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Abstract 

Combining magnetic resonance imaging (MRI) data from multi-site studies is a popular 

approach for constructing larger datasets to greatly enhance the reliability and reproducibility 

of neuroscience research. However, the scanner/site variability is a significant confound that 

complicates the interpretation of the results, so effective and complete removal of the 

scanner/site variability is necessary to realize the full advantages of pooling multi-site datasets. 

Independent component analysis (ICA) and general linear model (GLM) based harmonization 

methods are the two primary methods used to eliminate scanner/site effects. Unfortunately, 

there are challenges with both ICA-based and GLM-based harmonization methods to remove 

site effects completely when the signals of interest and scanner/site effects-related variables are 

correlated, which may occur in neuroscience studies. In this study, we propose an effective and 

powerful harmonization strategy that implements dual projection (DP) theory based on ICA to 

remove the scanner/site effects more completely. This method can separate the signal effects 

correlated with site variables from the identified site effects for removal without losing signals 

of interest. Both simulations and vivo structural MRI datasets, including a dataset from Autism 

Brain Imaging Data Exchange II and a traveling subject dataset from the Strategic Research 

Program for Brain Sciences, were used to test the performance of a DP-based ICA 



 

 

harmonization method. Results show that DP-based ICA harmonization has superior 

performance for removing side effects and enhancing the sensitivity to detect signals of interest 

as compared with GLM-based and conventional ICA harmonization methods. 

Keywords: dual projection, harmonization, independent component analysis, magnetic 

resonance imaging, multi-site, site effects 

 

1 Introduction 

It is now common practice to pool multi-site magnetic resonance imaging (MRI) datasets to 

study brain biomarkers of neuroscience, neuropsychiatry, and neurology to promote rigor and 

reproducibility of results (Button et al., 2013; Eickhoff et al., 2016; Van Horn & Toga, 2009). 

However, combining multiple datasets does introduce site-related effects, which confounds 

effects of interest, and complicates the interpretation of the final results (Casey et al., 1998; 

Focke et al., 2011; Friedman et al., 2008; Pohl et al., 2016; Takao et al., 2011; Venkatraman et 

al., 2015; Vollmar et al., 2010; Wegner et al., 2008; Zivadinov & Cox, 2008). Site-related effects 

arises from differences in scanners manufacturers, field strengths, hardware, software, pulse 

sequences, quality control, and data quality across sites (Jovicich et al., 2009). It has been 

shown that differences in acquisition parameters and software and hardware upgrades during 

data collection using the same scanner have non-negligible effects on almost all image-derived 

phenotypes from structural images (such as cortical surface and gray matter volume), diffusion-

weighted images (such as diffusion tensor image (DTI) measures), and functional MRI (fMRI) 

data (Groves et al., 2011; Li et al., 2020). Hence, effective removal or deconfounding of site-

related variability from the MRI data is a critical step to ensure the accuracy and reproducibility 

of findings generated from combined datasets.   

Several approaches have been proposed for the harmonization of multi-site MRI data, 

including methods based on the general linear model (GLM) (Fennema-Notestine et al., 2007; 

Glover et al., 2012; Venkatraman et al., 2015), and data-driven unsupervised learning methods 

such as independent component analysis (ICA) (Chen et al., 2014; Li et al., 2020) and recently 

proposed deep learning methods (C Monte-Rubio et al., 2022; Dinsdale et al., 2021; Tian et al., 

2022). Two of the most popular methods to eliminate or minimize the site-related effects are 

based on GLM and ICA (Chen et al., 2014). GLM-based harmonization method is easy to 

implement and often used in multi-site MRI data studies to minimize the site-related effects, in 

this case, it utilizes site/study variables as covariates of no interest in group-level GLM analysis 

to control for site-related effects. Fortin et al. (Fortin et al., 2017) have adapted a GLM-based 

technique called ComBat (Johnson et al., 2007), an empirical Bayesian method for data 

harmonization that is popular in the field of genetics, to remove unwanted variation induced by 

sites while preserving the signal-related variation in neuroimaging studies. ComBat has been 

applied to harmonize DTI measures (Fortin et al., 2017), cortical thicknesses and functional 

connectivity measures (Yu et al., 2018), magnetic resonance spectroscopy measures (T. K. Bell 



 

 

et al., 2022), and positron emission tomography (PET) outcomes (Orlhac et al., 2018) showing 

good performance for removing site effects. ICA is an unsupervised data-driven statistical 

method that factorizes or decomposes the image data into a set of statistically independent non-

Gaussian components reflecting different sources that generate the measured imaging data. And 

the site-related components can be removed by regressing them from the original data to 

generate a harmonized clean dataset for further analysis (Chen et al. 2014). In this case, the ICA 

has been used to do a data-driven estimation of the site/scanner-related covariates of no interest 

that are regressed out of the data rather than creating covariates to model the site-scanner effects 

based on strong assumptions (e.g., regressors are used that assume a constant effect for each 

site/scanner, which ignores within-site/data to day variations in these effects). ICA is typically 

applied to harmonize individual MRI modalities, however, our previous work (Li et al., 2020) 

proposed a harmonization method for multi-modal imaging measures that implemented linked 

ICA (LICA) (Groves et al., 2011) as a novel approach to eliminate scanner effects from multi-

study data. LICA simultaneously decomposes the multi-modal imaging data (for example, 

structural plus diffusion MRI-derived measures) into a set of multi-modal components and a 

set of subject loadings quantifying the strength of each multi-modal component in each 

individual, with components reflecting true signals of interest as multi-modal covariance 

patterns, as well as artifacts and variability related to uninteresting effects like scanner and site 

differences. We found that several of the resulting LICA components from an analysis of multi-

study data with scanner effects were associated with scanner variations and that these patterns 

could be effectively regressed from the data to obtain harmonized data relatively free from 

scanner effects. We showed that multi-modal ICA-based harmonization was more effective at 

removing scanner-related effects compared with the conventional GLM and single-modality 

ICA harmonization methods. The reason for its superior performance is that even though all 

three approaches involve regression to remove scanner effects from the data, the data-driven 

estimates of the scanner effects from LICA of multi-modal MRI data provided more accurate 

model of site effects than assuming a constant effect or estimating effects based on single 

modality ICA to use as nuisance covariates for harmonization. 

In the present study, we aim to address another limitation of current methods for 

harmonization scanner/site effects, namely existing methods for harmonization site/scanner 

effects ignore the possibility of correlations between these effects and the effects of interest. 

