
Niko Tuominen

EXPLORATION OF THE DIFFERENCES IN
DEVELOPER EXPERIENCE OF AN IOT LOW-CODE
DEVELOPMENT PLATFORM BETWEEN CITIZEN

DEVELOPERS AND PROFESSIONAL DEVELOPERS

UNIVERSITY OF JYVÄSKYLÄ

INFORMATION SYSTEMS
2023

ABSTRACT

Tuominen, Niko
Exploration of the differences in Developer Experience of an IoT Low-Code
Development Platform between Citizen Developers and Professional
Developers
University of Jyväskylä, 2023
Information Systems, Master’s Thesis
Supervisor(s): Halttunen, Veikko

Low- and no-code development platforms are software platforms that enable
the creation of applications through graphical user interfaces rather than
through traditional programming. This enables software development for the
so called ‘citizen developers’ – that is, people without a software developer
background – and thereby helps answer the current shortage of highly skilled
software developers. This thesis explores and compares through nine qualita-
tive interviews the differences in the perception of the developer experience of
an IoT low-code development platform held by both citizen developers as well
as users with a professional software developer background. Based on an anal-
ysis of the interviews, it was discovered that while there are similarities be-
tween the two groups’ experiences, there are also differences. The three main
differences between the two user groups’ experiences were how the users’ sense
of the platform’s ease of use developed over time, how smooth or rough the use
felt, and how the platform was experienced in terms of limiting or enabling cre-
ativity. The causes for negative developer experience are evaluated and several
feature improvement ideas for the case platform were formulated based on the
interviews.

Keywords: Low-Code Development Platform, Citizen Developer, Developer
Experience, Internet of Things

TIIVISTELMÄ

Tuominen, Niko
IoT low-code kehitysalustan kehittäjäkokemuksen erot ammatti- ja
kansalaiskehittäjien välillä
Jyväskylän Yliopisto, 2023
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja(t): Halttunen, Veikko

Low- ja no-code kehitysalustat ovat alustoja, jotka mahdollistavat ohjelmistoke-
hityksen graafisten käyttöliittymien kautta perinteisen koodin kirjoittamisen
sijaan. Tämä tekee sovellusten kehittämisen mahdolliseksi myös niin sanotuille
kansalaiskehittäjille – eli kehittäjille ilman ohjelmistokehittäjätaustaa – sekä aut-
taa täten yrityksiä vastaamaan vallitsevaan pulaan ohjelmistokehittäjistä. Tämä
tutkielma vertailee yhdeksän kvalitatiivisen haastattelun kautta kehittäjäkoke-
muksen eroja IoT low-code kehitysalustan käytössä ammattimaisten ohjelmis-
tokehittäjien sekä kansalaiskehittäjien välillä. Tulosten analyysin perusteella
huomattiin, että vaikka kokemuksissa on paljon samaa, on niissä myös eroavai-
suuksia. Kolme pääeroavaisuutta oli siinä, kuinka alustan helppokäyttöisyyden
tunne muuttui käyttäjillä ajan myötä, kuinka sulavalta käyttö tuntui, sekä kuin-
ka paljon alustan koettiin rajoittavan tai mahdollistavan käyttäjän luovuutta.
Negatiivista kehittäjäkokemusta aiheuttavien seikkojen syitä analysoitiin ja
haastattelujen pohjalta alustan tarjoajalle esitettiin jatkokehitysehdotuksia.

Avainsanat: Low-code kehitysalusta, kansalaiskehittäjä, kehittäjäkokemus,
esineiden internet

FIGURES

Figure 1 Layered architecture of LCDPs (Sahay et al., 2021) 11

Figure 2 Fagerholm's (2015) concept of developer experience (DX) and its social
and technical environment ... 14

Figure 3 IoT-TICKET Application areas, according to Wapice (n.d.-a) 19

Figure 4 Illustration of the simplified Dashboard design process in Interface
designer (Wapice, n.d.-a) .. 21

Figure 5 The Report editor ... 21

Figure 6 The Data-flow editor with debugger open on one side. 22

Figure 7 The Events view in IoT-TICKET .. 23

Figure 8 (left) Documentation in the Interface designer .. 23

Figure 9 (right) Reactive documentation sidebar in the Data-flow editor 23

TABLES

Table 1 Differences between low-code development and model driven
engineering, based on Di Ruscio et al. (2022) ... 12

Table 2 Aspects of DX (Fagerholm, 2015) .. 15

Table 3 Demographic information of the participants ... 28

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
DIAGRAMS AND TABLES

1 INTRODUCTION ... 6

2 BACKGROUND AND LITERATURE REVIEW... 9

2.1 Theory background ... 9

2.1.1 Low- and no-code platform (LCDP) .. 9

2.1.2 Developer experience (DX) ... 13

2.1.3 DX of LCDPs ... 16

2.2 Practical background ... 17

2.2.1 Internet of Things (IoT) platforms ... 18

2.2.2 IoT-TICKET ... 19

3 METHODS ... 24

4 RESULTS .. 28

5 DISCUSSION ... 35

5.1 Research Question 1 .. 35

5.2 Research Question 2 .. 37

5.3 Limitations and threats to validity .. 38

6 CONCLUSION .. 39

REFERENCES .. 41

Companies are faced with an ever growing need to stay agile, innovative, and
to rapidly bring out new services to exploit new business models - all utilizing
IT. Leveraging digitalization and digital transformation is essential for staying
on top of the rapidly changing world. (Elshan, Dickhaut & Ebel, 2023) This
shared need has resulted in an increased demand for programmers, developers,
and IT specialists that higher education institutions have not been able to meet,
which in turn shows itself to businesses as a shortage of ICT professionals. (Al-
saadi et al., 2021)

Low-code development platforms (LCDPs) aim to tackle this problem by both
increasing the speed of software development for professional developers and
by enabling it for the so-called citizen developers. (Rokis & Kirikova, 2023; Rafi
et al., 2022) This is done by providing the user with means to create applications
through the use of graphical user interfaces as opposed to traditional pro-
gramming, removing the need for actual code-writing. (Sahay et al., 2020) Citi-
zen developer in this thesis refers to any application creators who do not have a
prior professional or educational background in software development.

LCDPs are part of a larger trend of technology democratization that diminishes
the gap between subject specialists and IT departments, giving companies a
much larger talent pool of employees capable of creating solutions. In addition
to helping answer the shortage of software developers, this also lets the subject
matter experts design software for themselves, driving innovation. Beyond this,
since in low-code projects the role of developer and commissioner is mixed,
communication effort and opportunities for misunderstandings are reduced.
(Elshan et al., 2023)

The use of LCDPs present itself to businesses with many potential benefits, such
as the ability to keep solution development in-house, making it more rapid and
less costly, reducing complexity and increasing maintainability, and resulting in
apps that can be quickly confirmed to answer the actual customer need.

1 INTRODUCTION

7

(Sanchis et al., 2020) Other advantages include increased flexibility, modularity,
and cost-effectiveness. (Cai et al., 2022)

However, while multiple studies have shown the use of LCDPs can accelerate
the development cycle and reduce cost (Rokis & Kirikova, 2023) not all profes-
sional developers are so ecstatic about adopting their use over traditional pro-
gramming. (Alsaadi et al., 2021) Elshan et al. (2023) note that it can be especially
difficult to convince IT professionals to adopt low-code, as developers often
consider themselves as painters who don’t want some tool to automatically
generate their piece.

Software Engineering (SE) is the activity through which IT systems are created,
typically using tools such as integrated development environments (IDEs).
While the developers themselves, as well as the nature of development work
itself, has been extensively studied, the IDEs, while playing an important role in
the creation of software, have received less attention. (Kuusinen et al., 2016)

Developer experience (DX) is a concept that addresses the way developers per-
ceive the development infrastructure, how they feel about their work, how they
see the value of their contribution. (Fagerholm & Münch, 2012)

This thesis exists in the cross-section of these concepts, investigating the differ-
ent experiences of software engineering using an LCDP, held by both tradition-
al code-writing professional software developers and citizen developers. More
importantly, these two user groups’ experiences are compared against each
other to see what kinds of differences there may be.

Low-code platforms are a relatively recent phenomenon that has only in the
past few years started receiving significant academic attention in the form of
publications. Large portion of the existing research has been published in work-
shops and conferences (Bucaioni, Cicchetti & Ciccozzi, 2022), and most of this
literature focuses on the technical rather than social and human aspects (Prinz,
Huber & Rentrop, 2021). Alsaadi et al. (2021) have called for more studies and
assessments to be done on how to provide solutions to the challenges and is-
sues developers are facing in using LCDPs. The DX of LCDPs has previously
been explored by a small number of mainly other thesis publications.

To the best of my knowledge the comparison of DX between citizen developers
and professional developers in using the same platform is novel and may bring
new insight into the different perspectives of these two user groups. The study
focuses itself on the following research questions, inspired by both the literature
already referenced above, as well as practical needs arising from the industry.

8

RQ1: “What kind of differences in the developer experience of an IoT low-code
development platform exist between users with a software developer back-
ground and those without?”
RQ2: “How can any possibly negative experiences be best addressed?”

The research questions and how they are posed make two assumptions. The
first assumes there to be differences between the two user groups and how they
consider the DX of the case LCDP. The second expectation is that professional
software developers may not be as excited or positive about using an LCDP as
citizen developers are. Therefore, the thesis formally uses the following hypoth-
esis.

