
University of Jyväskylä

Faculty of Information Technology

Elahe Hajihashemi Varnousfaderani

Challenges and Insights in Semantic Search Using Language

Models

Master’s thesis of the Faculty of Information Technology

November 5, 2023

i

Author: Elahe Hajihashemi Varnousfaderani

Contact information: elahe.hajihashemi@gmail.com

Supervisors: Dr. Oleksiy Khriyenko

Title: Challenges and Insights in Semantic Search Using Language Models

Työn nimi: haasteita ja oivalluksia semanttisessa haussa kielimalleja käytettäessä

Project: Master’s thesis in Cognitive Computing and Collective Intelligence

Study line: Information Technology

Page count: 148 (122 = page count without appendices; 26 = page count of appendices)

Abstract

Information Retrieval systems such as search engines, originally designed to assist users in finding

information, have evolved to become more potent and have found utility in wider range of

applications by incorporating contextual comprehension using Language Models. Selecting the

proper Language Model corresponding to the desired task is a challenging multi-objectives

problem as each model has specific set of attributes which affect the performance. Accuracy,

resource and time consumption are the most important objectives considered in assessing the

quality of a search system. These objectives are addressed in this research by exploring the

performance of two Language Models with variant characteristics in developing a semantic search

pipeline. The studied Language Models include a distilled version of BERT model fine-tuned on

specific task and GPT-2 as a general pre-trained model with huge number of parameters.

The semantic search pipeline consisting of mapping the contents and queries into a common vector

space using Large Language Model and finding the most relevant results is implemented in this

study as experimental set up of the qualitative research. Utilizing evaluation metrics to assess the

model’s performance necessitates the availability of ground truth data. Therefore, current research

brings up various approaches aimed at generating synthetic ground truth to tackle evaluation and

fine-tuning challenges when labeled data is scarce. To follow the research objectives, quantitative

ii

data is gathered through an experimental setting and conclusions are drawn and recommendations

are raised by analyzing the results of the experiments.

The experimental results indicate the size of the model should not be the major criterion in

selecting the language model for downstream tasks. The model architecture and being fine-tuned

on special dataset will dramatically affect the performance as well. As it is shown by results, the

smaller fine-tuned model for semantic textual similarity surpasses the larger general model. The

experiment on investigating the proposed approaches for generating annotations signifies that

those methods are decently applicable in computing evaluation metrics and can be extended to

fine-tuning.

The results demonstrate that the task-oriented transferred learning by distillation and fine-tuning

can compromise the learning capacity instilled in general models by a larger number of parameters,

but it should be investigated in future research regarding the values set to various variables in this

research e.g., the number of tokens considered in splitting the large text into smaller chunks.

Moreover, it would be worthful to fine-tune the general large model as well in the future to

compare them in a more comparable condition.

Keywords: Natural Language Processing, Semantic Search, Large Language Models, Generative

Models, Fine-tuning, Transfer Learning

iii

List of Figures

Figure 1. The research architecture ..9

Figure 2. MLOps cycle...10

Figure 3. Word Embedding (Solanki, 2022) ..18

Figure 4. Generative models mathematical definition (OpenAI GPT-3, 2022)20

Figure 5. The adversarial procedure in training a GAN (What’s GAN, n.d.) ..22

Figure 6. Autoencoder structure (Li et al., 2017)..22

Figure 7. Reproduction of input data (Li et al., 2017) ...23

Figure 8. Autoencoder feature representation for classification (Li et al., 2017)23

Figure 9. RNN cell (Khriyenko, 2023) ...29

Figure 10. Fully connected RNN (“Recurrent Neural Network,” 2023) ..30

Figure 11. LSTM architecture (“Recurrent Neural Network,” 2023) ..30

Figure 12. GRU architecture (“Recurrent Neural Network,” 2023) ..31

Figure 13. Bi-directional RNN (Olah, 2015) ...31

Figure 14. Seq2Seq model use cases (guest_blog, 2020) ...32

Figure 15. sequence to sequence model (Nadeem, 2021) ..33

Figure 16. The concept of context relevancy (Sarkar, 2022) ..35

Figure 17. Query, Key, and Values concept in Self-Attention (Sarkar, 2022)37

Figure 18. The process of calculating attention value from the query, keys, and values (Sarkar, 2022) ...38

Figure 19. Attention block (Sarkar, 2022) ...39

Figure 20. Multi-head attention (Sarkar, 2022) ..40

Figure 21. Transformer architecture (Vaswani et al., 2017) ...42

Figure 22. Multi-head attention in Transformer (Vaswani et al., 2017) ...44

Figure 23. Machine translation process in the Transformer’s decoder (Sarkar, 2022)46

Figure 24. The difference between feature-based (left) and fine-tuning (right) (Yang, 2022)47

Figure 25. Pre-training and fine-tuning procedures for BERT (Devlin et al., 2019)49

Figure 26. GPT Transformer architecture (left) and input transformation for fine-tuning on different tasks

(right) (Radford et al., 2018) ...51

Figure 27. Comparison of the decoding layer in BERT (left) and EMD used in DeBERTa (right) (He et

al., 2021) ..55

Figure 28. Overview of multi-head self-attention relation distillation (Wang et al., 2021)56

Figure 29. Representation of a Bi-Encoder model (Ham, 2022) ...60

Figure 30. The functionality of Cross-Encoder as a fine-tuned version of BERT (Devlin et al., 2019)61

Figure 31. Cross-Encoder process (Ham, 2022) ...62

Figure 32. Combining Bi-Encoder and Cross-Encoder (Ham, 2022) ..62

Figure 33. computation of the recall metric RBERT (Zhang et al., 2020) ...63

Figure 34. Genre distribution of movies in the data frame ...72

Figure 35. Creating a judgment list with Method 1 ..75

Figure 36. Creating a judgment list with Method 2 ..77

Figure 37. Creating a judgment list with Method 3 ..78

https://jyu-my.sharepoint.com/personal/ehajihas_jyu_fi/Documents/Elahe-Thesis/Elahe_Hajihashemi_Thesis_Edited_14102023_2.docx#_Toc148193604

iv

Figure 38. A conceptual architecture for end-to-end search using transformer encoded vectors (Grainger

et al., 2021) ...82

Figure 39. Similarity matrix of the highest-scored chunk in the top 1 item re-ranked by Cross-Encoder

and query 1 ...91

Figure 40. Similarity matrix for the tokens of the highest scored chunk in the 2nd top item re-ranked by

Cross-Encoder and query 1 ...91

Figure 41. Similarity matrix for the tokens of the highest scored chunk in the 6th top item re-ranked by

Cross-Encoder and query 1. ..92

Figure 42. Similarity matrix for the tokens of the highest-scored chunk in the top 1 item re-ranked by

BERTScore and query 1 ...93

Figure 43. Similarity matrix for the tokens of the highest-scored chunk in the 3rd top item re-ranked by

BERTScore and query 1 ...94

Figure 44. Similarity matrix for the selected chunk of “Transcendence” and query1 109

Figure 45. Similarity matrix for the selected chunk of “Transcendence” and query 110

v

List of Tables:

Table 1. An example of a judgment list (Turnbull, 2021) ..65

Table 2. Scanning for Null values in columns of the data frame...71

Table 3. Parameter size of some language models on Hugging Face including the selected models in the

current project. ..83

Table 4. Processing time for embedding generation ...86

Table 5. The results of Bi-Encoder for both selected models ...87

Table 6. Bi-Encoder results using “msmarco-distilbert-base-dot-prod-v3” (Verma, 2021)88

Table 7. Re-ranking with Cross-Encoder using “msmarco-distilbert-dot-v5”90

Table 8. Re-ranking with BERTScore using “msmarco-distilbert-dot-v5” ...93

Table 9. Re-ranking with Cross-Encoder for candidates created by gpt2-large.95

Table 10. Re-ranking with BERTScore for candidates created by gpt2-large.96

Table 11. Re-ranking time spans..98

Table 12. Performance evaluation metrics calculated by applying Method 1 with “msmarco-distilbert-dot-

v5”. ... 100

Table 13. Performance evaluation metrics calculated by applying Method 1 with “gpt2-large” 101

Table 14. performance evaluation metrics calculated by applying Method 2 with “msmarco-distilbert-dot-

v5” .. 102

Table 15. performance evaluation metrics calculated by applying Method 2 with “gpt2-large”. 104

Table 16. common items in judgment lists created by Method 1 and Method2 using “msmarco-distilbert-

dot-v5” and “gpt2-large” respectively. ... 106

Table 17. Models’ evaluation employing the judgment list created by Method 3 107

Table 18. Results for query 1 .. 108

Table 19. Results for query 2 .. 108

Table 20. Bi-Encoder results using “msmarco-distilbert-base-dot-prod-v3” after fine-tuning(Verma, 2021)

 ... 112

vi

Contents

Abstract ... i

List of Figures... iii

List of Tables: .. v

Contents ... vi

1. Introduction ...1

2. Tools and Initiatives of Significance ...12

2.1 Parts of NLP Pipeline Utilized in Semantic Search ...12

2.1.1 Tokenization ...12

2.1.1.1 Word-based Tokenization .. 12

2.1.1.2 Character-based Tokenization .. 13

2.1.1.3 Sub-word-based Tokenization ... 14

2.1.1.3.1 Byte-Pair Encoding .. 15

2.1.1.3.2 WordPiece ... 16

2.1.1.3.3 Unigram ... 16

2.1.1.3.4 SentencePiece .. 17

2.1.2 Word Embedding ...17

2.2 Generative Models Utilized in NLP Tasks ..19

2.2.1 Generative Adversarial Network (GAN) ..21

2.2.2 Variational AutoEncoder (VAE) ...22

2.2.3 Autoregressive ..25

2.2.4 Large Language Models ..25

2.2.4.1 Foundational Models ... 25

2.2.4.2 Language Models (LM) .. 26

2.2.4.3 Large Language Model (LLM) .. 27

2.2.4.4 How Does a Language Model Work .. 27

2.3 Deep Learning Approaches Utilized in NLP Pipeline ..28

2.3.1 RNN and Sequence-to-Sequence Models ..28

2.3.1.1 Sequence-to-Sequence Models .. 32

2.3.2 Attention ..34

2.3.2.1 Self-Attention ... 35

2.3.2.2 Query, Key, and Values ... 36

vii

2.3.2.3 Multi-Head Attention... 39

2.3.3 Transformers..41

2.3.3.1 Encoder ... 42

2.3.3.2 Decoder.. 44

2.3.4 Transfer Learning ..46

2.3.5 Pre-trained Models ...48

2.3.5.1 BERT .. 48

2.3.5.2 GPT ... 50

2.3.5.3 DeBERTa .. 54

2.3.5.4 MiniLMv2 .. 55

2.3.5.5 DistilBERT .. 56

3. Semantic Search ...58

3.1 Semantic Search Pipeline ..58

3.1.1 Retrieval...59

3.1.2 Ranking and Re-ranking ...59

3.1.2.1 Bi-Encoder ... 60

3.1.2.2 Cross-Encoder ... 61

3.1.2.3 BERTScore .. 63

3.2 Evaluation Metrics ..64

3.2.1 Percision...67

3.2.2. Recall ..67

3.2.3 F1-measure ...67

3.2.4 Mean Reciprocal Rank (MRR) ..67

3.2.5 Mean Average Precision (MAP) ..68

3.2.6 Normalized Discounted Cumulative Gain (NDCG) ...68

3.3 Data Collection and Preparation ..69

3.3.1 Dataset ...70

3.3.2 Data Cleaning, Transformation, and Understanding ..70

3.3.3 Data Labeling ...73

3.3.3.1 Method 1 ... 73

3.3.3.2 Method 2 ... 76

3.3.3.3 Method 3 ... 78

3.3.4 Query Attributes...79

viii

4. Implementation ..81

4.1 Workflow ...81

4.2 Generate Embedding using Language Models ..85

4.3 Results and Analysis ...87

4.3.1 Bi-Encoder ...87

4.3.2 Re-ranking ...88

4.3.3 Generating Judgment List ...98

4.3.3.1 Method 1 ... 99

4.3.3.2 Method 2 .. 102

4.3.3.3 Method 3 .. 104

4.3.4 Natural Language Understanding.. 107

4.3.5 The results of a fined-tuned model on the utilized dataset ... 111

5. Conclusion and Discussion .. 114

References ... 118

Appendix ... 123

A. MSMARCO ... 123

B. Movies grouped by Genre after cleaning ... 123

C. Bi-Encoder .. 126

D. Embedding generation ... 127

E. Cross-Encoder as Re-ranker ... 128

F. BERTScore as Re-ranker code .. 128

G. Splitting the Plots into chunks .. 129

K. “msmarco-distilbert-dot-v5” results for all queries re-ranked with both models 137

Re-ranked with Cross-Encoder ... 137

Re-ranked with BERTScore .. 140

L. “gpt2-large” results for all queries re-ranked with both models ... 143

Re-ranked with Cross-Encoder ... 143

Re-ranked with BERTScore .. 146

1

1. Introduction

Nowadays search applications has taken a crucial role in various scenarios from daily life to

industrial and medical use cases. Users expect to interact with a system that provide the most

relevant results fast, even they would be pleased to communicate with their documents in natural

language. In every organization and even in every personal system there are many files that we

need to look through them frequently to find the required information. In such situations, the

presence of an application that can receive the requested information in natural language and be

able to search on behalf of the requester then provide them with the accurate results or exact answer

based on the retrieved sources is much appreciated. It can save a lot of time in any kind and any

size of organization and increase the productivity of the operators as they can invest that time to

do more meaningful tasks and enhance their creativity. This kind of search applications can

perform as operational assistants. For example, an ERP (Enterprise Resource Planning) company

could integrate a search application to their system to help their customers to get insights from

employee feedback using semantic search. Another case could be equipping the manual handbooks

of the products with a semantic search to look for the information by asking natural language

questions and get the exact answer quickly instead of advocating some time to go through all pages

of the handbook. Imagine, how helpful it could be for an online learning company to boost their

core search and question-answering mechanism with an AI-powered semantic search to support

the learners to find real-time answers to their questions based on the taught materials in any

modality from text to image and video.

It worth to note that search engines and recommendation systems are different types of Information

Retrieval systems that can benefit from a deep understanding of the domain, resulting in a semantic

search engine. For instance, a movie recommender system or an item recommender integrated with

an online fashion shop are two examples of the recommendation engines that employ the search

application to find the similarities in the recent request, historical data, and trend patterns.

The main objective of the search assistance is to facilitate accessibility to information hidden in a

huge number of documents within different sources, structures and hierarchies while being served

with low latency and high accuracy considered as user satisfaction factors. Besides including user

satisfaction factors, delivering a solution with the lower carbon footprint should be considered as

a pivotal key. This research is an attempt to introduce AI-powered search as an approach in

2

developing semantic search applications while considering the most effective elements in

determining the quality and speed of performance besides keeping the carbon footprint at the

lowest level. The main point here is that these three objectives may conflict, and the owner of the

solution should more precisely consider them in the development process to make the optimal

decision. So, this research is going to examine how some required considerations influence the

performance as a measure in making decision on the mentioned objectives. For instance, the size

of the utilized Language Model in development of the AI-powered search, the effect of applying

a task-specific or generally trained model and re-ranking the search results with machine learning

approaches. It should be mentioned that for comparing the influence of the factors, a proper

judgement list is required even though it is usually not feasible in real-world use cases. This is

another aspect that this research addresses.

Traditional approaches in Natural Language Processing utilized in search application development

primarily rely on keyword-based indexing and lexical matching consequently, they do not deeply

consider the context or meaning of the query and contents. To create a more intelligent solution

that can grasp search queries and offer responses grounded in semantically related information

from the knowledge source, it is essential to leverage Language Model and Transfer Learning.

This approach goes beyond conventional keyword matching, striving to comprehend the

underlying meaning and context of user queries. The result is a delivery of more precise and

contextually relevant search results.

The semantic search pipeline involves two key phases. In the first phase, the input query and the

collection of contents are converted into numerical representations. In the second phase, the most

similar representations to the query are sought, and the best-matching original content returns. The

magic happens when the more advanced models are applied to capture and store more meaningful

context from the query and contents in the form of the numerical representations that are called

word embeddings. These embeddings represent the semantic meaning of passages in a dense

vector space, where similar contents are located close together. The retrieved results would be

ranked based on the level of the measured similarity. As a further step, the basic retrieved contents

could be re-ranked based on more advanced metrics to achieve better performance.

In the literature there has been several methods proposed to score the contextual relativeness in

text-based information. Reimers et al. (2019) utilized an approach called Cross-Encoder with

BERT language model to predict a target value which is the textual similarity of the inputs. In this

3

method, two sentences are fed to the Transformer network which is followed by a classifier to

define the score of the similarity between them in the terms of the probability of being similar or

not. The Cross-Encoder utilized for data annotation as a technique to refine the human annotated

training data for Bi-Encoder models (Chiu et al. 2022).

 Zhang et al. (2020) proposed another method, called BERTScore, as an automatic evaluation

metric for text generation. BERTScore would be fed with two sentences as inputs then it computes

the similarity score between reference and candidate sentences in a token-wise level. The token

similarity is calculated using contextual embedding extracted by a Language Model. They claimed

that BERTScore correlates well with human judgment and could be a strong metric to measure the

model selection performance (Zhang et al. 2020). In this thesis, Cross-Encoder and BERTScore

methods are applied in the pipeline to examine their effect on the overall performance.

There are various Language Models (LM) with a diversity of characteristics that can be utilized in

textual information retrieval. The number of parameters that the model has and the number of

tokens in the input that the model can handle are some of those attributes that would affect the user

satisfaction from two perspectives including accuracy and latency. Therefore, this research

explores the performance of various models regarding these perspectives in order to select the

better model to satisfy the user’s expectations in a specific downstream task besides considering

the sustainability concept. In other words, it is an attempt to see if there is any room to deliver a

satisfactory solution to the use case with minimal sufficient resource consumption.

In the recent years of Deep Learning fast growth, training a variety of Language Models resulted

in a mutation in the Natural Language Processing applications. Devlin et al. (May 2019) introduced

a language representation model called BERT. BERT is a Bidirectional Encoder Representation

from Transformers. It is a pre-trained model that can be fine-tuned for any specific downstream

task. It creates decent results without any need for task-specific architecture modification. As one

of the most famous Transformer models the BERT pre-trained on a large corpus of unlabeled text,

it generates contextually rich embeddings for words and sentences. BERT has achieved state-of-

the-art performance in various NLP tasks (Devlin et al. 2019).

Sentence-BERT was proposed in August 2019 by Reimers et al. which is a modification of BERT

model. Even though BERT achieved excellent results on sentence-pair regression tasks like

semantic textual similarity, it is not computationally effective because a huge number of

combinations of request and contents’ sentences need to be fed to the model. Therefore, Sentence-

4

BERT emerged to derive semantically meaningful sentence embeddings that can be compared

simply in a vector space. This model reduced the consumed time for finding the most similar pair

dramatically while maintaining the accuracy (Reimers et al. 2019).

If an NLP task is developed in a response to a use-case that is required to be operated on the edge,

it will be more constrained regarding computational and memory resources. In March 2020,

DistilBERT was proposed as a method to pre-train a smaller general-purpose language

representation model which can be fine-tuned to achieve a good performance on different tasks.

Despite other distilled models, knowledge distillation applied in the pre-training phase. It reduced

the size of the BERT model while retaining its language understanding capabilities besides faster

operation which makes it suitable for operating on edge (Sanh et al. 2020).

Due to the scarcity of labeled data for training large language models for specific NLP tasks like

question-answering, semantic similarity assessment, and textual entailment, it would be

challenging to train an adequate discriminative task-specific model. Therefore, Radford et al.

(2018) proposed an approach for generative pre-training of a model on a diverse corpus of

unlabeled text, followed by discriminative fine-tuning on each specific task which is the

fundamental of the GPT (Generative Pre-trained Transformer) models.

GPT-2 Large is the second version of GPT models that is specific regarding introducing a language

model that can learn the task besides the language without any explicit supervision. It is a general-

purpose language model that stands out for its extensive model size and numerous parameters,

enabling it to comprehend complex patterns and dependencies in natural language in addition to

the success of zero-shot task transfer. However, due to its large size and complexity, it demands

significant computational resources for both training and inference (Radford et al. 2019).

Verma (2021) utilized the Sentence-BERT to implement a semantic search to improve the search

accuracy by understanding the content of the search query. It is mentioned that selecting the

appropriate model for your specific task remains the most important and the choice should be

based on the task requirements. The Synthetic Query Generation technique is applied by him to

tackle the challenge of the label scarcity to fine-tune the model (Verma, 2021). The outcomes of

applying re-ranker in this research is compared with the fine-tuned results of Verma’s

implementation.

Choosing the right language model for a specific task is critical and challenging. Therefore, in this

research two language models with different features are selected to be compared to address the

5

influential factors in making the decision on the fitting model for developing solution for a specific

task. GPT2 is selected as a general-purpose model with a huge number of parameters with wide

capacity of knowledge capturing and the other one is a small, distilled version of BERT which is

specifically fine-tuned for semantic text similarity task.

Assessing the performance of an Information Retrieval (IR) system involves evaluating how

effectively the system can retrieve relevant information in response to user queries. The

performance evaluation provides a measure for system developers to assess the effectiveness of

the applied pipeline, ultimately leading to improved search results and increased user satisfaction.

The size of the model, which is determined by the number of trained parameters in the training

phase, is a crucial factor in model performance as the bigger model has the more capacity of

contextual learning. On the other hand, it comes with the more resource consumption for retraining

and serving which would lead into latency and higher carbon footprint in the solution. Therefore,

it is essential to computes the model performance besides applying techniques that can improve

the model performance in a lower cost. Re-ranking is one those kinds of techniques that can be

investigate if in combination with a smaller model can lead into better performance.

To assess the performance of the model, the predicted relevant items should be compared to the

ground truth. Consequently, proper ground truth is essential for evaluation. However, it is not

available in many real-world situations. Ground truth, which is also called judgment list in this

research, is a list of relevant items among the source of knowledge with respect to each query. In

addition to evaluation, the ground truth is required in fine-tuning the pre-trained model on the

domain-specific data.

Because of the importance of the presence of the judgment list, this research aims to explore

various methods to create synthetic annotations using Cross-Encoder and BERTScore to address

the challenge of limited ground truth, which is crucial for both evaluation and fine-tuning

processes.

In total the current research is an experimental attempt in answering the following research

questions:

1. How to create a semantic search using language models?

2. How to tackle the difficulty of fine-tuning a language model when there is an

absence of labeled data?

6

3. Utilizing MLOps framework to develop and deliver an end-to-end semantic search

solution.

4. Exploring whether a general larger language model outperforms a task-specifically

fine-tuned smaller one in semantic search.

5. Investigating the performance of models with varying numbers of parameters in the

field of natural language understanding.

The hypothesis in this research is that if a general larger model with higher contextual capacity

would be able to perform comparably to a smaller one with fewer parameters which is fine-tuned.

However, there are various items that should be considered in drawing a conclusion, for instance,

task conditioning in the pre-training stage, task-oriented layer added on top of the Transformer

architecture and being fine-tuned with specific small dataset. This research is organized to

investigate the hypotheses by exploring the effect of the utilized model in a conductive research

method supported by analyzing the quantitative data collected in an experimental setting.

There are two typical evaluation approaches in Information Retrieval based on user involvement.

If real users are asked to judge search engine performance, especially in Interactive Information

Retrieval, user feedback, and user interaction are crucial to evaluate. On the contrary, in automatic

evaluation, a data corpus and binary evaluations are required for performance evaluation (Pérez-

Agüera et al., 2010).

Evaluation based on test collection is a widely utilized method for developing retrieval strategies.

Benchmarks provide a standardized and replicable experimental setup, allowing multiple

researchers to evaluate and compare results consistently. While user-oriented evaluation is

valuable, it is costly, complex, and challenging to replicate. The stability and standardization

offered by test collections make it an appealing choice for evaluation purposes (Clough &

Sanderson, 2013).

A test collection typically comprises three main components: a document collection, a set of topics

representing users' information needs, and relevance judgments indicating which documents in the

collection are relevant to each topic (Clough & Sanderson, 2013).

To establish an evaluation based on test collection to develop an automatic evaluation process, a

collection of documents supplied with metadata and a set of queries are needed. Therefore, a

publicly available dataset inspiring for Information Retrieval is used as the source of information

https://www.zotero.org/google-docs/?MXskFD
https://www.zotero.org/google-docs/?MXskFD
https://www.zotero.org/google-docs/?sOpqAw
https://www.zotero.org/google-docs/?sOpqAw
https://www.zotero.org/google-docs/?broken=qdRtDV

7

besides a set of designed queries, to nourish the experimental settings to collect numerical data on

performance evaluation to accomplish primary research data.

There are two substantial concepts in the performance evaluation of the semantic search pipeline

and IR systems encompass efficiency and effectiveness. Efficiency is a measure of the number of

required resources to achieve the search results e.g., computational resources in addition to low

latency. While effectiveness implies the quality of the returned results which can be measured with

the evaluation metrics as an automatic approach or by user involvement through their interactions

and feedback (Clough & Sanderson, 2013).

This research attempts to simulate a real problem situation of evaluating the performance of a

semantic search system when there is no label for the documents in the corpus. It is highly dealt

with bringing up methods to calculate the numerical metrics and analysis them so, it is a well-

suited match for quantitative research.

An experimental evaluation is done based on different metrics to distinguish different results

returned using two samples of language models. The goal is to compare the performance of the

large but general-purpose language model, GPT-2, and a small but fine-tuned version of BERT

model. Therefore, how changing the language model, as the prominence factor in the pipeline,

may affect effectiveness and efficiency which is represented by the evaluation metrics and time

consumption respectively is investigated. Consequently, the conduction of this research is

implemented in correlational and experimental setups.

In the current thesis a dataset is chosen as a test collection that contains a document collection,

topics, and complementary information about documents but there is no relevance judgment.

Accordingly, the Wikipedia Movie Plots is selected as dataset in this research which is described

in detail in sections 3.3.1 and 3.3.2. Besides that, a set of queries is required to be delivered to the

semantic search procedure and produce results to be studied. The queries fed to the pipeline can

be as simple as multiple keywords or in the form of a natural language query that conveys more

contextual information. The experimental setting of this thesis is supplied with NLP queries

designed to cover various topics in the document collection.

Numerical data is collected through implementing three methods suggested to provide a relevance

judgment list and these qualitative data is used for analyzing the outcomes in descriptive statistics

manner.

https://www.zotero.org/google-docs/?sOpqAw

8

Effectiveness is evaluated in this thesis using neural-based evaluation metrics like Bi-Encoder,

Cross-Encoder, and BERTScore regarding several proposed techniques to approximate the human

judgment to tackle the lack of annotation in the dataset. Precision, recall, and Mean Reciprocal

Mean (MRR) are used as statistics to compare the evaluation metrics and analysis the values of

those metrics for different queries.

Quantitative research is the best match for the research targets in this thesis because the

experimental setting can be replicated according to the implementation details besides the results

can be compared statistically and directly. Moreover, the procedure is reliable and consistent so

large samples can be processed and analyzed. Therefore, the hypothesis could be established and

examined carefully before concluding.

The analytics phase in conducting the research goals which is done in the quantitative method is

supported by scrutinizing the results that are provided by the search system before being mapped

to the numbers which could be considered as qualitative observations. In this regard, the researcher

is in the role of the decision maker to review the relevancy level of the results.

The first research question explores developing of a search application using Large Language

Models. Then how to conquer the challenge of fine-tuning a language model in a situation that

there is no labeled data is targeted in the second research question. Implementing an end-to-end

semantic search solution in an MLOps framework corresponds to the third question. The fourth

research question addresses the comparison between the performance of a large general-purpose

language model with a very smaller one which is a fine-tunned version of the BERT. This model

is fine-tuned on ‘Semantic Text Similarity Benchmark’ dataset to improve the accuracy of the

nearest-neighbor search. Besides those stated goals, the capacity of the models in natural language

understanding is assessed implicitly by ingraining the initial requirements in designing the test

query set where the fifth research question is targeted.

Research questions 2 and 4 should be equipped with an annotated list of records determining if

they are relevant to the query or not. As the scarcity of annotated datasets is a serious dilemma in

real-world situations in the current research a dataset with the same structure is chosen to resemble

the actual setting of designing and developing a solution based on intelligent information retrieval.

Therefore, it is essential to propose a solution to deliver a judgment list for each query in the test

query set. Section 3.3.3 covers this topic and describes three methods to resolve the lack of labels.

9

In compliance with creating a semantic search or in general an information retrieval system using

LM embeddings, re-ranking is the followed-up phase in the architecture. As it is described in

questions 1, 2, and 4, to achieve the determined goals, re-ranking would be beneficial. So, the

Cross-Encoder described in Section 3.1.2.2 and the BERTScore explained in detail in Section

3.1.2.3 are utilized to re-rank the candidate list suggested by the Bi-Encoder. This process can

improve user satisfaction in the cost of consuming more resources therefore it will be done on a

smaller set of content that is the retrieved outputs by the Bi-Encoder. Figure 1 depicts the process

that is followed and implemented in the current research as an attempt to respond to research

questions.

Figure 1. The research architecture

The judgment list shown in Figure 1 is produced by the introduced methods in Section 3.3.3. The

LM represents the employed language model that can be Sentence-BERT or GPT-2 and the

tokenizer is the matched one with the applied language model. The detail of each language model

and its requirements are described in Section 2.3.5.

10

The model ability in natural language understanding will be analyzed corresponding to the outputs

of both models and re-rankers which is targeted in question 5.

The major objective of applying a suitable language model to an information retrieval or

specifically a semantic search pipeline is to develop an outstanding recommendation or search

application that is efficient regarding resource consumption, latency, cost, and user satisfaction.

