rg, then thanks

to Lemma 4.1 we know that it satisfies UBC with radius /2. Thus, it follows from
the construction of (E,h)lzo, the choice of A, and Lemma 4.6 that Ef’kﬂ)h is a

bounded C3-regular set satisfying
1S gn

3 -3
(k+l)h”Loo = ||SE£||L°° +Cnh||SE£'||L00 = ”SE]?”LOO +Cnr0 h.

Since hg < Ty, then the choices in (4.33) imply that K is well-defined. By summing
the above from k = 0 to k = K we obtain

1 C, 1 C

— < 1Spn e < 1Sk lle + =5 (K + Dh = — + =5 (K + Dh.

ro (K+Dh rO 2}"0 ro

This yields K > |Ty/h] and, hence, it follows from the construction (3.1) that Elh
satisfies UBC with radius r/2 for every 0 < t < Tp. The last claim then follows

directly from Lemma 4.6. O
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5. Higher Regularity

In this section we utilize the short-time UBC from previous section and prove
the full regularity of the flat flow solution of (1.1). It is well known that the classical
solution for the mean curvature flow is well defined as long as the second funda-
mental form stays bounded [39]. For the volume preserving flow this is not enough
as the flow may develop singularities even if it stays regular [40,41]. However, if
the flow in addition satisfies UBC then these singularities do not occur. In this sec-
tion we show that the approximative flat flow becomes instantaneously smooth and
stays smooth as long as it satisfies UBC. We will prove this via energy estimates.

Our starting point is the formula in Lemma 4.4, which for sets E; and E» as in
the lemma, gives the formula which relates their normals as

VE, Oy, = Vrsz] +4/1 - |Vf2dE] |2 Vg, on dEs.

Recall that V,, denotes the tangential gradient on d E>. Assume now further that
E> is a minimizer of the functional F( - E1) defined in (3.2). We may use the
Euler-Lagrange equation (3.4) and have

VE, OTHE, = —h VTZHEZ +4/1— |Vrsz1 |2 VE, on dE;. 5.1)

This identity is simple enough for us to differentiate multiple times and this in turn
gives us formula which is the discrete analog of the identity (see e.g. [38, Lemma

3.5])

d
I AfHE, = AMUHE + lower order terms. (5.2)

Let us, for the sake of clarification, show how we obtain the discrete version of
(5.2) for k = 0 from (5.1), which reads as follows

V 1 - |V‘[2dE1|2HE2 - HE1 O TTHE,

= h Ay Hg, + h? Ay(-)Vo, Hg, - Vo, H, +a1(-)dg, on dEa, (5.3)

where the function a () and the matrix field A>(-) depend smoothly on dg,, Vg, o
TyE, VE,>» BE, o myE, and Bg,. In particular, since E; and E; satisfy UBC with
radius ro/2, then a;(-) and A3 (-) are uniformly bounded.

Indeed, by applying the tangential divergence on (5.1) we have

dive, (vE, 0 Mok, ) = —h A HE, 4+ /1 — |Veydg, |> He, on 9Es.

In order to calculate the LHS, we use (2.22), (2.32) and (2.33) to obtain
V(ve, o wyE,) = V2dE, = Bg, o wyg, (I +dp, B, o wyE,) "
= B, omy, —dg, (I +dg, Bg, o mor,)” (Be, 0 maE,)’
which holds in the tubular neighborhood J\/rO (0E1), where we also used the fact

(BE1 O7T3E|)(I+dE]BE1 O7TBE|)_1 = (I +dE| BE] O7T3E|)_1(BE| °7TaE1)-
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Again from (5.1) we have
1
VE, = ———
T V1= Vadg, P

on d E;. Using the above identities and the fact Bg,vg, = 0 on 9 E, we have the
following equality on 9 E;

(h Vo, Hg, + VE, OJTaEl)

div,, (vE1 o 7[35,) = Tr((I —VE, ® VEZ)vszl)
= HEg, omyE, —dElTl"( (I +dElBE1 O]'t’a};l)_1 (BEl O?TaEl)z)
h2

—1
— W((I—i—dﬁ‘] BE1 O7T3E]) (BE] OﬂaEl))VQHEZ . vrzHEz.
T IVntE

The equation (5.3) then follows from the previous calculations and from the identity

(vE, 0 TyE,) - VE, = /1 — |VeydE, > on JEs, (54

which is a direct consequence of Lemma 4.4.