H1: “Professional software developers experience using low-code development
platforms differently compared to citizen developers”
H2: “Professional software developers are less eager to use low-code develop-
ment platforms compared to citizen developers”

These research questions and hypothesis are explored by conducting and ana-
lysing the results of nine qualitative interviews split to include five professional
software developers and four citizen developers.

This thesis was commissioned by a Finnish software company Wapice Ltd., but
the topic for the research was brought up by the author independently. Wapice
Ltd. is a Finnish software company established in 1999 that has been actively
developing its own IoT platform since 2005. From 2011 onwards the platform
has included elements of graphical widget-based application building and in
2015 it, after having become entirely web-based, was rebranded as IoT-TICKET.
(Wapice, 2017) According to Bock and Frank (2021), this is quite typical of the
products that now fall under the “low-code” umbrella – they have often existed
well before the term itself was coined, but under different names, such as that
of “rapid application development platforms”.

The thesis is structured as follows: First, based on a literature review the theo-
retical basis and practical background of the thesis is explained in the second
chapter. The third chapter describes the chosen research methodology of quali-
tative interviews and justifies its use. The fourth chapter describes and analyses
the results of the interviews on their own, while the fifth considers these results
against the existing literature. A summary of the thesis is provided in the sixth
chapter, along with suggestions for future research.

9

This chapter is divided into two main parts. First, the key concepts of low-code
development platforms and developer experience are defined, and the way
they are presented in the existing research literature is analysed. Then, in the
second part, to take into account the Industrial Internet of Things nature of the
case platform, this topic is also explored and a description of the platform itself
is provided in an effort to help give context to the research results covered in
later chapters.

2.1 Theory background

This sub-chapter will cover the theoretical background of the thesis. It is based
on a semi-systematic literature review conducted using Google Scholar. Articles
were searched with the query “Low-code platform” OR “No-code platform”
OR “Low-code development platform” OR “LCDP” AND “Citizen developer”
AND “Developer Experience”. This yielded only 11 results, of which one was
excluded due to being in German. A snowballing method was used to expand
the search to other relevant articles focusing on fewer terms.

2.1.1 Low- and no-code platform (LCDP)

There are many overlapping but slightly different definitions for what low-code
development platforms are. It seems to be generally accepted that the term was
initially coined in 2014 by the market research company Forrester Research.
(Di Ruscio et al., 2022; Bucaioni et al., 2022; Alyousef, 2021) In this initial defini-
tion, Forrester defined low-code platforms as “Platforms that enable rapid delivery
of business applications with a minimum of hand-coding and minimal upfront invest-
ment in setup, training, and deployment”. (Richardson & Rymer, 2016) Over time
Forrester’s definition has evolved to include and highlight the WYSIWYG, or
what-you-see-is-what-you-get, aspects LCDPs focusing on using visual, declar-

2 BACKGROUND AND LITERATURE REVIEW

10

ative techniques as opposed to programming to create applications (Di Ruscio
et al., 2022).

Gartner, another significant market research company, introduced the concept
of low-code application platforms, or LCAPs, few years later in 2016 (Di Ruscio
et al., 2022), but it seems that in literature the two terms are used interchangea-
bly, with LCDP being the slightly more prevalent term. For the purposes of this
study, LCDP and LCAP are considered interchangeable.

It is worth noting that Gartner considers the term no-code application platform,
or NCAP, to be primarily used as a marketing and positioning statement and
opts to include these platforms within the umbrella of LCAPs. (Vincent et al.,
2019) This sentiment seems to be shared by other researchers (Bucaioni et al.,
2022; Prinz et al., 2021), so in the context of this study the concepts of no-code
development platforms or no-code application platforms will be included un-
der LCDP and only the last term will be used.

In academia, Sahay et al. (2021) present what seems to be the most in-depth and
complete definition of LCDPs: LCDPs are cloud-based software platforms that
enable developers with different domain knowledge and of varying technical
expertise to develop production ready applications. The applications are devel-
oped utilizing MDE principles and taking advantage of cloud infrastructures,
automatic code generation, and declarative high level graphical abstractions.
The platforms are provided as Platform-as-a-Service (PaaS) and ensure effective
and efficient development, deployment, and maintenance of the desired appli-
cations. The advantage of using LCDPs provides is not only that they enable
creation of software to citizen developers, but that they allow full-stack devel-
opers to focus on business logic of the applications rather than dealing with set-
ting up needed infrastructures, managing data integrity across different envi-
ronments and enhancing the robustness of the system. (Sahay et al., 2021) Rafi
et al. (2022) also note that LCDPs can help novice and aspiring coders to write
code with reduced complexity, allowing the more experienced programmers to
focus on core project areas and other productive project activities.

Analysing posts and comments posted on Stack Overflow and Reddit to gain an
understanding of how practitioners themselves perceive low code development,
Alyousef (2021) found the most common descriptors for low-code to be “requir-
ing low coding effort” and including “drag and drop” or “visual program-
ming”. Other notable descriptions included “using pre-designed templates”,
being “non-professional programmer friendly”, and using “WYSIWYG” (what-
you-see-is-what-you-get) principles. (Alyousef, 2021)

Evaluating eight prominent LCDPs, Sahay et al. (2021) provide a breakdown of
a typical architecture of an LCDPs by dividing them into four architectural lay-
ers: an application layer, a service integration layer, a data integration layer,

11

and the deployment layer as shown on Figure 1. In the first layer, applications
are defined in an application modeler that uses modelling constructs and ab-
stractions such as widgets and connectors. A service integration layer facilitates
connecting different services by using APIs and authentication mechanisms,
while data integration layer ensures data integrity of the data from different
sources. The service and data integration layers can be managed by the back-
end without needing user intervention, although developers can be provided
with external APIs. Finally, deployment layer handles the containerization and
orchestration of the applications in either cloud infrastructures or in an on-
premise environment. (Sahay et al., 2021)

Figure 1 Layered architecture of LCDPs (Sahay et al., 2021)

Sahay et al. (2021) summarize the development process in LCDPs as consisting
of the following stages 1. the data modelling, 2. user interface definition, 3.
business logic rule and workflow specification, 4. integration of external ser-
vices, and finally 5. application deployment. While agreeing and directly refer-
encing these stages, Alamin et al. (2021) add that applications can be created
using LCDPs in two directions - either UI first followed by data design, or data
first and then UI second. Regardless of which approach is used, agile method-
ologies can be applied in a circular process where customer satisfaction is
sought by continuous incremental delivery. (Alamin et al., 2021)

Waszkowski (2019) states that the approaches that created low-code program-
ming are model driven software development approach, rapid application de-
velopment, automatic code generation and visual programming. This is echoed
by Sahay et al. (2021) who state that model driven engineering, or MDE, princi-
ples are at the heart of LCDPs. Bucaioni et al. (2022) also support this notion,
their analysis showing MDE as the most mentioned core technology in both
peer-reviewed and grey low-code literature.

12

MDE is a software development paradigm that increases the abstraction level of
the software development process by allowing the development of systems us-
ing models defined with concepts that are closer to the problem domain than
the underlying implementation technology. The purpose of this is to increase
productivity and reduce time to market, as well make the solutions easier to
specify, understand and maintain. While what a model is in MDE is not rigidly
defined, they can be considered a communication of ideas between computers
and humans that are manipulatable in an automated way. Models and artifacts,
the things defined within a model, are themselves defined by metamodels.
Much like a computer program would conform to the grammar of the lan-
guage’s syntax it is written in, models must conform to their metamodels. Mod-
els can be transformed from one model to another using model transformations.
(Di Ruscio et al., 2012) Further, executable software can be generated from these
transformations. (Bucaioni et al., 2022)

The level to which MDE and low-code are considered overlapping varies de-
pending on the author and no clear consensus seems to exist. Buscaioni et al.
(2022) take the stance of positioning low-code development as “a set of methods
and/or tools in the context of a broader methodology, often being identified as
model-driven engineering.”. They further note that LCD could even be consid-
ered as a “maturation step of MDE” in terms of usability and flexibility. Cabot
(2020) goes as far as to say that the two are synonymous, while Di Ruscio et al.
(2022) counterpoints this by highlighting that that not all MDE approaches seek
reduction of the amount of code and not all low-code approaches are model-
driven.

Di Ruscio et al. (2022) further note differences between MDE and LCDPs in
their platforms, users, and domain, as highlighted in Table 1.

Table 1 Differences between low-code development and model driven engineering,
based on Di Ruscio et al. (2022)

Low-code development Model Driven Engineering

Typically cloud based, PaaS Typically desktop based

Users typically Citizen Developers
and domain experts

Users typically professional software
developers

Typically domain agnostic, although
also domain specific to business ap-
plications, IoT, machine learning and
assistants

Typical targets technical domains
such as automotive, power engineer-
ing, and cyber physical systems at
large.

It seems overall that the MDE versus low-code discourse has a lot of colourful
subtexts depending on the camp one approaches it from. On one hand the tone
of some of the papers gives the impression that there might be an element of
jealousy among MDE practitioners towards the current interest towards and

13

hype around low-code, but on the other it is also acknowledged that the same
might be an opportunity for applying existing knowledge and cross-pollination,
as admitted by Cabot (2020) and Di Ruscio et al. (2022).