Because of that, it is substantial to develop an automatic approach to evaluate the performance of

the pipeline as a basis for comparison to select the most suitable model for the targeted task and

available dataset. Such applications can be employed in various use cases so the procedure should

be executed and monitored in a well-managed workflow all the way from data ingestion to

deployment in production. MLOps is the solution to drive this situation which is the sought

objective in research question 3.

“MLOps stands for Machine Learning Operations. MLOps is the core function of Machine

Learning engineering, focused on streamlining the process of taking machine learning models to

production and then maintaining and monitoring them” (What Is MLOps?, 2021).

In Figure 2 the cycle of MLOps illustrates the principal activities required to deliver a Machine

Learning solution into production which includes Data Preparation, Development, Train or Re-

train, Review, Deploy, Inference, Monitor, and Exploratory Data Analysis (EDA).

Figure 2. MLOps cycle

The thesis structure in nutshell is as follows: in Chapter 2 the significant tools and approaches

utilized in Natural Language Process pipelines is discussed which includes tokenization as a

preprocessing task before extracting the knowledge from contents in the form of word embeddings,

Generative models which are the crucial type of machine learning algorithms in text generation

and in the last section of this chapter the main functional elements of the Large Language Models

in NLP pipeline are discussed which are categorized in Generative models as a sub-class of Deep

Learning algorithms. Chapter 3 introduces the semantic search as it is studied in this research as

https://www.zotero.org/google-docs/?mWeCaR
https://www.zotero.org/google-docs/?mWeCaR
https://www.zotero.org/google-docs/?mWeCaR

11

an extensively applicable feature in many use cases. This chapter is divided into 3 sections to cover

the primarily stages required to accomplish the semantic search workflow. This workflow initiates

retrieval, ranking, and re-ranking to create results. Then, the performances measurement resides

in the next section as the second phase in the flow to coherent the comparison between various

models utilized in the retrieval. The last section discusses the initial asset in the any machine

learning solution which is data therefore, selection or providing a proper dataset is the preliminary

task. Solution implementation begins with loading the dataset, data exploratory analysis to get

insight into the data, and cleaning and transforming it to make it as a proper dataset to be fed into

the model. Data annotation requirement for evaluation and training besides the data labeling

techniques are proposed in this section as well. The final subsection in this section covers another

crucial aspect of input data, especially user query, which is addressed under the title of “Query

Attributes”.

In Chapter 4, main steps as a holistic workflow and implementation details are introduced in

Sections 1 and 2, followed by presentation and discussion around outcome results in Section 4.3.

Section 4.3 is divided into subsections based on the qualitative objectives determined in the

research for example presenting the results of Bi-Encoder besides various applied re-rankers

including Cross-Encoder and BERTScore to provide the baseline for comparison and analysis. The

same logic is followed by tabulating the outcomes of the proposed labeling methods to arrange the

reference for assessing their performance. Moreover, Sections 4.3.4 and 4.3.5 discuss and evaluate

the performance of applied pipelines in this research with the related ones in the literature.

12

2. Tools and Initiatives of Significance

2.1 Parts of NLP Pipeline Utilized in Semantic Search

2.1.1 Tokenization

Although language models are unable to directly read and process raw text, most data in NLP tasks

are presented in this form. To bridge this gap, tokenization is employed to convert the text into

numerical format since language models operate solely with numbers. Various approaches exist to

accomplish this task, each aiming to derive the most informative representation. This chapter

explores three distinct algorithms including word-based, character-based, and sub-word-based

with the objective of identifying the most meaningful encoding method.

2.1.1.1 Word-based Tokenization

This process involves splitting the text based on spaces or specific rules like punctuation marks. If

the word-based tokenization is applied to the sentence "Let’s learn tokenization!" it will be split

into "Let’s", "learn", and "tokenization" regarding space criterion and will be split into "Let", "’s",

"learn", "tokenization", and "!" with respect to punctuation rule.

This approach is interesting, as the model has representations that are based on entire words. This

algorithm assigns a unique identifier or "ID" to each word, allowing the model to have

representations based on complete words. This approach offers advantages as a single number can

convey significant contextual and semantic information contained within a word in a sentence.

However, it has its limitations. For instance, similar words like "dog" and "dogs" are treated as

entirely different due to distinct IDs, preventing the model from understanding their relatedness

and the fact that "dogs" represents the plural form of "dog". Another challenge is the vast number

of words in a language. If a model aims to learn all possible sentences and consider an ID for each

different word, the number of words known as vocabulary size can quickly become huge. This a

challenge because each ID is mapped into a large vector representing the word’s meaning and

considering all these mappings with a huge vocabulary size demands a big number of weights.

To address this, we can make our tokenizer more efficient by excluding certain words that may

not be essential. For example, during tokenizer training on a text, we can select the 10,000 most

frequent words instead of including every word in the text or the entire language. This approach

13

creates a basic vocabulary where the tokenizer can convert these 10,000 words into numbers, while

any other word is represented as an "out-of-vocabulary" or "unknown" word. However, this

compromise means that all unknown words will have the exact same representation, resulting in

information loss if there are numerous unknown words present (Summary of the Tokenizers, n.d.).

2.1.1.2 Character-based Tokenization

Instead of dividing the text into words, this approach involves segmenting it into individual

characters. Languages generally have a vast number of distinct words, but the number of characters

remains relatively small. For instance, the English language comprises approximately 170,000

different words, requiring a considerably large vocabulary to cover them all. In contrast, a

character-based vocabulary can suffice with only 256 characters, including letters, numbers, and

special characters. Even languages such as Chinese, which have many characters, typically have

dictionaries containing up to 20,000 characters but over 375,000 different words.

Character-based vocabularies offer the advantage of requiring fewer unique tokens compared to

word-based tokenization dictionaries. Additionally, these vocabularies tend to be more extensive

than their word-based counterparts. By encompassing all characters used in a language, even

unseen words during tokenizer training can still be tokenized, resulting in reduced occurrences of

out-of-vocabulary tokens. Furthermore, this approach allows for the correct tokenization of

misspelled words, instead of immediately categorizing them as unknown. However, it is important

to note that this algorithm is not without limitations. One limitation is that characters do not convey

as much information as a whole word does even though This is not generally applicable to all

languages. While ideogram-based languages often convey substantial information within

individual characters, languages based on the Roman alphabet, for example, require the model to

comprehend multiple tokens to extract the meaning of a single word. Consequently, character-

based tokenizers encounter another challenge. The resulting sequences are translated into a

significant number of tokens, which can impact the model's context size and reduce the amount of

text that can be utilized as input. Despite these considerations, character-based tokenization has

demonstrated promising outcomes in the past and should be taken into account when tackling new

problems, as it addresses certain issues encountered with word-based algorithms (Summary of the

Tokenizers, n.d.).

https://www.zotero.org/google-docs/?GhjqMV
https://www.zotero.org/google-docs/?GhjqMV
https://www.zotero.org/google-docs/?GhjqMV
https://www.zotero.org/google-docs/?LtC1VT
https://www.zotero.org/google-docs/?LtC1VT
https://www.zotero.org/google-docs/?LtC1VT
https://www.zotero.org/google-docs/?LtC1VT

14

2.1.1.3 Sub-word-based Tokenization

This approach falls between word-based and character-based tokenization methods, aiming to

strike a balance between the drawbacks of both approaches. The objective is to mitigate the issues

related to large vocabularies, a high number of out-of-vocabulary tokens, loss of meaning for

similar words, and excessively long sequences.

These algorithms operate on the principle that frequently used words should remain intact as single

units, while rare words can be broken down into meaningful sub-words. For example, the word

"dog" would ideally be represented by a single token, rather than being split into individual

characters. However, when encountering the word "dogs," the tokenizer should understand that it

shares the same root as "dog" but with the addition of the letter "s," indicating a plural form while

preserving the core concept.

Similarly, more complex words like "tokenization" can be decomposed into meaningful sub-

words. The root of the word is "token," and "ization" serves as additional information that modifies

the meaning. Consequently, it is sensible to split the word into "token" as the root (labeled as the

"start" of the word) and "ization" as a complementary component (labeled as the "completion" of

the word). This allows the model to comprehend the usage of "token" in various contexts and

recognize the connections and similarities between words like "token," "tokens," "tokenizing," and

"tokenization." Moreover, the model can infer those words sharing similar suffixes, such as

"modernization" and "immunization," are likely to be used in similar syntactic situations.

Subword-based tokenizers typically employ a mechanism to distinguish between tokens that

represent the beginning of words and tokens that complete words. Taking the example mentioned,

the token "token" serves as the start of a word, while "##ization" completes the word. The prefix

"##" signifies that "ization" is a part of a word rather than the initial component. The convention

of using "##" as a prefix originated from the BERT tokenizer, which is based on the WordPiece

algorithm. Other tokenizers may use different prefixes to indicate word parts or beginnings.

Numerous algorithms can be utilized for subword tokenization, and many state-of-the-art models

in English leverage these approaches. They contribute to reducing vocabulary size by sharing

information across different words and enabling the interpretation of prefixes and suffixes. These

techniques ensure that meaning is preserved across similar words by recognizing the common

tokens they consist of (Summary of the Tokenizers, n.d.).

https://www.zotero.org/google-docs/?BU8gaw
https://www.zotero.org/google-docs/?BU8gaw
https://www.zotero.org/google-docs/?BU8gaw

15

In conclusion, sub-word-based tokenization has been widely used in NLP applications since its

advantages include reasonable vocabulary size, the ability to learn meaningful context-

independent representation, and proficiency in processing unseen words by decomposing them

into known words.

There are various algorithms that have developed the idea of sub-word-based tokenization relying

on training on the corpus that the corresponding model will be trained on. These algorithms consist

of Byte-Pair Encoding (BPE), WordPiece, Unigram, and SentencePiece (Summary of the

Tokenizers, n.d.).

2.1.1.3.1 Byte-Pair Encoding

Byte-Pair Encoding (BPE) is a popular sub-word tokenization technique used in natural language

processing. It was introduced in 2015 by Sennrich et al. in a paper with the title Neural Machine

Translation of Rare Words with Sub-word Units. It performs on the results of a pre-tokenizer that

splits the training data into words. The pre-tokenizer can be as simple as space tokenization like

what is utilized in GPT-2 and Roberta. More advanced pre-tokenizers use rule-based tokenization.

Once the pre-tokenization stage is complete, a collection of distinct words is obtained, and their

frequencies in the training data are recorded. Byte-Pair Encoding (BPE) proceeds by constructing

a foundational vocabulary comprising all symbols present in the set of unique words. It then

proceeds to learn merging rules, which combine two symbols from the base vocabulary to form a

new symbol. This process continues iteratively until the desired vocabulary size is reached. It is

worth noting that determining the desired vocabulary size is a hyperparameter that needs to be

specified prior to training the tokenizer. It starts with a vocabulary containing individual characters

or bytes and gradually merges the most frequently occurring adjacent pairs based on a predefined

criterion, typically the likelihood of their co-occurrence. This merging process continues until a

desired vocabulary size, or a predetermined number of merge operations is reached.

During tokenization, BPE splits words into sub-word units based on the learned merge operations.

By breaking down words into sub-word units, BPE captures both the individual morphemes and

the overall word structure, enabling models to handle complex words and unseen combinations

effectively.

In this method, the vocabulary size i.e., the base vocabulary size and the number of merges is a

hyperparameter to choose. For instance, GPT has a vocabulary of size 40478 since it has 478 base

characters and training will be stopped after 40000 merges. GPT-2 uses bytes as the base

https://www.zotero.org/google-docs/?QgmCqP
https://www.zotero.org/google-docs/?QgmCqP
https://www.zotero.org/google-docs/?QgmCqP
https://www.zotero.org/google-docs/?QgmCqP

16

vocabulary of size 256 ensuring that every base character is included with additional rules to

handle the punctuations therefore, it has a vocabulary size of 50257 which corresponds to the 256

bytes base tokens, a special end-of-text token, and learning stopped after 50000 merges (Sennrich

et al., 2016) and (Summary of the Tokenizers, n.d.).

2.1.1.3.2 WordPiece

The WordPiece is another form of sub-word tokenization algorithm introduced by Schuster et al.

in 2012 and is similar to BPE. This algorithm first creates a vocabulary that contains every

character in the training data and then starts learning a predefined number of merge rules. The

difference between BPE and WordPiece is that in WordPiece symbol pairs are not selected based

on their frequency but they are chosen based on maximizing the likelihood of the training data if

they are present (Summary of the Tokenizers, n.d.).

2.1.1.3.3 Unigram

The unigram algorithm was introduced in 2018 by Kudo which considers a huge number of

symbols in the initial vocabulary and progressively decreases the number of symbols in the

vocabulary to reach the desired vocabulary size. Regarding that, this method performs entirely

differently from BPE and WordPiece. The base vocabulary could consist of all pre-tokenizer words

and the most common substrings. It should be noted that Unigram is not used directly but in

collaboration with SentencePiece.

The Unigram training happens based on minimizing the loss function over training data for the

given current vocabulary and unigram language model. The algorithm computes the loss function

increment by removing the symbol from the vocabulary. This calculation will be repeated for each

symbol in the vocabulary and then a certain percent of symbols that make the lowest loss increment

would be removed from the vocabulary iteratively when the desired vocabulary size is the stop

criterion.

The probability of each token in the training corpus will be saved on top of the vocabulary.

accordingly, the algorithm can choose the most likely tokenization also it can offer possible

tokenization according to their probability (Summary of the Tokenizers, n.d.).

https://www.zotero.org/google-docs/?SFKZ68
https://www.zotero.org/google-docs/?SFKZ68
https://www.zotero.org/google-docs/?F9fcnO
https://www.zotero.org/google-docs/?F9fcnO
https://www.zotero.org/google-docs/?F9fcnO
https://www.zotero.org/google-docs/?0puuLj
https://www.zotero.org/google-docs/?0puuLj
https://www.zotero.org/google-docs/?0puuLj
https://www.zotero.org/google-docs/?7CrrOC
https://www.zotero.org/google-docs/?7CrrOC
https://www.zotero.org/google-docs/?7CrrOC

17

2.1.1.3.4 SentencePiece

There is a common issue with all tokenization methods discussed so far. The problem is that they

all consider space as the separator between words. Even though, it does not apply in all languages

for example languages like Chinese, Japanese, and Thai need specific pre-tokenizer.

SentencePiece introduced in 2018 by Kudo et al. has been a solution to this problem. In this

method, the space would be included in the vocabulary set and the input to the algorithm is

considered as raw input stream. Therefore, the BPE or Unigram will be utilized in collaboration

with SentencePiece considerations to provide an appropriate vocabulary. ALBERT and T5 are two

samples of the language models that use SentencePiece in combination with Unigram (Summary

of the Tokenizers, n.d.).

2.1.2 Word Embedding

Natural Language Processing (NLP) is a field of artificial intelligence that focuses on enabling

computers to understand, interpret, and generate human language. It involves developing

algorithms and models that can process and analyze textual data, enabling tasks such as text

classification, sentiment analysis, machine translation, and question-answering.

NLP task is a challenging problem in Deep Learning because of a crucial requirement of a proper

representation of words since the words are not understandable for computers. Therefore, some

techniques should be utilized to characterize the words in numerical format.

Word embedding is a technique commonly used in NLP to represent words as dense and

continuous vector representations in a lower-dimensional space. It aims to capture the semantic

and syntactic relationships between words, allowing algorithms to interpret and reason about

words based on their vector representations.

Traditionally, words in NLP were represented using one-hot encoding, where each word is

represented as a sparse vector with a value of 1 for its corresponding index and 0 for all other

indices. However, one-hot encoding lacks the ability to capture semantic relationships between

words and suffers from high dimensionality.

To mitigate the drawbacks of the traditional techniques for word embedding, more recent methods

learn word representations by training on large corpora of text. These models generate dense vector

representations, where words with similar meanings are placed closer together in the embedding

space. For example, words like "cat" and "dog" might have similar vector representations,

https://www.zotero.org/google-docs/?maDMmJ
https://www.zotero.org/google-docs/?maDMmJ
https://www.zotero.org/google-docs/?maDMmJ
https://www.zotero.org/google-docs/?maDMmJ

18

reflecting their semantic similarity. This concept is depicted in Figure 3 where each word is

mapped to a dense vector corresponding to its relationship to the surrounding words in the

sequence and the concept in total. The dimensionality reduction in the figure is applied to show

the closeness of vectors in a 2-D space.

Figure 3. Word Embedding (Solanki, 2022)

Pennington et al. introduced GloVe (Global Vectors for Word Representation) in 2014 as a vector

space representation for words which can capture semantic and syntactic regularities. Glove is

designated to capture the semantic relationships between words based on their co-occurrence in a

large corpus of text. It constructs a word-context matrix based on word co-occurrence statistics.

The matrix records how often words appear together in the same context within the corpus. The

algorithm in this approach aims to learn word vectors that minimize an objective function that

quantifies the difference between the dot product of word vectors and the logarithms of the

observed word co-occurrence probabilities. When the algorithm is trained, it can produce word

vectors of fixed dimensionality for each word in the vocabulary (Pennington, et al. 2014).

FastText is another technique for mapping words into embedding based on the Enriching Word

Vector with Subword Information approach which is proposed by Bojanowski et al. in 2017. The

19

idea of this approach is to overcome the limitation of the word representation models that ignore

the morphology of the words.Specially it happens when a word representation algorithm is trained

on large unlabled corpora of a language with large vocabularies and many rare words. Therefore,

the proposed method is formed based on skipgram model, where each word is represented as a bag

of characters n-grams, and a vector representation is associated to each character n-gram. In other

words, it operates at the subword level. It first segment words into smaller units called character

n-gram. FastText builds a vocabulary not only for whole words but also for these subword tokens.

Then it learns only the vectors for each word by summing up the vectors of its constituent subword

tokens. This composition captures the semantic meaning of the word based on the meanings of its

constituent parts. The key advantages of this model are being fast and ability of compute

embedding for words that did not appear in the training data (Bojanowski et al. 2017).

Word embeddings have several advantages in NLP tasks. First, they capture semantic relationships

between words, allowing models to generalize better and make more accurate predictions. For

example, with word embeddings, a model can infer the similarity between two words or even find

analogies like "king" is to "queen" as "man" is to "woman". Second, word embeddings reduce the

dimensionality of the representation space, making computations more efficient and less memory

intensive. Lastly, they enable the transfer of knowledge from pre-trained word embeddings to

downstream tasks with limited training data, improving performance even in data-scarce scenarios.

Semantics of words is more beyond the semantic meaning of their constituent parts or subwords.

There are many contextual complex relationships between words in sentences or even paragraphs

and wider text structures that needs to be captured. The more contextual information encoded in

word representations, the more successful NLP downstream task can be delivered. Large Language

Models (LLM) are used to encode words and other terms into vectors based on their context in

sentences or larger text according to their capacity for learning.

2.2 Generative Models Utilized in NLP Tasks

Generative artificial intelligence (AI) describes algorithms, such as ChatGPT, that can be used to

create new content, including audio, code, images, text, simulations, and videos.

Generative models are a type of unsupervised machine learning model that aims to create or

generate new data that is like a given training dataset. These models learn the underlying patterns,

structure, dependencies, and relationship of the training data and then use that knowledge to

20

generate new samples that resemble the original data. A Generative AI model starts by efficiently

encoding a representation of what you want to generate. For example, a Generative AI model for

text might begin by finding a way to represent the words as vectors that characterize the similarity

between words often used in the same sentence.

In other words, Generative Models approximate the distribution of the data, by observing the

training data through the probabilistic lens, which summarizes the information about the dataset

within a finite set of parameters.

To train the Generative Model, there must be a huge amount of data because the significant

consideration in training this type of model is a dramatically larger number of training data than

the number of model parameters. Therefore, the models are forced to discover and capture the

features and distribution of the training data automatically in order to generate it (create samples

from the model). Regarding the concept of training Generative Models, it should be noticed that

there is not a simple supervised setting and explicit desired labels. The goal is to come adequately

close to the real samples.

To describe

Generative Models mathematically, a dataset of examples would be defined as

𝑥1, 𝑥2, . . . , 𝑥𝑛 samples of a true data distribution 𝑝(𝑥). The model also describes a distribution

𝑝𝜃
∧(𝑥) that is defined by drawing samples from unit Gaussian distribution and mapping them

through a neural network. The parameter 𝜃 determines the modification of the generated

distribution. The final goal is to find the parameter 𝜃 that minimizes the distance between the

generated distribution and the true one. The mathematical definition is illustrated in Figure 4

(OpenAI GPT-3, 2022).

Figure 4. Generative models mathematical definition (OpenAI GPT-3, 2022)

https://www.zotero.org/google-docs/?mGNaDr
https://www.zotero.org/google-docs/?mGNaDr
https://www.zotero.org/google-docs/?mGNaDr

21

There are three approaches in generative models including Generative Adversarial Networks

(GAN), Variational AutoEncoder (VAE), and Autoregressive.

2.2.1 Generative Adversarial Network (GAN)

As a variation of Generative models, A Generative Adversarial Network (GAN) is a type of AI

model that consists of two neural networks to estimate the generative model in an adversarial

process: a generator (G) which is a generative model that captures data distribution and a

discriminator (D) that estimates the probability of a sample drawn from training data rather than

G. The primary purpose of a GAN is to generate new data that is similar to a given training dataset.

The generator network in a GAN learns to generate synthetic data by mapping random noise (unit

Gaussian distribution) or input data to the desired output data. For example, in the case of

generating realistic images, the generator network takes random noise as input and learns to

generate images that resemble the training dataset. Initially, the generated data may not resemble

the real data, but as the model trains, it improves its ability to produce more realistic outputs.

The discriminator network, on the other hand, acts as a critic and tries to distinguish between real

and generated data. It learns to classify whether a given input is real or fake by receiving both real

data from the training set and generated data from the generator network. The discriminator

provides feedback to the generator, helping it improve its generated outputs over time.

During training, the generator and discriminator networks engage in a competitive process. The

generator aims to produce synthetic data that is indistinguishable from real data, while the

discriminator aims to accurately classify between real and generated data. Through this adversarial

training process, both networks gradually improve their abilities, leading to the generation of high-

quality data samples. The adversarial procedure in training a GAN is illustrated in Figure 5.

One of the significant advantages of GANs is their ability to capture complex patterns and generate

data that closely resembles the training dataset. GANs have been successfully used for tasks such

as image synthesis, video generation, text generation, and even generating new artwork. However,

training GANs can be challenging, as they require careful balancing and tuning of the generator

and discriminator networks to achieve stable and desirable results (Goodfellow et al., 2014).

https://www.zotero.org/google-docs/?qdmokm

22

Figure 5. The adversarial procedure in training a GAN (What’s GAN, n.d.)

2.2.2 Variational AutoEncoder (VAE)

Variational AutoEncoder is a type of generative model that combines elements of both

autoencoders (a type of unsupervised learning approach) and probabilistic modeling.

Autoencoders are not used to generate data but, they are an approach for learning a lower

dimensional feature representation from unlabeled training data. So, if there is input data X and

feature Z is going to be learned, there will be an encoder to map the input data to feature Z. The

encoder can take various forms even though it would be usually implemented using neural

networks. As it is mentioned, the dimensionality of Z would be smaller than X which means that

the encoder should just map the most meaningful factors of variation in the data into Z (Stanford

University School of Engineering, 2017).

Figure 6. Autoencoder structure (Li et al., 2017)

The model is trained so that the features can be used to reconstruct the original data with another

network called Decoder. The Decoder network's output (𝑋̂) would be the same size as the input

data. The Autoencoders are usually symmetric which means both Encoder and Decoder are

implemented with the same neural network architecture. Figure 4 demonstrates the process of the

reproduction of input data from learned feature representation. In the training procedure, the

squared error loss function (L2 Loss function) will be minimized in order to reconstruct the input

data (𝑋̂) from feature representatives (Z). The loss function is in the form of ||𝑥 − 𝑥̂||
2
. It should

https://www.zotero.org/google-docs/?b21vN9
https://www.zotero.org/google-docs/?b21vN9
https://www.zotero.org/google-docs/?b21vN9
https://www.zotero.org/google-docs/?CSryb8
https://www.zotero.org/google-docs/?CSryb8
https://www.zotero.org/google-docs/?NvFCrx

23

be noted that the feature representation Z could be used for supervised learning. In other words,

the Decoder layer could be replaced by a classifier which is shown in Figure 8 (Stanford University

School of Engineering, 2017).

Figure 7. Reproduction of input data (Li et al., 2017)

Figure 8. Autoencoder feature representation for classification (Li et al., 2017)

The feature space Z could be considered as a latent variable that captures the factors of variation

in the training data. The goal is to generate new data samples from that. Therefore, to generate X

from an unobserved latent space Z, it is required to make an assumption for the latent space

distribution which could be Gaussian distribution to draw samples from Z formulated as 𝑝𝜃∗(𝑧),

and then X would be sampled utilizing the conditional distribution defined as 𝑝𝜃∗(𝑥|𝑧(𝑖)) which

would be implemented as a Decoder neural network. According to the applying distributions to

sample from the model in order to generate data, Variational Autoencoder is considered as a

probabilistic spin on Autoencoders that is formulated as follows.

𝑝𝜃(𝑥) = ∫ 𝑝𝜃(𝑧)𝑝𝜃(𝑥|𝑧)𝑑𝑧

https://www.zotero.org/google-docs/?ZXszZk
https://www.zotero.org/google-docs/?ZXszZk
https://www.zotero.org/google-docs/?IrPTg2
https://www.zotero.org/google-docs/?Pejz3Q

24

The model parameters should be learned to maximize the likelihood of the training data. The

problem in this formulation is that the integral is intractable, and the likelihood cannot be

computed. Besides that, the posterior density 𝑝𝜃(𝑧|𝑥) = 𝑝𝜃(𝑥|𝑧)𝑝𝜃(𝑧) / 𝑝𝜃(𝑥) is also

intractable. The proposed solution is to define an Encoder network that approximates 𝑝𝜃(𝑧|𝑥) that

derives a lower bound on the data likelihood which can be optimized. The encoder network is also

called “recognition or inference” and the decoder is called “generation”.

The samples generated using Variational autoencoders are blurrier and of lower quality compared

to GANs (Kingma & Welling, 2022).

The encoder network encodes the input data into two vectors: the mean (μ) and the standard

deviation (σ) of the latent distribution. These vectors represent the parameters of a multivariate

Gaussian distribution in the latent space.

Next, a random sampling step is introduced to sample a point (z) from the Gaussian distribution

defined by μ and σ. This sampling is done to make the model stochastic, allowing it to generate

diverse outputs for a given input.

The sampled point (z) from the latent space is passed through a decoder network to generate the

reconstructed data.

A crucial aspect of VAEs is the choice of loss function. VAEs use a loss function that encourages

the latent space to follow a standard Gaussian distribution and ensures that the reconstructed data

closely matches the input data.

The divergence between the distribution of the latent space (defined by μ and σ) and a standard

Gaussian distribution is measured with KL Divergence Loss. It encourages the latent space to be

well-behaved and encourages the network to learn a meaningful representation.

During training, VAEs aim to minimize the combined loss (reconstruction loss and KL divergence

loss) by adjusting the parameters of both the encoder and decoder networks.

After training, the VAE can be used for data generation by sampling points from the latent space

and passing them through the decoder network to produce new data points. By interpolating

between latent space points or exploring nearby regions, the VAE can generate variations of data

like the training data. VAEs are often applied in tasks like data generation, image denoising, and

dimensionality reduction.

https://www.zotero.org/google-docs/?X9tunG

25

2.2.3 Autoregressive

Autoregressive models are a class of statistical models used to analyze and forecast time series

data. The fundamental idea behind autoregressive models is that the value of a variable at a given

time point can be predicted based on its previous values. It could be said that it is a regression of

a variable against itself over time. The autoregression models of order p can be composed as

follows where p determines how many past values are included in the model.

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + . . . + 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡

An autoregressive generative model is a type of generative model that learns to generate new data

by modeling the conditional probability distribution of each data point given the previous data

points. In other words, it generates data by considering the dependencies and relationships between

the elements in a sequence. From this point of view, they can be compared with sequential models

like Recurrent Neural Networks (RNN).

Autoregressive models are commonly used in fields such as natural language processing and time

series analysis, where the order and context of the data play a crucial role. These models can

capture complex patterns and generate new samples that exhibit similar characteristics to the

training data. The key idea behind autoregressive models is that each element in the sequence is

generated based on a learned probability distribution conditioned on the previous elements

𝑝(𝑥𝑡+1|𝑥1, 𝑥2, . . . , 𝑥𝑡).

A typical example of such models is GPT. GPT is the first autoregressive model based on the

transformer architecture, pre-trained on the Book Corpus dataset.

2.2.4 Large Language Models

2.2.4.1 Foundational Models

Foundation Model is described as follows by Wikipedia:

A Foundation Model (also called Base Model) is a large Machine Learning (ML) model trained

on a vast quantity of data at scale (often by self-supervised learning or semi-supervised learning)

such that it can be adapted to a wide range of downstream tasks. Foundation Models have helped

bring about a major transformation in how AI systems are built, such as by powering prominent

chatbots and other user-facing AI. The Stanford Institute for Human-Centered Artificial

26

Intelligence's (HAI) Center for Research on Foundation Models (CRFM) popularized the term

(“Foundation Models,” 2023).

A foundation model, in the context of large language models (LLMs), refers to a base model that

serves as the starting point for developing more specialized or domain-specific models. It is

designed to capture general knowledge and language understanding across a wide range of topics

and tasks. A foundation model is typically pre-trained on vast amounts of text data to learn patterns,

context, and relationships within the language.