For the conventional GLM approach, site-related variables are included as covariates of no 

interest or may be regressed out of data prior to higher-level statistical modeling, which may 

lead to the removal of interesting signals that are correlated with scanner/site variables and to 

weaker specificity of harmonization. While ComBat tries to preserve the signal-related 

variation when harmonization scanner/site effects, similar to the conventional GLM approach, 

it also assumes a constant effect for all datasets collected from the same site or the same scanner 

state, thus also ignoring the day-to-day variations in scanner performance. While ICA and LICA 

can identify scanner/site effects that capture day to day variations in scanner performance (Li 



 

 

et al., 2020), both approaches are vulnerable to identifying components that reflect a mixture 

of signal and scanner/site effects, rather than separating the effects into two separate 

components. In our previous work, to retain signals of interest, only components that were 

associated with site effects and not signals of interest (e.g., had subject loadings that correlated 

only with site variables and not variables of interest) were removed from the data while mixed 

components were retained as a conservative approach to harmonization (Chen et al., 2014; Li 

et al., 2020). One possibility to address this limitation for ICA-based techniques is to run the 

ICA with several different model orders to identify a decomposition with stable pure site effects 

related components not mixed with signals of interest. In practice, it is challenging to do this as 

different mixtures may arise at different model orders such that it may not be possible to have 

full separation at any model order. 

To solve this problem for ICA-based methods, we propose a new ICA with dual-projection 

(ICA-DP) technique for harmonization scanner/site effects. In this study, we focus on single 

modality ICA, with extension to multi-modal ICA to be done in future work. For ICA-DP, 

mixed components from single-modality ICA are separated into a part related to signal only 

and a part related only to site effects by applying a projection procedure. The site effects 

extracted from the mixed components via the projection step are combined with the other ICA 

components that reflected only site/scanner variance and are then removed from the data using 

a second projection procedure. Our new method is tested using simulated MRI data and in vivo 

multi-site datasets to assess the performance of ICA-DP compared to conventional ICA and 

ComBat harmonization methods.

 

2 Methods 

2.1 Dual-projection harmonization improvement  

2.1.1 Traditional ICA-based harmonization 

ICA decomposition model for group structural MRI data can be expressed as: 

𝐘 = 𝐋𝐒,                                                                  (1) 

where 𝐘 ∈ ℝ𝑀×𝑁 denotes the original data to be decomposed, 𝐒 ∈ ℝ𝑅×𝑁 contains independent 

spatial maps and 𝐋 ∈ ℝ𝑀×𝑅 contains their corresponding loadings. And 𝑀, 𝑁 and 𝑅 denote the 

number of subjects, voxels and components, respectively.  

When removing site effects of multi-site structural MRI data, the original ICA-based 

harmonization methods (Chen et al., 2014; Li et al., 2020) only eliminate the pure site-related 

components (only related to site effects) to avoid discarding useful information such as 

diagnoses or symptom measures. For comparison, we designate this ICA-based harmonization 

method as ICA-SP (single projection) as it only uses one step of projecting: 

𝐘𝑐𝑙𝑒𝑎𝑛
𝐼𝐶𝐴−𝑆𝑃 =  𝐘𝑜𝑟𝑖𝑔 − 𝐋𝑁 ∙ 𝑝𝑖𝑛𝑣(𝐋𝑁) ∙ 𝐘𝑜𝑟𝑖𝑔 ,                                   (2) 

where 𝐋𝑁 is the loadings of pure site effects components (components related to site effects) 
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and 𝐘𝑐𝑙𝑒𝑎𝑛
𝐼𝐶𝐴−𝑆𝑃 is the harmonized data derived from ICA-SP harmonization methods.  

Though it may preserve signal-related information well, it is too soft to remove the site 

effects as it does nothing with the mixed components and is more than likely to find site effects 

in its harmonized data.  

2.1.2 Proposed ICA-DP harmonization 

The ICA-DP harmonization procedure is summarized in Fig. 1. ICA-DP is inspired by the 

dual-regression approach for projecting a participant's fMRI data onto a set of spatial maps 

derived from ICA of multi-subject fMRI data to identify subject-level spatial maps 

corresponding to each group level component (Beckmann et al., 2009; Filippini et al., 2009; 

Nickerson et al., 2017).

First, the subject series is decomposed by ICA, and the resulting subject loadings 𝐋, of each 

component that reflects the strength of the corresponding variables represented in the IC map 

(could be interesting signal, scanner/site effects, or a mixture) are labeled as loadings for pure 

site effects components 𝐋𝑁 , pure signal components 𝐋𝑆 , or mixed components 𝐋𝑀  by 

calculating the correlations between the loadings and all the signal and site effects variables 

(i.e., components exhibiting significant associations p<0.05 are identified as signal- and/or site 

effects-related ones).  

 

Fig. 1. The procedures of ICA-DP harmonization method. (a) Identifying the loadings extracted by ICA that related 

to site effects variables (including mixed ones that significantly correlated to both site effects and signal, and the 

ones only significantly correlated to site effects). (b) Correcting the mixed loadings to only site effects-related ones 

(𝐋𝐶𝑁) by projecting out signal-related information. (c) Obtaining cleaned data by removing the integral site effects-

related components (𝐋𝑁 , 𝐋𝐶𝑁). 

The first projection procedure is used to separate the signal effects out from 𝐋𝑀 as below: 

𝐋𝐶𝑁 =  𝐋𝑀 −  𝐕𝑆 ∙ 𝑝𝑖𝑛𝑣( 𝐕𝑆)  ∙ 𝐋𝑀 ,                                                 (3) 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/
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where 𝐕𝑆 denotes the variables of interest (signals to be preserved, e.g., age, gender or health 

condition), 𝐋𝐶𝑁 denotes the corrected site effects contributions to the mixed components, and 

𝑝𝑖𝑛𝑣(∙) denotes the Moore-Penrose inverse (pseudoinverse) of a non-square matrix. Thus, the 

signal information is projected out from 𝐋𝑀 and we can identify the site effects for the mixed 

components.  

Then [𝐋𝑁 , 𝐋𝐶𝑁]  represent the total site-related effects present in the data, which are then 

cleaned from the subject series via a second projection procedure:  

𝐘𝑐𝑙𝑒𝑎𝑛
𝐼𝐶𝐴−𝐷𝑃 =  𝐘𝑜𝑟𝑖𝑔 − [𝐋𝑁 , 𝐋𝐶𝑁] ∙ 𝑝𝑖𝑛𝑣([𝐋𝑁, 𝐋𝐶𝑁]) ∙ 𝐘𝑜𝑟𝑖𝑔,                               (4) 

where 𝐘𝑜𝑟𝑖𝑔 denotes the subject series of spatial maps and 𝐘𝑐𝑙𝑒𝑎𝑛
𝐼𝐶𝐴−𝐷𝑃 denotes the harmonized 

MRI data free from site/scanner effects that can be used for further analysis.  