We may differentiate the equality (5.3) further and obtain a discrete version
of (5.2) for every order k. This will produce several nonlinear error terms which
have rather complicated structure. However, by introducing sufficiently efficient
notation we are able to identify the structure of these error terms and by using UBC
and the interpolation inequality from Proposition 2.2 we are able to reproduce the
argument from [22] in the discrete setting. The following proposition is the core of
the proof for the higher order regularity.

Proposition 5.1. Assume that E; C R"*! is an open and bounded set, with |E1| =
mo, which satisfies UBC with radius ro and let Ey be any minimizer of Fj( - E1)
defined in (3.2). There is ho = ho(n, mo, ro) such that if h < hg and E is cm+3.
regular form =0, 1,2, ... then

A" Hg, — (A" Hg)) oy, = h A" Hp, + h Ry and

VIZA';;ng — (Vg A'g Hg,) omyE,

=h Vo, Ag—HHEZ — 8\)52 (Arr': Hg, o 7'[35')1)52 + h Ry

on dEy and the error term Ry forl =0, 1,2, ... satisfies the estimate

IR 25 = € (14 1B oy, + 1BE oy )

where C; = C(l, n, mg, o).

We note that so far we have not used any results from differential geometry. In
fact, we need the notation from geometry only to prove Proposition 5.1. Therefore,
instead of giving the proof of Proposition 5.1, which is technically challenging, we
show first how we may use it to obtain the regularity estimate (1.2) in the statement
of Theorem 1.1. Here is the main result of this section.
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Theorem 5.2. Let Eg be an open and bounded set, with | Ey| = mo, and let (E,h)lzo
be an approximative flat flow starting from Eq defined in (3.1). For given rg € Ry
there is hg = ho(n, mo, ro) € Ry suchthatifh < hy, Eth satisfies UBC with radius
roin [0, T and if (I +2)h < T for a givenl € N U {0}, then we have

T

1 2 A 2
sup (=11 Hyy | )+/ ¢ — I N H o2, o di < C,
tel(+Dh.T] ECTHIQED] T [aqam EVHIY O ED)

for a constant C = C(l, n, mo, ro, T).

Proof. Inthe proof, C and C,, denote a positive real number which may change their
values but always in a manner that we have the dependencies C = C(n, mg, ro) and
Cyn = Cp(m,n, mg, ro, T). We use the abbreviation E; = th fork=0,1,2,...
First, by Proposition 3.1, Lemma 3.2, Remark 3.3 and Theorem 4.7, we find
ho = ho(n, mo, ro) > 0 such that if & < hg and Ej is C***!-regular, bounded
set of volume m(, which satisfies uniform ball condition with radius rg, then the
consequent set Ej 1 is C***3_regular, bounded and of volume m(, with

lde NlLe@E) < Ch <719/2.

Moreover, Ej 1 satisfies UBC with radius ro/2 and the projection wy g, : 0 Eg11 —
dEy is injective. We may then prove that, for k > 1, myg, : 0Ex41 — 0Erisa
diffeomorphism with

Jo g, =1 —Ch >0 on 0E, (5.5)

where the tangential Jacobian Jy_ g, of myg, on 0Ery is defined in (2.3).
Indeed, since 0Eyy1 C /\/}O/z(aEk), then g, is Cl—regular map on dEj41. Re-
calling the injectivity of the projection we are remain to prove (5.5). By (2.31) we
may write

Vryg, =1—Vdg, ® Vdg, —dEkVZdEk on 0E4.

Thus, it follows from the definition in (2.3) and Vszk Vdg, =0in N, (3 Ey) that
for given a point x € d Ej41 there is an orthonormal basis vy, ..., v, of Gy E+1
such that

Tanman @) = []|(1 = Vb (0) © Vg, () = di, (0 V2, () ) v

i=1

= [T (1= Ve, () - v)*~2d, () V2l (0)v; - i + 1 () P92 owil?)

i=1

Since 0Er+1 C /\/,O/Z(BEk), then Lemma 2.9 yields SUPy |V2dEk|0p < C.
Further, since Ey satisfies UBC with radius ro/2, then by Lemma 2.11 and by
the previous estimates we deduce

\Vdg, (x) - vi|* < |Veydg, (X))
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IVdg, |l L@ E
< Mdg, lL=@E,y | sup 1V2dg, lop + it OB
0Eg+1 ro/2

< Ch.