Foundation models act as the building blocks for various downstream applications and tasks. They

provide a strong foundation of language understanding that can be fine-tuned and adapted to

specific use cases, such as translation, sentiment analysis, question answering, and more. By

utilizing transfer learning, where the knowledge gained during pre-training is transferred to

specific tasks, foundation models enable efficient development and deployment of language-based

AI systems.

Large language models (LLMs) are a type of foundation model that has been scaled up in size and

capacity, often with millions or even billions of parameters. LLMs, such as GPT-3, form enhanced

language capabilities on a wide range of natural language processing tasks. They have become the

focus of intensive research and development efforts, driving advancements in the field of AI and

revolutionizing the way language-based algorithms are developed and utilized.

2.2.4.2 Language Models (LM)

A language model is an artificial intelligence (AI) system designed to understand and generate

language-based content. It uses statistical and probabilistic techniques to predict the next word or

sequence of words in each context in the form of a sequence of words occurring in a sentence. By

capturing the patterns, structures, and semantics of the language. Language models are crucial in

enhancing computers’ ability to comprehend and generate human-like content.

Text generation is one of the core functions of language models. It involves generating coherent

and contextually relevant text on a given input. Language models achieve this by learning from

large amounts of text data and acquiring the ability to predict the most probable next word or

phrase. Through this process, they can generate meaningful sentences, paragraphs, and even entire

articles. In simple words, a language model predicts the next word in a sequence.

https://www.zotero.org/google-docs/?yGFfL5

27

Language Models have many applications for instance: Part of Speech (PoS) tagging, Machine

Translation, Text Classification, Speech Recognition, Information Retrieval, New Article

Generation, Question Answering, etc.

2.2.4.3 Large Language Model (LLM)

Large language models and generative models are closely related in the field of artificial

intelligence and machine learning, with large language models often serving as a specific type of

generative model specialized in generating human-like text. They have played a significant role in

advancing natural language processing tasks and have demonstrated their generative capabilities

across various applications. While generative models encompass a broader category, large

language models are a prominent subset, particularly renowned for their text generation

capabilities.

They are trained on an extensive amount of data and has enormous parameters. These models can

generate highly coherent and contextually relevant text due to their immense size and training data.

Large language models, such as OpenAI's GPT-3, have billions of parameters and are trained on

massive text corpora, enabling them to exhibit remarkable language understanding and generation

capabilities.

While a language model refers to the general concept of a model that understands and generates

human language, a large language model specifically highlights the scale and complexity of the

model due to its extensive training and parameter size.

The training process for a large language model involves exposing it to diverse and extensive text

corpora, such as books, articles, and internet data. By analyzing this vast amount of text, the model

learns to predict the likelihood of certain words or phrases following a received input.

Large language models have demonstrated impressive language understanding and generation

capabilities. They can generate realistic and contextually appropriate responses in various

applications, including chatbots, virtual assistants, content creation, Question Answering systems,

and language translation. Due to their extensive training and parameter size, large language models

have the potential to revolutionize how we interact with AI systems and consume information.

2.2.4.4 How Does a Language Model Work

Language Models as an approach to developing AI algorithms to comprehend and generate

language have been widely studied in the past two decades. The approach evolved from statistical

28

models to deep neural models. These models are designed to predict the next word in the sentence

by learning the features and characteristics of the language by examining the texts feed to it.

An LM assigns probabilities to the sequence of arbitrary symbols in a way that maximizes the

probability of that sequence (𝑤1, 𝑤2, . . . , 𝑤𝑛) in a specific language which would be formulated as

follows (OpenAI GPT-3, 2022):

𝑃(𝑤1, 𝑤2, . . . , 𝑤𝑛) = 𝑝(𝑤1)𝑝(𝑤2| 𝑤1)𝑝(𝑤3| 𝑤1, 𝑤2) . . . 𝑝(𝑤𝑛|𝑤1, 𝑤2, . . . , 𝑤𝑛−1) =

 ∏ 𝑝(𝑤𝑖|𝑤1, . . . , 𝑤𝑖−1)𝑛
𝑖 = 1

The sentence “Where are we going” can be considered as a sequence of words that the last word,

“going”, is the target to be generated as the next symbol in the sequence.

𝑆 = 𝑊ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑤𝑒 𝑔𝑜𝑖𝑛𝑔

𝑃(𝑆) = 𝑝(𝑊ℎ𝑒𝑟𝑒) × 𝑝(𝑎𝑟𝑒 | 𝑊ℎ𝑒𝑟𝑒) × 𝑝(𝑤𝑒 | 𝑊ℎ𝑒𝑟𝑒 𝑎𝑟𝑒) × 𝑝(𝑔𝑜𝑖𝑛𝑔 | 𝑊ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑤𝑒)

The probability of a sentence can be defined by the product of the probability of each symbol in

the condition of the previous sequence of symbols.

2.3 Deep Learning Approaches Utilized in NLP Pipeline

Deep Learning is a subfield of machine learning that has revolutionized Natural Language

Processing in several ways by enabling the development of models that can understand, generate,

and process human language more effectively, leading to advancements in various NLP

applications. These models have transformed the way we interact with and extract insights from

textual data. One Deep Learning approaches that has been widely utilized in NLP tasks is Word

Embedding techniques like GloVe and FastText discussed in the Section 2.1.2. Other approaches

including Recurrent Neural Networks that can produce a sequence of data, Transformer Models

and Attention mechanism to understand the context and relationship between words in a sentence,

and Transfer Learning are introduced in the following sections in this chapter.

2.3.1 RNN and Sequence-to-Sequence Models

A recurrent neural network (RNN) is a class of artificial neural networks where connections

between nodes can create a cycle, allowing the output from some nodes to affect subsequent input

https://www.zotero.org/google-docs/?SW7a4P
https://www.zotero.org/google-docs/?SW7a4P
https://www.zotero.org/google-docs/?SW7a4P

29

to the same node. This allows it to exhibit temporal dynamic behavior (“Recurrent Neural

Network,” 2023).

RNNs process sequential data by retaining and utilizing information from previous steps. Unlike

feedforward neural networks that process each input independently, RNNs have internal memory

that allows them to consider the context and dependencies among the elements in a sequence

besides they can handle variable-length sequences, maintain information about the order and share

parameters across the sequence.

The fundamental building block of an RNN is the recurrent neuron, which takes an input along

with its own previous output and uses them to compute the current output. This recurrent structure

enables RNNs to maintain a hidden state that captures the information from previous inputs and

influences the computation of subsequent outputs. A single RNN cell is illustrated in Figure 9.

Figure 9. RNN cell (Khriyenko, 2023)

RNNs are well-suited for tasks that involve sequential data, such as natural language processing,

speech recognition, time series analysis, and handwriting recognition. They perform well in

modeling and generating sequences, as they can capture long-term dependencies and learn patterns

over time.

RNNs come in many variants including Vanilla, Gated Recurrent Unit (GRU), and Long Short-

Term Memory (LSTM).

The basic RNN is a fully connected RNN where the outputs of all neurons connect to the input of

all neurons. Fully connected RNN (FRNN) is shown in Figure 10. In other RNN topologies, the

weights of some connections are set to zero to lead to a disconnection between those neurons.

https://www.zotero.org/google-docs/?dpSW81
https://www.zotero.org/google-docs/?dpSW81
https://www.zotero.org/google-docs/?Wt3VcR

30

Figure 10. Fully connected RNN (“Recurrent Neural Network,” 2023)

One important variant of RNNs is the Long Short-Term Memory (LSTM) network. LSTMs

address the vanishing gradient problem that can occur in traditional RNNs by introducing

specialized memory cells that selectively retain or forget information over time which are called

“forget gates”. LSTMs have become popular in many applications due to their ability to effectively

capture long-term dependencies and mitigate the vanishing gradient issue. Figure 11 demonstrates

the architecture of LSTM. The LSTM is significantly capable of deciding on how much of each

component should be let through by the gates structures which are shown in Figure 11 by 𝐹𝑡, 𝐼𝑡,

and 𝑄𝑡 for Forget gate, Input gate, and Output gate respectively. Forget gate decides what

information should be thrown away, the Input gate determines what new information should be

added to the cell, and the Output gate indicates what would be the output.

Figure 11. LSTM architecture (“Recurrent Neural Network,” 2023)

Another variant is the Gated Recurrent Unit (GRU), which is similar to LSTM but with a simplified

architecture. It combines the forget and input gates into a single gate called the Update gate and

merges the cell and hidden state. GRUs also address the vanishing gradient problem and have

shown comparable performance to LSTMs in various tasks while being computationally efficient.

GRU architecture illustrated in Figure 12 has fewer parameters than LSTM and does not include

any output gate which means the output cannot be filtered.

https://www.zotero.org/google-docs/?T1Etj9
https://www.zotero.org/google-docs/?sbinnF

31

Figure 12. GRU architecture (“Recurrent Neural Network,” 2023)

There is another architecture of RNNs that can traverse in the reverse direction also. Bi-directional

RNNs consider not only the context of the previous occurrences but also the future context in

prediction by connecting two hidden layers to receive the information from backward and forward

simultaneously to the same output. The idea is derived from the fact that the output at time t

depends on both past and future elements that appear in the sequence. The architecture of BiRNN

would be described as two RNNs stacked on top of each other in different directions leading to the

collaboration of both hidden states in computing the output. Figure 13 demonstrates the Bi-

directional RNN with two hidden layers of opposite directions to the same output.

Figure 13. Bi-directional RNN (Olah, 2015)

Training RNNs involves updating the network's parameters using gradient-based optimization

methods, such as backpropagation through time (BPTT), which is an extension of the standard

backpropagation algorithm. BPTT computes gradients by unfolding the recurrent structure of the

network over time and propagating errors back through each time step.

RNNs can be used for both supervised and unsupervised learning tasks. In supervised learning,

RNNs can be trained with labeled data to perform tasks like sequence classification, named entity

recognition, and machine translation. In unsupervised learning, RNNs can be used for tasks like

language modeling, where the network learns to predict the next word given previous words.

https://www.zotero.org/google-docs/?XccKCJ
https://www.zotero.org/google-docs/?zd1wvL

32

While RNNs have been successful in many applications, they also face challenges. They can be

computationally expensive to train and prone to issues like vanishing or exploding gradients,

which can affect learning and model performance. Additionally, RNNs may struggle to capture

very long-term dependencies due to the limitations of their recurrent structure.

2.3.1.1 Sequence-to-Sequence Models

Sequence-to-Sequence (Seq-to-Seq) models are an extension of RNNs designed specifically for

tasks involving variable-length input and output sequences. Deep learning models like the Seq2Seq

model, with the help of attention mechanisms, are used for tasks like machine translation and text

summarization. Figure 14 depicts some examples of the use cases.

Figure 14. Seq2Seq model use cases (guest_blog, 2020)

Despise the Deep Neural Networks (DNN) are extremely powerful in machine learning to capture

input features and create outstanding performance, they can only be applied to inputs with fixed

lengths. For tasks like question-answering where each of the questions and answers is formed in

sequences of various lengths and the length of the sequence is not known preceding, the DNNs are

not applicable. In such cases, a domain-agnostic method that could be trained to map sequences to

sequences would be effective.

The main concept of implementing Seq2Seq models is to employ two recurrent neural networks

(RNNs), an encoder RNN and a decoder RNN. The encoder processes the input sequence step by

step, generating a fixed-length representation of context. This context vector contains the encoded

information from the entire input sequence and serves as the starting point for the decoder.

https://www.zotero.org/google-docs/?4v58WW

33

The decoder RNN takes the context vector as its initial hidden state and generates the output

sequence step by step. At each time step, the decoder takes the previously generated token (word,

character, or other unit) as input and produces the next token in the output sequence. This process

continues until an end-of-sequence token is generated or a maximum length is reached. The

Seq2Seq model architecture is illustrated in Figure 15.

Figure 15. sequence to sequence model (Nadeem, 2021)

Seq2Seq models can be implemented using different types of RNNs, such as Long Short-Term

Memory (LSTM) or Gated Recurrent Units (GRUs), as encoder and decoder units. These RNN

units allow the model to capture and process sequential information effectively. The LSTM can

take sentences of different lengths as input and convert them into fixed-dimensional vector

representations. For example, in machine translation, since translations are often rephrased of the

source sentences, the LSTM is seeking to find sentence representations that effectively capture

their meaning. This is because sentences with similar meanings are positioned closer to each other

in the vector space, while sentences with different meanings are placed further apart. The similarity

between the sequences could be computed and compared with respect to the fixed-length vector

representation.

As has been discussed in the previous chapter, a standard RNN computes a sequence of outputs

(𝑦1, . . . , 𝑦𝑇) regarding a given sequence of inputs (𝑥1, . . . , 𝑥𝑇) by iterating over the following

equation:

ℎ𝑡 = 𝑠𝑖𝑔𝑚(𝑊ℎ𝑥𝑥𝑡 + 𝑊ℎℎℎ𝑡−1)

𝑦𝑡 = 𝑊𝑦ℎℎ𝑡

The problem is that when the input and output have different lengths and complex relationship, it

will not be straightforward how to apply the RNN. The solution to this problem is to map the input

sequences to a fixed-length representation which is called 𝑣 in the formulation. Then map that

https://www.zotero.org/google-docs/?NhKtfX

34

representation to the output sequence utilizing another RNN (decoder) which computes the

conditional probability of the output (Sutskever et al., 2014).

 𝑝(𝑦1, . . . , 𝑦𝑇′|(𝑥1, . . . , 𝑥𝑇)) = ∏ 𝑝(𝑦𝑡|𝑣, 𝑦1, . . . , 𝑦𝑡−1)𝑇′

𝑡=1

Even though Seq2Seq models have shown impressive performance in various sequence generation

tasks, they may face challenges when dealing with very long sequences and dependencies, happens

to gradient vanishing or gradient explosion. In addition, they need long training steps because the

optimization regarding many parameters takes a long time, and the size of the network depends on

the length of the sequence. The last but not the least issue with Seq2Seq models is that RNNs are

not suitable for parallel computation. All the computations in the RNNs network occur sequentially

and cannot be parallelized.

One important extension to Seq2Seq models is the attention mechanism. The attention mechanism

allows the decoder to focus on specific parts of the input sequence when generating each token in

the output sequence. This mechanism helps the model handle long sequences and improves the

performance besides fitting parallelization (Sarkar, 2022).

2.3.2 Attention

The attention mechanism in transformers is a fundamental component that enables the model to

focus on relevant parts of the input sequence when making predictions. Unlike traditional

sequence-to-sequence models that use fixed-length context vectors, transformers allow for more

flexible and adaptive information processing.

According to what is explained in this chapter, RNNs as the foundation of Sequence-to-Sequence

models, would encode the input sequence of the occurrences till time t to a hidden vector to be

passed to the decoder to generate the output sequence at time t+1.

On the other hand, the Attention mechanism would not map the whole input sequence into a fixed-

length vector. Instead, it allows the decoder to learn to just attend to some parts at each step of

generation based on the input sequence and what has been produced so far (Montantes, 2019).

Attention is a mechanism that computes the importance or relevance of each input token with

respect to the current decoding step. It allows the model to assign different weights or attention

scores to different parts of the input sequence, highlighting the most relevant information for the

current prediction.

https://www.zotero.org/google-docs/?ma0ecB
https://www.zotero.org/google-docs/?mZpeZQ
https://www.zotero.org/google-docs/?fVD7gm

35

2.3.2.1 Self-Attention

The self-attention mechanism is a key component of transformers that allows the model to attend

to different positions within the same input sequence. Unlike traditional attention mechanisms that

focus on the interaction between two different sequences, self-attention enables the model to

capture dependencies and relationships within a single sequence. To attain a clear understanding

of how self-attention works, consider the sentence “Bark is very cute and he is a dog” as an

example. This sentence has 9 words or tokens. The positionally closest words to the word “he” are

“and” and “is” the preceding and succeeding respectively. But these words do not provide any

context for the word “he”. Even though the words “Bark” and “dog” are more related to “he” from

a contextual point of view. It seems that context is more relevant than proximity.

Assume that the same sentence is fed to a computer, in this case, each word is considered as a

token 𝑡 and each token is mapped to a word embedding 𝑉. The goal is to enhance the word

embedding form 𝑉 to 𝑌 which contains more context information by providing some kind of

weighting or similarity. The concept of context relevancy is shown in Figure 16.

Figure 16. The concept of context relevancy (Sarkar, 2022)

In an embedding space, semantically similar words are supposed to have similar embeddings. For

example, the word “king” is more related to the words, “queen” and “royalty” than to the word

“zebra”. Similarly, “zebra” will be closer to “horse” and “stripes” than the word “emotion”.

Intuitively, the word embeddings will be multiplied by each other to obtain the weight vectors W.

The initial embedding of the first word will be multiplied by the embedding of all words in the

sentence. These weights are normalized to have a sum of 1.

https://www.zotero.org/google-docs/?LYclF1

36

𝑉1𝑉1 = 𝑊11 , 𝑉1𝑉2 = 𝑊12 , 𝑉1𝑉3 = 𝑊13 ………… 𝑉1𝑉9 = 𝑊19

Those weight vectors would be used in the calculation of new word embeddings to attain more

context. Therefore, the weights are multiplied by the initial embeddings of all the words in the

sentence.

𝑊11𝑉1 + 𝑊12𝑉2 + 𝑊13𝑉3 + + 𝑊19𝑉9 = 𝑌1

𝑊21𝑉1 + 𝑊22𝑉2 + 𝑊23𝑉3 + + 𝑊29𝑉9 = 𝑌2

.

.

.

𝑊91𝑉1 + 𝑊92𝑉2 + 𝑊93𝑉3 + + 𝑊99𝑉9 = 𝑌9

𝑊11 to 𝑊19 are all weights that have the context of the word 𝑉1. so, when these weights will be

multiplied with each word, those words are reweighted to the first word. This process will be

repeated for all words in the sentence so, each word gains some context from every other word. It

should be remarked that the order or proximity of the words does not influence each other. This

approach of adding some context to the words in a sentence is known as Self-Attention (Sarkar,

2022).

2.3.2.2 Query, Key, and Values

There is an issue with the described scenario in the previous part which is it includes no trainable

parameters in the formulation. It is evident that if some trainable parameters will be added to the

system, the network learns some patterns and captures better context during training.

In the considered instance sentence “Bark is very cute and he is a dog”, it would be observed that

the initial embedding vectors 𝑉 appeared 3 times in the calculation of final embeddings 𝑌. These

three occurrences of 𝑉 can be referred to by the concepts of Query, Keys, and Values. The Query

could be described as the current state of the network, Values indicate what the network is going

to pay attention to, and Keys determine the degree of attention that should be paid to its

corresponding value.

In self-attention, the input sequence is divided into three components: queries, keys, and values.

These components are derived from the same input representation, but they are linearly

https://www.zotero.org/google-docs/?c82V3G
https://www.zotero.org/google-docs/?c82V3G

37

transformed into different projections. Each position in the sequence generates its own query, key,

and value vectors.

To make the concept of Query, Keys, and Values, assume that the goal is to extract all the words

similar to the first word 𝑉1. In this definition, 𝑉1 is the Query. This query then will do a dot product

with all the words in the sentence (𝑉1to 𝑉9) which are addressed as Keys. The idea is depicted in

Figure 17. consequently, the combination of Query and Keys results in the weights. In the next

step, the weights will be multiplied with all the words which this time are referred to as Values in

order to compose the final embeddings.

The context-based embedding that is calculated by the idea of Query, Keys, and Values as the self-

Attention mechanism, would be formulated in the form of matrices to be able to be trained with a

neural network. Accordingly, the Key vectors 𝑉1to 𝑉9would be multiplied by a matrix 𝑀𝑘of shape

𝑘 × 𝑘 (key matrix). similarly, the Query vector is multiplied with the matrix 𝑀𝑞, and the Value

vectors are multiplied with the Values matrix 𝑀𝑣. all the values in these matrices can be trained

by the neural network and provide better context than just using self-Attention.

Figure 17. Query, Key, and Values concept in Self-Attention (Sarkar, 2022)

The idea of Query, Keys, and Values comes from database operations. If a database is considered

a structured storage of key values, to retrieve a value 𝑣𝑖 from the database based on query 𝑞 and

key 𝑘𝑖, some operations should be done. The query will be sent to the database to identify a key

https://www.zotero.org/google-docs/?OEyfhT

38

that corresponds to a certain value. Attention is supposed to be a process like the database

operation but in a probabilistic manner.

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞, 𝑘, 𝑣) = ∑ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑞, 𝑘𝑖) ∗ 𝑣𝑖

𝑖

The only difference between database retrieval and attention is that in database retrieval we only

get one value as input, but in attention, we get a weighted combination of values. In the attention

mechanism, if a query is most like key 1 and key 4, then both these keys will get the most weights,

and the output will be a combination of value 1 and value 4. Figure 18 shows the process of

calculating the final attention value from the query, keys, and values.

Figure 18. The process of calculating attention value from the query, keys, and values (Sarkar,

2022)

As is shown in Figure 18, in step 1 the similarity values will be measured using query and keys.

Both the query and the keys are embedding vectors. Similarity S can be calculated using various

methods. Some examples of similarity functions are formulated as follows:

𝑠𝑖 = 𝑓(𝑞, 𝑘𝑖) = 𝑞𝑇𝑘𝑖 𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑚𝑒𝑡ℎ𝑜𝑑 (𝑇 𝑖𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒)

𝑠𝑖 = 𝑓(𝑞, 𝑘𝑖) = 𝑞𝑇𝑘𝑖/√𝑑 𝑠𝑐𝑎𝑙𝑒𝑑 𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑑 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑘𝑒𝑦)

𝑠𝑖 = 𝑓(𝑞, 𝑘𝑖)

= 𝑞𝑇𝑊𝑘𝑖 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑞𝑢𝑒𝑟𝑦 𝑖𝑠 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑎 𝑛𝑒𝑤 𝑠𝑝𝑎𝑐𝑒)

Step 2 is to find the weights 𝑎 using SoftMax function. The similarities are connected to the weights

like the fully connected layer.

https://www.zotero.org/google-docs/?hi1IUD
https://www.zotero.org/google-docs/?hi1IUD

39

𝑎𝑖 =
exp (𝑠𝑖)

∑ exp (𝑠𝑖)𝑗

The last step calculates the weighted combination of the results of the SoftMax (𝑎) with the

corresponding value (𝑉) (Sarkar, 2022).

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 = ∑ 𝑎𝑖𝑉𝑖

𝑖

The attention block would be developed as neural network representation which is illustrated in

figure 19. The word embeddings are fed to some linear layers that do not have “bias” elements and

just do matrix multiplication. Each linear layer is assigned to the query, keys, and values. This

block can now be used in a neural network and is known as the Attention block. Multiple such

attention blocks can be added to provide more context. And gradient backpropagating could be

used to update the attention block (weights of keys, queries, values).

Figure 19. Attention block (Sarkar, 2022)

2.3.2.3 Multi-Head Attention

In the context of transformers, attention mechanisms play a vital role in capturing dependencies

and modeling relationships within input sequences. Two common variations of attention are

single-attention and multi-head attention.

Single attention refers to the use of one single attention head in the transformer model. In this case,

the model computes attention scores between query and key vectors and applies the resulting

weights to the corresponding value vectors, producing an attended representation. Single attention

allows the model to focus on relevant parts of the input sequence, but it may have limitations in

capturing diverse patterns and attending to multiple aspects simultaneously.

https://www.zotero.org/google-docs/?qTacxt
https://www.zotero.org/google-docs/?DZRSkU

40

On the other hand, multi-head attention extends the attention mechanism by incorporating multiple

parallel attention heads. Each attention head learns to attend to different patterns or aspects of the

input sequence independently. Therefore, the model performs multiple attention computations in

parallel, resulting in multiple sets of attended representations.

To make it clearer, consider the previously mentioned example sentence “Bark is very cute and he

is a dog”. In this example, the words “Bark”, “cute”, and “he” are semantically and grammatically

corresponding to the word “dog” and give some further information about it. Only one attention

head may not be able to correctly identify all these three words as relevant words to the word

“dog”. More attention heads, for instance, 3 heads could be added to the architecture to manage to

capture more relevant words.

In order to develop a muti-head attention block, it is required to extent the block with more linear

layers as the queries, keys, and values. These layers would be trained independently and in parallel.

These multiple attention layers will produce multiple outputs that should be concatenated to give

the final attention output. The architecture of multi-head attention is demonstrated in Figure 20

(Sarkar, 2022).

Figure 20. Multi-head attention (Sarkar, 2022)

Multi-head attention offers several advantages over single attention. First, it allows the model to

capture different types of information and patterns in the input sequence. Each attention head

specializes in attending to specific relationships or dependencies, providing a more comprehensive

understanding of the data. By aggregating the outputs from multiple heads, the model can consider

various perspectives and utilize diverse information when making predictions.

https://www.zotero.org/google-docs/?U7ELJO
https://www.zotero.org/google-docs/?InfA3z

41

Additionally, multi-head attention enhances the model's ability to model long-length

dependencies. Different attention heads can attend to different positions and capture relationships

across a wide range of distances. This enables the model to effectively handle tasks that require

long-term context and understanding of the input sequence.

Another benefit of multi-head attention is its ability to improve model stability. Since it may have

a smaller number of layers than single attention to address the same number of positions. On the

other hand, according to recent advancements in Deep Learning, training stability is not a problem

anymore. So, deep single attention should be replaced with a multi-head attention block (Liu et

al., 2021).

While multi-head attention offers advantages, it does come with increased computational

complexity compared to single attention. Each attention head introduces additional parameters and

requires separate computations, which can make the model more resource intensive. However, the

benefits in terms of improved performance and representation power often outweigh the

computational costs.

2.3.3 Transformers

Transformer was introduced in 2017 by Vaswani et al. as a neural network architecture that

revolutionized the field of NLP also effectively influenced computer vision approaches. It has

become the foundation for state-of-the-art models like BERT and GPT. Transformer architecture

is solely based on the attention mechanism and the recurrence and convolution are entirely

removed which resulted in parallelizing and requiring less time to be trained (Vaswani et al., 2017).

As has been discussed in the previous chapters, most competitive sequential models have an

encoder-decoder structure. The encoder maps the input sequence to representation which is usually

a space with lower dimensionality and then the decoder generates an output sequence using that

representation. This process continues sequentially, at each step, the previously generated symbols

will be fed to the network in addition to the input.

In Transformer architecture, similarity there are encoder-decoder stacks, but the input will not be

processed sequentially. The encoder of the transformer can process the whole sentence in parallel,

making it much faster and better than RNNs. This architecture is shown in Figure 21.

https://www.zotero.org/google-docs/?UvPr6F
https://www.zotero.org/google-docs/?UvPr6F
https://www.zotero.org/google-docs/?DOos8r

42

Figure 21. Transformer architecture (Vaswani et al., 2017)

2.3.3.1 Encoder

The whole input sentence is fed to the encoder through an ‘Input Embedding’ block which is

followed by a ‘positional encoding’. Input Embedding is a module in the encoder that converts a

word to its vector representation. In the embedding space, similar words have similar embeddings.

The ‘Positional Encoding’ is essential to maintain a record of the position of each word in the

sentence. Because the sentence is passed to the pipeline entirely not sequentially, it is needed to

store the positional information. Without Positional Encoding, the model considers the input

sentence like a bag of words with no meaning.

The idea behind Positional Encoding comes from the fact that a word in different sentences can

have different meanings. For example, in the sentence “I own a cute dog.” the word ‘dog’ means

a pet and appears in position 5 but in the sentence “What a lazy dog you are!”, it addresses being

worthless and occurs in position 4 and it comes with the word ‘lazy’ that give context to it.

Therefore, Positional Encoding would provide information based on the context and the position

https://www.zotero.org/google-docs/?02nN2K

43

of the word in the sentence. The ‘Positional Encoding’ is added to the ‘Input Embedding’ before

going through the attention network. So, both should be with the same dimensionality.

There are various methods to implement Positional Encoding. Vaswani et al. have utilized sine

and cosine functions of different frequencies:

 𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/10002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠(𝑝𝑜𝑠/10002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

Where pos is the position, and i is the dimension. Thus, each dimension of the positional encoding

corresponds to a sinusoid.

The encoder is composed of a stack of N=6 identical layers producing an output of dimension

𝑑𝑚𝑜𝑑𝑒𝑙 = 512 (Vaswani et al., 2017).

When the positional encoding is added to the input embedding, the results will be passed to the

multi-head attention block. This block receives a vector including vectors representing words in

the sentence having positional embedding. The multi-head attention computes the attention of

every position with every other position of the vector.

During the attention computation, each word is considered as a "query" and matched with other

words in the sentence referred to as "keys". The attention mechanism then combines the

corresponding "values" in a weighted manner. This part of the process is performed using the

Scaled Dot-Product Attention pipeline which is shown on the left side of Figure 22. In multi-head

attention, multiple sets of values, queries, and keys are employed, allowing for multiple attention

calculations that incorporate contextual information. These different attention results are combined

to obtain a final attention value, which encompasses the context from all words and multiple

attention computations. This approach proves more effective compared to using a single attention

block alone. Multi-head attention block is depicted in detail in Figure 22.

https://www.zotero.org/google-docs/?gMEEfl

44

Figure 22. Multi-head attention in Transformer (Vaswani et al., 2017)

In Scaled Dot-Product Attention, the input consists of queries and keys of dimension 𝑑𝑘 and values

of dimension 𝑑𝑣. The results of the dot product of the query with all keys would be divided by √𝑑𝑘

and then the weights are calculated by applying the softmax function.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉

Where 𝑄, 𝐾, 𝑉 are matrices of queries that would be passed to the attention function simultaneously

packed together, packed keys and values respectively.

In the subsequent module, we encounter the ‘Add & Norm’ block, which involves taking the

residual connection of the initial word embedding, adding it to the embedding derived from the

multi-head attention, and subsequently normalizing it to achieve a mean of zero and variance of 1.

This processed output is then passed into a 'feed forward' block, which similarly includes an ‘add

& norm’ block at its output.