Prinz et al. (2021) note that most of the published LCDP-related literature has
focused on technology related topics rather than the social and human aspects.
Bucaioni et al. (2022) note that so far most of the studies on low-code have been
published in either workshops or conferences, with the number of journal pub-
lications still lagging. This highlights the still early stage of low-code focused
research, something that this study contributes towards addressing. In addition,
there has been a significant year-on-year increase in the number of publications
and even during the writing process of this thesis several new works have been
published.

2.1.2 Developer experience (DX)

While in the context of information systems and software development the con-
cept of User Experience, or UX for short, has been long established and covered,
significantly less attention has been given to the experiences of the developers
developing that software. Influenced by the UX concept, Fagerholm and Münch
(2012) proposed the initial definition and concept of developer experience. De-
spite their original acronym for developer experience being DEx, DX seems to
be the more commonly adopted form. For this reason, the latter is used in this
thesis.

According to this initial definition, DX consists of experiences relating to both
the artifacts and activities that developers encounter as part of creating software.
Fagerholm and Münch divided the concept of DX into three subareas: cognition,
affect and conation. Cognition addresses how developers perceive the devel-
opment infrastructure, affect how they feel about their work, and conation how
they see the value of their contribution. Developers are broadly defined as any-
one engaged in the activity of developing software - not necessarily only pro-
fessional programmers. (Fagerholm & Münch, 2012)

14

Figure 2 Fagerholm's (2015) concept of developer experience (DX)
and its social and technical environment

Fagerholm (2015) expands on this initial concept with the inclusion of the two
different environments software development is done in: a social and technical
environment. This is portrayed in Figure 2. The social environment is based on
social psychological mechanisms such as beliefs, norms, values and group for-
mation and identity. The technical environment consists of artefacts such as
programming languages, the written code itself, the tools the code is written in,
as well as plans, diagrams, and processes. (Fagerholm, 2015)

Fagerholm (2015) also provides an approach in the form of a theoretical model
that can be used to frame observations into DX. In it, DX has seven aspects. First
aspect is the experience object, or what exactly is being experienced. This could be
something concrete such as a technical artefact, or something more abstract
such as a process. Second aspect is experience formation, which describes how the
experience is formed as the experience object is encountered. The third aspect,
experience influencers are external and internal factors that moderate experience
formation. Fourth is experience content, which is the subjective evaluation of the
formed experience, containing for example judgements of the positivity or neg-
ativity of the experience. Fifth factor, experience progression, describes how the
experience evolves over time. Sixth, the negative or positive experiences can
lead to behaviour outcomes, that is changes in the developers’ overt behaviour.
And ultimately seventh, object outcomes are the changes that the behaviour out-
comes may lead to in the experience object itself. These aspects are summarized
in Table 2. Fagerholm (2015) uses an integrated development environment as an
example of what this approach could be used to evaluate.

15

Table 2 Aspects of DX (Fagerholm, 2015)

Aspect Description

Experience object What is experienced

Experience formation How the experience is formed

Experience influencers Factors that influence the experience

Experience content The parts or elements of the experience

Experience progression How the experience changes over time

Behaviour outcome How the experience leads to or moderates
behaviour

Object outcome How the experience or resulting behaviour
leads to or moderates changes in one or more
artefact or phenomenon

Other approaches to measuring DX have been presented by Lee and Pan (2021),
who took the three subconstructs presented by Fagerholm & Münch (2012) and
tested their validity in measuring the DX of a deep learning platform. In their
work, cognition was defined as referring to attention, memory, and problem-
solving related factors. Affection concerns the developer’s feelings and emo-
tions, and conation consists of impulse, motivation, and desire. They conclude
that DX, at least of a deep learning platform, can be measured based on the de-
veloper’s feelings of value perceived from the platform, their positive or nega-
tive affection, and willingness to use it. (Lee & Pan, 2021)

Lee and Pan (2021) note that understanding the relationship between the plat-
form and developers using it can help us predict whether the platform can sat-
isfy developers and to ensure its usability and functionality. This is echoed by
Nylund (2020), who writes that understanding the different aspects impacting
DX is beneficial when designing a software development platform or environ-
ment, as the platform can then be aligned with the developers using it. Further,
Graziotin et al. (2017) note that unhappiness of software developers can lead to
low mental performance, motivation, and productivity, as well as delays in the
project or cutting of corners. Unhappiness can also lead to mental health issues,
such as low self-esteem, anxiety, stress, burnout, and depression. (Graziotin et
al., 2017)

While developer experience as a term often refers to the kind of DX discussed in
this thesis, this is not always the case. Brasil-Silva and Selvy Siqueira (2022) pre-
sented a systematic mapping to analysing the metrics in determining software
developer experience, but their study focused on metrics determining the level
of experience in the context of seniority of the software developers. Searching
for articles just on developer experience yielded more results interpreting the
term this way, which shows perhaps that developer experience as a concept is
not entirely established and there can be ambiguity in what the term sometimes

16

refers to. This was also noted by Nylund (2020). In the context of this thesis, the
concept of DX is used for talking about the experiencing of software develop-
ment as an activity and its related artifacts.

2.1.3 DX of LCDPs

As shown by the lack of research articles resulting from the initial query, re-
search into the DX of LCDPs is still scarce. However, a few related master’s the-
ses have been published during just the past couple of years. It’s perhaps worth
noting that two of these have been supervised by Fagerholm, who can be seen
as one of the key contributors to the DX literature so far.

In one of these theses, Kermanchi (2022) compared in an experiment the differ-
ence in developer experience of developers between using LCDPs and tradi-
tional programming. They found that the amount of prior programming expe-
rience the developer had had a strong influence on the developer’s performance,
experiences, and preferences. They highlighted that their participants saw
scalability and imposed limitations of the LCDPs as challenge the platforms
need to address. Salesforce’s Flow Builder and APEX programming language
were used in the test and all participants came from IT backgrounds. (Kerman-
chi, 2022)

Alyousef (2021) explored through qualitative interviews the challenges devel-
opers faced in using LCDPs. They interviewed both citizen developers and pro-
fessional developers experienced with different LCDPs, allowing them to com-
pare the challenges they faced. They found that citizen developers, lacking ex-
perience and backgrounds in software development, had trouble getting up to
speed and becoming productive in implementing solutions with the LCDPs.
They also reported that the citizen developers faced challenges when trying to
extend their applications using traditional development technologies. Con-
versely, they found that professional developers can switch to using LCDPs
easily. Two of the three professional developers interviewed stated they
thought low-code platforms should focus more on professional developers, and
that professional developers’ experience and the low-code tools are a powerful
combination. Further research was called into different platforms to see if find-
ings are similar, and to also investigate further the role of citizen developers
and how it could be improved. (Alyousef. 2021)

Hallberg (2021) conducted an autoethnography on using two different LCDPs,
Mendix and EHR Studio, in order to create a web application prototype for col-
lecting patient-generated health data. While they only gathered data about their
own experiences, limiting the potential generalizability of the results, they dis-
covered both positive and negative contributing aspects of LCDPs towards DX.
Positive aspects were quick and easy implementation. Negative aspects had to
do especially with the completeness of the platform’s features: being unable to

17

complete their task without having to program significant parts themself. They
highlight the platform’s impact on creativity as both an inspiring and a limiting
factor. (Hallberg, 2021)

Gao (2021) researched the episodic experience of DX of LCDPs. Episodic expe-
rience is the experiences that arises over minutes or hours and can be contrasted
with cumulative experience, which is experience gained over a long period of
time. Gao developed first a preliminary questionnaire based on a collection and
consolidation of different metrics from various existing surveys, followed by a
delphi study to refine them into the final questionnaire that was given to partic-
ipants after they had completed a task-oriented test. Analysis of the question-
naire results indicated that participants with programming experience did rate
their experience in completing the research task differently to those that did not.
However, they noted that not all prior programming experience is necessarily
helpful and programming experience alone may in fact be too vague to use as a
metric. They suggested further studies should differentiate and consider front-
end development experience specifically, as a closer equivalent to the workflow
of LCDPs. Interestingly, prior LCDP or design experience did not consistently
predict performance in completing the tasks. In discussing the contribution of
their work, Gao noted that there exists debate about whether quantitative or
qualitative feedback is more important in informing UX and DX design and
development decisions. Gao's research explored the quantitative approach.

Finally, Dahlberg (2020) studied the DX of the LCDP Softadmin by interviewing
software developers and a project leader working with the platform. They
found that developers felt positively about the increased productivity and op-
portunities for collaborating with the customer enabled by the LCDP. Negative
experiences resulted from platform constraining their problem-solving ability
and adding personal touch to layouts being limited. However, it was also noted
that certain constraints on creativity can be acceptable if justified by increased
productivity. Insight into the bigger picture within the LCDP was seen as a
challenge along with the difficulty of collaboration while working with other
developers. Importance of proper documentation and support from the plat-
form provider was highlighted, as well as the potential benefits of a rich learn-
ing process.

2.2 Practical background

The second part of this chapter focuses on the practical context of the case plat-
form and then the platform itself. First, a brief history of the concept of IoT and
its history is covered and then a description of the case LCDP IoT-TICKET is
provided. The topic of IoT is discussed because that is the context in which the
users are using the case LCDP in this study. A description of the case platform

18

IoT-TICKET is provided so that the results of the study can be more easily un-
derstood in their context.