 

2.2 Study Data 

2.2.1 Simulated Data 

The simulated structural MRI data, including 100 subjects, were generated in this study. For 

each subject, the data was generated by computing 10 spatial maps and one set of ground truth 

subject loadings (Eq. 1). Each component map was multiplied by the corresponding subject 

loading, and then they were added together to obtain the simulated MRI data for each subject. 

The spatial maps were gotten by combining different areas of the standard brain template as 

shown in Fig. 21. To make our simulated data much closer to real MRI data, two kinds of spatial 

maps were simulated, one is all the spatial maps of 10 components were spatially independent 

and the other is two components' spatial maps were overlapped (Fig. 2). For each condition, 

100 subjects were generated, and the subject-specific data shared the same spatial maps, and 

the difference was the weights in its loadings corresponding to the spatial maps. Three different 

types of relationships between subject loadings and signal/site effects variables were simulated 

in this study: (1) signal variable was not significantly correlated to site effects variables; subject 

loadings were linearly correlated to signal and (or) site effects variables (Table 1). Among the 

10 components, the first four components were significantly related to signal and (or) site 

effects variables, and the other components were not related to the variables we are interested 

in. Components 1 and 2 are mixed components, which are related with both signal and site 

effects variables. The difference is that component 1 is much more related to signal, and 

component 2 is more correlated to site effects. Component 3 is pure site effects components, 

which only significantly correlated with site effects variable. Component 4 is a pure signal 

component that only significantly correlated with signal variable; (2) Signal variable is 

significantly correlated to site effects variable, subject loadings are linearly correlated to signal 

and (or) site effects variables (Table 2). Since the signal variable was significantly correlated to 

the site effects variable, there were no pure signal or site effects components under this 

condition, so we selected the first 2 components as mixed components, component 1 is much 

more related to the signal, and component 2 is much more correlated to site effects. Three 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/


  

 

different correlation levels (from low to high) between signal and site effects variables were 

simulated in this study to show the harmonization power of ICA-DP.  

 

Fig. 2. Ten independent brain spatial maps used to simulate MRI data. Situation1: there is no overlap among all the 

spatial maps; Situation 2: The first two components were spatially overlapped, and the other 8 components share the 

same maps with situation 1. 

Table 1 Pearson correlation coefficients and corresponding p values by correlating variables and loadings.  

#Component Signal Variable (r/p) Site Effects Variable (r/p) 

1 0.9425(<0.0001) 0.3999(<0.0001) 

2 0.2999(0.0024) 0.9728(<0.0001) 

3 -- 0.5999(<0.0001) 

4 0.5999(<0.0001) -- 

Note: Component loadings are linearly correlated with signal and site effects variables, while the signal variable is 

not significantly correlated to the site effects variable. Components 1 (more related to signal) and 2 (more related 

to site effects) are mixed components. Component 3 is only related to the site effects variable, and component 4 is 

only related to the signal variable. The relationship of loadings and variables is expressed by r-value and p-value. -

- denotes not significantly correlated. 



  

 

Table 2 Pearson correlation coefficients and corresponding p values by correlating variables and loadings.  

Correlation between Signal 

and Site Effects 
#Component Signal Site effects 

0.2999 (2.4e-3) 1 0.7946(<0.0001) 0.2412(<0.0001) 

 2 0.2590(0.0093) 0.7959(<0.0001) 

0.4999 (<0.0001) 1 0.7962(<0.0001) 0.4279(<0.0001) 

 2 0.3447(0.0005) 0.7859(<0.0001) 

0.6999 (<0.0001) 1 0.7957(<0.0001) 0.5932(<0.0001) 

 2 0.4993(<0.0001) 0.7761(<0.0001) 

Note: Component loadings are linearly correlated with signal and site effects variables, while signal variable is 

significantly correlated to site effects variable. Components 1 (more related to signal) and 2 (more related to site 

effects) are mixed components. The relationship of loadings and variables is expressed by r-value and p-value. Three 

different correlation levels between signal and site effects variables are simulated in this study with r-values of 

0.2999 (p=0.0024), 0.4999 (p=1.2e-7), and 0.6999 (p=5.6e-16), corresponding to low, medium and high correlation 

levels. 

2.2.2 Multi-site MRI data from ABIDE II 

High spatial resolution structural MRI data of 606 subjects (including Autism Spectrum 

Disorder (ASD) patients: 225, Healthy Controls (HC): 381) were obtained from Autism Brain 

Imaging Data Exchange II dataset (ABIDE II) (http://fcon_1000.projects.nitrc.org/indi/abide/ 

abide_II.html). The data were collected from 13 different sites, all the data were acquired from 

3T scanner with different manufacturers (Siemens, Philips, and GE) (Di Martino et al., 2017). 

The acquisition parameters: scanner/site and imaging-related details, including repetition time 

(TR), echo time (TE), flip angle (FA), and voxel size in Table 3. The demographic information: 

ASD/HC, gender, and age are summarized in Table 4. Subjects with ASD could be divided into 

two categories: ASD only and ASD with comorbidity (Attention-Deficit/Hyperactivity 

Disorder, anxiety or others) (Di Martino et al., 2017). 

Table 3 Scanning parameters and demographic information of the multi-site ABIDE II data.  

Sites Scanners TR/TE (ms) FA (degree) Voxel Size 

EMC GE MR750 1664/4.24 16 0.9×0.9×0.9 

ETH PhilipsAchieva 3000/3.9 8 0.9×0.9×0.9 

GU Siemens TriTim 2530/3.5 7 1×1×1 

IU Siemens TriTim 2400/2.3 8 0.7×0.7×0.7 

KKI PhilipsAchieva 3500/3.7 8 1×1×1 

KUL PhilipsAchieva 2000/4.6 8 1×1×1.2 

OHSU Siemens TriTim 2300/3.58 10 1×1×1.1 

ONRC Siemens Skyra 2200/2.88 13 0.8×0.8×0.8 

SU GE SIGNA 5.9/1.8 11 1×1×1 

UCD Siemens TriTim 2000/3.16 8 1×1×1 

UCLA Siemens TriTim 2300/2.86 9 1×1×1.2 

UM GE Healthcare -/- 12 1×1×1 

USM Siemens TriTim 2300/2.91 9 1×1×1.2 

Note: The data were collected from 13 different sites: Erasmus University Medical Center (EMC), ETH Zürich 