The entire sequence of multi-head attention and feed-forward blocks is repeated N times, where N

represents a hyperparameter, within the encoder block (Sarkar, 2022 Vaswani et al., 2017).

2.3.3.2 Decoder

The decoder, with its own self-attention mechanisms, generates an output sequence based on the

encoded representations. The output of the encoder which will be fed to the decoder is a sequence

of embeddings including one embedding per position that contains the embedding of the original

word at that position and information about other words learned by attention. Decoder attends to

relevant parts of the input sequence and generates predictions step by step. This makes the

https://www.zotero.org/google-docs/?7U8NJr

45

Transformer well-suited for tasks like machine translation, where the model needs to generate

target sequences based on the source sequences.

Vaswani et al. proposed the Transformer primarily for machine translation tasks. For instance, the

encoder takes in the English sentence and the decoder will translate it into French. Then they

showed by experiment that it will be well generalized to other tasks. Depending on the application,

the decoder is not necessarily required.

By considering machine translation from English to French task as an example, the decoder blocks

perform as follows: the decoder block applies word embedding and positional embedding to the

French sentence which has been taken in. Then, the self-attention block generates an attention

vector for the French sentence. In the next step, the attention vector of French and English

sentences will be compared which leads to word mapping from English to French. In the final

layer, the decoder predicts the best probable translation from English to French. This process will

be repeated till the entire input text is translated. Figure 23 shows the steps of the translation

process in the decoder.

The decoder is composed of a stack of N=6 identical layers like the encoder. The difference

between the encoder and decoder structure is that in the decoder there is a masked multi-head

attention. The masking operation is needed in order to prevent the output from being dependent on

the subsequent positions so, some values should be masked. The masking function can be

formulated in the Attention method described in the following formulation.

 𝑀𝑎𝑠𝑘𝑒𝑑 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇 + 𝑀

√𝑑𝑘
)𝑉

Where M is a mask matrix of 0’s and -∞’s (Sarkar, 2022 Vaswani et al., 2017).

https://www.zotero.org/google-docs/?lyvQdO
https://www.zotero.org/google-docs/?a7jRbh

46

Figure 23. Machine translation process in the Transformer’s decoder (Sarkar, 2022)

One of the notable features of the Transformer architecture is its ability to handle variable-length

sequences effectively. The model does not rely on fixed-length context vectors, as in traditional

sequence-to-sequence models. Instead, it can adaptively attend to relevant parts of the input

sequence, capturing the necessary information for each decoding step.

The success of the Transformer can be attributed to its self-attention mechanism, which allows for

efficient processing of sequential data, its ability to capture complex patterns and dependencies,

and its parallelizable architecture leading to computational cost reduction while still obtaining

state-of-the-art results.

2.3.4 Transfer Learning

Training a deep neural network from scratch requires a giant quantity of data and consumes a lot

of time and computational resources. Moreover, providing a large amount of labeled data for

various tasks is burdensome. Transfer learning approach can be utilized to deal with these

challenges.

Transfer learning is a technique to apply the already learned knowledge as a model to a new but

related problem. It is a prevalent method in deep learning and specifically in Natural Language

Processing (NLP) to improve learning efficiency significantly. It is a prominent approach because

it is a solution to re-train the pre-trained large models on a comparatively small task-specific

https://www.zotero.org/google-docs/?MA44rp

47

dataset to achieve satisfactory performance. For example, pre-trained deep learning models like

BERT is fine-tuned for specific NLP tasks with relatively small amount of data.

Fine-tuning is a method of transfer learning in which the weights of the pre-trained model will be

updated by training on a custom dataset. During the fine-tuning process, the weights of the entire

network can be updated in the backpropagation step or just a subset of layers be adapted, and other

layers will be frozen. The models pre-trained on large corpora are usually fine-tuned by utilizing

the models’ weights besides adding a task-specific layer which will be trained with a little labeled

data in a supervised learning setting. Fine-tuning the full model can also be done and often yields

better results, but it is more computationally expensive. It should be noted that a set of data with

labels is the key requirement for fine-tuning a model.

Another approach in transfer learning is feature extraction. In this approach the captured

knowledge in a pre-trained model is utilized to map the input data into a new representation

containing contextual information captured by the applied model. These new representation

features can be used to train a new model or directly applied to a downstream task.

In Figure 24 the difference between feature extraction and fine-tuning is depicted. According to

the left side of the figure in the feature extraction strategy, the input is fed to the original model to

be transformed into a new representation which is called features then, these features can be used

to train a totally new model. With approach the captured knowledge in one model is transferred to

another model without touching or updating the weights of the original model.

On the other hand, the right side of the figure illustrates the fine-tuning where the task-specific

input is fed to the model to retrain the model for downstream task and create a new version of the

model. The re-training can be done only on the last layer of the network by freezing the other parts.

In this way the pre-trained (original) model is re-trained to fit the downstream task with less effort

and resource consumption.

Figure 24. The difference between feature-based (left) and fine-tuning (right) (Yang, 2022)

https://www.zotero.org/google-docs/?Mnrh5m

48

2.3.5 Pre-trained Models

The scarcity of training data has been a major challenge in natural language processing (NLP).

Most task-specific datasets have a limited number of human-labeled examples. However, deep

learning-based NLP models benefit from larger datasets. To address this, researchers have

developed techniques for training general-purpose language representation models using

unannotated text on the web (pre-training). The pre-trained models can then be fine-tuned on

specific NLP tasks with a small dataset, resulting in significant accuracy improvements compared

to training from scratch.

2.3.5.1 BERT

BERT is a pre-training technique that trains deep bidirectional representations from unlabeled text.

It captures both the left and right context in all layers, leading to a comprehensive understanding

of language. By adding just one output layer, the pre-trained BERT model can be fine-tuned for

tasks like question answering and language inference, achieving state-of-the-art performance

without the need for substantial task-specific architecture modifications.

It can be trained quickly on a single Cloud TPU in less than 1 hour or GPU for a few hours. The

release of BERT includes source code and pre-trained language representation models, showcasing

impressive results on 11 NLP tasks, including question-answering on the challenging Stanford

Question Answering Dataset (SQuAD v1.1) (Open Sourcing BERT, 2018).

BERT has been pre-trained with a dual objective. The objectives that were considered in training

BERT include the ‘masked language model’ and ‘next sentence prediction’. In the masked

language model, some of the randomly chosen tokens will be masked from the output, and the

model objective during pre-training is to learn to predict the original vocabulary id of the masked

word based on its context. It should be noted that this pre-trained model is called deep bidirectional

because both left and right contexts are taken into account to predict the masked token leading to

a deep bidirectional Transformer architecture.

In addition to the masked language model, the ‘next sentence prediction’ objective is used to pre-

train the model on text-pair representation. In other words, during the pre-training process, pairs

of sentences are shown to the BERT model then, it is supposed to predict whether the second

sentence follows the first one regarding the labels like contradiction, neutral, and entailment.

The BERT framework involves two steps: pre-training and fine-tuning. Pre-training entails

training the model on unlabeled data with different tasks while fine-tuning initializes the BERT

https://www.zotero.org/google-docs/?xocTNi
https://www.zotero.org/google-docs/?xocTNi
https://www.zotero.org/google-docs/?xocTNi

49

model with pre-trained parameters and fine-tunes all parameters using labeled data for downstream

tasks. Despite sharing pre-trained parameters, separate downstream task-oriented fine-tuned

models are formed. Figure 25 demonstrates the BERT framework for question-answering tasks. It

consists of pre-training with both objectives that are followed by paired masked sentences shown

on the left and fine-tuning for question-answering on the right side.

BERT’s architecture comprises a multi-layer bidirectional Transformer encoder, it is an encoder-

only Transformer. The model size is determined by the number of layers that could be Transformer

blocks scripted as L, the hidden size as H, and the number of self-Attention heads A. The BERTBASE

model architecture is formed by the following parameters L = 12, H = 768, A =12 resulting in the

number of Total Parameters = 110M. The BERTBASE parameters have been chosen in a way to

have the same model size as OPENAI GPT for comparison purposes. There is a critical difference

between GPT and BERT related to the masked model language concept. BERT Transformer uses

bidirectional self-attention while the GPT Transformer uses constrained self-attention where only

the left context is considered. The performance of the BERT model is checked with another set of

parameters that constructed the BERTLARGE model with L = 24, H = 1024, and A = 16 resulting in

Total Parameters of 340M (Devlin et al., 2019).

Figure 25. Pre-training and fine-tuning procedures for BERT (Devlin et al., 2019)

In the original paper proposed the BERT model by Devlin et al. based on experimental results, it

is reported that the BERT model is effective for both fine-tuning and feature-based approaches.

RoBERTa is another language model that improved upon the architecture of BERT by training the

model for longer and longer batches, masking tokens randomly at each epoch, and modifying the

objective function by removing the objective of predicting the next sentence.

https://www.zotero.org/google-docs/?R1LbCF
https://www.zotero.org/google-docs/?28oXfu

50

2.3.5.2 GPT

The introduction of OpenAI's GPT models happened in 2018 by Radford et al. in a paper titled

‘Improving Language Understanding by Generative Pre-Training’. It has had a remarkable

influence on the NLP community. These powerful language models can effectively handle tasks

like question answering, textual entailment, semantic similarity assessment, document

classification, and text summarization without the need for supervised training which is

extensively beneficial regarding the scarcity of labeled data. GPT models exhibit exceptional

performance with minimal or no examples, often outperforming state-of-the-art supervised

models.

The research shows that the Generative Pre-Training of a language model on a large corpus of

unlabeled data followed by discriminative fine-tuning on specific tasks leads to significant

performance improvement on various NLP tasks. So, the training procedure of GPT consists of

two stages. The first step is to learn a large language model on a large corpus of text which is

referred to as unsupervised pre-training. The next step is fine-tuning by adapting the learned model

on labeled data of a discriminative task addressed as supervised fine-tuning.

The unsupervised pre-training stage can be formulated as a standard language modeling objective

to maximize the likelihood of a sequence.

𝐿1(𝑈) = ∑ 𝑙𝑜𝑔 𝑃(𝑢𝑖|𝑢𝑖−𝑘, . . . , 𝑢𝑖−1; 𝜃)

𝑖

Where 𝑈 = {𝑢1, . . . , 𝑢𝑛}, k is the size of the context window, and the conditional probability P is

modeled by a neural network with parameter 𝜃. These parameters are trained using stochastic

gradient descent. A multi-layer Transformer decoder with multi-head self-Attention is used as the

language model which is depicted on the left side of Figure 26.

51

Figure 26. GPT Transformer architecture (left) and input transformation for fine-tuning on

different tasks (right) (Radford et al., 2018)

When the model is trained, the parameters will be adapted to a supervised task. For supervised

fine-tuning, it is assumed that there is a task-oriented labeled dataset C where each instance

consists of a sequence of input tokens 𝑥1, . . . , 𝑥𝑚 with a label 𝑦. The input is passed through the

pre-trained model to form the final Transformer block activation ℎ𝑙
𝑚. Then to predict the label 𝑦,

ℎ𝑙
𝑚 will be fed into the linear output layer with parameters 𝑊𝑦 results in the following objective to

be maximized.

𝑃(𝑦|𝑥1, . . . , 𝑥𝑚) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝑙
𝑚𝑊𝑦)

𝐿2(𝐶) = ∑ 𝑙𝑜𝑔 𝑃(𝑦|𝑥1, . . . , 𝑥𝑚)

(𝑥,𝑦)

The objective function 𝐿2(𝐶) is augmented with an auxiliary objective to improve the

generalization of the supervised model and accelerate the convergence.

𝐿3(𝐶) = 𝐿2(𝐶) + 𝜆 ∗ 𝐿1(𝐶)

During the fine-tuning process, minimal changes were made to the model's architecture by

transforming the inputs into ordered sequences. This transformation involved adding start and end

tokens to the input sequences and using a delimiter token to separate different parts of the example.

An illustrated example is shown on the right side of Figure 26. For tasks such as question

answering or multiple-choice questions, multiple sequences were utilized for each example,

incorporating the context, question, and answer in the case of question answering.

The GPT model follows the original Transformer and is trained as a 12-layer decoder transformer

with a masked self-attention head with 768-dimensional states and 12 attention heads, so it is a

decoder-only Transformer. Byte-Pair Encoding (BPE) vocabulary with 40000 merges has been

https://www.zotero.org/google-docs/?aHJYJ2

52

used for tokenization. It just used the learned positional embedding instead of a sinusoidal version.

The model has 117M parameters in total.

GPT, which is also referred to as GPT-1, showcased its superiority by outperforming specifically

trained supervised models in various tasks. Additionally, it displayed notable zero-shot

performance in various NLP tasks such as question answering, schema resolution, and sentiment

analysis, thanks to pre-training. The success of GPT-1 emphasized the effectiveness of language

modeling as a pre-training objective, enabling excellent generalization. The model's architecture

enabled transfer learning and the execution of diverse NLP tasks with minimal fine-tuning

(Radford et al., 2018) and (Shree, 2020).

The fascinating journey of the development of GPT pre-trained language models has been

continued by OpenAI with a profound impact on various NLP applications. Followed by GPT-1,

OpenAI released GPT-2 in early 2019. The development of the GPT-2 model is based on the idea

of the ability of language models to perform downstream tasks in a zero-shot setting without any

modification requirement in architecture or parameters. The idea was proposed by Radford et al.

in 2019 in a paper called “Language Models are unsupervised multi-task learners”.

The backbone of this approach is language modeling, particularly using self-attention architectures

like the Transformer. It involves unsupervised distribution estimation from examples composed of

variable-length symbol sequences. The joint probabilities over symbols are factored into

conditional probabilities, enabling tractable sampling and estimation of 𝑝(𝑥) as well as any

conditionals in the form of 𝑝(𝑥𝑛−𝑘 , . . . , 𝑥𝑛|𝑥1, . . . , 𝑥𝑛−𝑘−1).

On the other hand, the concepts of task conditioning, zero-shot learning, and zero-shot task transfer

have been utilized in developing this multi-task model.

Learning a single task involves estimating a conditional distribution 𝑝(𝑜𝑢𝑡𝑝𝑢𝑡|𝑖𝑛𝑝𝑢𝑡), but a

general system should be able to perform multiple tasks even for the same input by conditioning

on both input and the task 𝑝(𝑜𝑢𝑡𝑝𝑢𝑡|𝑖𝑛𝑝𝑢𝑡, 𝑡𝑎𝑠𝑘) which is called task conditioning. A Language

is a flexible tool for specifying tasks, inputs, and outputs as sequences of symbols to develop the

task conditioning process. For example, a translation training instance can be written as the

sequence (translate to French, English text, French text). Also, a reading comprehension training

example can be written as (answer the question, document, question, answer).

https://www.zotero.org/google-docs/?gyjQ7z
https://www.zotero.org/google-docs/?rUbUlW

53

Preliminary experiments showed that large language models can perform multitask learning

without any task-specific module or parameters, although the learning process is slower compared

to explicitly supervised approaches.

The main hypothesis in developing GPT-2 as a multi-task learner, Radford et al. 2019, is that a

language model with enough capacity will start to learn and deduce the tasks depicted in natural

language sequences, aiming to improve its predictive abilities, regardless of how those sequences

are obtained. If a language model can achieve this, it essentially engages in unsupervised multitask

learning. To examine this assumption, they evaluated the performance of language models in a

zero-shot scenario across a diverse range of tasks.

One attractive capability of GPT-2 is its zero-shot task transfer. Zero-shot learning refers to a

specific scenario where no examples are provided, and the model comprehends the task solely

based on the given instruction. Unlike GPT-1, where sequences were rearranged for fine-tuning,

GPT-2 introduced a different input format. This format expected the model to grasp the nature of

the task and generate appropriate responses. For instance, in an English-to-French translation task,

the model received an English sentence followed by the word "French" and a prompt (":"). The

model is expected to understand that it needed to perform a translation task and provide the

corresponding French counterpart of the English sentence. This approach aimed to simulate zero-

shot task transfer behavior in GPT-2 (Shree, 2020).

GPT-2 has 1.5 billion parameters which is 10 times more than GPT-1 and a large vocabulary of

50257 has been used. The smallest model was used in the experiment (Radford et al. 2019)

equivalent to the original GPT which has 12 layers, 768 model dimensionality resulting in 117M

parameters in total, and the second smallest equivalent to the largest model from BERT (Devlin et

al., 2018) containing 24 layers, 1024 dimensionality and the total number of parameters of 345M.

GPT-2 has more parameters than GPT-1 including 48 layers, 1600 dimensional vectors for

embedding, and 1542M parameters total.

It is shown by Radford et al. 2019, that the model is able to effectively handle a wide range of

tasks in a zero-shot scenario indicating that high-capacity models, trained to optimize the

likelihood of a suitably diverse and large text corpus, start acquiring the capability to perform

numerous tasks without requiring explicit supervision (Radford et al., 2019).

The model is pre-trained on a very large corpus of data. It is pre-trained on the raw texts only, with

no labeling which is called self-supervised training. It is trained to guess the next word in sentences

https://www.zotero.org/google-docs/?RhAA1r
https://www.zotero.org/google-docs/?W26YFx

54

where the inputs are sequences of continuous text of a certain length and the targets are the same

sequence, just one token is shifted to the right. The model uses internally a masking mechanism to

make sure the predictions for the token i only use the inputs from 1 to i but not the future tokens.

in other words, in this type of training only the left context is used in predicting the next token.

This way, the model learns an inner representation of the English language that can then be used

to extract features useful for downstream tasks. The texts are tokenized using Byte Pair Encoding

(BPE) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.

In continuation of OpenAI’s journey in releasing new versions of GPT foundation models, GPT-

3 published in July 2020. There were three models in that series with 1B, 6.7B, and 175B

parameters. It has same architecture as GPT-2 but with modification to allow larger scaling. These

models were superseded by the more powerful GPT-3.5 general models released in March 2022

and has 175B parameters. It can understand as well as generate natural language or code. Followed

by that, GPT-4 was published in March 2023 as a set of models that improve on GPT-3.5 with

capabilities of understanding as well as generating natural language and code. GPT-4 is more

capable than GPT-3.5 in doing complex tasks moreover it is optimized for chat. The number of

parameters in GPT-4 is undisclosed and is estimated to be 1.7 trillion. At the time that this research

is done, GPT4 is the latest released version of GPT models.

2.3.5.3 DeBERTa

He et al. 2021 proposed the DeBERTa (Decoding-enhanced BERT with disentangled attention)

which improves upon BERT and RoBERTa models through two novel techniques. The first

technique involves disentangled attention, where each word is represented by two vectors encoding

its content and position. Attention weights are computed using disentangled matrices based on

content and relative positions. DeBERTa utilizes the absolute position vectors right after the

Transformer layers but before the softmax layer for masked token prediction which is illustrated

in Figure 27. Consequently, the position information is captured in all the Transformer layers, and

it would be the absolute positions are the complementary information provided to decode the

masked words. Because of that process, the decoding component in DeBERTa is called Enhanced

Mask Decoder (EMD). As the right side of Figure 27 shows, EMD takes in two inputs including

55

the hidden states from the previous Transformer layer H and any other necessary information for

decoding I, e.g., absolute position embedding H, or output from the previous EMD layer.

Figure 27. Comparison of the decoding layer in BERT (left) and EMD used in DeBERTa (right)

(He et al., 2021)

The second technique incorporates an enhanced mask decoder that considers absolute positions

during decoding to predict masked tokens in pre-training. Additionally, a virtual adversarial

training method is used for fine-tuning to enhance model generalization. These techniques enhance

the efficiency of model pre-training and improve performance in natural language understanding

(NLU) and natural language generation (NLG) tasks.

By fine-tuning DeBERTa-XL on the MNLI dataset, the "Microsoft/deberta-xlarge-mnli" model is

specifically tailored for tasks related to natural language inference. Natural language inference

involves determining the logical relationship between pairs of sentences, such as whether one

sentence contradicts, entails, or is neutral with respect to another. The fine-tuning process enables

the model to specialize in understanding and accurately predicting these relationships.

DeBERTa with 1.5 billion parameters, denoted as DeBERTa1.5B, consists of 48 layers with a

hidden size of 1,536 and 24 attention heads. DeBERTa1.5B is trained on a pre-training dataset

amounting to 160G, with a new vocabulary of size 128K constructed using the dataset (He et al.,

2021).

2.3.5.4 MiniLMv2

Wang et al. 2021 introduced a task-agnostic compression method called deep self-attention

distillation, building upon the work of MINILM (Wang et al., 2020). Self-attention relation

https://www.zotero.org/google-docs/?C30wfb
https://www.zotero.org/google-docs/?LENAFh
https://www.zotero.org/google-docs/?LENAFh

56

distillation is employed to compress pre-trained Transformers. Multi-head self-attention relations

are defined as scaled dot-products between query, key, and value vectors within each self-attention

module which is demonstrated in Figure 28. This relational knowledge is then utilized to train the

student model. The method allows for flexibility in the number of attention heads in the student

model, unlike previous approaches. Fine-grained self-attention relations effectively leverage the

interaction knowledge learned by the Transformer. Layer selection strategies for teacher models

are thoroughly examined. Extensive experiments on compressing monolingual and multilingual

pre-trained models demonstrate that the proposed models, distilled from large-size teachers like

BERT and RoBERTa, outperform the state-of-the-art methods.

To transfer knowledge from a large model also known as Teacher to a smaller model called

Student, knowledge distillation has been used widely as a promising way in pre-trained

Transformer compression.

Figure 28. Overview of multi-head self-attention relation distillation (Wang et al., 2021)

Wang et al. 2021 reported the 6×768 model distilled from BERTBASE retains more than 99%

accuracy of its teacher while using 50% Transformer parameters (Wang et al., 2021).

2.3.5.5 DistilBERT

According to what is mentioned in the previous part, knowledge distillation is a compression

technique to train a smaller model (student) to reproduce the behavior of a larger model (teacher)

or an ensemble of models. Sanh et al. 2020 proposed a triple loss function to transfer learning from

https://www.zotero.org/google-docs/?OYtJ9v
https://www.zotero.org/google-docs/?Co2JOw

57

the BERT model to a smaller general-purpose model called DistilBERT. The triple loss function

combines language modeling, distillation, and cosine-distance losses.

Since variation in factors like the number of layers has a more major impact on computational

efficiency than the hidden size dimension. The student, DistilBERT, has the same general

architecture as BERT while the number of layers has been decreased by a factor of 2. In addition,

the modern linear algebra framework is used to optimize the operation in Transformer layers to

support a higher speed of computation.

This approach of knowledge distillation is leveraged during the pre-training phase leading to a

general-purpose model instead of building a task-specific model. Sanh et al. 2020 showed that

DistilBERT reduced the size of the BERT model by 40% even though 97% of the language

understanding capability has been preserved and it is 60% faster. DistilBERT can operate on the

edge and in situations where there are limited computational resources regarding the above-

mentioned features (Sanh et al., 2020).

https://www.zotero.org/google-docs/?m441IQ

58

3. Semantic Search

Semantic search and Information Retrieval (IR) are closely related concepts in dealing with the

task of finding and retrieving relevant information from a large collection of data even though they

may handle it in different ways. Semantic search is a specialized approach to information retrieval

that focuses on understanding the meaning of the user’s query and the content of the documents to

retrieve more contextually relevant results. Conceptual understanding, contextual relevance, and

natural language understanding are the key aspects of semantic search. As it is discussed in Chapter

2, the NLP pipeline techniques has been leveraged to parse and understand the natural language

used in the queries and documents, allowing for a deeper understanding of the content and concept.

3.1 Semantic Search Pipeline

When it comes to natural language processing, apparently textual data is the main data type which

is categorized as unstructured data. Grainger et al 2021 explained that “text or any other data that

doesn’t fit a pre-defined schema (‘structure’), is unstructured”. Even though text data maintains

the language rules and structure and conveys a tremendous amount of meaning and concept.

Grainger et al. 2021 also stated that “there is much more structure hidden in unstructured data than

most people appreciate. Unstructured information is more like hyper-structured information - it is

a graph that contains much more structure than typical structured data”. So, the golden goal is to

harness this hidden power in order to create a semantic retrieval system.

The core operation in the semantic search pipeline is to extract the conceptual and contextual

knowledge in the source into embedding vectors. The source corpora could consist of sentences,

paragraphs, or documents that all are text-based and should be mapped into the embedding vectors.

Then, at the search time, the search query must be embedded in the same vector space and the

closest embedding would be found as the search results. The result is supposed to be a list of entries

with high semantic correlation to the query which is ranked according to the similarity distance

measurement (Semantic Search — Sentence-Transformers Documentation, n.d.-a). Hence, it could

be deduced that semantic search complies with the pipeline of retrieval and ranking which are

supplied by NLP and ML methods.

Semantic search approaches can be divided into two categories based on the length of the

documents and the quantity of the content in the corpus. If the queries and the entries in the corpus

are approximately of the same length and have the same amount of content, it will be considered

https://www.zotero.org/google-docs/?ShOPV9
https://www.zotero.org/google-docs/?ShOPV9
https://www.zotero.org/google-docs/?ShOPV9

59

as a symmetric semantic search, for example, searching for similar questions. In symmetric tasks,

the query and the entries could be potentially flipped.

On the other hand, if there is a short query like a short question or just some keyword and the goal

is to find the long passage to answer the query, this case it would be interpreted as an asymmetric

semantic search (Semantic Search — Sentence-Transformers Documentation, n.d.-b). according

to the definition, the use case covered in this research is asymmetric semantic search.

3.1.1 Retrieval

Retrieval is the process of obtaining the most relevant objects in a collection to the asked

information. The process of information retrieval (IR) relies on the query fed to the system. A

query is a statement that expresses the required information. The search string in a web search

engine could be a familiar example of a query. In information retrieval, a query may match several

entries in the collection with different degrees of relevance so the results should be ranked

according to the relevance measurement. Large language models have been applied to capture the

meaning and contextual relations between the query and the objects to improve the accuracy of the

retrieval process.

3.1.2 Ranking and Re-ranking

The output of the retrieval phase is a candidate set. The candidate items are ranked based on the

degree of similarity. The similarity between them could be measured regarding various metrics

that can be applied to determine the distance between vectors in the common embedding space.

The possible options are cosine similarity, dot-product, and Euclidean distance. The process of

retrieving ranked results based on similarity using the BERT model is introduced as Bi-Encoder.

However, the retriever may not perform efficiently for a large set of documents and may return

irrelevant documents. In this case, a re-ranker could be beneficial to improve the results. Cross-

Encoder is one of the re-rankers implemented using the BERT model. (Retrieve & Re-Rank —

Sentence-Transformers Documentation, n.d.). Besides that, an automatic text generation

evaluation metric called BERTScore is introduced that is taken into account as re-ranking approach

in this research.

https://www.zotero.org/google-docs/?LBFZ1x
https://www.zotero.org/google-docs/?LBFZ1x
https://www.zotero.org/google-docs/?LBFZ1x
https://www.zotero.org/google-docs/?AYfJj7
https://www.zotero.org/google-docs/?AYfJj7
https://www.zotero.org/google-docs/?AYfJj7
https://www.zotero.org/google-docs/?AYfJj7

60

3.1.2.1 Bi-Encoder

Bi-Encoder is a method for sentence pair scoring via generating sentence embedding in a vector

space hence it can be used for applications like information retrieval, semantic search, or

clustering. It produces an embedding for each sentence using a language model, for example, the

BERT model. The sentences A and B, which result in the sentence embeddings u and v, would be

passed to the language model independently. These sentence embeddings can then be compared

using similarity functions like cosine similarity, dot product, etc. The Bi-Encoder procedure is

illustrated in Figure 29.

Figure 29. Representation of a Bi-Encoder model (Ham, 2022)

An advanced Bi-Encoder BERT model was presented by Reimers and Gurevych in 2019 called

Sentence-BERT (SBERT) which is a modification of the BERT network employing Siamese (the

same network for both sentences) with added pooling operation on top of it to extract fixed-sized

embedding for input sentences and triplet network structures.

This modified architecture makes the SBERT derive semantically meaningful sentence

embeddings suitable for tasks like large-scale semantic similarity comparison, clustering, and

information retrieval in semantic search.

The SBERT is fine-tuned on NLI data which makes it perform efficiently on the Semantic Textual

Similarity (STS) tasks. Fine-tuning with Siamese and triplet networks, consists of a triplet

objective function considering an anchor sentence (𝑠𝑎), a positive (𝑠𝑝) and a negative sentence (𝑠𝑛)

https://www.zotero.org/google-docs/?EpzVdp

61

defined as 𝑚𝑎𝑥(||𝑠𝑎 − 𝑠𝑝|| − ||𝑠𝑎 − 𝑠𝑛|| + 𝜖 , 0), generates embedding vectors that can be

compared with cosine similarity (Reimers & Gurevych, 2019).

3.1.2.2 Cross-Encoder

Cross-Encoder model does not produce vector embedding for the data; instead, it is employed on

top of the architecture providing embeddings and the retrieved candidate list. It operates like a

classifier, which is shown in Figure 31, by passing a query and a possible document simultaneously

to the Transformer network, for instance the BERT model, and producing a score indicating how

relevant they are. If the BERT is considered as the core functionality, Cross-Encoder would be a

fined-tuned version of it with one additional output layer acting as a classifier to determine how

similar the inputs are. It is a sequence-level task because both input sentences are concatenated as

a sequence but there is a special symbol to separate non-consecutive token sequence. In other

words, as it is illustrated in Figure 30 [SEP] is used as special symbol for separating two sentences

and [CLS] is applied for classification output.

Figure 30. The functionality of Cross-Encoder as a fine-tuned version of BERT (Devlin et al.,

2019)

A re-ranker based on a Cross-Encoder can substantially improve the results because they perform

the attention mechanism across the query and the candidate document.