Therefore, by combining the previous observations and shrinking 4, if needed, we
obtain (5.5). Again, by possibly shrinking /¢, we may assume that the implications
of Proposition 5.1 hold true for the parameters m¢ and ro/2.

Let us from now on assume that the sets E/* satisfy UBC with radius ro for
every t € [0, T]. Letus denote K = | T/ h]. Then the previous discussion holds for
every Eyandk =0, 1, 2, ..., K. For the sake of presentation, we use abbreviations
| BE N2 = 1BE L2008, | BE N 2m = | BE, | g2m 3k, €tC-

After the initialization, we prove the claim by induction and to this aim we begin
by proving the main regularity estimates. We claim that foreverym =0, 1,2, ...,
withm < K —2,andeveryk =m+ 1,m + 2, ..., K it holds that

1AZ  Hege 172 < (14 Cul)I|AT He |17, — Bl Ve, A% He 172 + Ch
(5.6)
and

Ve A% Hi 172 < (14 Cuh) |V, AL HE, |17, — R ALY HE 1172 + Cnh.
5.7

We first prove (5.6) and fix m. Recall that for k > m + 1 the set Ey is C>"+3-regular.

Therefore, by Proposition 5.1, it holds forevery k =m 4+ 1,m + 2, ..., K that

AT Hg,, — (AT Hg)omyg, =h AL He, +h Roi on 9Eiq1,

Tk+1 Tk+1

where the remainder term R»,, i satisfies

2 2 2
||R2m,k||L2 S Cm(l + ||BE1<+1 ||H2m+l + ”BEk ”HZm)'

Again, since Ey and Ej satisfy UBC with radius ro/2 and | Ex| = mo = | Ex+1l,
then [|Bg, |, | B, lLe < C by (2.30) and P(Ey), P(Ef+1) < C by Lemma
2.10. Therefore, we may use Proposition 2.6 and Young’s inequality to deduce that

185 < Co (14 187 Hi,13) - and

1Bee Bpuer = Con (14 1V A%, Hi 12 (5.8)

Tk+1
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We also observe that ||Ark+1HEk+1 || < CullBE lg2m. Let & € (0,1) be a
number which we will choose later. By using the previous observations, (5.5),
Young’s inequality, and integration by parts we estimate as follows:

2
A%, He 172 — 1A% He )17

‘EA+1

5/ ‘AtkHHEkle \A HE/( OﬂaEk|2d'Hn+Ch/ |A¥LHEA, O]TaEk|2dHn
0Ej41 &l

AL He I

Tk+1

< / (AT Hy [ = AT H o s, aH + -
0E+1
SZ/aE AZHHEkJrl(AZ’(HHEHI A Hgl‘oﬂgEk)dHn—l-Ch ||A HEk”L2
k+1
Tk+1

= Zh/ AT Hg,,, (Afk-H HEg,., + Rom, W dH" + Ch || AT HEk ”L2
0Ej+1

h
AL ey 2 + el | Ram il o + = IAT Hi 72 + ChIIAT He D1

Th+1 = Tl

IA

—2h||V.

IA

—2h ”v‘rk+1 TH—] HEk+1 ”LZ

+ Ch (snBEH, 17 2m1 + gnBEH, Hi,z,,,) + Cuh (14| A2 Hg,175)

< _2h”VTk+1 1—,\“ HE](+1 ”22 + Cm (&‘HVT,H_] A;ZH HEk.H HLZ + - ”BEJ(.H ||H2m>

+ Cnh (14 1A% HE,II75) -
By choosing & = (1 + C,,)~!/2, the previous estimate yields

2
1A% He 12— (AT He, )12

—%HVWA’;;HHEM 172 4 Cuh | Beg, 320 + Cuh (14 |A7 Hg,1I32) -
(5.9
Since || B, llz, P(Exy1) < C, we may use Proposition 2.2 to find 0 =
0 (m, n) € (0, 1) such that

2(1—-6 L
0 < Cue IBey [P omer + Cne™ 17

1BEsi 132n < Cnll BEgy, 1ot | BEy 175
for any ¢ € (0, 1), where the last inequality follows from Young’s inequality and
the curvature bound. Thus, by combing the above with (5.9) and (5.8) the estimate
(5.6) follows with a suitable choice of ¢.