2.2.1 Internet of Things (IoT) platforms

Even before the term was coined, things have long been connected to the Inter-
net. What constitutes the first IoT device depends on how the term is defined,
but significant contenders for the title include a 1982 Coke soda machine in the
Carnegie Mellon University and a 1990 toaster that could be turned on and off
over the Internet by John Romkey. (Suresh et al., 2014)

The term Internet of Things was coined initially by Kevin Ashton in a presenta-
tion to Procter & Gamble in 1999, just before the change of the millennium. In
his presentation Ashton was discussing combining the ideas of RFID technolo-
gy and Internet in supply chains. (Ashton, 2009; Chin, Callaghan & Allouch,
2019) Ashton’s vision for this combination of technologies was of a world where
computers are “using data they gathered without any help from us [humans]”
leading to more accurate tracking, reduced waste, loss, and cost. (Ashton, 2009)
Even if the technology landscape has transformed significantly since then, the
underlying goal of utilizing IoT to optimize processes has well stood the test of
time.

IoT is a key driving technology behind digitalization. Yoo, Henfridsson and
Lyytinen (2010) describe how hardware miniaturization, microprocessors, im-
provements in memory, broadband communication, and battery management
technologies have led to digitalization of the key functions of many traditional
products. Building on this, Wortmann and Flüchter (2015) write that IoT solu-
tions are enabling creation of new IT-based digital services by combining physi-
cal products with additional software and hardware. These digital services can
create value to their users either by enhancing the products primary functions,
or by networking multiple related products together. This is in line with Porter
and Heppelmann (2014), who call these IoT devices “smart, connected prod-
ucts”. They go on to group the capabilities of these Smart Connected Products
enabled by IoT into four areas: monitoring, control, optimization, and autono-
my. These areas build on top of the previous and are foundational to the next.

As more and more devices gather increasingly complex data about themselves
and the world around them, the tools that are used to manage and analyse this
data become increasingly important. This requires a stack of technology from
hardware and software on the device itself, to a connectivity layer, and ulti-
mately a software cloud layer. (Porter & Heppelmann, 2014)

IoT platforms are software products that come equipped with features and
functionalities with which IoT applications themselves can be built. A multi-
tude of IoT platforms exists to address different application areas. Platforms

19

also stand out from each other in which parts of the technology stack they focus
on and what functionalities they offer. (Wortmann & Flüchter, 2015)

2.2.2 IoT-TICKET

IoT-TICKET is an IoT platform developed and provided by Finnish software
company Wapice Ltd. Its development started in 2005 under the name of
Wapice Remote Management, or WRM for short. From 2011 onwards, the plat-
form has included graphical widget-based “Flow-programming”, making it an
LCDP even if the term itself had not yet been coined. At the time, labels such as
rapid application development platform were used instead. After a major up-
date in 2015, which included updating the platform to be delivered entirely
through the use of browser-technologies such as HTML5, it was rebranded as
IoT-TICKET. (Wapice, 2019)

At the time of writing IoT-TICKET Generation 4 is the latest major version, pub-
lished in late 2021. Some of the platform’s customers, also of those interviewed
in this study, are still also using IoT-TICKET 3.

Wapice positions IoT-TICKET as a “generic” IoT platform in that it can be used
to create solutions to a multitude of different application areas ranging from
smart environment, energy, cities, logistics, and manufacturing fields. Different
use cases within these application areas are shown on Figure 3. (Wapice, n.d.-a)

Figure 3 IoT-TICKET Application areas, according to Wapice (n.d.-a)

IoT-TICKET is used globally by both public and private sector customers. Ex-
amples of some of the platform’s customers include City of Tampere (as Tam-
pere IoT), Danfoss Drives (as DrivePro® Remote Monitoring), Schaeffler (as
OPTIME), and Epec (as GlobE). (Wapice, n.d.-a, n.d.-b) With IoT-TICKET,
Wapice won the Microsoft Application Innovation Partner of the Year Award
from Microsoft in 2019. (Wapice, 2019; Microsoft, 2019)

20

While IoT-TICKET is cloud native, it is cloud agnostic in that it can be “de-
ployed anywhere” from Microsoft Azure to Amazon Web Services, IBM Soft-
Layer or in Wapice’s or the customer’s own data centre. The platform is provid-
ed to customers either using a PaaS or SaaS service model. (Wapice, n.d.-a)

IoT-TICKET provides out-of-the-box integrations to different software ecosys-
tems and supports connectivity to different devices and systems via protocols
such as MQTT and REST. Gateway and edge devices such as Wapice’s own
WRM247+ can be used to expand connectivity further to many other protocols
such as OPC, OPC-UA, OBD and CAN, although third party hardware is also
supported. (Wapice, n.d.-a)

Wapice presents as benefits of the IoT platform the ability to achieve increased
efficiency through real-time operational insight, improved productivity and
better resource management, cost savings through reduced operating and
maintenance costs and the ability to provide better service through process au-
tomation, user behaviour prediction and increased responsivity. (Wapice, n.d.-a)

Wapice positions IoT-TICKET as an Internet of Things application and innova-
tion platform. Main components of the platform’s toolset are Dashboards,
Cloud Apps, Interface designer, Data-flow editor, Mobile designer, Reports and
Report editor as well as Events handling. It is worth noting that terms such as
no-code or low-code platform are not used prominently in the platform’s mar-
keting. IoT-TICKET can however be classed both as a low-code and no-code
development platform, since while the user is given the option to write tradi-
tional JavaScript code as part of their data-flows, this is not required to create
solutions with the platform.

Dashboards are web-based applications that an end-user can view and interact
with. The user interface of Dashboards is designed using the Interface designer,
which in turn utilizes ready-made but configurable widgets. The widgets are
divided into four categories: Data-visualization, Input Elements, Miscellaneous,
and Layout. When building a Dashboard, the user first selects a widget they
want to use by drag-and-dropping it from the widget selection menu onto the
design area. After this, they can drag-and-drop onto the widget which data-
point they want to visualize using that widget. The system automatically gen-
erates a corresponding data-flow with preset-settings in the Data-flow editor in
the background. Figure 4 shows this process in pictures.

21

Figure 4 Illustration of the simplified Dashboard design process in Interface designer
(Wapice, n.d.-a)

Reports are an alternative way to display data to end-users. Instead of interac-
tive web-applications, reports are .PDF files generated either on a set schedule
or as triggered by an event and then sent to the configured users via the set de-
livery channels, such as via email. The reports are created using the Report edi-
tor, which functions similarly to the Interface designer using Widgets and drag-
and-drop principles. The report editor interface is shown on Figure 5. Reports
can also include Data-flows created using the Data-flow editor.

Figure 5 The Report editor

22

Some applications might not have any visual components to them, but instead
only run in the background to complete calculations or logic on the incoming
data. These applications are called “Cloud Apps” in IoT-TICKET. Typical use
case for them is, for example, to calculate KPIs or to monitor changes in values
and thresholds to trigger alarms.

The Data-flow editor is a tool for configuring and visually programming the
logic and functionality of the Dashboards, Cloud Apps and Reports. Much like
the Interface designer uses ready-made widgets, the Data-flow editor uses
blocks that the user can drag-and-drop onto the workspace. The blocks typical-
ly have both inputs and outputs that can be used to connect them together by
clicking and dragging from one input or output to another. In Data-flow editor
the blocks are divided into four categories that are calculation, data, miscellane-
ous and logic. The user can also, with some limitations, use the script-block to
embed into the data-flow code that they have themselves written. Figure 6
shows the Data-flow editor.

Figure 6 The Data-flow editor with debugger open on one side.

IoT-TICKET has a built-in Events centre where events triggered in the data-
flows or by a device directly can be viewed and acknowledged with a comment.
Events can also trigger messages to be sent to configured personnel via email,
push notification or other means. Events view is displayed in Figure 7.

23

Figure 7 The Events view in IoT-TICKET

IoT-TICKET has a built-in documentation that can be accessed in the Interface
designer and Data-flow editor. In both views, it can be accessed from the Help-
button in the bottom left corner. Additionally, in Data-flow editor the
Documentation can be opened as a sidebar that automatically provides
information about the data-flow block the user currently has selected. Along
with in-person and online training sessions, this serves as the main always up-
to-date guide to users. The two documentation views are shown in Figures 8
and 9.

Figure 8 (left) Documentation in the Interface designer

Figure 9 (right) Reactive documentation sidebar in the Data-flow editor

24

Research methods can largely be divided into qualitative and quantitative
methods, which both have their advantages and disadvantages. Quantitative
methods fit particularly well into studying natural phenomena objectively with
numbers, whereas qualitative methods provide a holistic way to observe more
complex social and human phenomena that are better described with words
than numbers. Examples of qualitative data collection include fieldwork obser-
vation, interviews, and questionnaires. (Jabar et al., 2009)

For this thesis, a qualitative approach was chosen as it allows for an explorato-
ry, descriptive, and emergent way to discover answers to each of the posed re-
search questions. Both qualitative and quantitative methods have been used in
previous research to study DX. An advantage of a quantitative approach would
have been that it can allow for a larger sample size, at the cost of the lesser de-
scriptiveness of the data. Initially, a multi-method approach of combining both
qualitative and quantitative approaches was considered, but it was ultimately
deemed to be unsuitable in the face of resources available for conducting the
study.