On the other hand, calculating the similarity score for many query-document pairs would be

exceedingly slow. Therefore, the Cross-Encoder is usually used to score the candidate's retrieved

https://www.zotero.org/google-docs/?7BVxOu
https://www.zotero.org/google-docs/?28oXfu
https://www.zotero.org/google-docs/?28oXfu

62

documents by Bi-Encoder and re-rank the results to achieve higher performance (Ham, 2022) and

(Retrieve & Re-Rank — Sentence-Transformers Documentation, n.d.).

Figure 31. Cross-Encoder process (Ham, 2022)

In a Machine Learning pipeline, the tradeoff between high accuracy and speed is usually a crucial

concern. The higher accuracy would result in more resource consumption and computational

complexity. On the other hand, most use cases especially the user-faced systems like Information

Retrieval are supposed to provide the user with accurate results with low latency. To consider both

high accuracy and speed simultaneously, the combination of both retrieval and reranking methods

including Bi-Encoder and Cross-Encoder would be effective to benefit the strength of both which

is demonstrated in Figure 32. According to the studies, Bi-Encoder is computationally efficient

but less accurate while Cross-Encoder provides more accurate results in the cost of consuming

more resources (Chiu & Shinzato, 2022).

Figure 32. Combining Bi-Encoder and Cross-Encoder (Ham, 2022)

https://www.zotero.org/google-docs/?MxJFLI
https://www.zotero.org/google-docs/?JUEQYL
https://www.zotero.org/google-docs/?JUEQYL
https://www.zotero.org/google-docs/?JUEQYL
https://www.zotero.org/google-docs/?BukEfh
https://www.zotero.org/google-docs/?xEOyTh
https://www.zotero.org/google-docs/?6p29vK

63

3.1.2.3 BERTScore

Automatic evaluation of natural language generation mandates comparison between the generated

candidates and the reference sentences. Therefore, evaluation metrics need annotated reference

sentences. If the reference sentence 𝑥 and the candidate sentence 𝑥̂ are given, the evaluation metric

will be defined as a function 𝑓(𝑥, 𝑥̂) ∈ 𝑅. The better score is supposed to be more correlated to

human judgment.

Text generation evaluation metrics would be categorized as n-gram matching, edit distance,

embedding matching, or learning function. The metrics operating based on the n-gram algorithm

like BLEU and METEOR, usually fail to match the paraphrases robustly which leads to poor

performance on semantically related phrases that differ from surface form because those metrics

depend on syntactic overlaps, in addition, n-gram models cannot capture distant dependencies and

semantically order changes (Zhang et al., 2020).

Zhang et al. 2020 introduced an automation evaluation metric for text generation, called

BERTScore, which computes the similarity between each token in the candidate and reference

sentences. The score is calculated as a sum of cosine similarities based on the contextual

embeddings of the sentences utilizing pre-trained BERT. Figure 33 shows the process of

computing the recall metric of BERTScore consisting of BERT embedding capturing, pairwise

cosine similarity defined as
𝑥𝑖 𝑥𝑖̂

||𝑥𝑖|| ||𝑥𝑖̂||
, greedy matches, and importance weights. Research done on

similarity measures demonstrated that rare words can be more indicative of similar sentences than

common words so, the Inverse Document Frequency (idf) scores have been used to determine the

weight importance of each token. The recall, precision, and F1 metrics would be calculated in the

BERTScore model.

Figure 33. computation of the recall metric RBERT (Zhang et al., 2020)

https://www.zotero.org/google-docs/?99pYzL
https://www.zotero.org/google-docs/?r0Oj8t

64

The BERTScore model is inspired by embedding-based and learned metrics but is not optimized

for any specific evaluation task. Token-level computation in BERTScore weighs tokens differently

according to their importance. So, it addresses the shortcomings of the other approaches.

Experiments done by Zhang et al. 2020 indicated that BERTScore associates more satisfactorily

with human judgment and delivers adequate model selection measures rather than other existing

metrics. It is recommended to use the DeBERTa model for text generation evaluation (Tianyi,

2019/2023) instead of the default RoBERTa model in the published paper.

3.2 Evaluation Metrics

To evaluate if the results of the search which could be a semantic search, information retrieval, or

question-answering system, are satisfying a judgment list is required. A judgment list defines

documents’ relevance for a query (Turnbull, 2021). For instance, it can be a list of queries, the

potentially relevant object that could be retrieved, and a grade of 1 or 0 assigned to each object

which is depicted in Table 1 for a movie search engine as an example. As it is shown in the table,

the movie “Star Wars: A New Hope” is a relevant object for the query “Satr wars” and attain a

grade of 1 while the movie “Blair Witch Project” is irrelevant and obtained a grade of 0 which

shows it is not a proper match for the query.

The judgment list, which is another term to describe the “ground truth” or “golden set”, formed by

obtaining annotations for all the documents in the search system is the key component to evaluate

the performance of the search systematically rather than subjectively. Besides the judgment list

another significant concept in designing a proper search relevance evaluation is to consider metrics

that can validate the importance of the position of each object in the result list. In other words,

occurring the most relevant object at the top level in the list should be more valued. With these

requirements, the improvements of the search system would be evaluated without demanding for

user test or A/B test.

The reliability of the relevance evaluation method is excessively dependent on the quality of the

judgment list. Turnbull 2021 categorized the possible methods for providing a judgment list into

three classes including Explicit Judgment, Crowdsourced Judgment, and Implicit Judgment.

In explicit judgment, direct feedback on being relevant or not will be obtained by recruiting

evaluators that need to be selected based on some criteria like being an expert in the field and

available budget in addition to, providing rating guidelines and training. The process will continue

https://www.zotero.org/google-docs/?jhp9eg
https://www.zotero.org/google-docs/?jhp9eg
https://www.zotero.org/google-docs/?hIexfF

65

after employing the experts by selecting the test queries, collecting the ratings, generating the

score, and analyzing them. In this approach, the rater capacity directly affects the number of

queries that can be tested also it should be regarded in the query selection procedure (Diedrichsen

& Sierra, 2019).

Query Movie Grade

Star wars Star Wars: A New Hope 1

Star wars Star Wars: A New Hope 1

Star wars Blair Witch Project 0

Star wars A Star Is Born 0

Star trek Star Trek Into Darkness 1

Star trek Star Trek II: The Wrath of Khan 1

Star trek Sense and Sensibility 0

Star trek Forrest Gump 0

…

Table 1. An example of a judgment list (Turnbull, 2021)

Another approach to creating the judgment list is the crowdsource via Mechanical Turk or other

third-party firms.

The third class utilizes the implicit behavior of the user interactions like clicks, purchases, and

conversations to generate the judgment list. In this case, a learning model should be created to rank

the results of the search based on user satisfaction regarding the training data that they provide

through their interaction with the search system.

It would be the primary description of an automatic relevance evaluation system that the core

concept of it can be turned into three major questions that need to be answered as a designed model

consisting of “What do users want from search?”, “How do we turn that into training data?”, and

https://www.zotero.org/google-docs/?De6ueV
https://www.zotero.org/google-docs/?De6ueV
https://www.zotero.org/google-docs/?Qlpqo7

66

“How do we know whether that training data is qualified?” (Grainger et al., 2021). Therefore, three

steps should be followed iteratively to achieve the goal of finding the answers to the

abovementioned questions. First, it should be understood what an ideal relevance is based on the

user interactions so, a judgment list would be created from the signals coming from the user. Then

deductive modifications should be created in the search development to move towards the ideal

relevancies provided in the judgment list using training data. The final step in the iteration loop is

to validate the model performance (Grainger et al., 2021).

Evaluating the Information Retrieval (IR) of any form from search to recommendation system

should be done through mathematically defined measures to provide a paramount understanding

of how accurately the IR system operates. These measures are split into two categories comprising

online metrics and offline metrics. Online metrics would be feasible for calculation during the

actual deployment and usage of the IR system through user interactions like what is described in

Grainger et al. 2021 as implicit judgment. Offline metrics can be measured in the developing and

test stages before being deployed in the actual deployment environment. Offline metrics are

divided into two groups based on whether the order of the retrieved items impacts the metric score.

The order-based metrics include Precision, Recall, and F1-measure while the non-order-based

metrics consist of Mean Reciprocal Rank (MRR), Mean Average Precision (MAP), and

Normalized Discounted Cumulative Gain (NDCG).

If we consider an IR system operation, the predicted results compare to ground truth provide four

categories of items. The correctly identified items are called TruePositive which are predicted as

relevant and have positive (being relevant) labels in ground truth also. The items that are predicted

as irrelevant and are negative (being irrelevant) in the golden set, are referred to as TrueNegetive.

Those items with positive labels that are predicted as irrelevant are called FalseNegetive and the

items with negative labels that are predicted as relevant are addressed as FalsePositive. These

terms are used in the definition of Precision, Recall, and F1-measure.

It should be mentioned that each of the metrics can be calculated on a special number of results

that the IR system will produce which is referred to as k.

https://www.zotero.org/google-docs/?qTtC0s
https://www.zotero.org/google-docs/?YByZ8r

67

3.2.1 Percision

It measures the ratio of the correctly identified answers among the first k answers predicted by the

model. In other words, it qualifies the number of the correctly identified item made of all positive

predictions.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

3.2.2. Recall

It qualifies the number of the correctly identified item made of positive predictions that could have

been made.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Recall is an effortlessly interpretable evaluation metric with the indication that a perfect score

means all relevant documents are retrieved. And with a smaller k achieving a higher score is more

challenging. On the other hand, by assuming k is close to the number of all possible documents, a

perfect score would be promising which is a disadvantage because it is deceptive. In addition, it is

not order-based so the rank of the relevant document does not matter in this metric.

3.2.3 F1-measure

Precision and recall measure are the two types of metrics that could be made regarding only the

positive class. Maximizing precision minimizes FalsePositives and maximizing recall minimizes

FalseNegatives. Both FalsePositives and FalseNegatives can be minimized to reach better

performance therefore F1-measure that combines Precision and Recall into a single metric would

capture both properties. So, the more correctly predicted samples, the higher precision, and recall

hence the higher F1-measure will be captured.

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

3.2.4 Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank is an order-based metric which means that unlike Recall and Precision,

returning the actual relevant results at rank 1 scores better than at rank k. Another attribute of the

68

MMR is that it takes into account the number of queries in the calculation. The MRR formulation

is as follows:

𝑀𝑅𝑅 =
1

𝑄
∑

1

𝑟𝑎𝑛𝑘𝑞

𝑄

𝑞=1

Where Q is the number of queries, q is a specific query, and rankq is the rank (position) of the first

actual relevant result for the query q (Briggs & Carnevali, n.d.).

The main advantage of this metric is being order-based which is crucial for systems like question-

answering but it just takes into account the first relevant item so, it is not suitable for use-cases

that rather to return multiple options like recommendation systems or search engines (Briggs &

Carnevali, n.d.).

3.2.5 Mean Average Precision (MAP)

Mean Average Precision is another order-based metric that considers precision, a relevance

parameter Rk which is the relevant score of the kth item (it could be 1 if it is relevant otherwise

would be 0), and the number of queries in the formulation.

𝑀𝐴𝑃 =
1

𝑄
∑

1

𝑚𝑗

𝑄

𝑞=1

∑ 𝑃(𝑅𝑗𝑘)

𝑚𝑗

𝑘=1

Where mj is the number of relevant documents for the query j, and Rjk is the rank at which the kth

relevant document would be found for query j (Briggs & Carnevali, n.d.) and (Glavaš, 2020).

It considers the order of predicted items, so it is suitable for systems with the demand of multiple

retrieved items. The minor disadvantage of this metric is that it assigns binary relevance parameters

(Briggs & Carnevali, n.d.).

3.2.6 Normalized Discounted Cumulative Gain (NDCG)

Normalized Discounted Cumulative Gain belongs to the order-based metrics categories and is

attributed to the graded relevance of documents that is not included in previously introduced

metrics in this chapter. The fact that different queries generally could have different numbers of

relevant documents, is conceptualized in the definition of NDCG with the intuitive insight that the

Discounted Cumulative Gain (DCG) should be higher for queries with more relevant documents.

If Ideal DCG (IDCG) is defined as the maximal DCG score that any ranking can have by

https://www.zotero.org/google-docs/?wnc8Ja
https://www.zotero.org/google-docs/?L4fofR
https://www.zotero.org/google-docs/?L4fofR
https://www.zotero.org/google-docs/?vkfPk3
https://www.zotero.org/google-docs/?vlSA7T
https://www.zotero.org/google-docs/?zRi7GE

69

considering the specific number of documents that each query could retain, the definition of NDCG

will be as follows (Glavaš, 2020):

𝐷𝐶𝐺 = ∑
2

𝑟𝑒𝑙𝑖 − 1

𝑙𝑜𝑔2(𝑖+1)

𝑘
𝑖=1 𝐼𝐷𝐶𝐺(𝑘) = ∑

2
𝑟𝑒𝑙𝑖 − 1

𝑙𝑜𝑔2(𝑖+1)

|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|
𝑖=1 𝑁𝐷𝐶𝐺 =

𝐷𝐶𝐺(𝑘)

𝐼𝐷𝐶𝐺(𝑘)

It is a significantly used metric in the evaluation of search engines as it is order-based, optimized

for highly relevant documents, and interpretable but the drawback is that there is more complexity

in calculation regarding estimating the data-oriented relevancy score for each item compared to

the other items.

Each of the abovementioned metrics could be employed in various situations according to their

advantages and shortcomings.

Applying both online and offline metrics would be more beneficial to support the continuous

integration and development of the designed retrieval system (Briggs & Carnevali, n.d.).

3.3 Data Collection and Preparation

The documents, the main source of knowledge for the retrieval system to seek through it to find

the best matches, contain a representative textual model of the search domain. This thesis explored

capturing the textual model and contextual relationships within the content of the documents using

language models. Therefore, in this research a dataset consisting of a proper field of text

information to derive the textual model is required.

Recommendation systems utilize algorithms that can process various inputs such as user

preferences, user behavior, content, and other factors. These inputs are leveraged to automatically

identify and match the most relevant content for the user which is identical to what a search system

commits. Therefore, search and recommendation systems should not be split into separate silos as

they are two sides of the same coin and both of them are different kinds of information retrieval

systems (Grainger et al., 2021).

According to the similar operation of the search engine and recommendation system regarding

delivering relevant results based on understanding what the user is looking for and the equivalent

evaluation methods that can be applied to both, in this research, a publicly available dataset which

is an inspiration in all these applications is selected.

https://www.zotero.org/google-docs/?fOCGIt
https://www.zotero.org/google-docs/?hSmQup
https://www.zotero.org/google-docs/?KYlaUp

70

3.3.1 Dataset

Wikipedia Movie Plots dataset with 34886 movies from around the world containing eight features

for each of them as columns of the data frame. The columns consist of Release Year, Title, Origin,

Director, Cast, Genre, Wiki Page (URL of the Wikipedia page from which the plot description is

scraped), and Plot. It is a publicly available dataset on Kaggle1. The Plot field is the source of

knowledge in the designed semantic search pipeline. It consists of the description of the movie

plots that can be of various lengths from short to long text scripts. This dataset is an inspiration for

the different tasks dealing with natural language processing including Content-Based Movie

Recommender recommending movies with plots like those that a user has rated highly, Movie Plot

Generator generating a movie plot description based on seed input, such as director and genre,

Information Retrieval return a movie title based on an input plot description, Text Classification

predicting movie genre based on plot description.

3.3.2 Data Cleaning, Transformation, and Understanding

The csv formatted dataset is uploaded to the Colab notebook environment from Google Drive and

stored in a Pandas data frame. So, the Pandas library is used to clean the dataset and transform

some fields of data into a proper format. The data frame associates semi-structured data since it

contains some fields like Release Year, Genre as a category, Origin and so on that can be readily

queried and interpreted in addition to the Plot as pure text that should be processed to query it.

Data understanding remains the crucial step that precedes the development of any data pipeline to

produce quantitative data as prerequisites for analytics purposes. This step is essential in avoiding

unexpected problems during the next phase, data preparation, which is typically the longest part

of any data science project.

In this stage, the research proceeded by identifying key characteristics, such as data volume and

the total number of variables in the data, and comprehending the problems with the data, such as

missing values, inaccuracies, and outliers. The data understanding procedure is directed into the

following steps:

• Removing the duplication resulted in a reduction of 4525 in the total number of items.

• Reindexing the data frame by considering the Title field as the index element

• Scanning if there is any item with a Null value in columns.

1 Wikipedia Movie Plots | Kaggle

https://www.kaggle.com/datasets/jrobischon/wikipedia-movie-plots

71

• Dropping the rows of the data frame that contains a Null value in Cast column or

‘Unknown’ value in Genre column.

• Cleaning up the Genre column using the spaCy library for NLP

The results of the scanning for Null are summarized in Table 2 which shows there is 1302 item

that with no information about their cast so, those items are dropped due to missing value.

Column name Number of rows with Null value

Genre 0

Origin 0

Director 0

Release Year 0

Cast 1302

Plot 0

Wiki page 0

Table 2. Scanning for Null values in columns of the data frame

The Genre field conveys information about the context of the movie, so it is more examined to be

well formatted. It is also a categorial label utilized to split the data frame into smaller sub-frames

to be processed in batches in order to cope with the limited memory and processing unit available

for the current research.

The data frame contains 2094 unique Genres, and 5540 items hold an ‘Unknown’ Genre value

which is a kind of miss value so, specified rows are dropped. The dataset includes 31816 items

after dropping those rows with Null and ‘Unknown’ values in Cast and Genre columns

respectively. The distribution of the data regarding Genre is demonstrated in Figure 34 depicting

that the dataset is biased toward the drama and comedy genres which should be considered in

analytics.

72

Figure 34. Genre distribution of movies in the data frame

It is discovered that there are some genre labels representing the same group but described with

different words or phrases for example ‘romance’ and ‘romantic’ are grouped separately therefore,

clean up function applied on that column of the data frame to mitigate the inaccurate diversity in

genres. Besides, text cleaning and transforming compound genre’s string into a list of genre labels

are executed on the Genre values for instance, ‘action thriller’ is mapped into [‘action’, ‘thriller’],

and this new kind of genre description is accumulated to the columns as a new feature called

List_Genre.

The cleaning job consolidates the descriptive and statistical analysis to produce a more accurate

dataset which would be the bedrock of the realistic outcomes. One of the diagnoses originated

from the analysis is to identify the outliers. The cleaning procedure followed up with recognizing

and mitigating the outliers by grouping the movies by their Genre values after textual cleaning up.

It is observed that there are some groups with very a small number of members compared to the

other groups hence the rows belonging to those kinds of Genre are dropped to decline the outliers

by considering 50 as the threshold of the number of movies in each group. The significant effect

of the cleaning is restated in a table in Appendix B which shows the distribution of the data based

on Genre.

The danger of misinformation is the fact that should be noticed in collecting and analyzing data.

By reviewing the data more precisely regarding the Genre feature, it is found out that there is a

group with the label of ‘Animation’ as Genre, but the fact is that ‘Animation’ is not included in

movie genres. It is a type of medium and art form that can be done in any genre. There are more

samples of this type of misinformation which is avoided by revising the label to ‘unknown’. It

emphasizes the importance of the data understanding phase to prevent the mistaken conclusion in

73

analyzing the produced data based on the employed dataset. For instance, in the Text Classification

task in which the movie Genre will be predicted corresponding to the Plot description, the

preciseness of the conceptualized information in the Genre would be particularly substantial.

Accordingly, misinformation will deceive the model and mislead it into incorrect predictions.

However, in some cases recognizing the Genre based on the Plot is not straightforward even for

humans e.g., categorizing a Plot into fantasy or fiction because of a slim boundary in the definition.

3.3.3 Data Labeling

Three methods are proposed and examined to approximate the human judgment to settle the

scarcity of the annotated list of documents as being relevant to the specific query or not.

The ground truth is required to be able to articulate how well the workflow performs. The

BERTScore and Cross-encoder are used to re-rank the candidates suggested by the Bi-encoder to

determine the most relevant documents to each query and to calculate the evaluation metrics.

It is essential to choose a unique field of the dataset as the matching field in MRR calculation (as

a common feature between the candidates and the judgment list), it could be the title of the movies,

or a unique number assigned to each item (for example the Tile can be defined as the index in the

data frame to be searchable by its values. This unique id is assigned properly because the

duplications are dropped in the data cleaning phase by resetting the index in the Pandas data frame.

Suitable index assignment results in more efficient retrieval.

Each introduced method requires specific parameters to be set based on the method requirements.

These method-specific parameters are considered in the experimental investigation as dependent

variables so, multiple assigned values for them are examined to discover how will affect the results.

3.3.3.1 Method 1

Annotating the whole collection of documents as a complete relevance judgment is not usually

feasible even though it can be done for a small subset of the collection. However, for most queries,

only a small subset of items is relevant, and a perfect retrieval system is supposed to rank those

relevant items in the top position in the result list. Therefore, it would be concluded that just the

smaller subset of the candidate list should be annotated. The proposed Method 1 and Method 2 are

initiated by this idea. So, the re-ranking models, Cross-Encoder and BERTScore, are utilized to

re-rank the candidate list and collect the intelligence deriving from both models to decide about

the labels automatically. The shortcoming of this approach is that the IR engine may not operate

74

perfectly consequently, some relevant documents may not appear in high-ranked positions and not

be included in the candidate list so, an important part of the information would be ignored (Glavaš,

2020).

Method 1 leverages the similarity score calculated upon the pairs of queries and the candidates

that are returned by the Bi-encoder. Section 3.1.2.2 describes the Cross-Encoder and Section

3.1.2.3 explains the BERTScore as a similarity score and text generation evaluation metrics

utilizing pre-trained language models. According to knowledge exported from Section 3.1.2, those

candidates will be re-ranked independently based on Cross-Encoder and BERTScore. A specific

number of each re-ranked list will be selected as a new candidate list therefore, there will be two

separate candidates list, one is re-ranked with BERTScore and the other one is re-ranked by the

Cross-Encoder. The number of chosen items in these re-ranked lists is the parameter of this

method. Then, the intersection of both re-ranked lists will be considered as the final relevant items.

To be specific, it is the final judgment list produced by Method 1 which is illustrated in Figure 35.

Selecting a proper number of candidates to be re-ranked is crucial from two perspective. First it

depends on the use case for example, if the retrieval system is part of a recommendation system,

or search engine returns up to even 30 candidates might be effective but if it is a question-

answering platform, it could not be a long list. The second perspective arises from generalization

which means by considering more candidates it would be more probable to achieve a better

approximation of human judgment.

It should be mentioned that each Plot will be split into chunks based on an empirically determined

number of tokens, which is set to 50 based on the experimental findings in this research so, the

similarity score in Cross-Encoder and BERTScore is calculated for the pairs of each query and all

chunks of each Plot. In other words, the re-ranked list is a collection of items that retain the top

high-scored chunks.

https://www.zotero.org/google-docs/?R7IFBQ
https://www.zotero.org/google-docs/?R7IFBQ

75

Figure 35. Creating a judgment list with Method 1

The values are set, equal to 5 and 30, for the number of selected candidates in the experimental

investigation, and the results of each set are reported in the Result and Analysis chapter. It should

be noticed that the total number of candidates that is returned by the Bi-Encoder is 50 which is

considered in choosing the values 5 and 30 for the selected number of candidates.

If there is no common item between the Cross-Encoder re-ranked list and BERTScore re-ranked

list, then the union of the top half items of each re-ranked list will be selected as the final judgment

list.

The advantages of Method 1 consist of the evaluation of the performance of BERTScore and

Cross-Encoder as re-rankers by the MRR metric and utilizing the collective knowledge of both

models to decide on labels. On the contrary, the drawbacks are that if the Bi-Encoder does operate

ideally, some of the actual relevant documents may not be included in decision-making, calculating

the similarity between each query and all chunks of each Plot with a Large Language Model will

76

be computationally expensive. The last disadvantage is that it considers only one language model

in Bi-Encoder.

3.3.3.2 Method 2

The core idea behind Method 2 is the same as Method 1. Correspondingly, Method 2 considers the

chunks of each Plot in the candidates’ list as well and utilizes the similarity score calculated for

the pairs of each query and all chunks of each Plot. in Method 1 the higher-scored chunk stood as

the criterion to choose a Plot as the better match to be re-ranked in the top position by the Cross-

encoder or the BERTScore. However, in Method 2, the frequency of the high-scored chunks

belonging to the specific Plot is the measure for selecting an item to be ranked in a higher position.

In other words, for each query, all the chunks of all candidate Plots will be considered in a flattened

list. Then a threshold can be applied to choose for example only the first k number of items in that

flattened list of chunks. In the next step, the selected chunks will be grouped by the movies that

they belong to. The list of those movies (items) is the re-ranked list. This process will be repeated

for both re-rankers. So, there will be two re-ranked lists of items and the intersection will be the

final judgment list. This procedure is illustrated in detail in Figure 36. The number k is one

parameter in this method that needs to be chosen by experimental study and there is a threshold on

the number of members belonging to each group to be competent to be ranked in top position. This

threshold is set to 10 based on the empirical assessment.

77

Figure 36. Creating a judgment list with Method 2

This method has the same benefits as Method 1 besides considering more probability for the plots

with more than one high score chunk to appear in the top position. It materializes the fact that there

may be some Plots that obtain a higher score for most of their chunks rather than just having one

or a few chunks as relevant elements. So, this method does not have to choose necessarily a chunk

per Plot (movie).

The penalties are the same as Method 1 which could be expressed succinctly as considering only

one language model in Bi-Encoder, consumes a lot of resources, and ignoring some information

depends on Bi-Encoder performance.

It should be noticed that re-ranking makes better results in the cost of more calculation, but it is

better to do all this calculation for a subset of documents (candidates) instead of all documents.

78

3.3.3.3 Method 3

The Information Retrieval systems are usually evaluated in order to compare the performance of

various models or different versions of the same model for a special application or task. Regarding

this fact, it could be a good idea to leverage all the knowledge that will be provided by those

models or variations of the model in a pooling method (Glavaš, 2020).

According to the pooling idea in addition to the point that this research explores the performance

of two different models, Sentence-BERT (SBERT) and GPT-2, Method 3 resembles human

judgment by constructing a union of the suggested judgment lists created independently by both

models.

In this method, the risk of missing some relevant documents in the candidate list will be lessened

because there is a chance for a document to be highly ranked and as a result be included in the

candidate list with one model if it is not selected with the other one.

The empirical results of Method 1 and Method 2 for each of the models, Sentence-BERT and GPT-

2, indicate that Method 1 applied to this research data performs better for Sentence-BERT even

though Method 2 is the winner for GPT-2 which is discussed in more detail in Results and Analysis

chapter. Therefore, as Figure 37 demonstrates, the union of the judgment list created by applying

Method 1 using Sentence-BERT in Bi-Encoder and the judgment list produced by Method 2 by

GPT-2 as the Language Model in Bi-Encoder.

Figure 37. Creating a judgment list with Method 3

https://www.zotero.org/google-docs/?Bc66zn

79

As it is discussed earlier Method 3 mitigates the danger of neglecting parts of relevant items, but

it will happen in charge of more computation. Even though it combines the captured contextual

information from both models which is supposed to be a kind of collective intelligence that may

lead to more generalized and precise task-oriented judgement.

3.3.4 Query Attributes

Query plays a paramount role in an Information Retrieval system of any type, semantic search

engine, recommendation system, question-answering, or retrieval text generation. The retrieved

information will be picked from the collection predicated on the degree of the resemblance

between the captured context from the query and the items in the collection. Correspondingly it

should represent some attributes associated with being qualified to evaluate the performance of the

model in retrieving the most relevant documents.

For the purpose of this research, a list of 7 synthetic natural language questions is organized

regarding some measures of competency. The competent query should be navigational which

means it should provide some hint to the system to look for relevant information for instance it

may encompass some keywords in addition it would be related to at least one category of available

data in the collection according to the designer’s understanding about the dataset. It should be

mentioned that in this research, the designer's role is taken by the researcher. In the current

research, each query and its potentially relevant documents should belong at least to one movie

genre.

The employed dataset was used in another research for creating a semantic search with SBERT

and two of the asked queries there, were selected to be included in the test set of this research to

provide a pivot for comparison (Verma, 2021).

Another consideration in designing the test queries is following the same intent as the borrowed

queries from other research and articulating them in other words. With this criterion, the system

will be checked for its capacity for Natural Language Understanding. In the same regard, some

questions are designed in a way to navigate to the same genres and context to inspect the

competency of the model in capturing the intent and context when it is expressed implicitly and

can be compared with the queries that conveyed the intent explicitly through the keywords.

Those qualifications resulted in the following set of queries:

1. Artificial intelligence based action movie

https://www.zotero.org/google-docs/?H1FtPX

80

2. Science fiction movie showing the future of the world.

3. Films about time traveling.

4. A movie about romance and the pain of separation

5. An action movie about revenge against family murder

6. Comedy movie that contains time travel fantasy

81

4. Implementation

4.1 Workflow

The text field in the current dataset, Plot of each movie, is the main content to provide the required

knowledge from the unstructured data to be stored in a kind of index to be searchable. This process

of extracting knowledge from the text encompasses two phases: preprocessing including the

tokenization and mapping into embeddings. In the preprocessing phase, the text is analyzed using

the spaCy library to split it into tokens, count the number of tokens, and strip out the noise like

stop-words and special characters. It should be mentioned that stemming, and lemmatization are

executed for the Genre field as a text string. The second phase applies machine learning

approaches, specifically language models, to the text to derive the context of linguistic

representations in the corpus.

In addition to capturing the semantic intent and meaning of the text field of the dataset by

embeddings, the intent of the query needs to be understood by the same language model through

generated embedding. In other words, the query should be converted into embedding also under

the same setting.