(ETH,), Georgetown University (GU), Indiana University (IU), Kennedy Krieger Institute (KKI), Katholieke 

Universiteit Leuven (KUL), Oregon Health and Science University (OHSU), Olin Neuropsychiatry Research Center 

(ONRC), Stanford University (SU), University of California Davis (UCD), University of California Los Angeles 

(UCLA), University of Miami (UM), University of Utah School of Medicine (USM). 

http://fcon_1000.projects.nitrc.org/indi/abide/%20abide_II.html
http://fcon_1000.projects.nitrc.org/indi/abide/%20abide_II.html


  

 

In this study, the site differences are defined as nuisance variables to eliminate, while group 

differences (ASD/HC), age and gender are regarded as signal variables. The correlation 

coefficients among these variables are summarized in Table 5. Since site differences are 

categorical variables and calculating the correlation coefficients between categorical variables 

and numeric variables directly is not achievable, we used ANOVA to calculate the significant 

levels of signal variables and site effects variables to identify the independent components 

related to site effects significantly. For ICA analysis, the components that only significantly 

correlated to site variables were regarded as pure site effects components, and the components 

that significantly correlated to both site and signal variables were regarded as mixed 

components. 

Table 4 Demographic information of the multi-site ABIDE II data collected from 13 sites.  

Sites ASD/HC ASD with comorbidity Male/Female Age Range (Mean) Full IQ Standard Score (Mean) 

EMC 18/20 11 31/7 6.40~10.66 (8.28) -- 

ETH 8/17 -- 25/0 13.83~29.42 (22.43) 82~133 (112.84) 

GU 33/43 -- 51/25 8.06~13.88 (10.74) 92~149 (119.17) 

IU 18/18 -- 28/8 17~54 (24.61) 80~135 (116.36) 

KKI 32/133 29 103/62 8.02~12.99 (10.36) 83~143 (113.26) 

KUL 7/0 1 7/0 18~25 (21.71) 73~146 (103.86) 

OHSU 33/51 23 52/32 7~15 (10.94) 72~140 (113.11) 

ONRC 16/29 5 32/13 18~31 (23.24) 86~146 (111.76) 

SU 15/17 2 29/3 8.42~12.99 (10.99) 93~151 (115.31) 

UCD 13/13 4 19/7 12~17.83 (15.03) 83~128 (107.96) 

UCLA 12/12 -- 19/5 7.75~15.03 (11.04) 78~141 (107.96) 

UM 7/12 -- 14/5 7.3~14.3 (10.32) 98~144 (115.72) 

USM 13/16 -- 24/5 9.12~38.86 (21.21) 73~144 (108.5) 

 

Table 5 The relationship of signal and site effects variables for real MRI data (p values). 

Correlation Site ASD vs HC Age Gender 

Site <0.0001 <0.0001 <0.0001 0.0004 

ASD vs HC <0.0001 <0.0001 - <0.0001 

Age <0.0001 - <0.0001 - 

Gender 0.0004 <0.0001 - <0.0001 

 

2.2.3 Traveling subjects 

To further validate the site effects removing efficiency of ICA-DP, the high spatial resolution 

structural MRI data from a traveling-subject dataset including 9 healthy participants (all males, 

age: 27±2.6) scanned at 12 different sites from the DecNef Project Brain Data Repository 

(https://bicr-resource.atr.jp/srpbsts/) were used in this study. For T1-weighted MRI data of the 

12 different sites, there were two phase-encoding directions (PA and AP), three MRI 

manufacturers (Siemens, GE, and Philips) with seven scanner types (TimTrio, Verio, Skyra, 

Spectra, MR750W, SignaHDxt, and Achieva) and four channels per coil (8, 12, 24, and 32) 

(Maikusa et al., 2021; Tanaka et al., 2021). Scanning parameters, including repetition time (TR), 

echo time (TE), flip angle (FA), and voxel size, are summarized in Table 6. Three sites (i.e., 

ATT, UTO, and YC2) were excluded for harmonization analysis because they contain duplicate 

data (there are 7 duplicate images in ATT and ATV, 2 same images within both YC2 and UTO). 



  

 

As the images from this dataset are the same groups under different sites, site effects variables 

and subject variables (including subject labels, age, etc.) are uncorrelated.  

Table 6 Scanning parameters of the traveling-subject dataset.  

Sites Scanners TR/TE (ms) FA (degree) Voxel Size 

ATT SiemensTimTrio 2300/2.98 9 1×1×1 

ATV Siemens Verio 2300/2.98 9 1×1×1 

COI Siemens Verio 2300/2.98 9 1×1×1 

HKH Siemens Spectra 1900/2.38 10 0.8×0.75×0.75 

HUH GE Signa HDxt 6788/1.928 20 1×1×1 

KPM Philips Achieva 7.1/3.31 10 1×1×1 

KUS Siemens Skyra 2300/2.98 9 1×1×1 

KUT SiemensTimTrio 2000/3.4 8 0.9375×0.9375×1 

SWA Siemens Verio 2300/2.98 9 1×1×1 

UTO GE MR750W 7.7/3.1 11 1×1.0156×1.0156 

YC1 Philips Achieva 6.99/3.176 9 1×1×1 

Note: The datasets include 9 healthy subjects undergoing T1-weighted MRI scans at 12 different sites, and all of 

them used 3T scanners and the same acquisition parameters but with different manufacturers and hardware versions 

(Siemens, GE, and Philips). 

 

2.3 Data analysis 

For both the ABIDE II dataset and the traveling dataset, the modulated gray matter (GM) 

images were analyzed with FSL-VBM (Douaud et al., 2007) 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ FSLVBM), an optimized VBM protocol (Good et al., 

2001) carried out with FSL tools (Smith et al., 2004). First, structural images were brain-

extracted and grey matter-segmented before being registered to the MNI 152 standard space 

using non-linear registration (Andersson et al., 2007). The resulting images were averaged and 

flipped along the x-axis to create a left-right symmetric, study-specific grey matter template. 

Second, all native grey matter images were non-linearly registered to this study-specific 

template and "modulated" to correct for local expansion (or contraction) due to the non-linear 

component of the spatial transformation. The modulated GM images were then smoothed with 

an isotropic Gaussian kernel with a sigma of 3 mm.  

 

2.4 Comparison of ICA-DP with other harmonization methods 

General linear model (GLM) harmonization(Maikusa et al., 2021; Venkatraman et al., 

2015; Yamashita et al., 2019) and ComBat harmonization(Fortin et al., 2017) are two main 

model-baesd methods for removing site effect differences (see the Supplementary Information 

for detailed descriptions of these methods). To examine the advantages of our proposed 

methods, we compared ICA-DP with ICA-SP and these model-based harmonization methods 

in terms of site effect removal and biological variability preservation. 

