
Tuomo Hopia

MUTATION TESTING IN FUNCTIONAL

PROGRAMMING

Master’s Thesis in Information Technology

December 27, 2023

University of Jyväskylä

Faculty of Information Technology

Author: Tuomo Hopia

Contact information: tuomo.hopia@gmail.com

Supervisor: Jorma Kyppö and Antti Valmari

Title: MUTATION TESTING IN FUNCTIONAL PROGRAMMING

Työn nimi: MUTAATIOTESTAUS FUNKTIONAALISESSA OHJELMOINNISSA

Project: Master’s Thesis

Study line: Information Systems Science

Page count: 73+0

Abstract: In software engineering, mutation testing is a method to assess and improve soft-

ware test quality. It is more prevalent in object-oriented programming and has only seen little

interest in functional programming.

In this thesis, leveraging mutation testing in functional programming is explored by con-

structing a practical mutation testing tool called Mutix for a functional programming lan-

guage called Elixir. Mutix is published as an open source testing tool for any developer to

use.

Keywords: Software Quality, Software Testing, Mutation Testing, Functional Programming

Suomenkielinen tiivistelmä: Mutaatiotestaus on ohjelmiston laadunhallintamenetelmä, jolla

voidaan arvioida ja parantaa ohjelmistotestien laatua. Mutaatiotestaus on ollut suositumpaa

olio-ohjelmoinnissa kuin funktionaalisessa ohjelmoinnissa, jossa sen kiinnostus on ollut

vähäistä.

Tässä tutkielmassa luodaan konstruktio nimeltä Mutix funktionaaliselle ohjelmontikielelle

nimeltä Elixir. Mutix julkaistaan avoimen lähdekoodin työkaluna, jota kuka tahansa ohjelmis-

tokehittäjä voi käyttää ohjelmistotestiensä laadunhallintaa varten.

Avainsanat: Ohjelmiston Laatu, Ohjelmistotestaus, Mutaatiotestaus, Funktionaalinen Ohjel-

mointi

i

Glossary

AST Abstract Syntax Tree.

Atom Constant whose value is its name.

BEAM Erlang Virtual Machine.

Developer Software developer — a programmer who writes software.

ExUnit Elixir’s built-in testing framework.

Local function Function in the current context.

Macro Code that writes code.

Metadata Auxiliary data to describe or annotate other data.

Mix Elixir’s built-in build tool.

Mix task Defined action using behaviors defined by Mix.

Remote function Function defined outside of the current context.

Runtime Software system that executes code.

Run-time Step at which code is executed.

ii

List of Figures
Figure 1. Traditional mutation testing process . 20
Figure 2. Stryker mutation score. 24
Figure 3. PITest coverage report . 24
Figure 4. Program lifecycle . 34
Figure 5. AST visualization . 36
Figure 6. AST visualization of a single node . 36
Figure 7. Mutix’s AST transformer illustration . 44
Figure 8. Test results from tests with mutations . 48
Figure 9. Mutation report aggregated from test results . 49
Figure 10. Mutation report & score. 50
Figure 11. Feedback for surviving mutants . 51
Figure 12. Performance improvement proposal . 59

List of Tables
Table 1. Selected mutation libraries of each language ecosystem compared against a

standard or unit testing library of the same language based on a GitHub (2023)
search. Popularity is assessed in terms of GitHub stars given by developers.
The Popularity column shows how many stars the mutation testing library has
compared to the standard testing library of the same language. 29

iii

Contents
1 INTRODUCTION . 1

2 FAULTS IN SOFTWARE . 3
2.1 Static analysis . 4
2.2 Software testing . 5

3 FOUNDATIONS OF MUTATION TESTING . 6
3.1 Mutation operators . 7
3.2 Competent programmer hypothesis . 9
3.3 Coupling effect . 11
3.4 Weak vs. strong mutants . 12
3.5 Equivalent and subsumed mutants. 15
3.6 Higher order mutants . 17

4 MUTATION TESTING IN PRACTICE . 19
4.1 Mutation Score . 22
4.2 Problems with mutation testing . 25
4.3 Industrial adoption . 28

5 FUNCTIONAL PROGRAMMING AND ELIXIR . 31
5.1 Elixir . 32
5.2 Metaprogramming. 33
5.3 AST and its manipulation . 34
5.4 Testing in Elixr . 38

6 MUTIX . 40
6.1 Mutation operators . 40
6.2 Launching Mutix . 41
6.3 Injecting mutations . 43
6.4 Report . 47
6.5 Performance . 52
6.6 Caveats . 54

7 DISCUSSION. 56
7.1 Limitations & future improvement . 57

BIBLIOGRAPHY . 61

iv

1 Introduction

As the world is digitalizing at a rapid pace the software engineering industry has enjoyed

tremendous growth over the past decades. The code and version control hosting platform

GitHub (2022) announced that there were over 3.5 billion new contributions on GitHub in

2022 alone, with over 227 million pull requests merged, adding new code to codebases. 1

The escalating rate at which new software is developed presents new challenges to main-

taining proper quality control over the software. Over time, various techniques and method-

ologies have been developed to combat the issue, with software testing being the primary

method. Ultimately, The IEE Computer Society that aims to document the industry stan-

dards came to designate testing a crucial part in the construction of software and the primary

means to validate its correctness (Bourque, Fairley, and Society 2014, Chapter 3).

Even though it is well established in the industry that testing is a core component in software

construction, surprisingly little attention has been paid to assessing the quality of tests. Most

of the time in the software engineering industry companies rely heavily on static analysis as

the primary guardian of quality, usually in the form of various human code reviews.

A testing technique developed in the 1970s called mutation testing aims to provide a solution

to this dilemma. The idea of mutation testing is to introduce what are labeled mutants to a

program, and find out how many of them the existing test suites catch and how many go

undetected. Thanks to its role as a method for quality control for the existing software test

suites mutation testing can be described as tests for your tests. This thesis explores the

feasibility of mutation testing in a functional programming context where it has seen little

interest so far.

1. Contributions mean commits, issues, pull requests, discussions, gists, pushes and code reviews.

1

More specifically, the research documented in this thesis aims to find out the answers to the

research questions detailed below. In functional programming context:

• Can test quality be asserted by utilizing mutation testing?

• Can developer friendly feedback be extracted from a mutation testing tool?

In this thesis, the notion of developer friendly feedback is not defined strictly but is thought

of as any feedback that is useful in helping the developer understand the context in which

mutation testing finds problems in the software that is being tested.

To answer the research questions, this thesis initially focuses on the theroetical and technical

aspects of mutation testing to lay a scientific foundation on the subject. Ultimately, As a

solution, the creation of a new testing tool for the software’s test suites is explored for a

functional programming language called Elixir. The mutation testing tool will be released

as an open source library, allowing any developer to utilize it to assess the quality of their

existing software test suites.

The thesis is structured to first introduce the reader to software quality verification and the

variety of testing techniques developed and how mutation testing has evolved alongside the

more mainstream techniques employed by the industry. As the constructive solution to the

research problem is being implemented in a functional programming language, there is sub-

sequently a brief introduction to the paradigm as well as metaprogramming. Finally, an

assessment is presented that discusses how well the constructed solution adheres to the orig-

inal mutation testing concepts and also what new it brings to the table for traditional mutation

testing.