After embedding generation and creating an index of them, any time a query is fed to the system,

it will be converted to embedding. Then the system will look for the most similar embedding to

the input query which is referred to as nearest neighbors. The similarity is calculated by distance

measurements in dense vector spaces like cosine similarity, dot product, and so on. Figure 38

demonstrates an architecture of semantic embedding using the Transformers for comprehending

the contextual intent and meaning of the contents as well as the query. What is shown in the figure

can be summarized in 5 steps as follows:

1. Get the embeddings for all the Plots in the dataset.

2. Create an index with the embeddings.

3. Get the embeddings for a query.

4. Search the index.

5. Show the nearest neighbor results.

This workflow is the heart of this research configuration. The research questions are explored to

be answered regarding this assumption. The code snippet of this procedure is attached in Appendix

C.

82

Figure 38. A conceptual architecture for end-to-end search using transformer encoded vectors

(Grainger et al., 2021)

In this research, the applied Machine Learning approach delivered by the MLOps cycle is a

semantic search solution utilizing Language Model categorized in Natural Language Processing

tasks.

The data preparation step is accomplished by choosing a dataset followed by data understanding,

cleaning, and transformation. The current research is mainly concentrated on the Develop, Train,

and Review steps in the MLOps cycle as they are the core of the solution’s functionality. With the

assumption that the proper data is prepared and ingested into the pipeline, the solution will be

developed by selecting the suitable model for the planned task and then evaluating the

performance.

In this project, the solution is developed with two different models of Transformers with various

number of parameters, different capacities in input acceptance, and the size of generated

embedding vector. Regarding these criteria, the models can be compared in being aligned with

human judgment alongside resource consumption and language understanding. The chosen models

include DistilBERT from the sentence-transformers library with 66M (66 million) parameters

mapping the input text into a 768-dimensional dense vector, and GPT-2large from the Transformers

library with 774M parameters converting the input text into a 1280-dimensional dense vector. The

DitilBERT takes input consisting of a sequence of 512 tokens but GPT-2large can accept an input of

1024 tokens. The differences show that GPT-2large is a larger model considering the more oversized

number of the parameters and greater input capacity provisioned to capture more context.

https://www.zotero.org/google-docs/?zNH0dU

83

Therefore, the naive hypothesis of the current research is formed around that. In Table 3 the

parameter size of some pre-trained models available on Hugging Face are summarized.

Model Parameter size

DistilBERT 66M

GPT-2 1.5B

GPT-2large 774M

DistilGPT-2 82M

GPT-2medium 355M

GPT-j-6b 6B

BERT-uncased-large 340M

BERT-uncased 110M

BART-large 140M

DeBERTa-v2-xlarge-mnli 900M

RoBERTa-large 354M

Table 3. Parameter size of some language models on Hugging Face including the selected

models in the current project.

When the model is chosen, the development will continue with capturing the embeddings and

making an index of them to search through. Then it will be followed up with feeding the test

queries to the system and producing the candidates which can be re-ranked as well.

The development process will be completed by assessing the model performance for the provided

data. Here the judgment list besides an appropriate evaluation metric plays a crucial role in

achieving the satisfactory level of generated output. Sometimes it is essential to inject the domain-

specific wisdom into the engine by re-training it with the prepared data (fine-tuning) and then

evaluating again till reaching the level of satisfaction. It can be repeated until coming up with the

best setting of model hyperparameters in re-training and it would be the last step before reviewing

all requirements to deploy the model into production. After deployment, the solution will

encounter the actual users, which is referred to as Inference. The interaction with the user will be

monitored regarding the latency, and user satisfaction with the results and necessary changes will

84

be made in the cycles by analyzing the performance. The user interaction and feedback could be

the augmentation data utilized for re-ranking which is another interesting topic in boosting the

search results but is beyond the scope of this research.

The semantic search pipeline is implemented utilizing Python programming language, Pandas as

the software library for Python to manipulate and analyze data, spaCy an open-source software

library for natural language processing in Python, Hugging Face a platform to build, train and

deploy state of the art models powered by the reference open-source in machine learning,

Sentence-Transformers a Python framework for state-of-the-art sentence, text, and image

embeddings, Transformers a State-of-the-art Machine Learning library for PyTorch and

TensorFlow, which provides APIs and tools to easily download and train state-of-the-art pre-

trained models, Jina AI2 a state-of-the-art LMOps, MLOps and cloud-native technologies, Docker

Containers as a delivery mechanism, Docker is a platform for running virtual machine images with

all operating system configuration and dependencies needed, and Kaggle a data science

competition platform and online community of data scientists and machine learning practitioners

under Google LLC which enables users to find and publish datasets, explore, and build models in

a web-based data science environment. The codes are executed on Google Colab notebooks using

Google Cloud servers including TPU, and GPU. The Python codes are available on GitHub3. It

should be mentioned that text, as one type of unstructured data, is the primary modality of data in

this research.

The primary dataset employed as the collection of contents includes several fields of information

where the principal field is the raw text of various lengths from multiple words to long passages.

This is a challenge that could be overcome by splitting the passages into chunks of the maximum

length of input that the language model can accept or to keep it simpler by just truncating the input

to the model to the maximum length. It must be noticed that the latter solution may result in

forfeiting some parts of the information.

The dataset includes 34886 documents processed with the language model to produce the required

knowledge for searching semantically through it. Hence, it takes a prolonged time to be processed

and consumes considerable computing resources. To accomplish the process with a free account

2 Jina AI - Your Portal to Multimodal AI
3 https://github.com/eliehv/Semantic_Search_using_LLM

https://github.com/eliehv/Knowledge-based-semantic-search

https://jina.ai/
https://github.com/eliehv/Semantic_Search_using_LLM

85

on Google Colab, the data is split into smaller groups and fed into the language model in batches.

Ultimately, the captured knowledge compacted into embeddings is concatenated into a single data

frame.

Among introduced metrics in Section 3.2, recall, precision, and MRR are calculated, and the results

are analyzed in Chapter 4. The precision and recall are selected since they can smoothly explain

the outcomes and complement each other’s insights, but they don’t consider the rank of the items

in the candidate list in the calculation so, to complete the simplicity and explain-ability with the

weighted rank the MRR is added to the selected metrics.

4.2 Generate Embedding using Language Models

According to the previous chapter discussion, two language models with different properties are

selected for the experimental setting regarding essential comparison characteristics including the

input capacity, parameters quantity, and embedding vector dimension. The contextual and

relational knowledge will be captured from the movie plots (Plot column in the dataset) using the

selected language model by generating embeddings which are the dense vector representation of

the captured knowledge. The code snippet attached in Appendix D demonstrates the required steps.

One of the employed models is “msmarco-distilbert-dot-v5”4 from the sentence-transformer

models accessible on the Hugging Face platform. Sentence-transformers is a Python framework

for state-of-the-art sentence, text, and image embeddings. The initial work is described in (Reimers

& Gurevych, 2019). This framework is based on PyTorch and Transformers including a large

collection of pre-trained models tuned for various tasks. It can be used to compute sentence or text

embeddings and then compare them with cosine similarity to find sentences with a similar meaning

which can be useful for semantic textual similarity, semantic search, or paraphrase mining

(SentenceTransformers Documentation — Sentence-Transformers Documentation, n.d.).

“msmarco-distilbert-dot-v5” model has been trained on 500K of query-answer pairs from the MS

MARCO dataset which is introduced in Appendix A.

“It is critical that you choose the right model for your type of task. It is mostly distinguished by

the type of data it has been trained on. Also, models tuned for cosine-similarity will prefer the

retrieval of short documents, while models tuned for dot-product will prefer the retrieval of longer

4 sentence-transformers/msmarco-distilbert-cos-v5 · Hugging Face

https://www.zotero.org/google-docs/?yZEtuD
https://www.zotero.org/google-docs/?yZEtuD
https://www.zotero.org/google-docs/?Lv4Lta
https://www.zotero.org/google-docs/?Lv4Lta
https://www.zotero.org/google-docs/?Lv4Lta
https://huggingface.co/sentence-transformers/msmarco-distilbert-cos-v5

86

documents.” (Verma, 2021). According to the importance of the similarity function corresponding

to the task which contains long texts in this project, dot-product is used as a similarity function in

Bi-Encoder for the “msmarco-distilbert-dot-v5” model.

A pre-trained model only performs properly if an input that is tokenized with the same rules that

are used to tokenize its training data is fed into it. Correspondingly, when the model and

corresponding tokenizer are obtained, the input text will be passed to the tokenizer and then to the

model to compute the corresponding embeddings. This process is defined as the get_embedding()

function in the code. The free accessible memory on Google Colab cannot handle all Plots of the

dataset at once so, it is divided into groups based on the Genre, and the get_embedding() function

is applied to all groups independently and ultimately all groups concatenated.

The produced embedding vectors besides the number of tokens in each input text (movie plot) will

be added to the data frame for further utilization.

The same process is executed with the other selected model, “gpt2-large”5. This model is

accessible via the Transformers library which provides APIs and tools to easily download and train

state-of-the-art pre-trained models. The “gpt2-large” model is described in detail in Section

2.3.5.2. It is mentioned, on the OpenAI web page6, that OpenAI embeddings are normalized to

length 1 which means that the cosine similarity can be computed slightly faster using just a dot

product and it results in the identical ranking. Therefore, in the Bi-Encoder procedure to find the

nearest neighbors, cosine similarity will be used for the embeddings generated by “gpt2-large”.

The embedding generating process is completed in a hugely different span of time which is

summarized in Table 4. The smaller model, which is a distilled version of BERT and task-oriented

for sentence similarity, takes a much smaller span of time to be accomplished.

Language Model Embedding Generation Time Processor Type

gpt2-large 88 hours Google Colab TPU

msmarco-distilbert-dot-v5 6 hours Google Colab TPU

Table 4. Processing time for embedding generation

5 gpt2-large · Hugging Face
6 Embeddings - Frequently Asked Questions | OpenAI Help Center

https://www.zotero.org/google-docs/?I0C1MU
https://huggingface.co/gpt2-large
https://help.openai.com/en/articles/6824809-embeddings-frequently-asked-questions

87

4.3 Results and Analysis

4.3.1 Bi-Encoder

After producing embedding for all Plots and storing them, the queries can be fed to the system.

Then, the queries’ embeddings will be generated using the same model. In the next step, the results

will be returned based on the similarity between the embeddings. These steps happen in the

architecture shown in Figure 38 and the code provided in Appendix C. Table 5 demonstrates the

primary results, to answer query number 1 in the provided test query set created by Bi-Encoder for

both models. This table shows only the 5 top nearest neighbors (movies) to the query even though

the number of the top k results is set to 50 in this experiment.

Query Model Positional

rank

Title of the movie

Query 1:

“Artificial

intelligence

based action

movie”

msmarco-

distilbert-dot-v5

1 D.A.R.Y.L.

2 Ra.One

3 Chanakya Chandragupta

4 The Last Starfighter

5 Chappie

gpt2-large

1 Walk Like a Dragon

2 Murder in the Air

3 Sanyasi Mera Naam

4 Crosstalk

5 Rokto

Table 5. The results of Bi-Encoder for both selected models

It is evident, from the information provided in Table 5, that the “msmarco-distilbert-dot-v5”

outperformed “gpt2-large” which means it provided more relevant candidates for example

88

“D.A.R.Y.L”, “Ra.One”, and “Chappie”. In addition, if further results from the model “msmarco-

distilbert-dot-v5” are scanned, it will be displayed that the movie “Transcendence” which seems

to be a relevant item to the query, occurs in the 15th rank out of 50 returned items. It could be

concluded that re-ranking may direct to a better performance regarding the more relevant items

appearing in the higher positions.

These outcomes lead to a premature conclusion that “gpt2-large” may not compete with the small

task-oriented pre-trained model in recognizing the nearest neighbors even though it is a much

larger language model with a more extensive contextual capacity.

The outcomes of the current research at this stage are compared with the results of a semantic

search engine implemented using the “msmarco-distilbert-base-dot-prod-v3” by Verma 2021

which is shown in Table 6 (Verma, 2021). That search engine takes the same dataset employed in

this experimental research. There is a common movie in the 5 top candidates returned by using

“msmarco-distilbert-base-dot-prod-v3” and “msmarco-distilbert-dot-v5” while, apparently, there

is no intersection with “gpt2-large”. Version 5, v5, of the “msmarco-distilbert-dot”, contains the

v3 cosine-similarity models but with an additional normalized layer on top besides being tuned for

dot-product which makes it suitable to accept longer passages (MSMARCO Models — Sentence-

Transformers Documentation, n.d.).

Query Model Positional

rank

Title of the movie

Query 1:

“Artificial

intelligence

based action

movie”

msmarco-

distilbert-base-dot-

prod-v3

1 The Cape Canaveral Monster

2 Small Soldiers

3 Chappie

4 Armed Response

5 Galactic Armored Fleet Majestic

Prince: Genetic Awakening

Table 6. Bi-Encoder results using “msmarco-distilbert-base-dot-prod-v3” (Verma, 2021)

4.3.2 Re-ranking

According to the what is explained in Chapter 3 regarding the similarity score and re-ranking

methods, in this experimental research, Cross-Encoder and BERTScore are utilized to calculate

https://www.zotero.org/google-docs/?IHy3st
https://www.zotero.org/google-docs/?V9mLjG
https://www.zotero.org/google-docs/?V9mLjG
https://www.zotero.org/google-docs/?V9mLjG
https://www.zotero.org/google-docs/?V9mLjG
https://www.zotero.org/google-docs/?u6hdqB

89

the similarity between the queries and the candidate’s Plots in order to re-order the rank of the

candidates to achieve the more reasonable recommended list.

The Cross-Encoder resembles the similarity between the pairs of queries and the Plots of the items

in the candidate list for example query 1 and the plots of the movies mentioned in Table 5.

According to Figure 31, the pairs will be passed to a language model to be compared by their

contextual embeddings and classified as similar or dissimilar. The Cross-Encoder calculates the

score of the similarity that can be used for classifying as similar or dissimilar. The language model

utilized in the Cross-Encoder is “cross-encoder/mmarco-mMiniLMv2-L12-H384-v1”7 which is a

version of MiniLMv2 described in Section 2.3.5.4 trained on the MS MARCO dataset. The re-

ranking code using Cross-Encoder is provided in Appendix E.

Another model that is used as a re-ranker is BERTSCore which will compare the pairs of queries

and the Plots token-wisely as demonstrated in Figure 33. The BERTScore uses a language model

as the foundation of the comparison which is “deberta-xlarge-mnli”8 a version of the DeBERTa

and it is fine-tuned for the Natural Language Understanding task. The re-ranking code using

BERTScore is attached in Appendix F.

It should be mentioned that in the re-ranking stage, the Plots’ text is split into smaller chunks. The

code for splitting Plots into chunks is shown in Appendix G. The chunk size is set to 50 tokens.

This number is selected after an empirical examination of various values indicating that the smaller

quantity of tokens in the input sequence operates better than more tokens. This indication needs to

be investigated more in separate research because it contradicts the fact that the language models

used in Cross-Encoder and BERTScore are large models able to accept a long sequence of tokens

as input. A reason could be the token-wise comparison in BERTScore that may reduce the input

capacity of BERTScore compared to the “deberta-xlarge-mnli” by itself. On the other hand,

computing the similarity on chunks of Plots equips Method 2, one of the proposed methods in

creating a judgment list, with the requirements.

The chunk comparison provides two possible approaches for deciding on the better matches, which

is introduced in Section 3.3, also it will assure that each chunk will fit into the language model. At

the same time, it may compromise capturing the whole context at once which is one of the

prominent attributes of the Large Language Models (LLM).

7 cross-encoder/mmarco-mMiniLMv2-L12-H384-v1 · Hugging Face
8 microsoft/deberta-v2-xlarge-mnli · Hugging Face

https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1
https://huggingface.co/microsoft/deberta-v2-xlarge-mnli

90

Table 7 outlines the re-ranked list of items by applying the Cross-Encoder re-ranker on the

candidate list provided by “msmarco-distilbert-dot-v5” and Table 8 abstracts the re-ranked list by

employing the BERTScore.

Cross-Encoder

Re-rank position

Bi-Encoder position Title

1 1 D.A.R.Y.L.

2 7 The Legend of Wisely

3 2 Ra.One

4 14 Universal Soldier: The Return

5 38 Evolver

6 15 Transcendence

7 11 Leonard Part 6

8 43 Terminator 2: Judgment Day

9 6 Black Eagle

10 9 You Don't Mess with the Zohan

Table 7. Re-ranking with Cross-Encoder using “msmarco-distilbert-dot-v5”

As it is reported in Table 7, the Cross-Encoder ranked the more relevant items in higher positions

as it is expected. For example, “Transcendence” is driven from the 15th to the 6th rank, and other

relevant items like “Universal Soldier: The Return” and “Terminator 2: Judgment Day” appeared

in higher positions even though an irrelevant item “The Legend of Wisely” is appeared in the high

rank which is not valid.

To obtain another perspective of the similarity between queries and the chunks in the Plots, a

similarity matrix which calculates the token-wise similarity score by BERTScore model will be

practical. The top 1 re-ranked item with Cross-Encoder is “D.A.R.Y.L.” baked on the Table 7

information and its highest scored chunk is “Daryl acronym data analyzing robot youth lifeform

91

barret oliver experiment artificial intelligence create government”. Figure 39 shows the heatmap

graph of the similarity matrix for that chunk and query 1. The similarity matrix shows that the

context and keywords in the selected chunk perfectly match the query intent which is desired.

Figure 39. Similarity matrix of the highest-scored chunk in the top 1 item re-ranked by Cross-

Encoder and query 1

The 2nd top re-ranked item with Cross-Encoder is “The Legend of Wisely” movie and its highest-

scored chunk is “Samuel Hui play wisely big budget hong kong movie production unit film scene

great pyramids scene Nepal car chase crash chase horseman plenty fight way” which seems to be

an irrelevant candidate, but it attained a high rank which is unwelcome. So, the heatmap similarity

matrix for that chunk and query 1 is illustrated in Figure 40 which may provide a more explicit

vision of the recognized similarities by the model. Although it is not explainable accurately, it can

be reviewed in Figure 40 that the words movie, film, and scene in the selected chunks match the

word movie in the query with a high score and the word wisely may provide some contextual

similarity. One unexpected observation in this matrix is that the word Samuel, which is a person's

name, is tokenized in two sub-words, and the first part, Sam, obtained the highest similarity score

with the word artificial. This indicates that the tokenizer functionality could affect the outcomes

dramatically.

Figure 40. Similarity matrix for the tokens of the highest scored chunk in the 2nd top item re-

ranked by Cross-Encoder and query 1

92

Likewise for the 6th top item in the re-ranked list created by Cross-Encoder, “Transcendence”,

the highest scored chunk is “bree threaten kill max upload virus explain power heal evelyn

physical body upload virus”. Figure 41 shows its similarity matrix. In this example also the

person’s name, Evelyn, is tokenized in two separate parts which is not desired. This could signify

that the Named Entity Recognition process would be effective if it is added to the preprocessing

pipeline. This idea can be investigated in a further research project.

By observing the similarity matrices, the trade-off between the input capacity of the language

model used by BERTScore and the capacity of token-wise comparison will be more obvious which

emphasis on the importance of exploring its ambiguity more precisely. It could be inferred that

more additional context would result in better decisions made by the Language Model in addition

to more explain-ability.

The results in Table 8, report that BERTScore functioned more ambiguously regarding moving

the more relevant candidates to the higher ranks. For instance, “Transcendence” as a relevant item

occurred in rank 1 which is perfect but “D.A.R.Y.L.” as a matched item is driven down to the list

and more irrelevant items like “Kantri” appeared in the 10 top ranks which are not desired.

Figure 41. Similarity matrix for the tokens of the highest scored chunk in the 6th top item re-

ranked by Cross-Encoder and query 1.

The highest-scored chunk in the top 1 re-ranked item with BERTScore, “transcendence”, is “dr.

caster johnny depp scientist research nature sapience include artificial intelligence”. The

corresponding similarity matrix is depicted in Figure 42, notice that this is a highly relevant item.

93

BERTSore re-

rank position

Bi-Encoder position Title

1 15 Transcendence

2 25 Nemesis

3 27 Kantri

4 1 D.A.R.Y.L.

5 5 Chappie

6 38 Evolver

7 33 Terminator Salvation

8 49 Rangamati

9 41 Katha

10 32 A Gentleman

Table 8. Re-ranking with BERTScore using “msmarco-distilbert-dot-v5”

Figure 42. Similarity matrix for the tokens of the highest-scored chunk in the top 1 item re-

ranked by BERTScore and query 1

94

It should be commented that the highest-scored chunk for the same movie, “Transcendence”, is

different in Cross-Encoder and BERTScore which can be reviewed in Figures 41 and 42. This

implies that token-wise similarity measurement which happens in BERTScore operates differently

from finding the nearest neighbor in embedding vector space which emerges in Cross-encoder.

Also, it should be noticed that distinct language models are used. If Figures 41 and 42 are studied

simultaneously, it will be understood that the selected chunk by BERTScore contains more tokens

with high similarity scores for instance “dr”, “scientist”, “research”, “artificial”, and

“intelligence”. However, the person’s name “John” gained a high score as well which there is no

explicit explanation for it. It should be considered here that BERTScore is cited as an outstanding

method in approximating human judgment in text similarity tasks. So, it could be concluded that

it is performed properly as a re-ranker although it ranked some irrelevant items in the top 10 which

is not explainable.

The 3rd top re-ranked item with BERTScore is “Kantri” which is an irrelevant item. Its highest

scored chunk is “movie stylish fight good action sequence”. This movie’s selected chunk is shown

in Figure 43 on the similarity matrix of the tokens. So, it can be examined more accurately with

an explainability objective. There is a high score match between the words “artificial” and “movie”

which is observed in other matrices also. It seems that the chunk is selected mostly based on word

meaning similarity than contextual similarity which could be remarked as another evidence to

explore an extended chunk size in future research.

Figure 43. Similarity matrix for the tokens of the highest-scored chunk in the 3rd top item re-

ranked by BERTScore and query 1

95

The re-ranking process is executed also for the top 50 candidates created in Bi-Encoder using

“gpt2-large”. Both types of re-ranker are employed in this case as well. Tables 9 and 10 report

the results for Cross-Encoder and BERTScore re-ranking respectively.

Cross-Encoder

re-rank position

Bi-Encoder position Title

1 17 Television Spy

2 14 The Man Who Made Diamonds

3 25 White

4 9 The Green Pastures

5 40 Bullets and Saddles

6 45 C.H.O.M.P.S.

7 32 Nothing Else Matters

8 43 Wide Boy

9 29 Oyee

10 20 Key to Harmony

Table 9. Re-ranking with Cross-Encoder for candidates created by gpt2-large.

After Re-rank with Cross-Ecoder, the best item in the candidate list returned by Bi-Encoder using

“gpt2-large”, which is “Crosstalk”, appeared in the 34th position. It could mean that re-ranking

operated reversely in this case. In other words, the most relevant item recognized by “gpt2-large”

does not appear in the top 10 after re-ranking which is undesirable. But it appeared in the 22nd

rank by BERTScore re-ranking which seems a bit better although it is not still in the top 10 list

and no relevant item occurred in the top 10.

A more accurate review of “msmarco-distilbert-dot-v5” scores created with both re-rankers

indicates that those scores are mostly concentrated in the middle of the score range for BERTScore

96

and spread in a shorter range for Cross-Encoder which could be considered as a booster to the

indication that this model performs better than “gpt2-large” in this downstream task. In other

words, “msmarco-distilbert-dot-v5” seems to be more consistent. However, the range of scores

and the variations that happens in re-ranking is more considerable for the “gpt2-large”. The score

variation is even more expansive for BERTScore.

BERTScore re-

rank position

Bi-Encoder position Title

1 11 Ghamandee

2 1 Walk Like a Dragon

3 8 Aadesh - Power of Law

4 16 Hum Farishte Nahin

5 36 Kote

6 10 Jawaani

7 29 Oyee

8 7 Seesa

9 32 Nothing Else Matters

10 49 Wind

Table 10. Re-ranking with BERTScore for candidates created by gpt2-large.

A more accurate review of the results created by “gpt2-large” reveals a prominent insight which

shows that candidates suggested by “gpt2-large” are biased on the Drama and Romance genres,

for example for query 1 the candidate list contains fewer items from the Science Fiction genre

while it is supposed to be the main genre correspondent to this query. The candidate lists provided

by both employed language models and for both examined re-rankers are reported in Appendices

K and L. By studying the tables in those Appendices, it would be revealed that “gpt2-large”

provide a more general view of the captured intention from the queries and the candidates. In

97

addition, it is observable that it provides a wide range of genres in the suggested items. For

example, “msmarco-distilbert-dot-v5” results in candidates mostly from the Science Fiction genre

for queries 1 and 2 while “gpt2-large” candidates include more variety of genres. This behavior

could be derived from being a general-purpose model, not tuned for text similarity, and capturing

the context in a general view to predict the next word in the sequence from the only left side context

to generate text. This underlines that this model may not outperform regarding the specific task to

find similarities, but it can be generalized well which can be considered as a complementary

attribute. This attribute is utilized in the proposed methods for creating a judgment list to provide

an automatic performance evaluation pipeline. It should be accentuated that “gpt2-large” brought

up a candidate “Crosstalk” which is not recognized as a relevant item by the other language model.

However, the results generated by “msmarco-distilbert-dot-v5” contains mostly Science Fiction

and Adventure genre. The results of “gpt2-large” seems a bit better for queries 2 and 3. On the

other hand, it should be considered that there are some items among the candidates produced by

“gpt2-large” for instance “Crosstalk” for query 1 which is a relevant match, but it appears in

neither Cross-Encoder nor Bert-Score top 10 results. It could be indicated that re-ranking is not

performing well for “gpt2-large” candidates.

The fact that “gpt2-large” can provide a few relevant items, that are not suggested by the other

model at all, could be helpful for better generalization. Its poor performance despite its huge

contextual capturing capacity, could be explained by not being conditioned for a specific task in

the embedding generation phase. More precise research on the conditions and experimental

settings, e.g., summarizing or splitting the text before being fed into the model to generate

embedding, can be performed to reach a more accurate conclusion but in general, according to the

reported results in this experiment, it seems that the model is not appropriate for embedding

similarity-based tasks like information retrieval and semantic search.

The data and setting of the experiments can be adjusted more precisely based on the finding of this

research to explore more potential discoveries which is not able to be done in the current research

due to the lack of time and resources (lack of resources makes the computations take more time).

For example, the input sequence of tokens besides the number of tokens considered in splitting the

Plot into chunks in re-ranking can be explored more. It seems that the small number of tokens in

the chunks makes the re-ranking process function more like a synonym or keyword match because

it contains less context. This indication can be investigated in further research as well.

98

The different language models with various architectures and parameter sizes make the re-ranking

process take distinct time spans to be accomplished. The recorded computational time spans for

the Cross-Encoder and BERTScore are documented in Table 11. The language model used in the

experimental setting of the BERTScore re-ranking is “microsoft/deberta-xlarge-mnli”. Based on

the provided data, BERTScore takes much more time to compute the scores. The size and attribute

of the employed language model in re-ranking directly affect the consumed amount of time.

Re-ranker Time

(minutes)

Number of

candidates

Language Models

CrossEncoder 2 50 “cross-encoder/mmarco-mMiniLMv2-

L12-H384-v1”

BertScore 34 50 “microsoft/deberta-xlarge-mnli”

BertScore 12 50 default

Table 11. Re-ranking time spans

Bi-Encoder is a perfect method to find the semantically similar items to the input query in a huge

collection of documents because it just computes the similarity between already stored embedding

vectors so, it can produce the results fast enough for the inference time. On the other hand, re-

rankers like Cross-Encoder can provide more satisfying results but it takes dramatically longer

time since it computes the similarity of each pair of query and text. Therefore, their power will be

unlocked as a re-ranker to be applied to a smaller collection of documents generated by a simple

Bi-encoder. This a trick to achieve the preferably ranked results in a shorter time. In addition, as it

is discussed in Sections 3.3.3 and 4.3.3, they can be utilized in creating the requirements to

implement an automatic evaluation pipeline for information retrieval systems.

4.3.3 Generating Judgment List

In this section the results of the various labeling methods discussed in Section 3.3.3 are

documented and analyzed. These results encompass the evaluation metrics calculated for each of

the introduced labeling methods.

99

As mentioned before, in the present research, recall, precision, and MRR are utilized to evaluate

the performance of language models in the semantic search downstream task.

Recall is informative because it deals with FalseNegatives where fewer FalseNegatives mean that

in the suggested list of items, there are more relevant items. If the recall is equal to 1 it points that

there is no relevant item that is not included in the suggested items.

Precision presents a useful insight into the performance as well since the closer its value is to 1,

implies that there are fewer FalsePositives in the offered list of relevant items which means

including fewer irrelevant items. Although it should be noticed that FalsePositives could enhance

the chance of including more variety of contextual concepts. Therefore, it seems that the precision

value could be more passable.

4.3.3.1 Method 1

This method as demonstrated in Figure 35, utilizes both re-ranking methods to assign a similarity

score to each query-chunk pair for all queries and their candidates created by Bi-encoder. The re-

ranked lists based on the highest-scored chunks are made by both re-rankers. Then, the intersection

of them is computed to provide a single set of relevant items as an approximation of human

judgment. Bi-encoder provides the top 50 candidates using the “msmarco-distilbert-dot-v5”

language model. So, the number of the re-ranked items that can be selected to join in the

intersection is the parameter of this method. In the experimental setting for Method 1, the values

of 5 and 30 are chosen to be investigated for this parameter. The code for this labeling method is

attached in Appendix H. Table 12 reports the evaluation metrics by applying the judgment list

created with Method 1 and Table 13 shows the metrics when “gpt2-large” is used as the language

model in Bi-Encoder. Recall, precision, and MRR are calculated for the candidate list and re-

ranked outputs by both re-rankers.