Letus then prove (5.7). The argument is similar than above and we only point out
the main differences. Now Proposition 5.1 gives foreveryk = m+1,m+2, ..., K
the formula
Vo Al';’;l(+1 HEk+1 - (Vg A'Zl Hg,) o myE,

=h vtk+1 Tk HEkJrl aka+l (A-r[r;( HEk o nE)Ek)VEkJrl +h R2m+1,k on aEk+1’
where

2 2 2
|Rams1.4132 = Con (14 1B Bpansa + 1B e )
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and, again, by using Proposition 2.6 and Young’s inequality we have estimates
1B 1321 < Cn(1+ | Ve, A% Hp,||7,) and
||BE1<+1 ||?.12m+2 =< Cm (1 + ||A¥7:11 HEk+l ”iz) .

We use the previous observations, the Cauchy-Schwarz inequality, the estimate

Ve A%, HE 2 = Cll BEy,, ||22m+1 and argue as in proving (5.6) to deduce
that
Ve A% Hi 172 = Ve, A2 HE, 17
= / |V‘rk+| Tk+1 HEk_H | |V‘L'1(A HEk o ndEkl dH" +Ch ”ka HEk ”LZ
0Ek+1

= 2/8E vfk+l A"g(+1HEk+l ' (ka+1 A’:,lc+1 HEk+| - VrkA'Z;HEk © 773Ek) dH”
k+1

+ Ch ||V AT Hg, |7

C
1 2 m 2
< =20 AT He Nl + eh | Romir k2, ) F R By I

+ Ch Vo A7 H, |12
< —2h| AT He, g2

Tk+1

1
4 Ch (s 1A% e 152 + < 1Bey ||H2m+l) + Cuh (14 Vo A7 HE, 112,)

Thk+1

3h
=< _7 ”Am-‘_1 HEk_H ||L2 + th ||BEk+1 ”?-12’”‘*'1 + th (1 + ”V‘L’k Am HEL ||L2) .

Tk+1
Again, Proposition 2.2 implies that there is 6 = 6(m, n) € (0, 1) such that

2(1-0
IBE 1 omit < Conll BEe, 12 mmsa | BEay 7%
and we may proceed as previously to obtain (5.7).
Let us then prove the claim by induction. To be more precise, under the as-
sumption & < hg, we claim that, for every / € N U {0} it holds that

K
1 I
pomax (= @+ IR I HEN G+ Y2 h(t= @+ D)) I Hi I dr < C
- k=I+2

(5.10)
for C; = Ci(l, n, my, ro, T), provided that (! +2)h < T.Sincet —Ilh < 3[t/h|h—
3(I 4+ 1)k for every t > (I + 2)h, then by multiplying (5.10) by 3/ and recalling the
definition for the approximative solution in (3.1), we obtain the statement of the
theorem.

Let us consider first the case I = 0. Since P(Ey), [|Bgllr> < C, then
IHEg |l;2 < C forevery k = 0,1, ..., K. By combining this with (5.6) gives
us that forevery k =1,2,..., K — 1

2 2 2
”HEkJrl ||L2 - ”HEk ||L2 =< _h”v‘[k+1 HE/(+1 ”LZ + Ch.
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We sumoverk =1,2,..., K — 1 and use ||Hg, ;2 < C aswellas Kh < T to
obtain
K—1
IHeg 172+ Y hlIVa He 72 < I1Hg |17, + CKh < CT.
k=1

Thus, we conclude that (5.10) holds in the case [ = 0.

Let us then assume that (5.10) holds for [ — 1, where /[ € N. We assume that
(I +2)h < T and prove (5.10) for . To this aim, we denote K’ = K — [ and
E} = Ej4;. Again, let 7; denote the tangential differentiation along 3 £} . Thus, the
induction assumption reads as

K/
 max (kh)' "M Hp 32 + D hkh)' = | H |
k=1

H’(dEh)—Cl_l' (5.11)

We divide the argument into two cases depending whether / is even or odd.