Since the research holds at its base a set of hypotheses that are being tested it
can be considered to take a positivist approach. Positivist research is defined by
hypotheses testing, measuring of quantifiable variables, and drawing of infer-
ences about phenomena from the sample to a stated population. (Orlikowski &
Baroudi, 1991)

Interviews are a common method of conducting qualitative research. They can
be typed ranging from structured to unstructured based on the completeness of
their script and its restriction to the interviewer’s ability to improvise. (Myers &
Newman, 2007) Semi-structured interviews present a middle ground between
structured interviews where no improvisation is possible at all, and unstruc-
tured interviews where there are no pre-prepared questions at all. While not
without their downsides, semi-structured interviews offer some of the benefits

3 METHODS

25

of both types of interviews by producing comparable data while leaving the
door open for the deeper exploration of the answers. For these reasons, semi-
structured interviews were selected for this study.

Jacob and Ferguson (2015) instruct that it is important to use existing research
literature to guide the questions one prepares for an interview. Doing this, the
researcher can develop questions that are both grounded in the existing litera-
ture, yet that still have not been answered by it. This study uses at its base the
conceptual framework of developer experience originally introduced by Fager-
holm & Münch (2012), which has since been expanded by Fagerholm (2015),
Nylund (2020), and Lee and Pan (2021). While previous literature on the DX of
LCDPs specifically to draw from is scarce, Gao (2022), who measured with a
quantitative questionnaire the episodic experience of developers after they had
used an LCDP, provided useful metrics for measuring and describing each as-
pect of the DX framework in this context. Rather than trying to measure objec-
tively the DX of the case platform IoT-TICKET in particular, this study focuses
on understanding how the experience of different aspects of the DX differs be-
tween two user groups using it. With this in mind, Gao’s (2022) metrics were
adjusted to suit a more open ended semi-structured interview format. Using
this approach, not only can the participants be elicited to give their opinion on
if the platform fulfils each metric for DX, but why it does or doesn’t do so. From
this, we can draw inferences about the different needs and wishes of these two
groups, which in turn can be used to inform both future research as well as fea-
ture development of the IoT-TICKET platform. Gao (2022) noted that the con-
sideration of the professional developers’ backgrounds should specifically in-
clude their experience in front-end development, as this is closer to the work-
flow LCDPs use.

Myers and Nyman (2006) present, based on Erving Goffman’s theory of face-to-
face interaction, a dramaturgical model for conducting qualitative interviews in
Information Systems (IS) research. In this model both parties in the interview
are seen as actors that are playing their corresponding parts following a script
and working towards a performance. The interview has a beginning and an
end, much like a drama has an entry and an exit, and the quality of disclosure is
seen as the performance. The interaction between the actors is influenced by not
only the physical setting of the interview, but also the organizational, cultural,
and social context. They highlight the importance of managing impressions and
the interviewer’s role as giving ‘stage directions’ while not over-directing. (My-
ers & Nyman, 2006)

Further, Myers and Nyman (2006) present seven guidelines for using qualita-
tive interviews, which this study also does its best to adhere to. The guidelines
presented are as follows:

26

1. Situating the researcher as an actor
2. Minimizing social dissonance
3. Representing various “voices”
4. Acknowledging everyone is an interpreter
5. Using mirroring in questions and answers
6. Being flexible
7. Adhering to ethics of interviewing

a. Permissions
b. Respect
c. Fulfilling commitments (confidentiality & results)

As per Myers and Nyman’s (2006) guidelines, and as instructed by Jacob and
Ferguson (2015) also, the interviews for this study were prepared for by writing
a script that included an opening, introduction, key questions, and closure.

Interviews started with a situation of the researcher as a former employee and
current contractor of the commissioning company, and as a person who is do-
ing the research as part of their master’s thesis. To minimize social dissonance
between the interviewer and interviewee, a bit of the interviewer’s wider histo-
ry with the IoT-TICKET platform and background of their current role as a
training specialist was described. This was followed by informing the inter-
viewee of confidentiality and ethical guidelines of the research as well as their
right to pull out at any point. Following this, demographic and background in-
formation was collected and from there the rest of interview itself was smoothly
transitioned into.

The parts of the conversations that focused on some of the more negative expe-
riences a user had faced were expanded on by using a laddering interview
technique, introduced by Reynolds and Gutman (1988). The laddering inter-
view technique is based on means-end theory with an aim to uncover hierar-
chies arising from attributes to consequences and to ultimately discover the un-
derlying values relating to them. The use of the laddering technique in this
study is supplementary.

Interviewees for the study were provided by Wapice Ltd., who is also the
commissioner of this thesis. Potential interview candidates were selected from
the company’s IoT-TICKET LCDPs customers per the recommendations of
Wapice project managers. While everyone was interviewed individually, based
on some prior knowledge about the potential interviewees’ backgrounds the
interviewees were split into two groups: the citizen developer group and the
professional developer group. This was done in order to receive a more even
spread of participants in both groups and to ensure both voices would get

27

heard. To avoid any single IoT-TICKET customer company’s influence in the
results being disproportionate, no more than two participants were interviewed
from a single customer company.

The interviewees were approached by the author using his company email. In
total 10 interview candidates were approached, and a total of 9 interviews were
conducted. The interviews were held over Microsoft Teams and they lasted be-
tween 30 and 75 minutes. All interviews were recorded to aid in transcribing
and the analysis of results, but all recordings were agreed to be kept private and
confidential. The interview language varied between Finnish and English de-
pending on the participant’s preference. Interviews were conducted remotely
due to the large geographical spread of the participants and the general normal-
ization of remote meetings in the wake of the covid-19 pandemic.

The interviews were coded manually by the author based on the interview re-
cordings and transcripts, with key findings listed and systematically compared
using Microsoft Excel. Relevant quotations were highlighted in the transcripts
to use in the thesis as examples.

28

The interviews started with the collection of the participant’s demographic in-
formation. Participants were all between the ages of 25 and 43, with the average
age being 34,4 years and the median age being 35 years. Seven of the nine par-
ticipants were Finnish, while two were German.

Five of the participants had prior professional programming experience while
four were citizen developers. Of the five professional programmers, three had
experience with front-end development. Participants’ experience with IoT-
TICKET varied from a minimum of approximately 40 hours to users with over
2000 hours under their belt. Two of the participants described having experi-
ence with LCDPs other than IoT-TICKET, but multiple others also brought up
similarities between low-code development and PLC programming. Partici-
pants demographic details are summarized in the table below. Particular atten-
tion was given to the prior front-end development experience of the partici-
pants, as suggested by Gao (2022). Demographic details are summarized in Ta-
ble 3.

Table 3 Demographic information of the participants

Identifier Age Prior professional pro-
gramming experience

Prior LCD
experience

IoT-TICKET
use time

P1 30 None None 100-200 hours

P2 43 Yes, including front-end None > 2000 hours

P3 33 None None > 1000 hours

P4 38 Yes, including front-end Power BI,
Tableau

100-200 hours

P5 35 None None 100-200 hours

P6 25 Yes, but no front-end None ~ 60 hours

P7 37 None None 100-200 hours

P8 25 Yes, including front-end None ~ 40 hours

P9 44 Yes, but no front-end IEC 611313 ~ 800 hours

4 RESULTS

29

The main part of the interviews began with the interviewer requesting the par-
ticipant to describe what types of solutions they have created using the plat-
form.

Most typical use case for the interviewed users was visualization of IoT data (all
of the participants), but significant portion of the participants had also config-
ured and triggered alerts based on tracked values (seven of the nine partici-
pants). Just over half (five of the nine participants) described doing some form
of further back-end logic or calculations on the data, but no participant stated
that they were doing any in-depth analytics. Two of the participants described
doing remote control of the connected device in some form. One participant
described using the platform to create dashboards for inputting data.

After gaining a rudimentary understanding of the participants’ use case for the
platform, the first topic to be discussed was how the users saw the platform in
terms of helping them achieve their goals. This focuses on the conation aspect of
DX. All but one of the participants stated that they were generally able to
achieve what they set out to do using the platform, even if this sometimes
meant getting support from the platform provider.

The challenges users faced during their use of the platform can be generally
divided into three categories: platform feature related (4), user knowledge re-
lated (4), and hardware and integration related (1). The two most common
strategies the participants used for overcoming these challenges were request-
ing support from the platform provider (seven participants), as well as persis-
tence and/or trial and error (three participants). Some of the participants used a
combination of these strategies. Additionally, two of the participants mentioned
that they had amended their initial designs to better fit the platform’s features.
There did not seem to be a consistent theme as to any roadblocks being more
prevalent in either of the groups of users.

Staying on the conation aspect of DX, the participants were requested to de-
scribe if they felt using the platform felt either smooth, rough or something in-
between. Users in the citizen developer group tended to share the sentiment
that the use was smooth (two out of four) or mostly smooth (two out of four).
One of the citizen developer users did not answer the question directly, but
from the conversation a “mostly smooth” was inferred. The participants from
the professional developer group tended to hold more varied stances and apart
from one stated that the experience was mixed - some aspects of the platform’s
use being smooth while some more rough. Only one of the interviewed profes-
sional developers described the use as rough. The different aspects of the plat-
form causing this split are explored more in-depth later in this chapter.