2.4.1 Site effects removing with ICA-SP/DP methods 

Firstly, ICA was applied to the non-harmonized data to identify pure site effects components, 

pure signal components and mixed components. For simulated data, the Pearson correlation 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/%20FSLVBM


  

 

coefficient between subject loadings and signal (or site effects) variable was used to measure 

the properties of components. Those components only related with the signal variable (p < 0.05) 

were identified as pure signal components; those components only related with the site effects 

variable (p < 0.05) were identified as pure site effects components; those components related 

with the signal and site effects variables (p < 0.05) were identified as mixed components.  

For the real MRI data from ABIDE II and the traveling-subject data, we used the Pearson 

correlation coefficient and ANOVA to identify signal, site effects and mixed components (age, 

gender, and group difference(ASD/HC) were signal variables of interest). The subject loadings 

from one site were divided into one variable, then 13 levels- for ABIDE II and 9 levels- for the 

traveling-subject data. ANOVA was used to calculate the significant levels of subject loadings 

and site differences and identify the independent components related to site effects significantly. 

Finally, those components whose p-values of ANOVA were significant (using Bonferroni 

correction to adjust for multiple comparisons, adjusted p < 0.05) were identified as site effects 

components. The intersection of signal components and site-related components were mixed 

components.  

For the ICA-SP method, only pure site effects components were used to regress the site 

effects. For the ICADP method, all the site effects components, including the mixed ones, were 

used for site effects removal. The site effects extracted from the mixed and pure site effects 

components will be regarded as the integral site-related effects for removal by ICA-DP. All the 

ICA analyses were based on MATLAB and FSL MELODIC.  

2.4.2 Site effects removing with GLM and ComBat methods 

For the GLM-based harmonization method, the site difference is regarded as the covariates 

to be regressed out. For ComBat harmonization method, firstly, ComBat normalizes the data 

by removing the effect of the overall mean and signal variables. Then, using an empirical Bayes 

framework, ComBat estimates additive and multiplicative site effects. The final harmonized 

data could be obtained by removing these site effects and adding the signal-related information 

back. In our study, the performance of GLM was only evaluated with simulation data. The main 

reason is that ComBat is a GLM-derived model and is more powerful than the original GLM 

model. Thus, for real MRI data, only the performance of ICA model and ComBat model were 

compared. 

2.4.3 Evaluating the harmonization results 

For simulated MRI data, ICA was utilized to the non-harmonized and harmonized data to 

extract and identify the signal- and site effects-related components to compare the 

harmonization effects of all the methods.  

For the real MRI data, a set of analyses were applied to show the performance of site effects 

elimination and biological variability preservation (including age effects and group difference 

(ASD/HC)) for all the harmonization methods. For site effects removal evaluation, T-

distributed stochastic neighbor embedding (t-SNE) was used to visualize the heterogeneity 



  

 

related to sites of non-harmonized data and harmonized data by projecting their dominant 

features into a 2D space. We could assess the efficiency of the harmonization methods by 

checking whether there are site-clustered distributions or noticeable inter-site heterogeneities 

after site effects removal. Group F-test was also applied to both the non-harmonized data and 

the harmonized data derived from different methods to test the significant difference regions 

caused by the site difference. For age effects evaluation, the Pearson correlation coefficient 

between median GM and age of all the subjects from ABIDE II data was calculated to show 

their relationship. The median GM per subject was obtained by calculating the median of 100 

regions of interest (using a standard brain template, FSLMNI152_1mm, in FSL parcelled by 

Schaefer et al., 2018). One-way ANOVA analysis was also applied to both the non-harmonized 

data and the harmonized data derived from different methods to test the significant difference 

regions caused by age. For group difference (ASD/HC) evaluation, group t-test was applied to 

both the non-harmonized data and the harmonized data derived from different methods to test 

the significant difference regions caused by the group difference. FWE-corrected p < 0.05 using 

non-parametric permutation testing with threshold-free cluster enhancement (TFCE) (Smith & 

Nichols, 2009) in FSL's Randomise (Winkler et al., 2014), with 5,000 permutations was used 

to find the significant regions.  

 

3 Results 

3.1 Simulation Harmonization Results  

For simulated data, the data were decomposed into 10 components based on the simulation. 

Fig. 3 shows the signal- and site-effects-related components of simulated data extracted by ICA, 

before and after harmonization, when the signal variable is not significantly correlated to the 

site-effects variable. The results are shown in Fig. 3(a) when the spatial maps of all 10 

components are spatially independent. Fig. 3(b) shows the results when the first two 

components are spatially overlapped. When the signal variable is not correlated to the site 

effects variable, the results for spatially independent and spatial dependent data are similar. All 

the harmonization methods could remove pure site effects component #3 and preserve pure 

signal component #4. However, the site effects cannot be removed from the mixed components 

#1 (more related to signal for the original data) and #2 (more related to site effects for the 

original data) by ICA-SP method. The performance of ICA-DP, GLM and ComBat were 

comparable under this situation, the site effects in the mixed components #1 and #2 were 

effectively removed and the signal effect was enhanced by increasing its correlation levels with 

the signal variable after ICA-DP, GLM and ComBat harmonization. The two mixed 

components were combined into one component that is only significantly related with signal 

variables. The site effects-related regions were also removed after harmonization with ICA-DP, 

GLM, and ComBat methods. 



  

 

 
Fig. 3. Harmonization effects on the signal- and site-effects-related components when the signal variable is not 

significantly correlated to the site-effects variable. (a) Results when the spatial maps of all 10 components were 

spatially independent. (b) Results when the spatial maps of the first two components were spatially overlapped. For 

the non-harmonized data, components #1 and #2 are two mixed components, named Mix #1 (more related to the 

signal variable) and Mix #2 (more related to the site effects variable), component #3 is pure site effects component 

and component #4 is a pure signal component. The pure site effects component was removed by all the harmonization 

methods. The two mixed components were combined into one component that is only significantly related with 

signal variable. The site effects-related regions were also removed after harmonization with ICA-DP, GLM, and 

ComBat methods. ICA-SP cannot harmonize the site effects from the two mixed components. 

 



  

 

Fig. 4 shows the harmonization effects on the two mixed components when the signal 

variable significantly correlates to the site effects variable. Three different correlation levels 

between the signal and site effects variables were simulated. Fig. 4(a) shows the results when 

the spatial maps of all 10 components were spatially independent. Fig. 4(b) shows the results 

when the spatial maps of the first two components were spatially overlapped. Among all the 

harmonization methods, only ICA-DP could effectively weaken the site effects while 

strengthening the signal effects when signal and site effects variables are correlated for two 

types of simulated data. 