Letus first assume that/ is even and thus is of the form/ = 2m form = 1,2, ....
By binomial expansion it holds (k 4+ 1)2" — k> < 2m(k + 1)>"~!. Therefore, by
multiplying (5.6) by k2" h*" we deduce, forevery k =0, 1,2,..., K’

(k+ D> R AY Hey 72 = K" H*" AT He I
_ 2 2 2
= (k+ D" —k*™)h m||A,k+1HE;(+1||L2
KA, Hey 72— 1A Hel172)

= 2m(k + DI RN Hyy 12 4 Cok® 0 (14 A% Hig 12,

2m 3, 2m+1 m 2
— IRV AT Hpy 1.

Fix any j = 2, ... K’. Summing the previous estimate fromk = 0tok = j — 1
and using the fact K'h < T yields

JR AT Hy 17
j—1

< Cu ) (k+ D™ WAL He 117
k=0

= j-1
+ Cn Z(kh)kZm 1j,2m | AT HE’ || + Cp, Zh 2m p2m
k=0 =0
j—1
— Z k2mh2m+1 ”Vrk+1 Am HE
k=0

K+ 1”LZ

<Cm(1+T)Zk2’" R | A
k=1

”LZ

!

j
+Cp /O s¥ds =Y " h (k= D>V, AT Hp I3,
k=1
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K/
< Cn(L+T) Y R W A% Hp 117,
k=1

J
+Cu T2 =3 k= D> " | Vo A Hy |72
k=1

Thus, reordering the previous estimate and using the induction assumption (5.11)
gives us

J
(= DX P AL Hyr 72+ ) h (k= D> 02" |V AY Hy |17

k=1
K/
<Cu(14+T) Y K> h? 1Y Hy 172 + Cn T2
k=1
o
<Cp(1+T) Y h(ki) ™ | Hp I3 + Cu T2
k=1

<CnCi_1 + C, TH1,

After substituting E; = Ejy; and reindexing we have for every j = [ +
2,...,K

J
. 1 P 1
(G = A+ DR IAT He 172+ D h((k— A+ D)) Vo AL HE, |17
k=I+1

<CnCi1 + CmT2m+1-

Since we have ||Bg,|l1=, P(Ex) < C for every k < K, then by combining the
estimates of Proposition 2.6 with the previous estimate and using Kh < T we
obtain (5.10).

The case when [ is odd is similar. In this case, we have [ = 2m + 1 for some
m € N U {0}. Thus, by using (5.7) in the place of (5.6) we may proceed as in the
previous case. O

Let us then focus on Proposition 5.1. We will begin by proving two technical
lemmas which involve high order derivatives of dg and myg. To overcome the
technicalities we adopt the notation where A; denotes a generic tensor field, which
depends on the distance function, the normal and the second fundamental form in
a smooth way, i.e.,

Aj = Ai(dg, vE o myE, Bg o myg) in Nopp(QE). (5.12)

We also adopt here the notation S »« 7' to denote a tensor formed by contraction on
some indexes of tensors S and 7. If the set E satisfies UBC, then the quantities
dg, vg and Bg oy are uniformly bounded in /\/}/2(8 E), wemay treat A; in (5.12)
as a bounded coefficient.
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It is immediate that it holds for x € 9E and u € CZ(JE) that
V(uomyp)(x) = Veu(x) and Agn+1 (i o myg)(x) = Aru(x).
Let us then derive related formulas for points x € N, ,2(0E) outside O E.

Lemma 5.3. Assume E C R"™, with & = JE, is bounded and C3-regular set
which satisfies UBC with radius r. Then it holds for u € C*(3E) in N j2(3E) that

V(u (@) 7‘[35) = V(u o JTgE) OTYE — dEV2dEV(u o n’aE) OTHE
and

V2(u o wyr) =(Pyr o myg) (V2 (1 0 TyE) © Ty E)
— Vdg @ V2dgV(uomyg) o ThE
+dg Ay % V(o myg) o Ty

+dp Ay x V(Bg omyg) ommgr *x V(u o myE) o Ty E

where A1, As are tensor fields as in (5.12). Moreover, if ¥ is in addition Cck+2.
regular and u € Ck(E)for k € N, then for all x € ./\/,/2(8 E) we may estimate

V¥ 0 75 6) (x))]
<Cr Y (14 IV Be@mae ()] -+ IV5 " Be(rae (0)]) [V u(rye (x)].

loe| <k
Here 62 denotes the covariant derivative on X.

Proof. Letus denote it = u o wyg and w = myg for short. Since 7 is projection it
holds

U(x) = a(m(x))
for all x € N, ,2(0E). By differentiating this we obtain
Vi(x) = Va(x)Vu(r(x)).