Moving onto cognition aspects of the experiencing of DX, all four of the citizen
developers described the platform as easy to get started with. However, only

30

two of the five traditional backgrounded developers shared this sentiment ini-
tially, the other three noting that it took some time getting used to. Two of the
citizen developers described the sense of easiness of use of the platform as hav-
ing stayed the same over time, whereas two mentioned it having started to feel
more difficult as their use cases became more complex than they were in the
beginning. This was contrasted by the professional developers, who for the
most part considered the system getting easier to use as they used it more and
got more accustomed to it.

The platform was described as intuitive to use by most of the participants in
both groups. Key feature contributing towards this intuitiveness described by
the participants was the drag-and-drop nature of the programming. Participant
7 described their experience with the following.

“It was simple to find the blocks you needed, and by knowing just some basic prin-
ciples about programming, you could connect them and quite quickly, bit by bit,
build the functionality that you wanted, and then expand on it… Maybe because
there’s none of that threshold of having to press a lot of keys in just the right order to
get code to work, I never got stuck.” - Participant 7

Participant 3 noted that the Data-flow editor contributes to its intuitiveness by
UI features such as separating the function blocks with different colours based
on their type, and by lighting up the inputs that can take the output of a select-
ed connector, as well as refusing to accept incompatible connections.

Apparent simplicity can be a double-edged sword however, as it can lead the
user at first into thinking more complex solutions are not possible.

“If we think about the PLC world, if you have a string connecting blocks, what’s
transmitted in the connection will be a value - it could be decimal or integer or some-
thing - but in IoT-TICKET […] it’s a lot more like a digital association that can
throughput all sorts of things. […] It can be resources, timestamps, all sorts of things.
That was perhaps something that was difficult to learn at first. For a long time, I
didn’t realize what all it made possible. It looked simplistic, so you thought it was
simplistic.“ - Participant 2

Participants in both groups reported being able to focus on their work while
using the LCDP and that the platform, aside from few exceptions, did not cause
interruptions in their work. Nearly all of the participants reported having been
able to achieve flow while using the platform, with the only user disagreeing
stating they had not used the platform continuously long enough to have had
the opportunity for it.

Evaluating their feeling of productivity with using the platform, all participants
stated that working in low-code made them feel productive or that at worst it
had no impact on their productivity.

31

When prompted to talk about if the platform supported the users’ creativity in
building solutions with it, the answers had again some spread. Two of the pro-
fessional developer users remarked that creativity was not a factor in their solu-
tion design, two remarked that their creativity was limited but in a way that
was positive. One participant remarked that the limiting factor was their
knowledge rather than the platform’s features. Three of the citizen developers
stated that their creativity was not limited, while one agreed with the profes-
sional developers who stated that their creativity was limited, but in a positive
way.

There were differing opinions amongst the participants on what format of sup-
port material is preferred. The current use of integrated documentation in the
Interface designer and Data-flow editors received almost universal praise from
both groups (8 out of 9 participants). Participant 5, the only participant disa-
greeing, elaborated on their position by describing it as unhelpful because while
it described how a function worked, it didn’t tell them what to use it for. In-
stead, they hoped that the widgets and blocks documentations would provide
concrete and easy to understand examples of it in use, instead of (or in addition
to) just description of the blocks’ operation. This sentiment was shared by three
other participants, whom while finding the existing documentation useful also
called for a separate tutorial-like support materials in addition to the existing
descriptive ones.

While one of the interviewed users called for a booklet-style PDF manual, the
idea of a knowledge base -type of external site displaying available information
at a single source was universally welcomed by both user groups. The onboard-
ing process was praised and highlighted as important by some users, but others
stated they have been happy with the learnability of the system even without
one. Videos ranging from “15-30 minutes get-started bootcamp” for the users
who have joined the project after onboarding to ones about utilizing newly re-
leased features were also commonly requested by the participants in both
groups.

Other notable ideas to help with the learnability of the platform brought up by
the interviewees were an overlay UI that would guide the user through what
each button and part of the system does, as well as a configuration wizard type
of UI that would, based on the user’s input, generate a template of a Dashboard
that the user could start customizing to their needs rather than having to start
from a blank canvas.

One of the citizen developer users stated that while they knew a thing was doa-
ble with the platform, they might contact support straight away as this was the
more efficient way compared to trying to create the solution on their own.
Whilst that is an extreme example, users in both groups highlighted their use of
the platform provider’s support as a mean they would rely on in overcoming

32

roadblocks. The platform provider support was also relied on when it comes to
new feature development for specific customer’s needs.

As glossed over earlier in discussing the smoothness versus roughness aspect of
the LCDP’s DX, participants in the professional developer group tended to state
their experience of the platform’s DX as “mixed” significantly more than their
citizen developer counterparts. Three out of the five professional developer us-
ers stated that they found the visualization building easy or very easy, while the
back-end they would’ve preferred to develop via traditional programming
means. On the other hand, one of the professional developers stated that they
would’ve preferred to do visualizations using traditional programming, but
that they appreciated the platform’s background functionalities such as data-,
device-, and user management for certain kinds of projects. The final remaining
professional developer simply stated that it would not even be possible for
them to provide the service they provide by hand-coding it and not using an
LCDP of some sort. To them, the aspects of LCDP use that they couldn’t live
without were the efficiency in creating site-specific dashboards and the back-
end taking care of data management and connectivity with minimal configura-
tion.

While the amount of data to draw from is limited, it is worth noting that there
seems to be a correlation between the user’s front-end programming orientation
and how they considered the case platform’s front-end tools. If we take for ex-
ample a professional developer without front-end focus, the experience content
is largely positive on the front-end features of the platform but less so on back-
end development. For professional developers with prior front-end develop-
ment focus and expertise, the reverse is the case. One possible explanation for
this could be that the platform is providing developers with a specific focus the
ability to complement their ‘weakness’ by letting the platform take care of it for
them, while perhaps limiting them in the part they do have special expertise in.

Put into other words, looking at this finding through Fagerholm’s (2015) model
of different aspects of DX and observing as the experience object the Interface de-
signer and Data-flow editor respectively, considering which group the user be-
longed to and if the user had significant prior focus in front-end development
as experience influencer, it seems that the experience content formed through using
the platform is distinctly different. Other possible experience influencers could
be which version of the system the user is using and if they had attended the
onboarding trainings or been provided with access to video tutorials or webi-
nars that help them with using the system. Because of the limited sample size of
this study, these potential influencers are unable to be explored here.

Two most commonly listed reason for why the DX sometimes felt abrasive by
the users in both groups were repetition and difficulty of keeping track of the
big picture in highly complex data-flows. Participant 4, quite eloquently, pro-

33

posed a “pick two” triangle to describe situations where LCDP use can in their
opinion provide an edge over traditional programming. The points on the tri-
angle were the visual design of the dashboard (ie. how good it looks), ease of
use & maintainability (ie. how easy it is to navigate and edit), and visualizing
complex metrics (ie. how complex the data being visualized is).

“As long as you only take two of these, it is easy to use and you can get stuff done
quickly. As you try to get all three, the data-flow grows massively and you lose the
low-code advantage. As it grows past a certain point, it becomes more a burden.” –
Participant 4

Many of the professional developer users brought up and praised the state of
modern DevOps and QA tools available to them when they are programming
traditionally. While IoT-TICKET provides users with some tools for debugging
and version control, these are limited in comparison. “Version control being linear
is good… but not great”, Participant 9 summarized, while Participant 8 remarked
that “It’s not Git”.

Most of the users in the professional developer group had used the dashboard
templating feature, which is the platform’s way of generalizing a dashboard
such that it can be instantiated and deployed to different sites or assets, limiting
the amount of repetition and ensuring easier maintenance. However, branching
new versions of an existing template could be easier according to Participant 1.

Prompted to give ideas about how the issue of data-flow’s growing unwieldy
could be alleviated, a common request (from three of the professional develop-
ers and one citizen developer) was to make data-flow block grouping more
powerful. If the block groups could be minimized with only their key infor-
mation showing, and copied as a whole, this would positively influence both
the data-flow legibility and the amount of repetition required with certain types
of data-flows. In an even more powerful implementation, it could even make
sense for these block groups to be saveable and possible to be reused across
multiple Dashboards or Cloud Apps.

On the front-end development side feature requests brought up by the inter-
viewees were an ability to template sections of a dashboard instead of only a
full one, have a built-in library for images and icons, and an improved layering
functionality that took more inspiration from those of image editing programs
with the ability to sort, toggle and lock layers.

Combined for both Interface designer and Data-flow editor, Participant 3 pre-
sented a wish for giving the user an option to customize the interface to their
liking and specific use case by including a menu, list or view for the user’s fa-
vourite widgets and blocks á la “My tools”.

34

While being generally very positive about the platform being entirely browser
based, Participant 2 brought up as a downside the ease at which one can lose
progress by accidentally navigating to another website or by closing the tab
they were working on. This has already been addressed in a later version of
IoT-TICKET, where the web browser asks user via a pop-up to confirm they
really want to exit whenever trying to close or otherwise navigate out of a tab
with unsaved changes.

Another source of occasional lost progress is through system instability when
under particularly heavy use. A potential mitigation for this aspect of negative
DX could be the automated saving of unpublished draft versions of the dash-
board being worked on.