ICA-SP harmonization could not remove the site effects from the mixed components, as both 

the extracted spatial maps and correlation coefficients between subject loadings and site effects 

variable of the mixed components were not changed after being harmonized by ICA-SP, 

compared to that of non-harmonized data.  

GLM harmonization showed the most aggressive harmonization performance while 

eliminating the site effects-related information at the expense of destroying the signal-related 

information. After being harmonized by GLM, both components #1 and #2 were not correlated 

to site effects variable. Besides, component #2 was not correlated to the signal variable any 

longer and the correlation between component #1 and signal variable also became lower, which 

became more severe with the increasing correlation levels between signal and site effects 

variables.  

ComBat harmonization could not remove the site effects when the mixed component is more 

related with signal effects (component #1) and showed aggressive harmonization performance 

that also removes signal effects when the mixed component was more correlated with site 

effects variable (component #2). When all the 10 components are spatially independent, after 

ComBat harmonization, both spatial maps and subject loadings of the mixed component #1 

were not changed, in contrast, the mixed component #2 was not related with both signal and 

site effects variables any longer. When the two mixed components are spatially overlapped, the 

site effects could not be effectively removed by ComBat when the mixed component was more 

related to signal variable (component #1) and showed aggressive harmonization performance 

that removed some signal effects when the mixed component was more related with site effects 

(component #2). Both spatial maps and subject loadings of the mixed component #1 (more 

related to signal) did not change significantly, in contrast the mixed component #2 (more related 

to site effects) was less correlated to both signal and site effects variables.  

After being harmonized by ICA-DP, the original mixed components #1 and #2 were merged 

into a single component that was more related to signal variable and the site-related effects were 

effectively decreased. Some spatial areas related to site effects were also removed (highlighted 

with white circles), especially for lower correlation between signal and site effects variables. 

Fig. 4(b) shows that the removed spatial parts only cover the unique parts of component #2 and 

do not involve the overlapping parts. Though the merged component after being harmonized 

by ICA-DP was still mixed component, the correlation coefficient between its loading and 



  

 

signal variable was strengthened for all the signal to site effects correlation levels, and the 

correlation levels to site effects variable were contributed by the inherent relationship between 

signal and site effects variables. Thus, there is no site-specific effect in the mixed component 

after being harmonized by ICA-DP. ICA-DP showed the most powerful harmonization 

performance, which could remove all the site-specific effects and enhance the signal effects.  

 

Fig. 4. Harmonization effects on the two mixed components when the signal variable is significantly correlated to 

the site effects variable. Mix #1 is more related to the signal variable, and Mix #2 is more related to the site effects 

variable for the non-harmonized data. Three different correlation levels between signal and site effects variables 



  

 

were simulated in this study to test the harmonization performance of all the harmonization methods. (a) When the 

spatial maps of all 10 components were spatially independent. (b) Results when the spatial maps of the first two 

components were spatially overlapped. After being harmonized by ICA-DP, Mix #1 and #2 were merged into a single 

component more related to signal variable, and the site-related effects were effectively decreased. Some spatial areas 

related to site effects were also removed (highlighted with a white circle), especially for lower correlation between 

signal and site effects variables. Among all the harmonization methods, only ICA-DP could effectively weaken the 

site effects while strengthening the signal effects when signal and site effects variables are correlated. 

 

3.2 Real Datasets Harmonization Results  

After harmonization, we performed a set of analyses to show the elimination of site effects 

and the preservation of biological variability, i.e., HC/ASD and age for the ABIDE II dataset, 

and subject heterogeneity for the traveling subject dataset. For the data from ABIDE II, they 

were decomposed into 50, 100 and 150 independent components, by calculating the correlation 

levels of subjects' loadings and variables with the analysis of variance (ANOVA) for each 

component, we identified the numbers of pure site effects components were 27, 56 and 96, 

respectively, and the numbers of mixed components were 23, 42 and 49, respectively. The 

traveling-subject data were decomposed into 50 independent components, and 10 pure site 

effects components and 16 mixed components were identified. 

Fig. 5 shows the tSNE-2D projection of ADIDE II and traveling subject datasets before and 

after harmonization. The t-SNE was utilized to project the data into two dimensions by using 

the two dominant features of the non-harmonized data and harmonized data, to visualize the 

distribution of site effects and indicate whether it could be eliminated after harmonization. For 

the ABIDE II dataset, the data points of the non-harmonized data showed site-clustered 

distribution as most of the centers had their own specific cluster area, except for some 

intersections among centers UCLA, OHSU, and ETH. And the site-clustered distribution 

disappeared after being harmonized by any of the harmonization methods. For the traveling 

subject dataset, the projected data points of the non-harmonized data from the same subject 

tend to be clustered into one cluster, i.e., the first two projected features were dominated by the 

subject heterogeneity rather than site effects. Though significant difference was not found 

before and after harmonization, the subject heterogeneity was well preserved after 

harmonization. 



  

 

 
Fig. 5. Dimension reduction visualization by t-SNE before and after harmonization for ABIDE II and traveling 

subject datasets. The site-cluster distribution of the ABIDE II dataset before harmonization indicated the site effects, 

and it decreased when the data points were randomly distributed after harmonization. For the traveling subject dataset, 

the subject-cluster distribution indicated the dominance of subject heterogeneity, as the subjects from this dataset are 

the same ones scanned at different centers (the data points were labeled by subject numbers). There was no significant 

difference before and after harmonization, and subject heterogeneity was well preserved after harmonization. 

In Fig. 6(a), diagnostic plots were presented for all the subjects from the two datasets, and 

the different colors represent different sites. For each subject, the GM measurements were 

summarized into a boxplot. The different range of GM values among sites was reduced after 

harmonization, and the ICA-based harmonization showed efficient reduction. Fig. 6(b) shows 

the median GM values distribution of the subjects from different sites. The standard deviation 

values for the medians of Median GM were calculated across subjects. After harmonization, 

the site effects decreased noticeably for all the harmonization methods.  



  

 

 

Fig. 6. (a) Site-sorted boxplots of GM. Each boxplot represents the GM values distribution of 100 regions of interest 

(ROI) for every subject. The ranges indicated differences among sites and among subjects. (b) Site-sorted boxplots 

of median GM. Each boxplot represents the distribution of median GM values for all subjects from the same site. 