2

2 Faults in software

Maintaining software quality has been a major industrial challenge in software engineering

for decades. Technopedia (2020) defines programmer 1 as someone who writes computer

software by providing specific instructions to a computer. As human centric work the quality

of software is subject to the programmer’s ability to make correct software. A data logging

& analytics company called Coralogix (2015) studied developer productivity and found that

a programmer creates an average of 70 bugs for every 1000 lines of code. Alargmingly, pro-

grammers were reported to spend the majority of their time debugging instead of developing

new software.

Unexpected behavior and incorrect results in software engineering are called by varying

terms in the industry. In this thesis the definitions of Williams (2010) that are based on the

original “IEEE Standard Glossary of Software Engineering Terminology” (1990) are used:

• Mistake - human mistake that produces an incorrect result.

• Fault - an incorrect definition in the program.

• Failure - the system failing to meet one or more of its specified requirements.

• Error - the incorrect result of running the program as opposed to the specified or

otherwise expected behavior.

In common terms, a human programmer makes a mistake which manifests as a fault in the

program definition which usually is the program’s source code. Faults are more commonly

called bugs in software engineering. When executed, the fault becomes an error and ulti-

mately a failure in the system can be observed.

Faults can be characterized as either syntactically or semantically. Offutt and Hayes (1996)

describe common syntactic faults to be:

• Typos by programmer.

• Incorrect variable names.

• Incorrect implementation of the design specification.

1. Programmer and developer are used interchangeably in this thesis.

3

While syntax refers to the structure semantics in programming language theory means bring-

ing meaning to syntactically valid programs (Floyd 1993). Offutt and Hayes (1996) charac-

terize semantic faults as those that produce faulty outputs in some subset of inputs. The

reason this distinction between syntactic and semantic faults is important is that it is used to

approximate the size of the fault. That, in turn, is fundamental for example in projecting the

effect various mutation operator categories have in mutation testing. Syntactic and semantic

faults have some intersection, especially when a superficial syntactic change results in a large

semantic fault. But as Offutt and Hayes (1996) note, most fault based testing techniques that

mutation testing is a part of rely on syntactic fault injection and consider the faults generated

syntactic by nature.

2.1 Static analysis

A static program analysis, often just called static analysis, describes methods for analyzing

software programs without actually running them (Wichmann et al. April 1995). While a

static analysis could mean a code review done by a human it typically means a technical,

often automated way of conducting an analysis of the program based on its source code.

Simplifying, static analysis can be considered the process of grammatic and spell checking

for the program’s source code (Williams 2010, Chapter Static Analysis).

Compilers and even runtime systems have various static analysis tooling built into them,

asserting that certain kinds of errors do not exist in the source code before it is run. The most

prominent static analyzers known to programmers in modern software development are type

checkers in statically typed programming languages that validate that a type system is not

violated. A type system is a set of logical rules that the programmer uses to prevent a class

unwanted of program behaviors (Pierce 2002, Chapter 1.1). A type system is categorically

able to prove the absence of certain behaviors. It is thus a way of eliminating a class of

program faults without having to run the program.

Type systems thus provide assurances that certain types of errors cannot occur at run-time.

For the programmer this means that such behaviors do not need to be tested at all by means

of dynamic testing, eliminating potentially large amounts of test code that would otherwise

4

have to be written. For mutation testing this means if a mutation was to be injected that would

violate the type system’s rules, for example replacing a binary operator with a string concate-

nation operator the type system would already catch this while generating the mutated code

if it violated the type system’s constraints.

2.2 Software testing

In contrast with static analysis software testing is known as dynamic analysis. Dynamic

analysis means evaluating the system or a part of it based on its behavior when executed

(Williams 2010, Chapter Static Analysis). As the idea of software testing is running the

program or its components to observe its behavior against expectations all software testing

can be categorized as dynamic analysis. The key distinction is that while static analysis is

done without executing the program or any part of it, running tests at run-time is crucial for

performing a dynamic analysis.

Software testing can be categorized under two software testing umbrella categories - white-

box and black-box testing. Black-box testing focuses on verifying the software’s behaviour

from the outside without analyzing or mutating its internal structures and logic. White-box

testing, in contrast, targets the application’s internal logic (Williams 2010, see sidebar in

Chapter Coverage Criteria). Unit testing is a part of white-box testing and describes a level

of testing where the functionality of software modules are verified in isolation from other

elements (Bourque, Fairley, and Society 2014, Chapter 3.5.3). Mutation testing is most

often built on existing unit test suites in order to verify the tests capture whenever the source

code is infected with mutations.

5

3 Foundations of mutation testing

Mutation testing is a form of software testing that aims to assert the quality of an existing

test suite that targets source code tests. In other words, it is a method to verify the quality

of the existing test suites. As mutation testing targets the internal logic of the application

rather than its functionality it falls into the white-box umbrella category of software testing

(Williams 2010). Harman and Jia (September 2011, Chapter 1) categorize mutation testing

more specifically as a fault-based testing technique. Sometimes mutation testing is further

categorized as syntax-based testing due to the mutation operators applied being of syntactic

nature (Ammann and Offutt 2017, Chapter 9.1.2). Mutation testing can be referred to as

mutant testing or mutation analysis in the literature (Coles et al. July 2016).

As a concept, mutation testing originates from the 1970s when a student named Richard

Lipton proposed the technique in a class term paper called Fault Diagnosis of Computer

Programs (Offutt and Untch 2001). Demillo, Lipton, and Sayward (May 1978) further re-

fined the concept later in the decade in their research which is now generally cited as the

original reference for the foundations of mutation testing.

In their article, Demillo, Lipton, and Sayward (May 1978) argue that aside from rare oc-

curences such as errors originating from the operating system, errors in applications arise

from:

• Missing control flows.

• Incorrect path selection in the control flows.

• Incorrect or missing actions.

These are all the result of a fault or multiple faults in the program’s source code. Now, a

test suite should normally catch all these faults before the program is deployed to production

use. But there is inherently nothing that provides assurances of the test quality itself aside

from simple coverage metrics which typically only detail the ratio of public interfaces of

the source code tested by at least one unit test. Mutation testing was devised as a means to

systematically and semi-automatically assert how well the existing test suite captures new

faults introduced in the source code.

6

3.1 Mutation operators

Mutation testing tools create alternative versions of the program by injecting mutations into

the original program. These infections are created by applying a set of predetermined rules

which are called mutation operators1 in mutation testing (Offutt and Untch 2001). Typically,

these rules are replacements of operators with other syntactically valid operators, most often

statically predefined as the industrial mutation testing tool documentation detail. However,

despite the name mutation operators are not restricted to being replacements of operators

specified by the programming language. They can range from replacing statements to erasing

entire function bodies. As Ammann and Offutt (2017, Chapter 9.2.2) note, when designing

mutation operators it is crucial to take the programming language context into account in

order to successfully benefit from mutation testing.

In the scientific literature mutation operators are expressed in terms of what is referred to as

ground string — any string that is grammatically valid for the program. In practice, ground

string refers to the program that is to be infected and tested. Mutation operator is a rule that is

applied to create syntactic variations that are likewise grammatically correct (Ammann and

Offutt 2017, Chapter 9.1.2). The ultimate result is a mutant which is the output of applying a

mutation operator once. Sometimes this process of injecting a mutant is called mutagenesis

in the scientific literature (Petrovic and Ivankovic 2018).