It should be noted that precision and recall are calculated for each query separately, but MRR is

calculated over all involved queries. So, in each row of the tables, there is one single value for

MRR computed over 6 queries while there are 6 values (one value per query) for precision and

recall that form a list.

100

Method’s

parameter

Re-ranking

method

MRR@6 Precision Recall

5 Bi-Encoder 0.3192 [0.02, 0.02, 0.04,
0.08, 0.08, 0.08]

[1.0, 1.0, 1.0, 1.0,
1.0, 1.0]

5 Cross-Encoder 0.7917 [0.02, 0.02, 0.04,

0.08, 0.08, 0.08]
[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

5 BERTScore 0.75 [0.0204, 0.02,

0.0408, 0.0816,

0.08333, 0.08]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

30 Bi-Encoder 0.6528 [0.46, 0.36, 0.36,

0.36, 0.42, 0.42]
[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

30 Cross-Encoder 0.8333 [0.46, 0.36, 0.36,

0.36, 0.42, 0.42]
[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

30 Bi-Encoder 0.6722 [0.4694, 0.36,
0.3674, 0.3674,

0.4375, 0.42]

[1.0, 1.0, 1.0, 1.0,
1.0, 1.0]

Table 12. Performance evaluation metrics calculated by applying Method 1 with “msmarco-

distilbert-dot-v5”.

One dominant observation is that the recall is all 1 for every setting. It means that there is no

FalseNegative. It happened because it is assumed that all potential matches are returned by Bi-

Encoder. In other words, it is supposed that Bi-Encoder functioned perfectly, and the result

candidates include all possible options which is not true. It should be considered also that only the

50 top results of the Bi-Encoder are chosen to be passed to the re-ranker.

According to the reported data in Tables 12 and 13, precision values have changed by different

values set for the parameter also by the employed language model, but they are almost fixed per

language model and determined parameter. The fixed precision values in the same setting for the

language model and parameter value points that the number of FalsePositives are stable under

identical conditions which means is apparent because no irrelevant document will be added to the

candidates’ list in that situation.

101

Method’s

parameter

Re-ranking

method

MRR@6 Precision Recall

5 Bi-Encoder 0.2355 [0.08, 0.08,

0.02, 0.08, 0.08,

0.08]

[1.0, 1.0, 1.0, 1.0,
1.0, 1.0]

5 Cross-Encoder 1.0 [0.08, 0.08,

0.02, 0.08, 0.08,

0.08]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

5 BERTScore 0.88 [0.08, 0.0833,

0.0208, 0.0851,

0.0833, 0.0816]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

30 Bi-Encoder 0.3333 [0.28, 0.38,

0.48, 0.36, 0.34,

0.32]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

30 Cross-Encoder 0.6806 [0.28, 0.38,

0.48, 0.36, 0.34,

0.32]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

30 BERTScore 0.5988 [0.28, 0.3958,

0.5, 0.3830,

0.3542, 0.3265]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

Table 13. Performance evaluation metrics calculated by applying Method 1 with “gpt2-large”

The best precision happened when the parameter is set to 30 and “msmarco-distilbert-dot-v5” is

employed to generate embeddings. This shows that this is a proper setting for taking advantage of

this method and it confirms the previous conclusion that “msmarco-distilbert-dot-v5” outperform

“gpt2-large”.

The values in the precision list do not vary in a wide range. However, it could be observed that the

precision is better for query 1 in the best row which is not the case in other rows.

It is obvious from both tables that the greater value of the parameter, 30, leads to better

performance for both language models which means including more items increases the chance of

appearing more relevant items in results, TruePositives. Both tables equally contribute to

concluding that the Cross-Encoder re-ranker surpasses the BERTScore.

102

4.3.3.2 Method 2

This method considers each chunk of a plot as a separate item in the re-ranking process. Then the

chunks that belonged to the same movie and appear more frequently as high-scored chunks

determine the relevant items. For example, if the top 100 best-scored chunks are selected, the most

frequent movies among selected chunks will be chosen as relevant documents. So, the top highest-

scored chunks are grouped by movie, and the frequency of each movie appearance is counted then

the groups that have at least k (min_num_group_items) members will be selected. This process

repeats for both Cross-Encoder and BERTScore then the intersection will be returned as relevant

items. The Python code that implemented Method 2 is attached in Appendix I and Table 14

summarizes the results made using the “msmarco-distilbert-dot-v5” language model and Table 15

documents the results where the “gpt2-large” is applied.

min_num_grou

p_items

Re-ranking

method

MRR@6 Precision Recall

5 Bi-Encoder 0.5516 [0.54, 0.46, 0.18,

0.38, 0.34, 0.28]
[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

5 Cross-Encoder 0.8333 [0.54, 0.46, 0.18,
0.38, 0.34, 0.28]

[1.0, 1.0, 1.0, 1.0,
1.0, 1.0]

5 BERTScore 0.5611 [0.5510, 0.46,

0.1837, 0.38778,
0.3542, 0.28]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

10 Bi-Encoder 0.4750 [0.34, 0.28, 0.04,

0.08, 0.1, 0.04]
[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

10 Cross-Encoder 0.5243 [0.34, 0.28, 0.04,

0.08, 0.1, 0.04]
[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

10 Bi-Encoder 0.3854 [0.3469, 0.28,

0.0408, 0.0816,

0.1042, 0.04]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

Table 14. performance evaluation metrics calculated by applying Method 2 with “msmarco-

distilbert-dot-v5”

The minimum number of members in each group, k, is the parameter of Method 2. Two value is

considered as the empirical setting for this method including values equal to 5 and 10.

103

The number of chunks included in each group is not large when “gpt2-large” is employed. The

maximum number of chunks in a group is 9. Also, there are plenty of groups with only one

member. Therefore, instead of considering a fixed value for the parameter of Method 2, a variable

value formulates as max(number of items in groups) - k is recommended in this situation.

Plenty of groups with a single member indicate that “gpt2-large” capture totally different

contextual information in its embeddings, maybe more generalized information. This observation

confirms the indications made with Method 1 regarding the difference that is observable in the

“gpt2-large” operation including more variety of genres and tends to retrieve the Drama and

Romance genres which are the most portion of the dataset.

According to the reported data in Table 14, a smaller value for parameter k results in better

performance which is determined by a higher value of MRR. For example, the value of 5 means

that the groups with more than 5 members can be included in the selection so, there is more chance

for relevant items to be considered in the judgment list. This conclusion is verified in Table 15 as

well, in this case, max(number of items in groups) - 9 points that any groups that have at least one

member can be included which obviously resulted in an MRR of 1. On the other hand, it should

be considered as a trade-off in this method. Regarding that max(number of items in groups) - 5

would be considered as the baseline.

MRR is the main metric to evaluate the performance of the finding of re-ranked nearest neighbors

since it considers the rank of items in the calculation process. As one of the objectives is to

determine the better re-ranker it is a perfect choice for evaluation.

It is approved in both tables that Cross-Encoder transcends the BERTScore regarding re-ranking.

It should be noted that in the process of creating the judgment list with Method 2 using “gpt2-

large”, where the intermediate results are checked, interesting outcomes are observed. The re-

ranked list based on the frequency of the chunks for both re-rankers contain plenty of common

items. In other words, there are many common items in the re-ranked lists as they could be

considered identical. It could signify that the contextual features captured in the embedding

provided using “gpt2-large” are scored similarly with both BERTScore and Cross-Encoder. It

points outs the difference between the general-purpose pre-trained model and the task-oriented

tuned model. It could be another verification of the consistency of the features and contextual

content captured by “gpt2-large” even though it does not perform appropriately for semantic text

similarity purposes according to the results reported in Sections 4.3.1 and 4.3.2.

104

min_num_group_

items

Re-ranking

method

MRR@6 Precision Recall

max(number of

items in groups) - 1
Bi-Encoder 0.02 [0.02, 0.02,

0.02, 0.02, 0.08,

0.02]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

max(number of

items in groups) - 1
Cross-

Encoder

0.36 [0.02, 0.02,

0.02, 0.02, 0.08,

0.02]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

max(number of
items in groups) - 1

BERTScore 0.07 [0.02, 0.02,

0.02, 0.02, 0.08,

0.02]

[1.0, 1.0, 1.0, 1.0,
1.0, 1.0]

max(number of

items in groups) - 5
Bi-Encoder 0.53 [1.0, 0.04, 0.4,

0.94, 0.96, 0.1]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

max(number of

items in groups) - 5
Cross-

Encoder

0.92 [1.0, 0.04, 0.4,

0.94, 0.96, 0.1]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

max(number of
items in groups) - 5

BERTScore 0.60 [1.0, 0.04, 0.42,

1.00, 1.00, 0.10]

[1.0, 1.0, 1.0, 1.0,
1.0, 1.0]

max(number of

items in groups) - 9
Bi-Encoder 1.00 [1.0, 0.96, 0.96,

0.94, 0.96, 0.98

]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

max(number of
items in groups) - 9

Cross-

Encoder

1.00 [1.0, 0.96, 0.96,

0.94, 0.96, 0.98

]

[1.0, 1.0, 1.0, 1.0,
1.0, 1.0]

max(number of

items in groups) - 9
BERTScore 1.00 [1.0, 1.0, 1.0,

1.0, 1.0, 1.0]

[1.0, 1.0, 1.0, 1.0,

1.0, 1.0]

Table 15. performance evaluation metrics calculated by applying Method 2 with “gpt2-large”.

4.3.3.3 Method 3

The third proposed method for creating the judgment list initiates from the pooling idea. Based on

the explanation in Section 3.3.3.3, in this method, the judgment list is extracted utilizing both

language models. In other words, it will take advantage of the collective intelligence that came

from the captured knowledge from both language models.

105

The purpose is to attribute Method 3 with the generalization derived from “gpt2-large” alongside

the perfect similarity match inherits from “msmarco-distilbert-dot-v5”. The compound methods

are essential to cope with the shortcomings involved in the performance of recommendation

systems as a subset of information retrieval engines. The final judgment list in Method 3 will be

produced by computing the union of the lists generated in Method 1 and Method 2 as a shared

knowledge procedure.

According to the data reported about Method 1 and Method 2 in previous sections, it is conducted

that the “msmarco-distilbert-dot-v5” model leads to a better judgment list in Method 1 when the

parameter is set to 30. While “gpt2-large” can achieve a more promising list of relevant items by

employing Method 2 and setting the parameter value to max(min_num_group_items)-5. Therefore,

the knowledge gathered from both language models in Method 1 and Method 2 will be pooled in

Method 3.

The common items in judgment lists, created by Method 1 using “msmarco-distilbert-dot-v5” and

Method 2 using “gpt2-large”, are summarized in Table 16. It should be noted that for queries 1

and 2 there is no common item between the two selected pipelines which could mean that the

employed language models did not capture any common knowledge from the Science Fiction

genre.

After creating the final judgment list by computing the union, that list will be used to calculate the

evaluation metric for both language models' performance in the semantic search pipeline. The

empirical values of the evaluation metrics calculated using Method 3 are reported in Table 17 and

the code of Methods is attached in Appendix J.

As it is expected in Method 3, recall is not fixed with value 1. The reason is that the candidates

come from both language models and the naive assumption of the ideal Bi-Encoder is not valid in

this Method. The same reason applies to a very low value of precision.

The higher values of recall for “msmarco-distilbert-dot-v5” means that a greater number of items

in the judgment list created by Method 3 came from Method 1 with “msmarco-distilbert-dot-v5”

which points that there are more common items between BERTScore and Cross-Encoder for

“msmarco-distilbert-dot-v5” language model. The indication is that “msmarco-distilbert-dot-v5”

is more consistent in the text similarity task.

106

Query Common item

Artificial intelligence based action movie []

Science fiction movie showing the future of the world []

Films about time traveling ['Voyage']

A movie about romance and the pain of separation ['Ninaithu Ninaithu Parthen',

'Annum Innum Ennum',

'Manasina Maathu', 'Love

Actually... Sucks!', 'Faces',

'Kalgejje']

An action movie about revenge against family

murder

 ['Sri Naga Shakthi', 'This Rebel

Breed', 'Manasina Maathu',

"Emily Brontë's Wuthering

Heights"]

Comedy movie that contains time travel fantasy ['The Kentucky Fried Movie',

'Return of Mr. Superman']

Table 16. common items in judgment lists created by Method 1 and Method2 using “msmarco-

distilbert-dot-v5” and “gpt2-large” respectively.

The reported data in Table 17 demonstrates that “msmarco-distilbert-dot-v5” gained the greatest

value of MRR which means the best performance. This is confirmed in Method 1 and Method 2

as well. Obviously, recall and precision values for “msmarco-distilbert-dot-v5” surpass also.

Although it should be considered that in this case, BERTScore is the best re-ranker which is

different from the two other methods.

It could be concluded that since in Method 3 more generalized items coming from “gpt2-large”

are included in the candidates’ list, the BERTScore performed better in re-ranking them as it can

capture more generalized similarities using “microsoft/deberta-xlarge-mnli” language model.

It would be said that the large and general-purpose language model like “gpt2-large” and

“microsoft/deberta-xlarge-mnli”, which is used in BERTScore and is cited as outperforming

BERT in Natural Language Understanding tasks, capture similar features. In other words, the

features that are captured by “gpt2-large” would be considered also by the “microsoft/deberta-

xlarge-mnli” model in the re-ranking process.

107

Language

Model

Re-ranking

method

MRR@6 Precision Recall

“msmarco-

distilbert-dot-

v5”

Bi-Encoder 0.42 [0.04 0.12 0.42

0.06 0.04 1.00]

[0.04 0.11 0.38

0.05 0.04 0.91]

“msmarco-

distilbert-dot-

v5”

Cross-Encoder 0.35 [0.04 0.12 0.42

0.06 0.04 1.00]

[0.04 0.11 0.38

0.05 0.04 0.91]

“msmarco-

distilbert-dot-

v5”

BERTScore 0.71 [0.04 0.12 0.42

0.06 0.04 1.00]

[0.04 0.11 0.38

0.05 0.04 0.91]

“gpt2-large” Bi-Encoder 0.02 [0.00 0.00 0.04

0.00 0.00 0.10]

[0.00 0.00 0.04

0.00 0.00 0.09]

“gpt2-large” Cross-Encoder 0.33 [0.00 0.00 0.04

0.00 0.00 0.10]

[0.00 0.00 0.04

0.00 0.00 0.09]

“gpt2-large” Bi-Encoder 0.07 [0.00 0.00 0.04

0.00 0.00 0.10]

[0.00 0.00 0.04

0.00 0.00 0.09]

Table 17. Models’ evaluation employing the judgment list created by Method 3

4.3.4 Natural Language Understanding

One of challenges in NLU is the ambiguity (polysemy). If a word like ‘driver’ is viewed, it can

bring up many potential meanings including vehicle driver, software that enables the hardware to

work, screwdriver, or the impetus for pushing something forward. So, the context can help to get

the unique meaning that would be captured in the form of contextual embedding by using the

language models.

Understanding the context in natural language understanding can be divided into two categories,

understanding the user as well as understanding the domain. To understand the domain fine-tuning

the model based on the domain specific data would be helpful but understanding the user’s intent

depends on the ability of the employed language model on NLU tasks and boosting the system

with user interactions and feedback which is beyond the scope of this research.

According to Section 3.3.4 discussion, some of the test queries are designed to put identical

meanings and intent in different words in order to provide background for the Natural Language

108

Understanding capacity of the applied language models. For instance, queries 1 and 2 are attributed

to this feature. The performance of the “msmarco-distilbert-dot-v5” followed by the Cross-

Encoder re-ranker for queries 1 and 2 are reported in Tables 18 and 19. The “msmarco-distilbert-

dot-v5” followed by the Cross-Encoder as the re-ranker is selected because based on information

provided in the previous section it functions appropriately.

Query 1: Artificial intelligence based action movie

Query 2: Science fiction movie showing the future of the world

Cross-encoder Re-rank Genre Title

1 ScienceFiction D.A.R.Y.L

6 Adventure The Legend of Wisley

1 ScienceFiction Ra.One

13 Action Universal Soldier: The Return

37 ScienceFiction Evolver

14 ScienceFiction Transcendence

Table 18. Results for query 1

Cross-encoder Re-rank Genre Title

14 ScienceFiction Time chasers

47 ScienceFiction Transcendence

10 ScienceFiction Lost In Space

19 ScienceFiction Westworld

9 Action thriller Aa Dekhen Zara

39 ScienceFiction Alien form L.A.

Table 19. Results for query 2

The common item is “Transcendence” with same selected chunk for both queries which would

indicate that the common intent in both queries is captured and matched as it is expected. The

109

provided items for each query contain relevant items and fewer irrelevant ones. In addition, the

difference between the results for queries could point out that the difference in the queries’

meaning is captured also. The Selected chunk from “Transcendence” is “Bree threaten kill max

upload virus explain power heal Evelyn physical body upload virus”. The similarity matrix for

this chunk with each query is illustrated in Figures 44 and 45. Although the matrices are not

perfectly explainable, the results show that the Semantic Text Similarity (STS) task is well aligned

with NLU’s purpose.

It is worth to be noted that “Transcendence” is retrieved as the common item by both BERTScore

and Cross-Encoder as re-rankers which is discussed in Section 4.3.2 but in that situation the

selected chunk by each re-ranker is different.

Figure 44. Similarity matrix for the selected chunk of “Transcendence” and query1

110

Figure 45. Similarity matrix for the selected chunk of “Transcendence” and query

Corresponding to all results documented in Section 4.3.3, all proposed methods agree on the

conclusion that “msmarco-distilbert-dot-v5” happens to perform better than the “gpt2-large” in

the semantic text similarity tasks like semantic search and recommendation systems as two types

of information retrieval systems.

Methods 1 and 2 demonstrate that Cross-Encoder achieves a better re-ranking result than

BERTScore However, Method 3 results show that BERTScore is a better choice with “msmarco-

distilbert-dot-v5”, and Cross-Encoder surpasses greatly the BERTScore when it follows the “gpt2-

large” embeddings. To clear the vision of the results it should be considered that “gpt2-large” is

a large general-purpose language model with 774M parameters while “msmarco-distilbert-dot-

v5” is a smaller language model with only 66M parameters fine-tuned for semantic text similarity.

In addition, in the embedding generation phase, the input text is truncated to the maximum number

of tokens that the corresponding language model can handle. Since “gpt2-large” can handle a

longer sequence of tokens rather than “msmarco-distilbert-dot-v5”, the contextual information

extracted and stored in embedding utilizing this model would be distinct.

111

According to the results documented in Appendices L and K, it seems that “msmarco-distilbert-

dot-v5” which is well-suited for semantic textual similarity tasks is more consistent in NLU

regarding user intent capturing in counterpart queries.

4.3.5 The results of a fined-tuned model on the utilized dataset

In the context of semantic search, fine-tuning is essential to accomplish tasks related to discovering

text similarity (Grainger et al., 2021) which is verified by the reported data conducted in this

research by applying two different language models, one is a small distilled version of the BERT

model fine-tuned for semantic text similarity task and the other one a large general-purpose

language model.

The major obstacle in many real-world data-driven solutions is the absence of annotated data or

the high cost of providing labels. As a result, fine-tuning would not be possible. Regarding this

fact creating a judgment list as a list of relevant data, where being relevant or irrelevant is the label,

is sought as one of the objectives of the current research.

The labeling methods that are introduced in Section 3.3.3 are mainly proposed in this research to

provide the ground truth to calculate the model performance while they can be utilized to fine-tune

the pre-trained models on this dataset as well. The idea of utilizing a Cross-Encoder, BERTScore,

or a combination of both to produce annotated data is similar to the innovation proposed by Chiu

and Shizato (2022) to refine the human-annotated training data for Bi-Encoder models using a

Cross-Encoder model. The idea should be explored in separate research in the future.

Thakur et.al. (2021) proposed a solution to resolve the absence of annotated data in the evaluation

of Information Retrieval Models. They introduced GenQ which is an unsupervised domain-

adaption approach for dense retrieval models using synthetic queries. Inspired by this work,

Verma (2021) applied the idea of generating synthetic queries to fine-tune the SBERT for the same

dataset that is used in this research. In this approach, for each chunk of the movie plots, 5 synthetic

queries will be generated to represent the information as questions. Then, this extracted knowledge

will be used to fine-tune the model. The MultipleNegativesRankingLoss is used for fine-tuning

since it is a great loss function if you only have positive pairs, for example, only pairs of similar

texts like pairs of paraphrases, pairs of duplicate questions, pairs of (query, response), or pairs of

(source_language, target_language).

https://www.zotero.org/google-docs/?hVCpUG

112

The reported results of the “msmarco-distilbert-base-dot-prod-v3” model after fine-tuning are

summarized in Table 20.

Comparing Table 20 with Table 6 shows that fine-tune made more satisfying results.

The only common item in Table 20 with reported results in this research is the “Crosstalk” and

“Remote Control”. “Crosstalk” is retrieved by “gpt2-large” for query 1 but “Remote Control”

is matched with query2 with both employed models in this research.

Query Model Positional

rank

Title of the movie

Query 1:

“Artificial

intelligence

based action

movie”

Fine-tune

msmarco-

distilbert-base-dot-

prod-v3

1 Remote Control

2 Civic Duty

3 Computer Chess

4 Armed Response

5 Crosstalk

Query 4:

“A movie about

romance and the

pain of

separation

”

Fine-tune model

1 Hridayer Shabdo

2 Manasina Maathu

3 Murali Meets Meera

4 Anumati

5 Idhayam

Table 20. Bi-Encoder results using “msmarco-distilbert-base-dot-prod-v3” after fine-

tuning(Verma, 2021)

Among the results of the fine-tuned model in Table 20 for query 4, “Hridayer Shabdo”,

“Manasina Maathu”, and “Murali Meets Meera” are appeared in the reported results in this

research as well (the results of this research for all queries are documented in Appendices K and

L). “Hridayer Shabdo” is retrieved as a matched item to query 4 by “gpt2-large” followed by

https://www.zotero.org/google-docs/?hoII88

113

Cross-Encoder. “Manasina Maathu” is suggested as a match to queries 5 and 6 by “gpt2-large”

followed by BERTScore re-ranker and is mentioned as a matched item with queries 2, 3, 4, 5, and

6 by “msmarco-distilbert-dot-v5” followed by BERTScore. “Murali Meets Meera” is retrieved

by “gpt2-large” followed by BERTScore in response to queries 4 and 6.

These comparisons illustrate that “gpt2-large” is more compatible with the fine-tuned version of

the “msmarco-distilbert-base-dot-prod-v3” model, especially for query 4.

In general, the language models belonging to the GPT family are trained to predict the next token

in a sequence based on the preceding tokens and they are unidirectional which means they can

only consider the tokens to the left of the current token to capture the context. Consequently, It

seems that the “gpt2-large” cannot surpass the DistilBERT model in tasks that require a deeper

understanding of context and semantics even though it has more capacity regarding huger number

of parameters.

On the other hand, it should be considered that the BERT model in general is a bidirectional model

which means it can take both the preceding and succeeding tokens in capturing the context. It may

be concluded that this characteristic besides the “masked language model” objective followed in

the training process makes it more powerful in contextual understanding and semantic similarities.

The BERT employs only the encoder part of the Transformers architecture while the GPT model

utilizes just the decoder. Consequently, they would have different capacities and potentials in

various task categories that should be involved in making decisions on the proper model for the

downstream task in addition to the quantified attributes like the number of parameters and input

tokens.

The opportunity of taking advantage of the characteristics of both types of models like the ability

of text generation of GPT and the power of BERT in semantic understanding at the same time

should be regarded in special situations likewise Method 3 in providing annotated data.

114

5. Conclusion and Discussion

Search engines and recommendation systems are various types of information retrieval (IR) that

can be enhanced with a profound understanding of the specific domain. These systems aim to learn

extensively from the domain by leveraging Language Models (LMs) as a valuable tool to capture

contextual relationships and conceptually align the query intent with the ingested content.

Model selection plays a crucial role in proposing proper solutions to real-world problems regarding

user satisfaction. This satisfaction would be committed considering several perspectives including

desired results, low latency, and sustainability which points consuming resources as less as

possible.

In this research some of prominent constraints in model selection is studied regarding the

objectives aligned with user satisfaction. These constraints form the comparison baseline including

applying a task specific fine-tuned model or a general model, the number of parameters which

determines the learning capacity of the model, and the amount of time it takes to capture the

information as well as serving the response. As fine-tuning a large language model would be too

expensive regarding time and resource consumption, in this research a small, fine-tuned model,

“msmarco-distilbert-dot-v5”, is compared to a large general-purpose model, “gpt2-large”.

The overall performance could be improved by ranking and furthermore re-ranking the outcomes

of the similarity search. In this scenario, Cross-Encoder and BERTScore proved to be proficient

at identifying the texts with highest semantic similarity, surpassing the Bi-Encoder algorithm.

However, these methods are more computationally demanding compared to the Bi-Encoder. To

make the most of their benefits, they are usually used as re-rankers on a smaller set of candidates.

In this research, a comparison between both models is conducted, and in many cases, the Cross-

encoder demonstrated superior performance over the BERTScore. Nonetheless, further

investigation could focus on optimizing the parameter settings for the size of input chunks to

achieve even more accurate outcomes. This is a further exploration in improving the accuracy of

retrieved items in creating semantic search or in general retrieval system using LLMs’ capabilities

not only in retrieval phase but also in ranking operation. The objective of the first research question

is fulfilled in this combinational utilization of LLMs.

In current research, language models are also used in the role of decision maker assistant as they

can determine how similar two sentences are. Therefore, they are capable to assist in creating

annotation which is explored in second research question. The Cross-Encoder and BERTScore,

115

employed as similarity scoring methods, can be incorporated into an automatic evaluation pipeline

for assessing the performance of the information retrieval system. When combined, they offer a

broader perspective on approximating human judgment, serving as a viable alternative for labels

in calculating evaluation metrics like Mean Reciprocal Rank (MRR) in scenarios where annotated

data is unavailable. Moreover, they can be employed to supply annotated data for fine-tuning the

model using domain-specific data. This is especially beneficial when the fine-tuned model

significantly improves performance, compared to the resource-intensive process of providing

annotations and re-training the model.

As discussed, the selection of the model is a critical aspect of ensuring the successful

implementation of an information retrieval system. It serves as the core component responsible for

capturing intent and context, directly impacting system performance. Additionally, it is the most

computationally intensive part of the MLOps pipeline, influencing inference speed. These factors

are crucial in meeting user expectations and desires. Consequently, the primary objective of this

research is met as the interrelated factors involved in designing a semantic search using language

models to effectively capture context and relationships with the lowest resource consumption are

emphasized and analyzed.

Semantic search application can be developed and deployed as fully managed pipelines within any

MLOps framework. In response to the third research question, Jina AI, among various available

MLOps frameworks, is chosen as an open-source platform to develop and deploy the designed

application in this research as an end-to-end solution that can be easily adapted to any other use

cases by applying the same pipeline to the related dataset. It should be mentioned that the language

model with the best performance and setting according to the results represented in Section 4.3

would be used in the application development.

According to the analyzed results proposed in the current experimental research, in the semantic

text similarity downstream task the fine-tuned model with fewer parameters, “msmarco-distilbert-

dot-v5”, appears in better performance compared to the large general pre-trained model, “gpt2-

large”, even though it holds much higher number of parameters and learning capacity. In real-

world use cases, the smaller model can be utilized on the edge, delivering satisfying performance

with low latency and less resource consumption. What is aimed in the fourth research question is

covered in utilizing these language models in developing the semantic search pipeline. The results

indicate that the business objectives and requirements could be met less expensively by

116

considering the effective aspect precisely and responsively. However, it is valuable to fine-tune

the large model in the future as well to provide a clearer condition for comparison.

The analyzed results in comparison between similar queries articulated in different words, in

response to the target of fifth research question, shows that Natural Language Understanding task

in well aligned with text similarity and the explored language model abilities and affecting

assumptions in the current research are applicable for both tasks.

In the current research, the input provided to the language model for generating embeddings is

limited to the maximum number of tokens that can be processed by the utilized model. However,

a potential area for future investigation is to explore the impact of splitting the input into smaller

chunks with sizes that align with the model's token capacity, in order to assess its effect on the

performance of the models. In the experimental setup applied for both re-rankers, the number of

tokens used to split the input text into smaller chunks is one of the parameters. This number is

selected through empirical testing of larger and smaller values. However, it is essential to note that

this chosen number is significantly smaller than the number of tokens that the employed language

models can handle. This specifies that the contextual capacity of the models might be

compromised, which could have a considerable impact on their performance. Thus, conducting

further investigation to verify this observation would be valuable.

The importance of some columns in dataset is revealed within data exploratory analysis. For

example, the field “Genre” in dataset determines the distribution of the Plots and results. In

addition, it contains some hidden information regarding each movie by its nature. Therefore, it

would be beneficial to unleash this power to enhance the performance of the search by considering

it in the pipeline and explore how it will influence in enhancing search performance. It can be used

for narrowing down the results as well as data augmentation, where Genre prediction could be

employed to fill in missing values within the dataset.

There are more aspects that can be explored further in conjunction with the proposed pipeline in

this research. For instance, considering an augmented design including personalization through

users’ interactions, utilizing knowledge extraction techniques like Named Entity Recognition

(NER), Text Classification, and so on could be beneficial to deliver a more robust search

experience.

Challenges like aligning the users’ intent where the same intent is conveyed in different words,

low precision and high recall, and lack of experimental tests has been involved in search

117

application development for a long time. Some of these challenges are explored in more detail

during the current research and some less. There are various reasons that prevents more profound

exploration including time limitation, requiring more expertise and knowledge to discuss and

analyze more deeply than what is done during this research, and limited free processing units and

memory available for big data analysis. So, the open questions relating to discussed aspects could

be covered in future research.