The fluctuates indicated the inter-site difference. The standard deviation values for the medians of Median GM across 

subjects, before and after harmonization, are 1)ABIDE II Dataset: 0.0472 (Non-harmonized), 0.0250 (ComBat 

harmonized), 0.0209 (ICA-SP harmonized), 0.0251 (ICA-DP harmonized); 2)Traveling Subject Dataset: 0.0115 

(Non-harmonized), 0.0046 (ComBat harmonized), 0.0078 (ICA-SP harmonized), 0.0071 (ICA-DP harmonized).  

The boxplots presented in Fig. 7, for non-harmonization data and harmonization data, 

summarized the distribution of the median GM for each subject, revealing heterogeneity among 

different subjects. The subject heterogeneity was not destroyed by all the harmonization 

methods and preserved well after being harmonized by ICA-DP, and the trends of median GM 

for each subject, before and after harmonization, are shown in Fig. 7(b). Besides, the intra-

subject difference (represented by the height of each box in Fig. 7 (a) and the standard variation 

of median GM for each subject in Fig. 7 (c)), as a representation of site effects, had been most 

significantly reduced after ComBat and ICA-DP harmonization (Fig. 7(c)).  



  

 

 

Fig. 7. (a) Subject-sorted boxplots of median GM. The fluctuates indicated the inter-subject difference and the height 

of each box indicated the intra-subject (inter-site) difference. The standard deviation values for the medians of 

Median GM across subjects, before and after harmonization, are 0.0147 (Non-harmonized), 0.0139 (ComBat 

harmonized), 0.0116 (ICA-SP harmonized), and 0.0149 (ICA-DP harmonized). (b) The median values of Meidan 

GM for each subject, before and after harmonization. The trends show the difference among subjects. (c) The 

standard deviation value of median GM for each subject, before and after harmonized. 

Fig. 8 shows the group-level analysis for site effects from the two datasets. The non-

harmonized GM data was globally affected by the site effects for both datasets. Although the 

site effects had been alleviated by the ICA-SP method, it could not remove them sufficiently. 

After being harmonized by ICA-DP and ComBat, no significant regions were associated with 

site variable for both datasets (FWE-corrected p < 0.05). 



  

 

 

Fig. 8. Group-level analysis for site effects before and after harmonization. Site effects were removed completely by 

Combat and ICA-DP. Though ICA-SP reduced the site effects, some significant regions still could be found.  

As a biological variable of interest, age effects of the ABIDE II dataset, before and after 

harmonization, were shown in Fig. 9. The correlation between age and median GM before and 

after harmonization with the ABIDE dataset was shown in Fig. 9(a). The median GM were 

sorted by age and the data from different scanning centers were in different colors. Pearson 

correlation coefficients between age and median GM from non-harmonized data and 

harmonized data were calculated, which were -0.4746 (Non- harmonized), -0.5689 (ComBat 

harmonized), -0.3617 (ICA-SP harmonized), -0.8493 (ICA-DP harmonized), respectively. The 

correlation coefficients indicated that the negative correlation between GM and age was 

strengthened by ICA-DP and ComBat, especially for ICA-DP. Fig. 9(b) shows the group-level 

analyses for age. Site effects confound us to find the true age effects. The negative age effects 

were not found in the non-harmonized data because of the existence of site effects, removal of 

the effects by all the harmonization methods, especially for ICA-DP, could reveal the negative 

age effects that are not detected from the non-harmonized data.  



  

 

 

Fig. 9. (a) Relationship between age and median GM before and after site effects harmonization. The Pearson 

correlation coefficient was -0.4746 (Non-harmonized), -0.5689 (ComBat harmonized), -0.3617 (ICA-SP 

harmonized), and -0.8493 (ICA-DP harmonized). (b) Group-level analysis of GM maps for age effects before and 

after data harmonization. The negative age effects (significance level) were enhanced after harmonization, and they 

could not be detected in the non-harmonized data when testing age group differences.  

Fig. 10 shows the group difference (ASD/HC) before and after harmonization. ICA-DP 

increased the group effects by detecting more significantly different regions related to ASD and 

HC, while ComBat and ICA-SP decreased the group effects as no significant regions were 

tested from the data harmonized by them. Compared to the non-thresholded group difference 

maps from non-harmonized data (first row), the regions associated with group difference 

(ASD/HC) from ICA-DP-based harmonized data could also be found in the non-harmonized 

data. In other words, ICA-DP only strengthened the signal that should be there rather than 

reintroducing artifacts. 



  

 

 

Fig. 10. Group-level analysis of GM maps for group difference (ASD/HC) before and after data harmonization. No 

significant regions were detected from the data harmonized by ComBat and ICA-SP, while ICA-DP could increase 

the significance of the regions related to ASD/HC. FWE-corr p < 1 was shown for non-harmonized data to indicate 

that the regions tested from ICA-DP harmonized data were not reintroduced artifacts. 

Fig. 11 shows the harmonization performance of the two ICA-based harmonization methods 

under different choices of component numbers when running ICA algorithms. The ICA-SP 

could not remove the site effect completely, though it decreased more site effects as the number 

of components increased, and the information related to signal variable (ASD/HC) could not 

be detected from the data harmonized by it under any component number choosing, indicating 

that this kind of soft harmonization based on ICA could neither remove the site effects 

completely nor reveal the information related to covariates of interest. In contrast, after being 

harmonized by ICA-DP, the information that related to site effects could not be tested and there 

were some regions that significantly correlated to ASD/HC could be revealed from the 

harmonized data, indicating good performance and importance for eliminating site effects and 

the ability to unveil the signal related information concurrently and showing no affection of 

which number of components were chosen. 



  

 

 

Fig. 11. Harmonization performance of the two ICA-based harmonization methods under different component 

numbers (50, 100, and 150). After being harmonized by ICA-DP, site effects were removed completely and ASD/HC 

group differences were significantly enhanced (the regions related to ASD/HC could not be detected before 

harmonization) without the affection of component number.  

4 Discussion 

In this paper, we proposed a dual-projection ICA-based harmonization method that can 

remove the site effects more effectively and completely while enhancing the signal effects. This 

method shows superior performance when the site effects are also related with signal variables. 

The Matlab codes of ICA-DP harmonization are available at https://github.com/Yuxing-

Hao/ICA-DP_Harmonization.git. 