Consider the following pseudocode example of calculating the arithmetic mean of two num-

bers given as arguments:

def average(a, b):

sum = a + b

return sum / 2

A typical mutation applied to this kind of algorithm would be converting the arithmetic +

operator into its arithmetic opposite - . Now, imagine there was a test case asserting that:

1. Alternatively called mutant operators, mutagens or mutation rules (Wu et al. 1988).

7

test "average(a, b) returns the average of two numbers":

assert average(2, 6) == 4

After the mutation has been injected the statement sum = a + b would be transformed

into a statement such that:

sum = a - b

This injected mutant would be a so-called first order mutant. Now when the same test case

asserting the result of average(2, 6) is run the average(2, 6) function invoca-

tion would actually yield -2 , making the assertion and subsequently the test case fail. In

other words, this test would be able to capture the injected mutant. In the scientific literature

this would be referred to as killing the mutant. Conversely, mutants that are not killed are

often described as surviving mutants since they survive the test suite without being killed. In

other words, a mutant survives when the test suite is run against a version of the application

with the injected mutant with no test failing.

The scientific literature on mutation testing has taken the stance that since mutation opera-

tors have a syntactically light footprint they are refered to as syntactic mutations rather than

semantic. This becomes quickly evident when browsing through the most cited research pa-

pers on mutation testing, most prominently the work of Harman and Jia (September 2011)

as well as Offutt and Untch (2001). However, sometimes practical implementations go as far

as removing the entire function body as the injected mutant operator (Niedermayr, Juergens,

and Wagner 2016), essentially removing the entire semantics from the function. This goes to

show that depending on the chose mutation operators, infections can be introduced very flex-

ibly to the program ranging from insignificant faults akin to human mistakes to semantically

complex faults that alter the core logic of the program.

Industrially, a conservative set of mutation operators is typically used. At Google the follow-

ing operators were applied in their experiment (Petrovic and Ivankovic 2018, Figure 3):

• Arithmetic operator replacement.

• Logical connector replacement.

• Relational operator replacement.

8

• Unary operator insertion.

• Statement block removal.

A look at the popular open source mutation testing frameworks available shows that most

frameworks use the same operator categories as Google. That said, most frameworks extend

the range of operators beyond what Google has used in their experiment, often with the aid

of the features specific to the programming paradigm, language or platform:

• Control flow statement (Rafalko 2023, see Mutators - Loop; Hałas 2023, for example

the break continue replacement operator; Schirp DSO LTD 2023, see meta/if.rb,

meta/break.rb and meta/case.rb in the source code).

• Object constructor call (Coles 2023, see Available mutators and groups).

• Error raising (Rafalko 2023, see Mutators - Exceptions).

• Regex (Stryker Team 2023a, see Supported mutators; Schirp DSO LTD 2023, see

meta/regexp.rb in the source code).

• Constant replacement (Coles 2023, see Available mutators and groups).

3.2 Competent programmer hypothesis

Fundamentally, mutation testing relies on two key assumptions: the competent programmer

hypothesis and the coupling effect. Demillo, Lipton, and Sayward (May 1978) phrase the

competent programmer hypothesis such that programmers create programs that are close

to being correct. In that vein, it is thought that mutation operators should be simple and of

syntactic nature as these are the kinds of mistakes a programmer would be likely to make.

By the same token, reaching the correct program would require only minor changes, making

it suitable grounds for mutation testing since it uses syntactic mutation operators whose

semantic footprint is small. Deriving from the competent programmer hypothesis, mutation

analysis by means of mutation testing should produce faults that are realistic. It is precisely

this deduction that mutation induced faults should be realistic that is the subject of studies

pertaining to the competent programmer hypothesis.

Since the entire premise of the competent programmer hypothesis is somewhat psycholog-

ical instead of purely technical, most of the literature researching it is empirical by nature.

9

Findings by Andrews, Briand, and Labiche (2005) show that using common mutation op-

erators to introduce first order mutations does produce faults similar to real ones, although

they are harder to idenfity than faults added by editing the source code manually. Among

the most prominent empirical research into fault realism, and by extension to the competent

programmer hypothesis, is a frequently cited article by Just et al. (2014) that evaluated large

open source codebases in terms of how mutant detection compares against real faults. The

study was able to establish a substantial statistical correlation between the amount of detected

mutants as opposed to the amount of detected real faults, independent of the code coverage

for tests. Admittedly, the research made some questionable assumptions such as automat-

ically quantifying an issue as a fault in the program if it appeared in a GitHub bug issue

tracker. However, Kim, Kim, and In (August 2020) and Laurent, Gaffney, and Ventresque

(April 2022) later came to the same conclusion in their practical experiments, verifying the

statistical correlation of mutants with real faults in mutation testing.

However, there are some studies contradicting the findings that faults by mutation infections

using syntactic operator mutations are correlated with real faults. Gopinath, Jensen, and

Groce (2014) challenged the premise in their empirical research where by means of a re-

gression analysis the authors benchmarked syntactic operator mutations in mutation testing

across four different programming languages. This single study found that syntactic muta-

tions are not in fact representative of realistic faults. Stein et al. (2021) arrive at what could

be described as middle ground in their findings about the competent programmer hypothesis.

The researchers utilized a novel AST introspection approach to identify bugs statically in the

source code rather than by simply running test suites and comparing their results. While the

study in principle confirms the validity of the assumption, they find that the lack of appropri-

ate operators is most often responsible for the failure to generate realistic faults. Ultimately,

this inconclusiveness in the scientific community leads to question if there is enough scien-

tific evidence to conclusively confirm the correlation of syntactic mutations with real-world

faults. This in turn casts some doubt on using the competent programmer hypothesis as one

of the core premises in mutation testing when it comes to designing mutation operators.

10

3.3 Coupling effect

In their original article Demillo, Lipton, and Sayward (May 1978) had the thought that a

test that is able to uncover a simple error is also capable of uncovering a more complex,

related error. This was labeled the coupling effect, denoting simply that complex errors are

implicitly always coupled to simple errors.

Although the notions of simple and complex fault are not always so evident in software

engineering it is thought that subtle faults are generally less explicit and subsequently harder

to discover and pinpoint than simple faults like what first order mutation infections typically

produce (Morell 1988). Mutation testing leverages the coupling effect by defeating most of

the complex faults with test suites that are structured to kill simple mutants.

The coupling effect hypothesis first gained empirical support decacedes ago when Offutt

found that a test suite that detects all simple faults will also be able to detect a large portion of

the complex faults in the same program (Offutt 1989, January 1992). Offutt defines simple

faults as single changes to the source statement while complex faults require more than a

single change. Sometimes this simple versus complex fault distinction is defined in terms of

order of mutations where a first order mutation is an injection of a simple fault and a second

or higher order mutation is an injection of a complex fault or a set of faults (Offutt 1989).

While Offutt (January 1992, page 6) notes that the coupling effect is by nature probabilistic

rather than absolute, the hypothesis has gained some theoretical support by means of a math-

ematical analysis by How Tai Wah (2001a). However, in contrast with the earlier empirical

findings the analysis found that while the coupling effect occurs, it does so infrequently. How

Tai Wah pursued additional research that validates that tests that can kill first order mutants

are able to kill most of the higher order mutants (How Tai Wah 2001b, 2003). In essence,

the coupling effect is established both theoretically and empirically and it seems to be less

disputed in the scientific community than the other key assumption in mutation testing —

the competent programmer hypothesis.