While these scenarios have not come to pass, a discussion with Participant 2 led
to further reflection on the impact lack of stability of the system could potential-
ly have. “If the service were offline for eight hours and something critical was to hap-
pen [in that time]… that would be very bad.” Participant 2 said. Here, the laddering
interview method was used to probe further causes and values behind this re-
mark. The participant noted that extended downtime could result in alerts be-
ing not seen and therefore action not being taken to fix the issue active at a site.
An issue not being addressed might lead to possible material or even health
and safety damages, with the obligation on the service provider to reimburse
them. In addition, incidents of downtime can diminish the trust between the
service provider and their end-customer. Discussing the importance of this
trust, Participant 2 noted that “if the users’ confidence towards the service starts to
crumble, it is very difficult to gain back”, further explaining that in their field it’s
usually because of lack of trust that the service monitoring subscriptions are
cancelled. The participant stated they are content with their level of service and
stability of the case platform, but the option for increasing performance by
switching to a dedicated instance was also discussed.

Participant 4 discussed his experience with certain bugs he encountered in us-
ing the platform while in a project that was under significant time pressure.
Again, the laddering interview method was applied to discover more deeply
what these issues caused and meant. He stated that some of the bugs made him
evaluate his confidence towards the platform and if things would begin to
break later, as he kept adding complexity. Especially under the time pressure,
these challenges lead to feelings of frustration. Ultimately, he noted that despite
the encountered bugs in the designer, once the dashboards were saved things
did behave consistently and robustly, and he did find the platform overall reli-
able.

35

This chapter considers and analyses the findings presented in the previous
chapter against the research questions and in the context of previous literature.
Then, potential issues with the study are addressed.

5.1 Research Question 1

What kind of differences in developer experience of an IoT low-code development plat-
form exist between users with a software developer background and those without?

Research question 1 is closely linked with Hypothesis 1, which asserted that
there is a difference in the developer experience of the platform between the
two user groups. It seems based on the data that this hypothesis holds true, and
certain key differences can be observed. The three main findings are discussed
next.

Firstly, citizen developers found the platform easy to use from the get-go more
often compared to their software developer backgrounded counterparts. This
effect reversed as the users got more familiar with the tool, with the profession-
al developers considering the platform easier to use over time and the citizen
developers finding it more difficult.

Kermanchi (2022), who studied both junior and senior software developers as
LCDP users, found a significant correlation between the number of years of
programming experience and the users preference for traditional versus LCDP
programming. In their study, the users with less programming experience felt
more in control of and more efficient with LCDPs than the more senior devel-
opers, to whom the opposite was true. Regardless of years of programming ex-
perience, however, the more familiar users got with LCDPs the more they be-

5 DISCUSSION

36

gan considering them efficient. This result seems to be in line with our finding
of traditional developers finding the case LCDP easier to use through exposure.

Alyousef (2021) found, contrastingly, that it is easier for traditional developers
to use LCDPs than it is for citizen developers. This was attributed to their prior
knowledge of traditional software development processes and best practices.

A possible explanation for the difference discovered in this study could be that
it takes a moment for professional developers to adjust to the LCDPs way of
doing things, but once they have gotten comfortable, they begin to have an ad-
vantage over citizen developers thanks to their prior experience.

It is clear that ease of use of LCDPs is not a black and white topic, as is high-
lighted by Rokis and Kirikova (2022) who found that practitioners in general
tend have rather conflicting views: many finding them both easy to study and
use, while many also finding them to have a high learning curve. Further study
of this aspect is warranted.

Second difference discovered between the citizen developers and professional
developers in this study was that citizen developers tended to consider the ex-
perience of using the platform smoother than the professional developers did.
Based on the interviews this seems to be primarily due to the professional de-
velopers looking at the case platform’s DevOps tools through the lens of more
traditional development environments. An element of this could be that the
citizen developers are not as aware of what kinds of supportive processes tradi-
tional development entails and therefore don’t know to miss them. The aspects
causing roughness in the experience are explored more as part of the discussion
of RQ2.

Thirdly, citizen developers did not feel their creativity limited by the LCDP as
much as their professional developer counterparts did. This limitation, however,
wasn’t experienced as a negative factor by the professional developers, who
tended to state either that creativity wasn’t a factor in what they did or that the
limitations could even be beneficial.

This is in line with Hallberg (2021), who found the use of LCDPs could be at the
same time both inspiring and limiting. Additionally, Dahlberg (2020) found that
developers held mixed views on how they think about creativity in LCDPs. On
one hand, while traditional development offers the developer many ways to
approach a problem, it can at the same time make it difficult to know which
approach is the best. LCDPs face a challenge of walking the line between offer-
ing limitations that speed up the development of solutions while at the same
time not preventing the developers from achieving their goal or hindering their
creativity unnecessarily.

37

5.2 Research Question 2

How can any possibly negative experiences be best addressed?

The primary aspects contributing negatively to DX arose from situations where
the user had to either do repetitive tasks, the data-flows of some of the more
massive data-flow felt unwieldy, or where the QA and testing tools felt limited.
Many of the professional developer user reflected on the state of modern
DevOps tools available to them when programming traditionally.

To address these, several improvement ideas, feature requests and possible so-
lutions were gathered and presented to the platform provider. Among these
were changes such as improved data-flow block grouping with copy-
ing/templating, more advanced debugging and QA tools, improved layering
functionality that drew inspiration from image editors, and the ability to cus-
tomize the designer interface with a “My tools” style menu.

In literature, Khorram et al. (2020) evaluated the testing tools of five prominent
LCDPs and proposed a set of feature criteria that can be used to compare the
different systems. They highlight the need for high-level automated testing that
considers the citizen developer users potential lack of technical knowledge. Due
to the WYSIWYG operation nature of case platform, many of the testing ap-
proaches recommended may not be suitable to be applied to it. However, this
does not mean encouraging testing is not important, and how users are guided
to conduct it within the system should be further explored.

IoT-TICKET has recently been updated with new debugging tools for the Cloud
App’s data-flows, which provides users with much more effective way for de-
bugging their solutions. Some of the interviewed users were still in progress of
transitioning to the latest version of the platform and had not yet used these
features.

While the platform’s built-in documentation received almost universal praise,
there were also calls for additional support materials to be made available in a
central knowledge base. Besides descriptive documentation, three of the partic-
ipants called for more tutorial-like material to be created, including videos
about how to get started and how to combine blocks and widgets to implement
specific features. Ideas about dialog-based configuration wizards to create tem-
plates as well as tutorial overlays were also presented.

Al Amin et al. (2021) found that in online discussions about LCDPs, documen-
tation related queries were prominent and difficult to answer, and suggested
that platform providers should provide good and effective learning resources to
reduce entry level barriers and smoothen the learning curve. Rokis et al. (2023)

38

also called for addressing the knowledge gap of citizen developers with appro-
priate training and learning-by-doing.

5.3 Limitations and threats to validity

Like most studies, this study has limitations. Primary limitation to the study’s
results generalizability is that only the users of a single IoT-focused LCDP were
interviewed, meaning it is possible that its results are specific to that LCDP and
might not apply to different ones. It is possible, and perhaps to be expected,
that different types of LCDPs are experienced differently by their users. The
degree to which this is the case presents itself as an opportunity for future re-
search. It may be for example that different types of LCDPs, such as ones that
are more form-based rather than ones dealing with timeseries IoT data, could
have a significantly different DX in the eyes of their users.

Secondary limitation to this study and its external validity is its limited sample
size of nine participants, of which four were citizen developers and five had a
professional programmer background. While this number of participants did
lead to saturation on the main results, a larger sample could have yielded addi-
tional findings.

The impact of any single customer’s use case was mitigated by limiting the
number of participants from each company to two.

In order to keep the scope of the study manageable, only qualitative approach
was used in this study, whereas in an ideal world a quantitative approach could
have been employed in conjunction to further validate the findings.

39

The purpose of this study was to investigate the differences in developer
experience of an IoT low-code development platform between professional
developers and citizen developers. Towards this end, qualitative interviews
were conducted with nine users, of whom four were citizen developers and five
professional developers.

It was found that while there were lots of similarities between the two groups’
developer experience with the case platform, there were also differences.
Citizen developers tended to initially find the case LCDP easy to use, while the
professional developers required a bit of time to adjust to the new way of
thinking and the different approach to development. Over time this effect
reversed, however, as the professional developers found the case platform
easier to use than it had been at first and where citizen developers reported the
opposite to have been the case. Secondly, citizen developers tended to find the
DX of the platform smoother than their professional developer counterparts,
although this could be explained by the professional developers having a point
of reference in the modern DevOps tools and processes involved with
traditional programming that the citizen developers do not. Main sources of
abrasiveness between the platform and its users were occasional repetitive
manual tasks and the difficulty of managing the complexity of sometimes very
large data-flows. New feature requests to tackle the causes of negative DX as
well as ways to assist in the learning of the platform were gathered from the
interviews and presented onwards to the platform provider. Finally, citizen
developers felt less creatively limited by the LCDP than their professional
counterparts, of whom some stated that creativity was not a factor in what they
did or that the platform limited their creativity in a positive kind of way.

There is currently a lot of buzz and hype around the topic of LCDPs, but
academic literature in this space is still scant, even if quickly expanding. The
topic of DX of LCDPs between citizen developers and professional developers
was studied here only in the context of a single IoT LCDP, but more attention

6 CONCLUSION

40

should be given in the future to how this comparison holds up with both other
platforms in the IoT context, as well as entirely different types of LCDPs. Also,
the formation and progression of the DX and how this can be influenced by
training or provision training materials is highly interesting and worthy of the
attention of future studies.