ICA-DP was developed to clean the site effects more completely and effectively when the 

site and signal effects are correlated. Based on the simulation results (Figs. 3, 4), it was found 

that ICA-DP can eliminate the site effects effectively while enhancing the signal-related 

information, whether the site and signal variables are correlated. The benefits of ICA-DP are 

contributed by two reasons: first, ICA-DP can extract all the site-related effects with the first 

projection even though some site effects are mixed with the signal effects that could not be 

extracted from original ICA method; second, ICA-DP is more stable than original ICA method, 

as it can extract and remove all the site effects without the limitation of model order selection; 

third, compared to standard GLM and ComBat model whose regressors have the same value 

for all participants in the same sites, site-related effects are better captured by ICA-DP, which 

can capture day-to-day variations in scanner performance. Compared with ICA-DP, ICA-SP, 



  

 

GLM and ComBat showed different defects when harmonization the site effects. For ICA-SP, 

it encountered a problem that it failed to eliminate the site effects completely when the site-

related components also significantly correlated to signal variables (Figs. 3, 4). The GLM-based 

harmonization method performed well and was comparable to ICA-DP when the signal and site 

effects variables are not significantly correlated (Fig. 3(a)). However, GLM showed aggressive 

harmonization performance that will remove or decrease the signal-related information when 

the signal and site effects variables are significantly correlated. The signal distortion became 

worse when the correlation coefficients between the signal and site effects variables increased 

(Fig. 4). Though ComBat-based harmonization method showed better performance than GLM 

and original ICA-based harmonization performance which can effectively remove site effects 

while keeping or strengthening some signal effects when signal and site variables are not 

correlated. However, ComBat could not completely remove the site effects when signal and site 

variables are correlated when the mixed components are more correlated with the signal (Fig. 

4). Meanwhile, we found that ComBat showed aggressive harmonization that also removed 

signal effects when the mixed components are more related with site effects.  

Based on the results of the ABIDE II dataset and the traveling-subject dataset, ICA-DP also 

shows superior performance on harmonization site effects than ICA-SP and ComBat. The 

significant regions of GM that related to site effects, which cannot be completely removed by 

ICA-SP, were not detectable after harmonizing with ICA-DP and ComBat (Fig. 8). The inter-

site variation of the traveling data and the intra-subject variation among nine sites for the 

traveling subject dataset were most significantly reduced after harmonization with ICA-DP (Fig. 

6). Moreover, subject heterogeneity of the traveling subject dataset was also well preserved 

after being harmonized by ICA-DP (Figs. 5, 7).  

In addition, ICA-DP also shows superior performance in enhancing biological variability 

(i.e., age effects and group difference between ASD and HC) compared with ICA-SP and 

ComBat based on the results of the ABIDE II dataset. Site effects hinder us from finding the 

true age and group effects. The age effects detected with GM of the non-harmonized ABIDE II 

are opposite with the recognized results (Gennatas et al., 2017; Groves et al., 2012). After being 

harmonized by ICA-SP, ICA-DP, and ComBat, the true age effects on GM were discovered. 

Among all the three methods, ICA-DP finds the most significant regions related to age and the 

negative correlation between age and GM was most strongly enhanced by ICA-DP. The 

relationship of median GM and age was enhanced from -0.4746 (non-harmonized) to -0.8493 

after being harmonized by ICA-DP (Fig. 9). In addition, compared to ICA-SP and ComBat, 

only ICA-DP enhanced the group effects (ASD vs. HC) by detecting more significantly group 

different regions which cannot be effectively detected by the non-harmonized data (Fig. 10), 

indicating the importance of removing site effects in multi-site data. The notable enhancements 

of the biological variabilities (i.e., age effects and ASD vs. HC) may be attributed to the larger 

proportion of site-related components that we selected for ICA-DP harmonization, which could 

increase the weights of signal we are interested in and make the signal-related information 



  

 

easier to be detected. On the other hand, this may lead to the other variables that we are not 

interested in not being well preserved. To protect other variables that we may be interested in, 

we just need to add these variables to 𝐕𝑆 in the first projection of the ICA-DP harmonization 

method (Eq. (1)). Thus, the ICA-DP is the most effective method for harmonizing site effects 

and preserving biological variability among the methods discussed above. Moreover, unlike 

ICA-SP, the performance of ICA-DP in site effects harmonization and signal enhancement was 

not affected by the number of components chosen for ICA decomposition. It could clean the 

site effects and strengthen the signal under any selected component number (Fig. 11).  

Finally, as a limitation of the proposed harmonization method, when the site effects variable 

is strongly related to the signal variable (Fig. 4), ICA-DP could not eliminate the intersection 

effects that are related with both site and signal variables (neither do other methods except 

GLM, the most aggressive one destroying signal-related information severely), thus the 

harmonized data are still correlated to site effects because of the inherent correlation between 

site effects and signal variables (Nevertheless, the correlation values in our simulation is really 

high and hardly appear in real data study). Another limitation to consider is the selection of the 

number of components to be extracted by ICA. Though we validated that the performance of 

ICA-DP in site effects harmonization and signal enhancement were not affected by the number 

of components chosen for ICA decomposition under three different selections for the number 

of components (see Figure. 11), it is not sufficient and verification methods should be developed 

further. However, to some extent, ICA-DP allows users to choose the number of components 

according to their own standard.  

Overall, the dual-projection harmonization method is more effective and powerful in 

removing site effects while preserving signal-related information than other methods mentioned 

above, and can enhance the sensitivity to detect signals of interest and remove all the effects 

that are only contributed by site difference. Compared to Combat, it is a data-driven method 

rather than utilizing the manually designed covariates for regressing. ICA-DP harmonization 

method has great potential for large-scale multi-site studies to produce combined data free from 

study-site confounds. 

 

5 Conclusion 

While combing the multi-site MRI data has great convenience that enhances the statistical 

results and obviates some of the shortcomings of the single-site study, the site effects come 

naturally, confounding the MRI data analysis and making the results hard to interpret. The 

traditional methods designed to eliminate the site effects encounter incomplete or aggressive 

harmonization, i.e., cannot eliminate the site effects well or may destroy the signal-related 

information. To tackle these shortcomings, we proposed a dual-projection data-driven method 

based on ICA, which can better eliminate the site effects and preserve the signals of interest. 

And we strongly recommend that researchers use the ICA-DP method to harmonize the MRI 



  

 

data as it can extract subject-specific loadings that correspond to the signal or site effects 

variable. 

 

Abbreviations: DP, dual-projection; DTI, diffusion tensor image; GLM, general linear model; 

GM, gray matter; ICA, independent component analysis; ICA-DP, ICA-dual projection; ICA-

SP, ICA-single projection; LICA, linked ICA; MRI, magnetic resonance imaging; PET, 

positron emission tomography; t-SNE, t-distributed stochastic neighbor embedding.  
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