11

3.4 Weak vs. strong mutants

For a test suite to successfully catch and kill mutants in mutation testing, certain premises

need to be fulfilled. Offutt and Untch (2001) touch on these requirements to make mutation

testing feasible, defining three conditions 2:

• Reachability condition — the test must reach the mutated statement.

• Necessity condition — the mutated statement must be executed by the test and lead

to an error in the program’s state.

• Sufficiency condition — the incorrect state must propagate in the program to result in

an incorrect output.

Deriving from the definitions of fault and failure from chapter 2, the conditions presented

above are generalized by Ammann and Offutt (2017, see Chapter 2.7 about the origins) into

a RIPR model that stands for Reachability, Infection, Propagation and Revealability. The

RIPR model is defined as a universal model for software testing, not just for mutation testing.

According to the model, the test must first reach the faulty location (Reachability). As the

faulty location gets executed it must result in a failure — an incorrect state for the program

(Infection). The infection must then propagate in the program to result in an incorrect final

state (Propagation). Ultimately, the test must be able to discover the propagated incorrect

final state and output of the program (Revealability).

Defining mutation testing in terms of the RIPR model is straightforward. A mutant would

cause an infection that would need to be reached by the test. The execution of the mutant (the

mutated code) would then cause an incorrect state inside the program, resulting in an eventual

incorrect output or final state. If the test discovers the mutant, in other words fails one or

more assertions, it gets killed in mutation testing terminology. This is how the standard

mutation testing technique, which is sometimes called strong mutation testing to make a

distinction between weak mutation testing, applies the RIPR model.

Building on his work on algebraic testing, Howden had proposed the concept of weak mu-

2. As mutation testing was originally implemented in imperative languages the above definitions are defined

in terms of imperative statements. With functional or declarative languages the necessity condition would imply

that a mutated expression would have to be evaluated for the condition to be fulfilled.

12

tation testing in an effort to reduce the cost of mutation testing (Howden March 1978). In

weak mutation testing, in order to kill a mutant only the reachability and infection conditions

need to be met. As opposed to strong mutation, testing with this relaxed definition of killing

a mutant the propagated incorrect output does not need to be detected by a test for the mutant

to be killed.

As Offutt and Lee (1991) remark, mutation testing is primarily implemented as a unit testing

technique the practical difference between weak and strong mutation testing is disputable.

Unit tests, by nature, assert individual functions or smaller parts of the program rather than

the program’s holistic behavior. Since unit tests are run without the full context of the pro-

gram to keep their scope minimal there is limited space for an incorrect state caused by an

infection to propagate. Moreover, unit tests generally do not even attempt to assert faulty

state propagation within the larger program context. That said, unit tests often do assert the

output of their test target like a function invocation which could be argued fulfills the prop-

agation and revealability aspects of the RIPR model. As a matter of fact, Howden (1982)

himself fails to offer a precise definition for a component in his paper that the definition of

weak mutation uses as a subset of a program that is tested. This makes it hard to reason about

the precise differences of weak and strong mutation testing in practice.

The definition for weakly killing mutants used by Williams (2010, Chapter 9.2.2) delineates

that the state of the execution of the program needs to be different immediately after the

execution of the mutant as opposed to the original program. In contrast with strongly killing

a mutant, in weak mutation testing the infected program output does not necessarily need to

be different, or at the very least it does not need to be validated by a test. As a more precise

definition this gives room to explore a practical example for weak mutation testing. Consider

the following Javascript function that doubles the input number while keeping track of the

doubled integer count:

13

var counter = 0

function doubleWithCounter(x) {

if (Number.isInteger(x)) {

// mutate below to: counter = counter - 2

counter = counter + 1

return x * 2

} else {

return x

}

}

As can be seen from the commented line the statement incrementing the counter will be

mutated in a mutation testing suite. Now, the reachability condition for the mutant is x ∈ Z,

that is to say the execution will reach the mutant for all integers passed in as an argument. A

test case asserting the counter incrementing would now confirm the reachability condition is

satisfied and the statement executed, validating the infection condition from the RIPR model

as well:

test('increments counter with integer arguments', () => {

expect(counter).toEqual(0)

doubleWithCounter(2)

expect(counter).toEqual(1)

})

In a mutation test the above test case would fail the assertion since counter would ac-

tually be -2 at the second assertion, thus successfully killing the mutant. However, as the

output of the function was neither asserted nor actually altered by the mutation it leaves the

propagation and ultimately its revealability conditions unsatisfied. Therefore, the mutation

test performed on this source code with any integer would only result in weak mutant killing,

hence weak mutation testing. To transform the test into a strong mutation test it would have

to satisfy both of the propagation and revealability conditions on top of the reachability and

14

infection conditions that weak mutation testing is also required to satisfy. To do that in this

example, the mutation infection should alter the returning statement, for example, and the

test case should assert the return value rather than the mutated counter value.

Since the weak mutation technique was originally conceived in the hopes of lowering the

computational cost of mutation testing, there have been multiple empirical studies over the

years, benchmarking weak mutation testing against standard mutation testing. For example,

Offutt and Lee (1991) found that weak mutation testing is best applicable to small compo-

nents with simple mutations Papadakis, Malevris, and Kintis (January 2010) tracked a weak

mutation test suite to catch a 97% of the strong mutants while reducing the need for mu-

tant generation by 73% in certain circumstances. Ultimately, as evidenced by the studies

mentioned, weak mutation testing relies too tightly on programming language and runtime

implementation details to claim as a universally effective method in combating high compu-

tational costs related to mutation testing.

3.5 Equivalent and subsumed mutants

Equivalent mutants have been a persistent problem in mutation testing for decades. Frankl,

Weiss, and Hu (1997) define equivalent mutants as mutants who compute precisely the same

function as the program. In other words, equivalent mutants are mutants that while inject a

mutation to the original program still result in a semantically equal program. As equivalent

mutants change no program logic, only syntax, they are impossible to detect using first order

mutation testing.

The reason equivalent mutants are problematic is because a mutation testing tool injects a

mutant into the program’s source and then expects the tests to kill the mutant. But since the

program, despite the mutant infection, behaves precisely as it should under normal circum-

stances the existing tests naturally pass without detecting the mutant. In this way it creates

false positives in the mutation score that is detailed in section 4.1.

15

For example, consider injecting an equality operator mutation to the following algorithm:

def max(a, b, c):

if (a > b && a > c) return a

elif (b > c) return b

else return c

For equality operators, the commercial Stryker mutation testing tool would create a mutant

of the > operator, mutating it into >= (Stryker Team 2023a, see Supported mutators). With

a single order mutation infecting a single statement mutating the elif -statement we would

get the infected conditional statement:

elif (b >= c) return b

As this infected code would behave exactly like the original code does for all possible inputs

no test could detect the infection, thus resulting this infection to be an equivalent mutant.

Some industrial tooling have taken the stance to explicitly educate the programmer about the

possibility of getting false positives that are in fact equivalent mutants (Stryker Team 2023a,

see Equivalent mutants).