Additionally, the idea of utilizing a Cross-Encoder, BERTScore, or a combination of them to

generate annotated data for fine-tuning pre-trained models can be further explored in future

research. Consequently, the results can be compared with the GENQ technique (Thakur et al.,

2021).

This search pipeline can be utilized in Retrieval Augmented Generation applications to narrow

down the contents that should be fed into the generating model like ChatGPT to make it capable

to answer the questions that are asked from private documents for example the handbook of a

special tool or the newly released information that it is not trained on to reduce the hallucination

in generation model. This use case is also a further step to be developed on top of the proposed

one.

https://www.zotero.org/google-docs/?copYM2
https://www.zotero.org/google-docs/?copYM2

118

References

Briggs, J., & Carnevali, L. (n.d.). Evaluation Measures in Information Retrieval. Pinecone.

Retrieved July 1, 2023, from https://www.pinecone.io/learn/offline-evaluation/

Bojanowski, Piotr, Grave, Edouard, Joulin, Armand, & Mikolov, Tomas. (2017, Jun 19).

Enriching Word Vectors with Subword Information. arXiv.

https://arxiv.org/pdf/1607.04606.pdf

Chiu, J., & Shinzato, K. (2022). Cross-Encoder Data Annotation for Bi-Encoder Based Product

Matching. Proceedings of the 2022 Conference on Empirical Methods in Natural

Language Processing: Industry Track, 161–168. https://aclanthology.org/2022.emnlp-

industry.16

Clough, P., & Sanderson, M. (2013). Evaluating the performance of information retrieval systems

using test collections. Information Research, 18.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv.

http://arxiv.org/abs/1810.04805

Diedrichsen, T., & Sierra, T. (2019, April 4). Making the Case for Human Relevance Testing.

https://www.slideshare.net/o19s/haystack-2019-making-the-case-for-human-judgement-

relevance-testing-tara-diedrichsen-and-tito-sierra

Foundation models. (2023). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Foundation_models&oldid=1161263920

Glavaš, DR. G. (2020, April 20). Evaluation in Information Retrieval. https://www.uni-

mannheim.de/media/Einrichtungen/dws/Files_People/Profs/goran/10-Evaluation-

FSS20.pdf

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., & Bengio, Y. (2014). Generative Adversarial Networks (arXiv:1406.2661). arXiv.

http://arxiv.org/abs/1406.2661

Grainger, T., Turnbull, D., & Irwin, M. (2021). AI Powered Search. MANNING.

https://www.manning.com/books/ai-powered-search

guest_blog. (2020, August 31). A Simple Introduction to Sequence to Sequence Models. Analytics

Vidhya. https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-

sequence-to-sequence-models/

https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo

119

Ham, L. (2022, August 9). Using Cross-Encoders as reranker in multistage vector search. Using

Cross-Encoders as Reranker in Multistage Vector Search. https://weaviate.io/blog/cross-

encoders-as-

reranker#:~:text=Bi%2DEncoder%20models%20are%20fast,improve%20the%20vector

%20search%20experience.

He, P., Liu, X., Gao, J., & Chen, W. (2021). DeBERTa: Decoding-enhanced BERT with

Disentangled Attention (arXiv:2006.03654). arXiv. http://arxiv.org/abs/2006.03654

Khriyenko, O. (2023, spring). Recurrent Neural Networks (RNNs) [PDF].

Kingma, D. P., & Welling, M. (2022). Auto-Encoding Variational Bayes (arXiv:1312.6114).

arXiv. http://arxiv.org/abs/1312.6114

Li, F.-F., Johnson, J., & Yeung, S. (2017). Lecture 13: Generative Models.

Liu, L., Liu, J., & Han, J. (2021). Multi-head or Single-head? An Empirical Comparison for

Transformer Training (arXiv:2106.09650). arXiv. http://arxiv.org/abs/2106.09650

Montantes, J. (2019, June 27). Examining the Transformer Architecture — Part 1: The OpenAI

GPT 2 Controversy. Medium. https://towardsdatascience.com/examining-the-transformer-

architecture-part-1-the-openai-gpt-2-controversy-feceda4363bb

MSMARCO Models—Sentence-Transformers documentation. (n.d.). Retrieved July 24, 2023,

from https://www.sbert.net/docs/pretrained-models/msmarco-v5.html

Nadeem. (2021, March 12). Encoders-Decoders, Sequence to Sequence Architecture. Analytics

Vidhya. https://medium.com/analytics-vidhya/encoders-decoders-sequence-to-sequence-

architecture-5644efbb3392

Olah, C. (2015, September 3). Neural Networks, Types, and Functional Programming.

http://colah.github.io/posts/2015-09-NN-Types-FP/

Open Sourcing BERT: State-of-the-Art Pre-training for Natural Language Processing. (2018,

November 2). https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

OpenAI GPT-3: Understanding the Architecture. (2022, May 4). The AI Dream.

https://www.theaidream.com/post/openai-gpt-3-understanding-the-architecture

Pérez-Agüera, J. R., Arroyo, J., Greenberg, J., Iglesias, J. P., & Fresno, V. (2010). Using BM25F

for semantic search. Proceedings of the 3rd International Semantic Search Workshop, 1–

8. https://doi.org/10.1145/1863879.1863881

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language

https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo

120

Understanding by Generative Pre-Training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models

are Unsupervised Multitask Learners.

Recurrent neural network. (2023). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Recurrent_neural_network&oldid=116201724

6

Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-

Networks (arXiv:1908.10084). arXiv. http://arxiv.org/abs/1908.10084

Retrieve & Re-Rank—Sentence-Transformers documentation. (n.d.). Retrieved July 12, 2023,

from https://www.sbert.net/examples/applications/retrieve_rerank/README.html

Pennington, Jeffrey, Socher, Richard, & Manning, Christopher D. (2014). GloVe: Global

Vectors for Word Representation.

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2020). DistilBERT, a distilled version of BERT:

Smaller, faster, cheaper and lighter (arXiv:1910.01108). arXiv.

http://arxiv.org/abs/1910.01108

Sarkar, A. (2022, February 15). All you need to know about ‘Attention’ and ‘Transformers’—In-

depth Understanding—Part 1. Medium. https://towardsdatascience.com/all-you-need-to-

know-about-attention-and-transformers-in-depth-understanding-part-1-552f0b41d021

Semantic Search—Sentence-Transformers documentation. (n.d.-a). Retrieved July 12, 2023, from

https://www.sbert.net/examples/applications/semantic-search/README.html

Semantic Search—Sentence-Transformers documentation. (n.d.-b). Retrieved July 13, 2023, from

https://www.sbert.net/examples/applications/semantic-search/README.html

Sennrich, R., Haddow, B., & Birch, A. (2016). Neural Machine Translation of Rare Words with

Subword Units (arXiv:1508.07909). arXiv. http://arxiv.org/abs/1508.07909

SentenceTransformers Documentation—Sentence-Transformers documentation. (n.d.). Retrieved

July 23, 2023, from https://www.sbert.net/

Shree, P. (2020, November 10). The Journey of Open AI GPT models. Walmart Global Tech Blog.

https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-

32d95b7b7fb2

Solanki, S. (2022, 04 01). How to Use GloVe Word Embeddings With PyTorch Networks? From

Coderz Column: https://coderzcolumn.com/tutorials/artificial-intelligence/how-to-use-

glove-embeddings-with-pytorch#1

https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo

121

Stanford University School of Engineering (Director). (2017, August 11). Lecture 13 | Generative

Models. https://www.youtube.com/watch?v=5WoItGTWV54

Summary of the tokenizers. (n.d.). Retrieved July 7, 2023, from

https://huggingface.co/docs/transformers/tokenizer_summary

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural

Networks (arXiv:1409.3215). arXiv. http://arxiv.org/abs/1409.3215

Thakur, N., Reimers, N., Rücklé, A., Srivastava, A., & Gurevych, I. (2021). BEIR: A Heterogenous

Benchmark for Zero-shot Evaluation of Information Retrieval Models (arXiv:2104.08663).

arXiv. http://arxiv.org/abs/2104.08663

Tianyi. (2023). BERTScore [Jupyter Notebook]. https://github.com/Tiiiger/bert_score (Original

work published 2019)

Title: What’s GAN (generative adversarial networks), how it works? (n.d.). Retrieved July 3, 2023,

from

https://www.google.com/imgres?imgurl=https://www.labellerr.com/blog/content/images/

2022/12/gan-banner-

1.webp&tbnid=yCEDI02jejP9kM&vet=12ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQ

MygEegUIARDrAQ..i&imgrefurl=https://www.labellerr.com/blog/what-is-gan-how-

does-it-

work/&docid=RF3lHe2f1aCYfM&w=685&h=402&q=generative+adversarial+networks

&ved=2ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ&sfr=vfe&so

urce=sh/x/im/can/1

Turnbull, D. (2021, February 21). What Is a Judgment List? Doug Turnbull’s Blog.

https://softwaredoug.com/blog/2021/02/21/what-is-a-judgment-list.html

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &

Polosukhin, I. (2017). Attention Is All You Need (arXiv:1706.03762). arXiv.

http://arxiv.org/abs/1706.03762

Verma, S. (2021, January 5). Semantic Search with S-BERT is all you need | by Subir Verma |

MLearning.ai | Medium. https://medium.com/mlearning-ai/semantic-search-with-s-bert-

is-all-you-need-951bc710e160

Wang, W., Bao, H., Huang, S., Dong, L., & Wei, F. (2021). MiniLMv2: Multi-Head Self-Attention

Relation Distillation for Compressing Pretrained Transformers (arXiv:2012.15828).

https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.google.com/imgres?imgurl=https://www.labellerr.com/blog/content/images/2022/12/gan-banner-1.webp&tbnid=yCEDI02jejP9kM&vet=12ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ..i&imgrefurl=https://www.labellerr.com/blog/what-is-gan-how-does-it-work/&docid=RF3lHe2f1aCYfM&w=685&h=402&q=generative+adversarial+networks&ved=2ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ&sfr=vfe&source=sh/x/im/can/1
https://www.google.com/imgres?imgurl=https://www.labellerr.com/blog/content/images/2022/12/gan-banner-1.webp&tbnid=yCEDI02jejP9kM&vet=12ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ..i&imgrefurl=https://www.labellerr.com/blog/what-is-gan-how-does-it-work/&docid=RF3lHe2f1aCYfM&w=685&h=402&q=generative+adversarial+networks&ved=2ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ&sfr=vfe&source=sh/x/im/can/1
https://www.google.com/imgres?imgurl=https://www.labellerr.com/blog/content/images/2022/12/gan-banner-1.webp&tbnid=yCEDI02jejP9kM&vet=12ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ..i&imgrefurl=https://www.labellerr.com/blog/what-is-gan-how-does-it-work/&docid=RF3lHe2f1aCYfM&w=685&h=402&q=generative+adversarial+networks&ved=2ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ&sfr=vfe&source=sh/x/im/can/1
https://www.google.com/imgres?imgurl=https://www.labellerr.com/blog/content/images/2022/12/gan-banner-1.webp&tbnid=yCEDI02jejP9kM&vet=12ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ..i&imgrefurl=https://www.labellerr.com/blog/what-is-gan-how-does-it-work/&docid=RF3lHe2f1aCYfM&w=685&h=402&q=generative+adversarial+networks&ved=2ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ&sfr=vfe&source=sh/x/im/can/1
https://www.google.com/imgres?imgurl=https://www.labellerr.com/blog/content/images/2022/12/gan-banner-1.webp&tbnid=yCEDI02jejP9kM&vet=12ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ..i&imgrefurl=https://www.labellerr.com/blog/what-is-gan-how-does-it-work/&docid=RF3lHe2f1aCYfM&w=685&h=402&q=generative+adversarial+networks&ved=2ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ&sfr=vfe&source=sh/x/im/can/1
https://www.google.com/imgres?imgurl=https://www.labellerr.com/blog/content/images/2022/12/gan-banner-1.webp&tbnid=yCEDI02jejP9kM&vet=12ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ..i&imgrefurl=https://www.labellerr.com/blog/what-is-gan-how-does-it-work/&docid=RF3lHe2f1aCYfM&w=685&h=402&q=generative+adversarial+networks&ved=2ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ&sfr=vfe&source=sh/x/im/can/1
https://www.google.com/imgres?imgurl=https://www.labellerr.com/blog/content/images/2022/12/gan-banner-1.webp&tbnid=yCEDI02jejP9kM&vet=12ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ..i&imgrefurl=https://www.labellerr.com/blog/what-is-gan-how-does-it-work/&docid=RF3lHe2f1aCYfM&w=685&h=402&q=generative+adversarial+networks&ved=2ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ&sfr=vfe&source=sh/x/im/can/1
https://www.google.com/imgres?imgurl=https://www.labellerr.com/blog/content/images/2022/12/gan-banner-1.webp&tbnid=yCEDI02jejP9kM&vet=12ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ..i&imgrefurl=https://www.labellerr.com/blog/what-is-gan-how-does-it-work/&docid=RF3lHe2f1aCYfM&w=685&h=402&q=generative+adversarial+networks&ved=2ahUKEwiiv_Lq6_L_AhUGEBAIHRnUAmsQMygEegUIARDrAQ&sfr=vfe&source=sh/x/im/can/1
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo

122

arXiv. http://arxiv.org/abs/2012.15828

What is MLOps? (2021, December 16). Databricks. https://www.databricks.com/glossary/mlops

Yang, A. (2022, October 3). Feature-based Transfer Learning vs Fine Tuning? Medium.

https://angelina-yang.medium.com/feature-based-transfer-learning-vs-fine-tuning-

bc8fc348a33d

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2020). BERTScore: Evaluating

Text Generation with BERT (arXiv:1904.09675). arXiv. http://arxiv.org/abs/1904.09675

https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo
https://www.zotero.org/google-docs/?Y1Cjdo

123

Appendix

A. MSMARCO

MS MARCO (Microsoft Machine Reading Comprehension) is a large-scale dataset focused on

machine reading comprehension, question answering, and passage ranking. A variant of this task

will be part of TREC and AFIRM 2019.

 https://github.com/microsoft/MSMARCO-Passage-Ranking/

B. Movies grouped by Genre after cleaning

Genre Count of movies

Drama 5643

Unknown 5584

Comedy 4191

Horror 1074

Action 1002

Thriller 897

Romance 876

Western 832

ScienceFiction 623

Comedy Drama 532

Crime 521

Adventure 472

Crime Drama 461

Romance Comedy 452

Musical 441

https://github.com/microsoft/MSMARCO-Passage-Ranking/

124

War 411

Film noir 326

Mystery 295

Family 201

Fantasy 193

Musical Comedy 169

Action Thriller 132

Romance Drama 130

Biography 129

Drama Romance 123

Action Comedy 114

Romantic Drama 106

Action Drama 101

Comedy Romance 101

Suspense 98

Animate 89

Family Drama 76

Romance Comedy 76

Social 76

Historical 74

Documentary 71

Crime Thriller 71

Comedy Musical 68

Drama Crime 66

125

Horror Comedy 65

Action Romance 65

Historical Drama 61

Crime Comedy 56

Biopic 54

Comedy Short 52

126

C. Bi-Encoder

127

D. Embedding generation

128

E. Cross-Encoder as Re-ranker

F. BERTScore as Re-ranker code

129

G. Splitting the Plots into chunks

130

H. Creating the judgment list with Method 1

131

132

I. create the judgment list with Method 2

133

134

J. create the judgment list with Method 3

135

136

137

K. “msmarco-distilbert-dot-v5” results for all queries re-ranked with both

models

Re-ranked with Cross-Encoder

Results for Query 1

Rank Re-rank title genre

0 0 D.A.R.Y.L. ScienceFiction

6 1 The Legend of Wisley adventure

1 2 Ra.One ScienceFiction

13 3 Universal Soldier: The

Return

action

37 4 Evolver ScienceFiction

14 5 Transcendence ScienceFiction

10 6 Leonard Part 6 comedy

42 7 Terminator 2: Judgment Day ScienceFiction

5 8 Black Eagle action

8 9 You Don't Mess with the

Zohan

comedy

Results for Query 2

Rank Re-

rank

title genre

14 0 Time Chasers ScienceFiction

47 1 Transcendence ScienceFiction

10 2 Lost In Space ScienceFiction

19 3 Westworld ScienceFiction

9 4 Aa Dekhen Zara action thriller

39 5 Alien from L.A. ScienceFiction

2 6 Akhil action

23 7 The Last Starfighter ScienceFiction

41 8 Cool World fantasy

3 9 Remote Control comedy

138

Results for Query 3:

Ran

k

Re-rank title genre

34 0 10 MPH documentary

23 1 Idaho Transfer scienceFiction

5 2 Road, Movie drama

25 3 Journey to the Center of Time scienceFiction

11 4 Inner Sanctum film noir

6 5 Spirit of '76 comedy

14 6 Around the Bend drama

41 7 Esther Waters historical drama

46 8 Private Property crime drama

7 9 Innocents in Paris comedy

Results for Query 4:

Rank Re-rank title genre

48 0 Itlu Sravani Subramanyam romance

4 1 Cake drama

11 2 Ekla Akash drama

40 3 Irreconcilable Differences comedy

30 4 In the Cool of the Day drama

43 5 I Shot Andy Warhol drama

41 6 Arike (അരികെ) romance

35 7 The Groomsmen comedy

13 8 Mystic Pizza comedy

21 9 Things You Can Tell Just

by Looking at Her

romance

139

Results for Query 5:

Rank Re-rank title genre

37 0 Felon crime drama

9 1 Gunda action comedy

43 2 The Devil's Disciple drama

12 3 Oxygen action

46 4 Kill Dil romance drama

22 5 Kasoor thriller

21 6 Andhrawala action

40 7 10 to Midnight action

19 8 The Horseman thriller

38 9 Renigunta action

Results for Query 6:

Rank Re-rank title genre

20 0 3G thriller

31 1 Return of Mr. Superman action

28 2 Interkosmos drama

5 3 The Legend of Wisley adventure

40 4 Ego comedy

39 5 Innocents in Paris comedy

47 6 Mission to Moscow war

8 7 Hands Up! comedy

42 8 The Waiting Room drama

44 9 Johnny Doesn't Live Here

Anymore

romance

140

Re-ranked with BERTScore

Results for Query 1:

Rank Re-rank title genre

14 0 Transcendence scienceFiction

24 1 Nemesis scienceFiction

26 2 Kantri action

0 3 D.A.R.Y.L. scienceFiction

4 4 Chappie scienceFiction

37 5 Evolver scienceFiction

32 6 Terminator Salvation scienceFiction

48 7 Rangamati romance

40 8 Katha comedy drama

31 9 A Gentleman action romance

Results for Query 2:

Rank Re-rank title genre

7 0 Dr. Plonk comedy

31 1 Impostor scienceFiction

2 2 Akhil action

47 3 Transcendence scienceFiction

36 4 Unknown World scienceFiction

24 5 Inner Sanctum film noir

22 6 Manasina Maathu romance

32 7 It Conquered the World scienceFiction

41 8 Cool World fantasy

42 9 Monster A Go-Go scienceFiction

Results for Query 3:

141

Rank Re-rank title genre

7 0 Dr. Plonk comedy

31 1 Impostor scienceFiction

2 2 Akhil action

47 3 Transcendence scienceFiction

36 4 Unknown World scienceFiction

24 5 Inner Sanctum film noir

22 6 Manasina Maathu romance

32 7 It Conquered the World scienceFiction

41 8 Cool World fantasy

42 9 Monster A Go-Go scienceFiction

Results for Query 4:

Rank Re-rank title genre

7 0 Dr. Plonk comedy

31 1 Impostor scienceFiction

2 2 Akhil action

47 3 Transcendence scienceFiction

36 4 Unknown World scienceFiction

24 5 Inner Sanctum film noir

22 6 Manasina Maathu romance

32 7 It Conquered the World scienceFiction

41 8 Cool World fantasy

42 9 Monster A Go-Go scienceFiction

Results for Query 5 :

142

Rank Re-rank title genre

7 0 Dr. Plonk comedy

31 1 Impostor scienceFiction

2 2 Akhil action

47 3 Transcendence scienceFiction

36 4 Unknown World scienceFiction

24 5 Inner Sanctum film noir

22 6 Manasina Maathu romance

32 7 It Conquered the World scienceFiction

41 8 Cool World fantasy

42 9 Monster A Go-Go scienceFiction

Query 6:

Rank Re-rank title genre

7 0 Dr. Plonk comedy

31 1 Impostor scienceFiction

2 2 Akhil action

47 3 Transcendence scienceFiction

36 4 Unknown World scienceFiction

24 5 Inner Sanctum film noir

22 6 Manasina Maathu romance

32 7 It Conquered the World scienceFiction

41 8 Cool World fantasy

42 9 Monster A Go-Go scienceFiction

143

L. “gpt2-large” results for all queries re-ranked with both models

Re-ranked with Cross-Encoder

Query 1:

Rank Re-

rank

title genre

16 0 Television Spy drama

13 1 The Man Who Made

Diamonds

crime

24 2 White romance

8 3 The Green Pastures fantasy

39 4 Bullets and Saddles western

44 5 C.H.O.M.P.S. family

31 6 Nothing Else Matters comedy

42 7 Wide Boy crime

28 8 Oyee romantic comedy

27 9 Key to Harmony drama

Query 2:

Rank Re-rank title genre

45 0 Love on the Dole drama

35 1 Red Planet Mars scienceFiction

10 2 Masked and Anonymous comedy drama

11 3 Remote Control comedy

42 4 Sri Naga Shakthi drama

23 5 Interkosmos drama

1 6 The Green Pastures fantasy

16 7 Taurus biopic

46 8 Rangappa Hogbitna comedy

144

19 9 White romance

Query 3:

Rank Re-rank title genre

30 0 RuPaul Is: Starbooty! comedy

39 1 Ida Makes a Movie drama

13 2 Once Upon a Dream comedy

45 3 Gora Aur Kala action

49 4 The Kentucky Fried Movie comedy

42 5 332 Mumbai To India thriller

3 6 The Green Pastures fantasy

12 7 Storytelling drama

1 8 Driverless romance

16 9 Snow Blind documentary

Query 4:

Rank Re-rank title genre

25 0 Fleet of Time romance

6 1 Only for You romance

42 2 Miss Sadie Thompson musical

19 3 Once Upon a Dream comedy

1 4 Driverless romance

45 5 Ninaithu Ninaithu Parthen romance

21 6 Min & Max comedy romance

49 7 Boyss Toh Boyss Hain comedy

18 8 Key to Harmony drama

41 9 Faces drama

145

Query 5:

Rank Re-rank title genre

47 0 White romance

44 1 Diggers comedy

20 2 Dakota Lil western

49 3 Accused drama

17 4 Why Don't You Play in Hell? drama

41 5 The High Powered Rifle western

35 6 Masterminds drama

19 7 Loan Shark film noir

1 8 Sweety Nanna Jodi romance

22 9 Cocktails comedy

Query 6:

Rank Re-rank title genre

44 0 Return of Mr. Superman action

9 1 The Legend of Wisley adventure

5 2 Good Times musical comedy

28 3 Hellzapoppin' musical comedy

8 4 Sri Naga Shakthi drama

19 5 Rock Dancer musical

18 6 RuPaul Is: Starbooty! comedy

31 7 I'm Bout It drama

47 8 Hawk(e): The Movie comedy

14 9 Min & Max comedy romance

146

Re-ranked with BERTScore

Query 1:

Rank Re-rank title genre

10 0 Ghamandee action

0 1 Walk Like a Dragon drama

7 2 Aadesh - Power Of Law drama

15 3 Hum Farishte Nahin action thriller

35 4 Kote action

9 5 Jawaani romance drama

28 6 Oyee romantic comedy

6 7 Seesa horror

31 8 Nothing Else Matters comedy

48 9 Wind drama

Query 2:

Rank Re-rank title genre

38 0 A Medal for Benny drama

14 1 The Beach Party at the

Threshold of Hell

comedy

33 2 Sipaayi drama

1 3 The Green Pastures fantasy

40 4 Walk Like a Dragon drama

29 5 Women of the Prehistoric

Planet

scienceFiction

24 6 Laali Ki Shaadi Mein Laaddoo

Deewana

comedy drama

147

49 7 The Big Blockade war

22 8 Manasina Maathu romance

47 9 Crash and Burn scienceFiction

Query 3:

Rank Re-rank title genre

33 17648 Walk Like a Dragon drama

28 21037 Aidondla Aidu drama

30 13581 RuPaul Is: Starbooty! comedy

21 18714 Irma Vep drama

44 5396 Chamber of Horrors horror

34 13055 Sex and the College Girl comedy

20 9816 Sweety Nanna Jodi romance

18 17936 The Last Movie drama

26 15775 Kal Manja comedy

14 10332 Listen thriller

Query 4:

Rank Re-

rank

title genre

7 2669 Laali Ki Shaadi Mein Laaddoo

Deewana

comedy drama

8 9807 Manasina Maathu romance

24 9809 Murali Meets Meera romance

13 9596 Hridayer Shabdo romance

14 20083 Emily Brontë's Wuthering

Heights

drama

32 15851 Just Gammat comedy

2 20592 Love Actually... Sucks! drama

0 19801 The Woman's Angle drama

148

41 17846 Faces drama

12 9849 White romance

Query 5:

Rank Re-rank title genre

13 1251 Kodi Veeran action drama

36 21049 Sipaayi drama

11 15851 Just Gammat comedy

14 2669 Laali Ki Shaadi Mein Laaddoo

Deewana

comedy drama

37 21550 Heaven's Story drama

19 4981 Loan Shark film noir

2 9807 Manasina Maathu romance

0 6290 Seesa horror

34 5071 Underworld U.S.A. film noir

26 1741 Tiger Number One action romance

Query 6:

Rank Re-rank title genre

13 10037 Graduate romance

40 739 Ghamandee action

32 9807 Manasina Maathu romance

36 2669 Laali Ki Shaadi Mein Laaddoo

Deewana

comedy drama

14 2854 Min & Max comedy romance

1 14847 Nothing Else Matters comedy

0 9809 Murali Meets Meera romance

26 5228 I Was a Teenage Zombie horror comedy

10 21032 Thavarina Runa drama

22 18546 Wind drama

	Abstract
	List of Figures
	List of Tables:
	Contents
	1. Introduction
	2. Tools and Initiatives of Significance
	2.1 Parts of NLP Pipeline Utilized in Semantic Search
	2.1.1 Tokenization
	2.1.1.1 Word-based Tokenization
	2.1.1.2 Character-based Tokenization
	2.1.1.3 Sub-word-based Tokenization
	2.1.1.3.1 Byte-Pair Encoding
	2.1.1.3.2 WordPiece
	2.1.1.3.3 Unigram
	2.1.1.3.4 SentencePiece

	2.1.2 Word Embedding

	2.2 Generative Models Utilized in NLP Tasks
	2.2.1 Generative Adversarial Network (GAN)
	2.2.2 Variational AutoEncoder (VAE)
	2.2.3 Autoregressive
	2.2.4 Large Language Models
	2.2.4.1 Foundational Models
	2.2.4.2 Language Models (LM)
	2.2.4.3 Large Language Model (LLM)
	2.2.4.4 How Does a Language Model Work

	2.3 Deep Learning Approaches Utilized in NLP Pipeline
	2.3.1 RNN and Sequence-to-Sequence Models
	2.3.1.1 Sequence-to-Sequence Models

	2.3.2 Attention
	2.3.2.1 Self-Attention
	2.3.2.2 Query, Key, and Values
	2.3.2.3 Multi-Head Attention

	2.3.3 Transformers
	2.3.3.1 Encoder
	2.3.3.2 Decoder

	2.3.4 Transfer Learning
	2.3.5 Pre-trained Models
	2.3.5.1 BERT
	2.3.5.2 GPT
	2.3.5.3 DeBERTa
	2.3.5.4 MiniLMv2
	2.3.5.5 DistilBERT

	3. Semantic Search
	3.1 Semantic Search Pipeline
	3.1.1 Retrieval
	3.1.2 Ranking and Re-ranking
	3.1.2.1 Bi-Encoder
	3.1.2.2 Cross-Encoder
	3.1.2.3 BERTScore

	3.2 Evaluation Metrics
	3.2.1 Percision
	3.2.2. Recall
	3.2.3 F1-measure
	3.2.4 Mean Reciprocal Rank (MRR)
	3.2.5 Mean Average Precision (MAP)
	3.2.6 Normalized Discounted Cumulative Gain (NDCG)

	3.3 Data Collection and Preparation
	3.3.1 Dataset
	3.3.2 Data Cleaning, Transformation, and Understanding
	3.3.3 Data Labeling
	3.3.3.1 Method 1
	3.3.3.2 Method 2
	3.3.3.3 Method 3

	3.3.4 Query Attributes

	4. Implementation
	4.1 Workflow
	4.2 Generate Embedding using Language Models
	4.3 Results and Analysis
	4.3.1 Bi-Encoder
	4.3.2 Re-ranking
	4.3.3 Generating Judgment List
	4.3.3.1 Method 1
	4.3.3.2 Method 2
	4.3.3.3 Method 3

	4.3.4 Natural Language Understanding
	4.3.5 The results of a fined-tuned model on the utilized dataset

	5. Conclusion and Discussion
	References
	Appendix
	A. MSMARCO
	B. Movies grouped by Genre after cleaning
	C. Bi-Encoder
	D. Embedding generation
	E. Cross-Encoder as Re-ranker
	F. BERTScore as Re-ranker code
	G. Splitting the Plots into chunks
	K. “msmarco-distilbert-dot-v5” results for all queries re-ranked with both models
	Re-ranked with Cross-Encoder
	Re-ranked with BERTScore

	L. “gpt2-large” results for all queries re-ranked with both models
	Re-ranked with Cross-Encoder
	Re-ranked with BERTScore