The first claim then follows from (2.31) and from Vi - (vg o w) = 0. The second
claim follows by differentiating the first and by writing V2dg (x), V3dg (x) and
V7 in a geometric way by using (2.33) and (2.34).

In order to prove the third claim we observe that we may write the second
equality simply as

V2i(x) = A1(x) x V2 ((x)) + A2(x) * V(BE o ) (g (x)) % Vi (w (x)).

By differentiating this (k — 2)-times and by using (2.12) and (2.34) we deduce that

IVEa ()] < Cx Z C(1+ |V (Bg om)(m(x))| -+ [V (Bg o 1) (r (x))]) [Vt (7w (x))].

| <k
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The claim follows once we show that for all y € X it holds that

IV <G Y (1+ IV Be)| -+ IV BV u(y)l,  (5.13)
1Bl=I
which is the opposite estimate as to that of Lemma 2.4.

We argue as in the proof of Lemma 2.4 and assume y = 0, vg(0) = ¢,41 and
write the surface X locally as a graph of f,ie., X N B, C {(x/, f(x))) : x' € R"}
and extended f to R"*! trivially as f(x/, x,41) = f(x'). We may then write the
metric tensor and the Christoffel symbols in coordinates as

gij(x)) =8 + 8 f(x0; f(x') and T, (x) = ¢ (x")a7, f (o f (x)).

Since vg = Ve D apd v - (vg o) =0, we have

1+|Vgn f|2

1t (y) = Z 3 f(w(y)) - 0itd(y). (5.14)

i=1

Let us denote the /th order differential of the function x” — #(x’, 0) as \% L. Then
by applying first (5.14) and (2.12), and then (2.14) we deduce that

VO <€ Y. (14 VAV Fom)O)]- VA1 (V £ 0 1)(0)]) Vs i (0)]
[Bl=<l-1
<C Y (L9 BEO)] - [V BE(0)]) [Vt " (0)).
lyl<l-1

Denote the local chart given by the coordinate parametrization by &, i.e.,
o~ 1(x") = (x', f(x")) and note that #(®~!(x")) = u(®~'(x’)). Fix an index
vector B = (B1, ..., Bu,0) with || = m. Then by (2.12) and (2.14) we obtain
after straightforward calculations

IV o @O = VPO = Cp Y (1+ [V Q) [V £0))) [V i(0))]

lylsm—1

> VPO = Cpn Y (14 V" BE(O)] - [V BE(0)])[|V7" &(0)].

lyl=m—1
From here we deduce by an inductive argument that
VP A < Cp Y (14 V" BE(O)] -+ [V Bg(0)])[| V™! (w0 ®71)(0)],
lyl=m

Finally using the definition of the covariant derivative and the expression of the
Christoffel symbols we obtain arguing as in the proof of Lemma 2.4 that

V" wo @ )(O) < Cu Y (1+IV"BEO)] -+ [V BE(0)])|[V7"+ u(0)].

lylsm

Hence, we have (5.13) and the third claim follows. O
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Let us from now on assume E{, E» C Rt are asin Proposition 5.1. We write
the equality (5.3) by using the Euler-Lagrange equation (3.4) as

HEZ_HEl o TTHE, ZhATZHEz—i-h,O()(') (5.15)
on 0 E», where the error function is of the form
po(x) = A1(x) +h Ax(x) x Vi, Hg, (x) * Vo, HE, (x). (5.16)

Here and in the rest of the section A;(-) denotes a tensor field which depends
smoothly on dg,, Vg, o m3E,, VE,, BE, o myE, and on Bg,. i.e.,

Ai(x) = Ai(dg, (x), v, (o, (X)), vE, (x), B, (TyE, (X)), Bg,(x)).  (5.17)
The following lemma is a consequence of Lemma 5.3.