It should be noted that it is generally very difficult to assess if a mutant survives because the

infected code is semantically equal to the original code or because there is a test case missing

that could detect the mutant. A test suite would virtually never test every function and all

logic in the program with all possible inputs that would traverse all possible logical code

paths at run-time. As Parsai and Demeyer (2018, see Introduction) note, mutant subsumption

is thus often used as a compromise, more specifically dynamic mutant subsumption.

Subsumed mutants are mutants which are subsumed by other mutants. Parsai and Demeyer

(2018) define mutant subsumption using the following example: mutant A truly subsumes

mutant B if and only if all inputs that kill A also kill B. To add, a dynamic mutant subsumption

happens when mutant A subsumes mutant B with regards to test set T if and only if there

exists at least one test that kills A, and every test that kills A also kills B. A dynamic mutant

subsumption is therefore a compromise, basically declaring a mutant subsuming another

mutant as long as this holds true in the context of the test suite. Otherwise to establish that

16

a mutant subsumes another mutant all possible inputs would have to be tested via exhaustive

mutation testing which in most situations is simply not practical. From a testing standpoint

subsumed mutants are completely redundant because killing the host mutant will always

likewise kill the subsumed mutant. Subsumed mutants therefore unnecessarily inflate the

mutation score introduced in section 4.1.

There has been both scientific and industrial work to combat the issue of subsumed mutants

or rather utilize the phenomenon to reduce the mutant count. Ammann, Delamaro, and Offutt

(2014) proposed a theoretical way to identify the minimum number of mutants needed in a

given test suite that allows retaining confidence in the given test suite. Building on their re-

search, Papadakis et al. (2016) present evidence in their research that subsumed mutants not

only are redundant in terms of testing but can in fact pose threats to test validity, highlighting

the need to take subsumed mutants into account while doing mutation testing. Finally, to

put the prior research into practice, Parsai and Demeyer (2018) introduced LittleDarwin — a

Java testing tool that drastically reduces the number of mutants created by means of dynamic

mutant subsumption.

3.6 Higher order mutants

As mutation testing has seen various implementations in the industry over the years the

science has also evolved alongside it. Purushothaman and Perry (July 2005) found that there

is only a mere 4% chance that changing a single line in the source code will introduce a

fault in the code. With the aim of reducing the amount of redundant mutants created Offutt

(January 1992) first brought up the idea of applying mutation operators twice, calling it

second order mutation testing. Second order mutation testing was further studied by Polo,

Piattini, and García-Rodríguez (June 2009), Kintis, Papadakis, and Malevris (April 2014)

and Madeyski et al. (2014). The studies found that by using specific strategies it is possible

to sometimes cut the number of tests that need to be run by as much as half by combining

two mutants into one mutation.

In 2010 Harman, Jia, and Langdon (September 2010) published a paper founded on the

premise of second order mutant testing, proposing a new paradigm called higher order mu-

17

tation testing. Basically, in higher order mutation testing, mutants are composed from the

combination of two or more mutants at the same time. According to the proposal, to locate

the higher order mutants while filtering out irrelevant or unrealistic mutants or mutants that

are technically impossible to kill, a search algorithm based technique is used. The research

was done to establish a scientific foundation for a C language higher order mutation testing

tool called MILU the authors had constructed two years prior (Jia and Harman 2008).

What is also novel for mutation testing in the research by Harman, Jia, and Langdon (Septem-

ber 2010) is how a new fitness (fitness for purpose) function is introduced whose purpose is

to evaluate the quality of each mutant. The quality is determined by the syntactic and se-

mantic footprint of the mutant as well as how hard it is to kill. In practice, this means that a

mutant is rated high quality if it is either:

• Single-objective - harder to kill than a corresponding first order mutant.

• Multi-objective - syntactically and semantically less significant than other mutants.

Single-objective mutants are basically all subhuming mutants. While syntactic and semantic

insignificance as a criteria for a higher quality mutant in the multi-objective approach might

sound counter-intuitive, it merely means that the mutant is hard to detect and is thus a more

valuable target to find for automated software test tooling.

Generally, studies explore various combinatorial strategies whose aim is to identify the most

effective methods in suppressing the redundant mutant count while still maintaining a high

confidence in the mutation test coverage (Papadakis and Malevris April 2010; Papadakis,

Malevris, and Kintis January 2010). In essence, the studies attempt to find the sweet spot

between cost and effectiveness to make second or higher order mutation testing industrially

viable. Concluding based on multiple studies, Van Do, Thi, and Nguyen (2014) state that

higher order mutation testing is still the most promising approach to reduce the amount of

mutants created. However, it has not enjoyed the same popularity in the industry thus far.

There are very few prominent tooling available that leverages higher order mutation testing.

It remains to be seen if the industry will gain commercial interest in developing testing

tooling for higher order mutation testing or not.

18

4 Mutation testing in practice

A testing process is a distinct process from mutation testing. A testing process is a sequence

of steps to take to produce actual test cases (Ammann and Offutt 2017, Chapter 9.2.2; Offutt

and Untch 2001). On a high level Williams (2010, Chapter White-box Testing - Deriving

Test Cases) calls this process a test design process which he rates as vital as executing the

test cases themselves. While software testing processes are well established by literature

the actual process for mutation testing differs substantially from the covnentional processes.

This is because as Offutt and Untch (2001) describe, mutation testing is a method to assess

the quality of the existing test suite. The actual testing of the software is therefore just a side

effect of the mutation testing process.

Mutation testing tools start by ingesting the program to be tested as an artifact which is vir-

tually always its source code. The tool then creates mutants by applying mutation operators

on the source code. Sometimes at this point there is an additional stage of mutant reduction

that aims to reduce the resource consumption at run-time in mutation testing by eliminat-

ing a portion of the mutants to be created with some heuristic (Ammann and Offutt 2017).

Next, the tool receives the existing test suite and typically executes that against the original

program to validate the premise ready for mutation testing. In other words, the existing test

suite must pass without errors to validate it is correct.

When the test setup is confirmed valid for mutation testing the testing tool executes the test

suite against each mutant, in other words a mutated version of the application. As Offutt

and Untch (2001) note in their description of the mutation analysis process the key goal of

running the test suite is to distinguish the mutated program from the original. Whenever

running a test case on the mutated code fails an assertion or raises an error at run-time that

mutant gets marked as killed and excluded from subsequent test cases (Ammann and Offutt

2017, Chapter 9.2.2, see Testing Programs with Mutation). In other words, for a mutant to

be killed by the mutation test, the test case has to fail where it normally would not.

Once the mutation testing tool has run the full mutation test suite the tool aggregates a cov-

erage report called mutation score which is properly introduced in section 4.1. Ideally, the

19

mutation score should be 100%, signaling that all mutants have been successfully killed by

the test suite although this is rarely the case. Therefore, as Ammann and Offutt (2017, Chap-

ter 9.2.2) explain the programmer or tester typically compares the resulting mutation score

against a threshold value which is contextually the minimum accepted mutation score.

Figure 1. The traditional mutation testing process as presented by Offutt and Untch (2001).

Solid boxes denote automated steps while dashed ones highlight steps that require manual

programmer input.