41

REFERENCES

A Jabar, M., Sidi, F., Selamat, M. H., Abd Ghani, A. A., & Ibrahim, H. (2009). An
Investigation into Methods and Concepts of Qualitative Research in
Information System Research. Computer and Information Science, 2(4), p47.

Al Alamin, M. A., Malakar, S., Uddin, G., Afroz, S., Haider, T. B., & Iqbal, A.
(2021). An Empirical Study of Developer Discussions on Low-Code
Software Development Challenges. 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), 46–57.

Alsaadi, H. A., Radain, D. T., Alzahrani, M. M., Alshammari, W. F., Alahmadi,
D., & Fakieh, B. (2021). Factors that affect the utilization of low-code
development platforms: survey study. Revista Română de Informatică Și
Automatică, 31(3), 123–140.

Alyousef, Z. (2021). Challenges Development Teams Face in Low-code
Development Process. Applied Sciences.

Ashton, K. (2009). That ‘internet of things’ thing. RFID Journal, 22(7), 97–114.

Brasil-Silva, R., & Siqueira, F. L. (2022). Metrics to quantify software developer
experience: a systematic mapping. Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, 1562–1569.

Bucaioni, A., Cicchetti, A., & Ciccozzi, F. (2022). Modelling in low-code
development: a multi-vocal systematic review. Software and Systems
Modeling, 21(5), 1959–1981.

Cabot, J. (2020). Positioning of the low-code movement within the field of
model-driven engineering. Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, 1–3.

Cai, F. Z., Huang, S. Y., Kessler, T. S., & Fottner, F. J. (2022). A Case Study:
Digitalization of Business Processes of SMEs with Low-Code Method.
IFAC-PapersOnLine, 55(10), 1840–1845.

Chin, J., Callaghan, V., & Allouch, S. B. (2019). The Internet-of-Things:
Reflections on the past, present and future from a user-centered and smart
environment perspective. Journal of Ambient Intelligence and Smart
Environments, 11(1), 45–69.

Dahlberg, D. (2020). Developer Experience of a Low-Code Platform: An exploratory
study. Umeå University.

Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A., Tisi, M., & Wimmer, M.
(2022). Low-code development and model-driven engineering: Two sides
of the same coin? Software and Systems Modeling, 21(2), 437–446.

42

Elshan, E., Dickhaut, E., & Ebel, P. (2023). An Investigation of Why Low Code
Platforms Provide Answers and New Challenges. Proceedings of the 56th
Hawaii International Conference on System Sciences.

Fagerholm, F. (2015). Software Developer Experience: Case Studies in Lean-Agile and
Open Source Environments. University of Helsinki.

Fagerholm, F., & Münch, J. (2012). Developer Experience: Concept and
Definition. 2012 International Conference on Software and System Process
(ICSSP), 73–77.

Gao, D. (2022). Measuring Developers’ Episodic Experience of Low-Code Development
Platforms. Aalto University.

Graziotin, D., Fagerholm, F., Wang, X., & Abrahamsson, P. (2017). Unhappy
Developers: Bad for Themselves, Bad for Process, and Bad for Software
Product. 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), 362–364.

Hallberg, A. (2021). Using Low-Code Platforms to Collect Patient-Generated Health
Data: A Software Developer’s Perspective. Linköping University, Department
of Computer and Information Science.

Jacob, S., & Furgerson, S. (2015). Writing Interview Protocols and Conducting
Interviews: Tips for Students New to the Field of Qualitative Research. The
Qualitative Report.

Kermanchi, A. (2022). Developer Experience in Low-Code Versus Traditional
Development Platforms - A Comparative Experiment [Aalto University].

Khorram, F., Mottu, J.-M., & Sunyé, G. (2020). Challenges & opportunities in
low-code testing. Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Companion Proceedings,
1–10.

Kuusinen, K., Petrie, H., Fagerholm, F., & Mikkonen, T. (2016). Flow, Intrinsic
Motivation, and Developer Experience in Software Engineering. In H.
Sharp & T. Hall (Eds.), Agile Processes, in Software Engineering, and Extreme
Programming (Vol. 251, pp. 104–117). Springer International Publishing.

Lee, H., & Pan, Y. (2021). Evaluation of the Nomological Validity of Cognitive,
Emotional, and Behavioral Factors for the Measurement of Developer
Experience. Applied Sciences, 11(17), 7805.

Microsoft. (2019, June 6). Microsoft announces 2019 Partner of the Year Award
winners and finalists. https://news.microsoft.com/2019/06/06/microsoft-
announces-2019-partner-of-the-year-award-winners-and-finalists/

Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research:
Examining the craft. Information and Organization, 17(1), 2–26.

https://news.microsoft.com/2019/06/06/microsoft-announces-2019-partner-of-the-year-award-winners-and-finalists/
https://news.microsoft.com/2019/06/06/microsoft-announces-2019-partner-of-the-year-award-winners-and-finalists/

43

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying Information Technology in
Organizations: Research Approaches and Assumptions. Information
Systems Research, 2(1), 1–28.

Porter, M. E., & Heppelmann, J. E. (2014). How smart, connected products are
transforming competition. Harvard Business Review, 92.11, 64–88.

Prinz, N., Rentrop, R., & Huber, M. (2021). Low-Code Development Platforms –
A Literature Review. AMCIS 2021 Proceedings. 2.

Rafi, S., Akbar, M. A., Sánchez-Gordón, M., & Colomo-Palacios, R. (2022).
DevOps Practitioners’ Perceptions of the Low-code Trend. Proceedings of
the 16th ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement, 301–306.

Reynolds, T. J., & Gutman, J. (1988). Laddering theory, method, analysis, and
interpretation. Journal of Advertising Research, 28(1), 11–31.

Richardson, C., & Rymer, J. (2016). The Forrester WaveTM: low-code development
platforms, Q2 2016. Forrester.

Rokis, K., Kirikova, M., & Institute of Applied Computer Systems, Riga
Technical University, 6A Kipsalas Street, Riga, LV-1048, Latvia. (2023).
Exploring Low-Code Development: A Comprehensive Literature Review.
Complex Systems Informatics and Modeling Quarterly, 36, 68–86.

Rokis, K., & Kirikova, M. (2022). Challenges of Low-Code/No-Code Software
Development: A Literature Review. In Ē. Nazaruka, K. Sandkuhl, & U.
Seigerroth (Eds.), Perspectives in Business Informatics Research (Vol. 462, pp.
3–17). Springer International Publishing.

Sahay, A., Indamutsa, A., Di Ruscio, D., & Pierantonio, A. (2020). Supporting
the understanding and comparison of low-code development platforms.
2020 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 171–178.

Sanchis, R., García-Perales, Ó., Fraile, F., & Poler, R. (2019). Low-Code as
Enabler of Digital Transformation in Manufacturing Industry. Applied
Sciences, 10(1), 12.

Suresh, P., Daniel, J. V., Parthasarathy, V., & Aswathy, R. H. (2014). A state of
the art review on the Internet of Things (IoT) history, technology and
fields of deployment. 2014 International Conference on Science Engineering
and Management Research (ICSEMR), 1–8.

Vincent, P., Iijima, K., Driver, M., Wong, J., & Natis, Y. (2019). Magic quadrant
for enterprise low-code application platforms. Gartner Report

Wapice. (2017, June 7). Digitaalisuuden historia Wapicella.
https://www.wapice.com/fi/insights/digitaalisuuden-historia-wapicella

Wapice. (2019, June 6). Wapice recognized as Winner for 2019 Microsoft Application
Innovation Partner of the Year Award.

https://www.wapice.com/fi/insights/digitaalisuuden-historia-wapicella

44

https://www.wapice.com/news/microsoft-application-innovation-
partner-of-the-year-award

Wapice. (n.d.a). IoT-TICKET - Create production-grade IoT applications. Retrieved
August 2, 2023, from https://www.wapice.com/media/brochures/iot-
ticket-brochure_en.pdf

Wapice. (n.d.b). Customers - Wapice. Retrieved August 2, 2023, from
https://www.wapice.com/customers

Waszkowski, R. (2019). Low-code platform for automating business processes
in manufacturing. IFAC-PapersOnLine, 52(10), 376–381.

Wortmann, F., & Flüchter, K. (2015). Internet of Things: Technology and Value
Added. Business & Information Systems Engineering, 57(3), 221–224.

Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). The New Organizing Logic of
Digital Innovation: An Agenda for Information Systems Research.
Information Systems Research, 21(4), 724–735.

https://www.wapice.com/news/microsoft-application-innovation-partner-of-the-year-award
https://www.wapice.com/news/microsoft-application-innovation-partner-of-the-year-award
https://www.wapice.com/media/brochures/iot-ticket-brochure_en.pdf
https://www.wapice.com/media/brochures/iot-ticket-brochure_en.pdf
https://www.wapice.com/customers

	1 INTRODUCTION
	2 background and Literature review
	2.1 Theory background
	2.1.1 Low- and no-code platform (LCDP)
	2.1.2 Developer experience (DX)
	2.1.3 DX of LCDPs

	2.2 Practical background
	2.2.1 Internet of Things (IoT) platforms
	2.2.2 IoT-TICKET

	3 Methods
	4 Results
	5 Discussion
	5.1 Research Question 1
	5.2 Research Question 2
	5.3 Limitations and threats to validity

	6 Conclusion
	REFERENCEs