Lemma 5.4. Assume that the sets E{, E» C R"! are as in Proposition 5.1. Then
it holds for u € C*(E1) on dE-
Ay, (o map,) =Agquomyp, +h Ay x V(1 o myE,) o ToE,
+h? Ay« V2(u o wyE,) 0 TyE, * Ve, H, * Vo, HE,
+h A3 x V(BE, omyg,) oy, * V(u o myE,) 0 THE,
+h Ay x Ve, Bg, x V(u o myg,) 0 THE, -

Proof. Let us denote it = u o myg, and w = myg, for short. Recall that we may
write the Laplace-Beltrami on d E; as

Anyil = Agusrll — (Vi vE, - vg,) — HEy 0y i, (5.18)

where Apn+1il = Tr(Vzﬁ) denotes the Euclidean Laplacian. Recall that Pyg, =
I —vE, ®vg, stands for the projection on the (geometric) tangent space. We deduce
by applying the trace on the second equality in Lemma 5.3, by V2dg, Vdg, = 0,
and by the Euler-Lagrange equation (3.4) that it holds on 0 E»
Agnriit = Te(V2i) = Aquom +h Ay » (Vi o)

. (5.19)
+h A3 xV(Bg, om)om x (Vit o).

Similarly, we have

(Vi vg,y) - vE, = ((Pyg, o 0)(V2i o ) vE,) - VE,
— (VdE] . sz)(Vszl (Vﬁ e} JT) . VEZ)
+hAyx(Viiom)+h Ay« V(B om)om % (Vii o).
(5.20)
We write
((PaEl o) (V3iom) sz) “VE,

= ((PaE, o) (Vo) (VE, — VE, © n)) - (vE, — Vg, o)
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and
(Vdg, - vi,)(V3dg,(Viio ) - vE,)
= (Vdg, - vi,)(V3dg, (Viio ) - (vg, — v, o 70)).
We then use (4.19) to write v, — Vg, o as
VE, —VE, o = a1 Vy,dg, +ax (VE, o)

for functions a; and ap which depend on |V, dE, (x)|2. Therefore we may write
(5.20) by the Euler-Lagrange equation (3.4) as
(Vi vg,) - ve, =h Ay % (Vi o)
+ h* Ay » (V*i o ) % Vo, HE, % Vo, H,
+hA3xV(Bg,om)om x(Vii o)
+hA4 %V, Hg, x(Vit o).

(5.21)

We use the first equality in Lemma 5.3, (4.19) and the Euler-Lagrange equation
(3.4) to write on 0 E,

aszﬁ =Viomn) vg,+hA3x(Viom)

= (Viton) - (vg, —vg, om) +h Az * (Vii o) (5.22)
=hAs*Ve,Hg, *x(Vii o) + h A3 x (Vii o 7).

The claim then follows from (5.18), (5.19), (5.21) and (5.22). 0O
We may now prove Proposition 5.1.

Proof of Proposition 5.1. We prove only the first equality since the second follows
by differentiating the first. We point out that since E| is C?"*3-regular, then by
Lemma 3.2 the set E, is C?"*3-regular. In particular, we have the necessary regu-
larity for the proceeding calculations. To that aim we recall that by (5.15) it holds

Hg, — Hg, oy, =h Ay, HE, +h po on dE», (5.23)
where

po(x) = A1(x) + h Ay (x) * Vo, Hg, (x) * Vi, Hp, (x).
We differentiate (5.23), use Lemma 5.4 and have on d E;
Ay HE, (x) = Aq Hgy 0 g, = h A}, Hg, + hpy + h Ar, po,
where
p2 = A1 * V3 (Hg, o myE,) o Ty,

+h Ay % V*(Hg, o myE,) 0 ToE, * Vo, Hi, * Ve, HE,

+ A3 x V(BE, omyE,) o g, * V(HE, o myE,) 0 T E,

+ A4 x Vy,Bg, x V(HE, o myE,) 0 THE, .
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We continue and deduce by an iterative argument that it holds on 9 E»

m
A7 Hg, — Aq Hp o mog, = h AT He, +h )y AT ¥ oy,
k=0

where pg is defined in (5.16) and py; for k > 11is

P2k = Ap * V2(A]§1_1HEI 0 TTHE,) O MHE,
+h Ay *Vz(A];l_lHEl omyE,) 0 MyE, * Ve, HE, * Vo, HE,
+ A3 x V(BE, o T3E,) © THE, *V(AI;_IHEI 0 THE,) O THE,

+ A4 x Vi, BE, *V(Allfl_lHEl O TYE,) O MHE, -

We have thus derived a formula for the error terms in the statement of Proposition
5.1, i.e., we have

m
Rom(x) =Y A2 Fpo(x).
k=0

We need to estimate the norm || Ry, || L2(9)> where ¥, = 0 E». The idea is that the
total amount of derivatives acting on the curvature terms in A’t’;_k p2x 18 for most
of the terms at most 2m. The only difference is the second row in the definition of
P2k, which total amount of derivatives is higher but it has an extra & as a coefficient.
Therefore we need to treat this term more carefully.