As can be seen from the figure 1, in traditional mutation testing the existing software test suite

is run on the program first to assert there are no failures in the test suite. If any failure arises,

it needs to be fixed so that all tests run successfully. After this, the test suite is run against

mutated versions of the program. As an iterative process, for as long as there are mutants

that survive, the programmer will need to keep adding tests or refactoring the existing suite,

verifying each time that they run successfully against the unaltered source program. As most

mutation testing tools are unable to detect equivalent mutants, they are required to be marked

as ignored in the testing process so that they are no longer considered surviving mutants.

20

Once all mutants have been found, or optionally when a predetermined, accepted threshold

for mutation score is achieved the mutation testing process concludes. With this process, the

programmer is able to assert and improve their test suite effectively, with manual inputs in

the iterative loop being:

• Fixing the original tests or the source program to get all tests to run successfully.

• Marking equivalent mutants.

• Adding code coverage with new tests or by improving existing tests to capture all

non-equivalent mutants.

21

4.1 Mutation Score

The main purpose of a software test suite is to detect and provide feedback of what faults

were found and where in the source code. Testing frameworks usually aggregate simple

coverage reports of test suites as feedback, most commonly reporting code coverage for the

tests. In mutation testing there is a much more specific report produced from running the

mutation test suite. This is called mutation score and its main idea is to detail the amount

of mutants killed from the total amount of mutants discovered (Ammann and Offutt 2017,

Chapter 9.1.2). Formally, mutation score is defined by Offutt (January 1992) as the follow-

ing:

mutation score =
number o f killed mutants

number o f all mutants− f ound equivalent mutants

In practical terms, this mutation score formula calculates the percentage of mutants killed by

the test case or suite that are not equivalent. Equivalent mutants, which are mutants that are

semantically equivalent with the original program, cannot by nature be killed as they behave

exactly as the program correctly should. With a 100% mutation score all non-equivalent

mutants would’ve been killed by the mutation test suite. Such a test suite that kills all non-

equivalent mutants is described adequate in literature (Offutt and Untch 2001; Parsai and

Demeyer 2018; Ammann, Delamaro, and Offutt 2014).

Instead of just reporting the plain mutation score itself, various mutation testing tools used in

the industry aggregate and display various other relevant information in their mutation score

reports. Akin to typical code coverage reporting tools, PHP’s infection testing tool by

Rafalko (2023) reports code coverage but for for mutation tests:

T o t a l C o v e r e d B y T e s t s M u t a n t s =

T o t a l M u t a n t s C o u n t − NotCoveredByTes tsCount

T o t a l D e f e a t e d M u t a n t s =

K i l l e d C o u n t + TimedOutCount + E r r o r C o u n t

CoveredCodeMSI = 100 *

(T o t a l D e f e a t e d M u t a n t s / T o t a l C o v e r e d B y T e s t s M u t a n t s)

22

Instead of simply computing the mutation score, this formula combines it with code coverage

to produce something useful — the mutation score for source code that is actually covered

by tests. This gives a more realistic approximation of how effective the existing tests really

are. Eventually, the tool aggregates the following kind of report from running the mutation

test suite:

2 m u t a t i o n s were g e n e r a t e d :

2 m u t a n t s were k i l l e d

0 m u t a n t s were c o n f i g u r e d t o be i g n o r e d

0 m u t a n t s were n o t c o v e r e d by t e s t s

0 c o v e r e d m u t a n t s were n o t d e t e c t e d

0 e r r o r s were e n c o u n t e r e d

0 s y n t a x e r r o r s were e n c o u n t e r e d

0 t ime o u t s were e n c o u n t e r e d

0 m u t a n t s r e q u i r e d more t ime t h a n c o n f i g u r e d

M e t r i c s :

M u t a t i o n Score I n d i c a t o r (MSI) : 100%

M u t a t i o n Code Coverage : 100%

Covered Code MSI : 100%

Often mutation testing tools further break the report down by test suite or type while pack-

ing in various other details such as error types while executing the suite. The commercial

stryker-js by Stryker Team (2023b) looks like the following:

23

Figure 2. Mutation Score as generated by the stryker-js mutation testing framework

(Stryker Team 2023b).

Beyond just statistical coverage reports some mutation testing tools offer more detailed re-

ports of the mutation coverage in the source code. For example, Java’s PITest provides a

graphical report combining line and mutant coverage:

Figure 3. Java’s PITest coverage report (Coles 2023). Light green and light pink indicate

line coverage and the lack of it while dark green and dark pink denote the mutation coverage

and the lack of it.

While science explores and formalizes new methods, paradigms and patterns it is typically

left to the industry to solve the practical issues that come with them. These open source

tools highlight how each tool has found their own way of providing useful feedback to the

developer beyond what is defined in the scientific literature for mutation testing.

24

4.2 Problems with mutation testing

While mutation testing as a technique is practically half a century old concept it has seen

surprisingly few practical applications industry-wide. In their article in the early 2000s Offutt

and Untch (2001) argued that that this is due to three primary reasons:

• Exhaustive testing is often not economically sensible to implement.

• The industry failing to successfully integrate unit testing into the software engineering

process.

• Lack of sufficiently automated tooling.

Given that in terms of processing power computers decades ago were a far cry from what

they are today it is understandable that a mutation test suite generating a large amount of ad-

ditional tests to be executed presented a major bottleneck hindering the adoption of mutation

testing.

There has been some research on reducing the run-time costs of mutation testing, such as in-

vestigating means to reduce run-time costs on Java by Falah, Salwa, and Achahbar (Septem-

ber 2013). Typically, the studies investigate reducing the number of mutants injected so that

there are simply less tests to execute at run-time, taking less computational resources. As one

injected mutant presents one syntactic fault, with a small semantic footprint in the program a

vast number of mutants needs to be created to achieve sufficient coverage of code paths that

could fail. For example, to achieve full coverage on a test suite of 100 test cases in a program

that has 150 mutants injected to it would require a total of 100 * 150 = 15,000 test

executions. To make matters worse, some empirical findings indicate that only some 5% of

the generated mutants are useful (Papadakis et al. 2016).

The scientific community has attempted to formalize methods to combat the high compu-

tational cost of mutation testing. As the discovery of realistic and thus relevant mutants is

of probabilistic nature Sahinoglu and Spafford (July 1999) attempted to model a sampling

solution using a Bayes sequential procedure — a probability ratio test. Using this approach,

the study claims it is possible to drop the amount of test cases an order of magnitude lower,

effectively to 1-10% range of the otherwise deterministically executable amount of tests re-

quired for traditional mutation testing without sacrificing confidence in the test suite.

25

Now with the emergence of open source machine learning tooling available, in the past

decade the scientific community has even made attempts to work their way around the high

computational costs by adopting predictive machine learning models. Since the discovery of

mutants can be classified binary - the mutant is either killed or survives - Zhang et al. (2016)

proposed training a machine learning model that attempts to discover mutants without ac-

tually executing any mutants. This was implemented using a random forest decision tree

algorithm as proposed by Breiman (October 2001) and found to be an effective solution de-

tecting mutants without exhausting too much computational capacity. Ultimately, despite

the recent advances in reducing the mutation count Papadakis et al. (2019) conclude in their

comprehensive analysis of the state of mutation testing in 2019 that the issue of generating

too many mutants still remains a crucial and a largely unsolved issue.

As for the lack of unit testing practices in the industry, this is probably outdated information

as unit testing is a common practice today. At Google, for instance, most tests are written

as unit tests (Winters, Manshreck, and Wright 2020, Chapter 12). Google guides its engi-

neers to craft mixtures of 80% unit tests and 20% broader scoped tests. Moreover, some

like Zilberfeld (March 2014) argue that unit testing is essential to the agile software devel-

opment process, directly contradicting the Offutt’s and Untch’s claim that unit testing is not

well integrated into the software development process. With the emergence of Continuous

Integration & Continuous Delivery methodology along with its numerous practical continu-

ous integration implementations it could be argued that tooling automation is hardly an issue

today anymore either (Synopsys 2023).

Despite the recent advancements in hardware and the substantial progress made researching

mutation testing the technique still suffers from the equivalent mutant problem (Papadakis

et al. 2019, Chapter 5.3.1). As explained in section 2.2 software testing is a form of dynamic

analysis that evaluates the result of running the program or parts of it. This means that in

order to verify that an infected program is semantically equal to the original program to

prove the mutant’s equivalence, tests are required to cover every code path with a vast range

of accepted inputs.

Various heuristics have been developed over the years which typically are optimization tech-

niques. A systematic literature review concluded that higher order mutation testing, as ex-

26

plored in chapter section 3.6, is still the most promising method for solving the problem

of equivalent mutants. The study included an empirical experiment that produced modestly

positive results in reducing equivalent mutant generation, although at the cost of slightly

decreasing overall mutation test quality (Madeyski et al. 2014).

Another approach to alleviate the equivalent mutant problem could be a form of static anal-

ysis that compares the original program against the mutated variety. Such a solution would

require a thorough understanding of the programming language in question in order to rea-

son about its syntax and semantics. Papadakis et al. (2019, Chapter 7.1) discuss the idea

of using behavioral models from the likes of automata theory to formalize the issue as a

language equivalence problem. Other contemplated solutions employing static analysis are

static symbolic execution of mutants as well as static data-flow analysis which have seen

some preliminary research about them (Papadakis et al. 2019, Chapter 5.3.1).

Although to solve a different problem in mutation testing, Stein et al. (2021) experimented

with a path finding approach in mutation testing using abstract syntax trees (ASTs 1). Such an

approach could theoretically be used to search for mutations that are semantically equivalent

in the context of the program. In fact, sometimes generic compiler optimization techniques

are leveraged when investigating the AST semantic difference. Compiler optimizations have

been a subject of intensive research and as a result, modern compilers are optimized to com-

pile the source code into the most efficient form of run-time code. Papadakis et al. (2015)

found that due to the compiler optimizations sometimes the compiled run-time code of the

original program is exactly the same as it is for the infected program. This means that the

compiler itself can be used to weed out the equivalent mutants whenever they arise. The same

empirical study found that a specific compiler optimization technique that was deployed was

able to detect up to 30% of the existing equivalent mutants.

Contrary to the studies regarding the competent programmer hypothesis Van Do, Thi, and

Nguyen (2014) argue that mutation testing also suffers from lack of realism, claiming that

single application of syntactic mutation operators do not produce realistic faults. Their pro-

posal was based on the suggestion of Langdon, Harman, and Jia (2010) that 90% of the real

faults occuring are of complex nature, meaning the source code would need to be changed

1. Skip to section 5.3 for an introduction to Abstract Syntax Trees.

27

in multiple places to beat the fault. Higher order mutation testing was seen as the primary

solution in fighting the lack of realism because the idea of higher order mutation testing is to

produce complex faults which are considered more realistic by the authors.

Aside from problems more specific to mutation testing that are hindering its adoption in

the industry mutation testing still suffers from the same issues as traditional unit testing

does, like non-deterministic test execution results that in mutation testing propagates to non-

deterministic mutatant discovery (Harman, Jia, and Langdon September 2010, Table 1).

4.3 Industrial adoption

Some large corporations have experimented with mutant testing in industrial use at scale.

Citing high computational costs with traditional mutation testing, engineers at Google ex-

perimented with a novel probabilistic approach to drastically limit the number of mutants

to be injected (Petrovic and Ivankovic 2018). Google’s engineers managed to reduce the

amount of mutants generated by traversing the AST and skipping mutagenesis for uninter-

esting nodes like logging statements. The solution was deployed at scale, being utilized by

6000 engineers affecting a total of 13,000 developers in the review process. Ultimately, the

experiment reported discovering surviving mutants ranging from 1% to 13.2% depending on

the programming language. With 75% of the developers rating the experiment useful mu-

tation the authors pledged to continue working towards better mutation testing solutions for

the industry.

As GitHub (2022) reported over 90% of the companies are currently using open source and

30% of the Fortune 100 companies are maintaining their own open source projects. The

ecosystem of open source libraries and tooling evidently plays a major part in industrial

adoption of scientific solutions. To get a gauge of the popularity of mutation testing among

the open source libraries, the most popular testing solution for each programming language

is compared against a selected standard or unit testing counterpart in table 1.

28

Language Mutation library Testing library Popularity

OOP / Multi-paradigm

C / C++ 700 mull 17k catch 4%

Python 308 MutPy 17k pytest 3%

Java 1.5k PITtest 5k JUnit 4 18%

JavaScript 2.4k stryker 42k jest 6%

PHP 1.9k Infection 19k PHPUnit 10%

Ruby 1.9k mutant 3.1k minitest 60%

Rust 595 mutagen built-in

Swift 438 muter 9.7k Quick

Functional / LISP

Haskell 3 mucheck 716 hspec <1%

Clojure 100 Mutant built-in

Ocaml 38 mutant built-in

Racket 6 mutate 17 rackunit 35%

Table 1. Selected mutation libraries of each language ecosystem compared against a standard

or unit testing library of the same language based on a GitHub (2023) search. Popularity is

assessed in terms of GitHub stars given by developers. The Popularity column shows how

many stars the mutation testing library has compared to the standard testing library of the

same language.

While a simple GitHub search is by no means a scientifically sound assessment of the pop-

ularity of various open source testing tools it does give a rough idea of how mutation tools

have made their way into the open source industry. For functional or LISP derivative pro-

gramming languages, there appears to be very little practical interest for mutation testing in

the open source community. For the popular mainstream object-oriented languages, how-

ever, mutation testing appears a fairly well known testing technique. Some of the mutation

testing tooling is even introduced in scientific publications like Java’s PIT (Coles et al. July

2016).

Although nothing is inherently preventing implementing a mutation testing library or frame-

29

work in a functional programming language as can be seen from the table above there ap-

pears to be very few prominent, open source libraries available for mainstream functional

programming languages.

30

5 Functional programming and Elixir

Mutation testing, while mostly studied in the context of object-oriented programming lan-

guages, places no restrictions on the programming language paradigms or their features.

Programming has evolved to employ different programming paradigms and functional pro-

gramming languages implement the functional programming paradigm (Hudak September

1989). As Hudak (September 1989, p. 363) describes, while functional programming lan-

guages were originally strongly motivated by the introduction of the lambda calculus by

Alonzo Church in the 1930s, most functional programming languages do not implement it

strictly.