Recall that the tensor fields A;(-) depend on dg,, Vg, © 3k, VE,,» BE, © T3 E,
and on B, as stated in (5.17). Denote m = myg, for short. We use repeatedly
(2.12), Lemma 2.4 and the last inequality in Lemma 5.3 and obtain after long but
straightforward calculations the following pointwise estimate for all x € d E>:

A" o) < C+C Y [V By, ()] [V By, ()]

loe|<2m
+C Y V¥ By, (x(x))| -+ V¥ By, (7 (1))
loe| <2m
- - 5.24
+Ch Y (V" By, (x)| + [V By, (x(x))]) - - G20
loe| <2m

(|60¢2m BZZ (_x)l + |60l2m BZ] (n(-x))D e

|V g ()] VTR g ().

We use the uniform curvature bounds || By, ||, ||Bs,|lz~ < C and Proposition
2.3 to estimate

> IV B, )] -+ 1V By (0 12(5,) < ClIBx, Il gan s,

loe] <2m
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and
D IV By, r(0))] -+ [V By, ()l 23y
loe] <2m

<C > IV Bg, ()] 1V By, Dl 12,y < ClIBs, llgns,)-

loe|<2m

We are left with the last term in (5.24). As we already mentioned, this term has
different scaling with respect to . We use the Euler-Lagrange equation (3.4), (4.23)
and ||dg, || L>@E,) < Ch from Proposition 3.1 to deduce that

~ 2 C
IVHE, 100 (5,) < e
Therefore we have, by Proposition 2.3, that

h Y 1V By, (x)] + V¥ By, ((x))]) -+ -

loe| <2m
(IV®2" B, (x)| + [V*>" By, ((x)]) - - -
e |V ) (o) VT2 Hig, (0] 1205
< Ch||\VHg, 7o g (I Bs, I 2m s, + 1B, |l o s,))
+ Ch|VHE, || Lo (s | He, || gn1 5,
< ClIBs, | gons,) + CllBs, | gon s,y + CVRIHeyll i (s
< ClIBx, g2 (s,) + ClIBs, | gom+i(s,)

when & < 1, and the claim follows. 0O

Let us conclude this section by discussing briefly how we obtain Theorem 1.1
and Corollary 1.2 from the results in Sects.4 and 5. We obtain first from Lemma
4.6 and from Theorem 4.7 that the approximative flow (E,h)k satisfies UBC with
radius ro/2 for t < Tp and we have

1Sgn e = 1Sgllz
h

< Call Sgpll7oe- (5.25)

Then we use Theorem 5.2 to deduce thatfort € [3, Tp] the sets E,h are uniformly C3-
regular when /4 is small enough. By Ascoli-Arzela theorem we may pass the estimate
(5.25) to the limit as 4 — 0 and conclude that the function ¢ + sup,_, || Sg, |l
is locally Lipschitz continuous and satisfies -

d
o (9P IS, <) < Ca(sup IS, 1)’ (5.26)

s<t s<t

for almost every ¢ > 0 as long as sup, ., || Sg, || L remains bounded. The inequality
(5.26) implies that UBC is an open condition in time. To be more precise if the flat
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flow (Eth),, starting from E, satisfies sup,y [|Sg, [~ < C, then by (5.26) there
is 8§ > O such that

sup |[Sg, [z~ = 2C.
1<T+s

This together with the estimate in Theorem 5.2 implies Theorem 1.1.

The consistency principle follows from the regularity in a rather straightfor-
ward way. Indeed, we obtain by the uniform regularity of the approximate flat
flow (E ,h) re[0,7] and by the Euler-Lagrange equation (3.4) that the signed distance
function satisfies

0dE, (x) = Agnnrdg, (myg, (X)) + (1)

for t < T and for x in a neighborhood of d E;, where f (¢) is a bounded function ot
time. From here we may conclude that the flat flow satisfies

Vi=—Hg, + f(1).

Since the flat flow preserves the volume then necessarily f(t) = fa g, HE, dH"
and thus it is a solution to (1.1).
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