Although functional programming languages often have constraints unlike those typically

found in imperative languages, such as immutable data structures, mutation testing can be

technically implemented in many different ways. Exploring the codebases of the open source

mutation testing tools detailed in table 1, it can be quickly seen that there is no consistent

technical pattern employed by the tools — sometimes they choose to use common object-

oriented abstractions like dynamic dispatch while others decide to use macros and metapro-

gramming 1 to implement mutation testing, much like the construct in this thesis.

That said, the prevalence of mutation testing in functional programming in scientific publi-

cations is scarce. There are only fairly random references or benchmarks done for mutation

testing with functional languages, such as Gopinath, Jensen, and Groce (2014) using Haskell

as one of the benchmarking languages for empirically validating the competent programmer

hypothesis. Since mutation testing seems largely under the radar for functional programming

language communities, as evidenced by table 1 discussing the industrial adoption of mutation

testing, this thesis introduces a new tool for mutation testing for a functional programming

language called Elixir.

1. For example, see: https://github.com/llogiq/mutagen#how-mutagen-works

31

5.1 Elixir

Elixir is a functional, dynamically typed programming language originally developed by José

Valim but now maintained by many other people as well (The Elixir Team 2023). It compiles

code to run on the Erlang Virtual Machine, a runtime 2 often abbreviated as BEAM, which is

famous for implementing the actor concurrency model. Erlang was first introduced in 1986

but is still actively maintained and developed (Armstrong 2007).

As a programming language, Elixir language has the following notable features (The Elixir

Team 2023):

• Immutability — all data structures are immutable.

• Expressions — everything is an expression.

• Pattern matching — for asserting if specific values present in an expression.

• Metaprogramming — support for compile-time programming.

• Polymorphism — by using an asbtraction called protocols.

Since Elixir and Erlang share the same runtime, Elixir was engineered to have good native

support for the Erlang language as a key benefit of using Elixir (Elixir School 2023, see

Erlang Interoperability). With the built-in interoperability, Erlang standard library as well as

3rd party libraries can be used directly in Elixir code. The construct in this thesis, however,

has no dependencies to any 3rd party library or codebase so this interoperability is not used.

Notion commonly used in this thesis to denote functions includes the function name and ar-

ity, for instance: sum/1 . Elixir’s source code’s documentation describes arity as the num-

ber of arguments the function is to be called with (The Elixir Team 2023, see Functions

module and the info/1 documentation there). Sometimes the source module in which

the function is called from is added to the notion, for example: Math.sum/1 . At times,

function calls from other module’s functions than in the context are called remote calls and

they’re referred to as such in this thesis.

The next sections focus on introducing the compilation process in Elixir as well as metapro-

gramming since both the compiler as well as metaprogramming are leveraged in the mutation

2. Not to be confused with the step at which code is executed — run-time.

32

testing tool created in this thesis. Other notable features, like pattern matching, are only used

as an abstraction in the construct’s source code to define expressions in an idiomatic way

typical to Elixir codebases but not as a pivotal pattern without which the construct could not

be built.

5.2 Metaprogramming

Unlike many other programming languages, Elixir exposes an internal representation of code

for programmers to programmatically inspect and change the semantics in the compilation

artifact by means of metaprogramming. Metaprogramming is an ability with which computer

programs are able to represent programs as data (Domkin 2021). Conceptually, metapro-

gramming was first made popular by LISP already in the 1970s but has since found its way

to some other languages, with Elixir being one of them. Metaprogramming is used as a key

method to implement mutation testing in the construct in this thesis. Specifically, it is used

as the method to inject mutations into the source code using a feature in metaprogramming

in Elixir that Iyengar (2023, p. 155) calls dynamic code injection. This process is described

in detail in section 6.3.

The fundamental definitions of metaprogramming in the literature, particularly concerning

Elixir, vary from abstract notions to practical descriptions of how code gets written. Iyengar

(2023, p. 151) makes the following distinction: writing a simple piece of code is referred to

as programming, and writing Elixir code that programmatically injects behavior into other

Elixir code is referred to as metaprogramming. Elixir School (2023), on the other hand,

describes metaprogramming simply as the process of using code to write code. Regardless

of the somewhat different descriptions for metaprogramming, both the Elixir School and

Iyengar describe metaprogramming as a feature that allows extending Elixir’s own features

and behaviors and improve developer productivity. Therefore, it is often used to reduce

repetitive boilerplate code in Elixir codebases. As a matter of fact, metaprogramming is so

widely used in Elixir’s own source code that Iyengar (2023, p. 156) goes as far as stating

that most of Elixir is written in Elixir itself. This thought is shared by McCord (2015, p. 21)

who likewise claims that most of Elixir’s standard library is implemented as macros — a

compile-time abstraction used in metaprogramming in Elixir.

33

One of the ways to extend the underlying programming language is by creating a domain-

specific language on top of it. In fact, Iyengar (2023, p. 151, see description of the example

snippet) notes creating a domain-specific language such as the one introduced by the Phoenix

Framework 3 in Elixir is impossible without using metaprogramming in Elixir.

To understand metaprogramming, we need to first understand the lifecycle of a program in

Elixir. Compile-time is the stage where source code is converted into binary or other format

for a machine or a virtual machine for execution. Conversely, run-time 4 is referred to as the

stage when the code is actually executed (Woo 2021).

Figure 4. Program’s lifecycle according to Woo (2021).

Simplifying, an Elixir source code file is compiled at the compile-time stage first, ultimately

into a binary format for the BEAM runtime. During this step Elixir’s code compiler builds

an intermediate representation of the source code, representing it as what is called an abstract

syntax tree, before it is passed on in the program’s lifecycle, as visualized by Figure 4 above.

In Elixir, metaprogramming targets this step as a way to programmatically alter the logic

that gets ultimately compiled into Erlang bytecode for execution at run-time (The Elixir

Team 2023, see Adding Elixir to existing Erlang programs in Crash Course section). Test

suites are run against the outputs of the program executed at run-time. In mutation testing,

the program executed at run-time yields different outputs with mutations than without them,

notwithstanding equivalent mutants. Therefore, tests that are able to detect the unexpected

outputs, killing the mutants in mutation testing terminology, do that at the run-time step.

5.3 AST and its manipulation

Abstract syntax trees (henceforth AST) are a common concept in compiler engineering.

ASTs are sometimes called just syntax trees, or as Cooper and Torczon (2012, p. 227) notes,

parser trees due to their close correspondence with them. An AST is a textual representation

3. https://www.phoenixframework.org/
4. Run-time is written with a hyphen to make a distinction with a runtime system.

34

of a syntactic structure that takes the form of a tree (Iyengar 2023, p. 155). As McCord

(2015, p. 2) describes, AST is typically an intermediate step when compilers code compilers

or interpretors reason about the code before it is turned into bytecode or machine code for

run-time execution by the runtime.

In the context of the Elixir programming language, Iyengar (2023, p. 155) calls AST a

tree representation of the structure of source code written in a programming language. In

practice, as Iyengar expands, an AST in Elixir does not encompass all of the details in the

source code, just the structure that would impact the execution of the code.

In Elixir, at a high level the AST is generated by a two step process. First, a lexical analysis

performed on the source code. Lexical analysis is also called tokenization and it is a process

that gets lists of tokens, such as functions, operators and so on from the source code in

Elixir. Lexical analysis is followed by a syntactical analysis which is also called parsing. In

syntactical analysis the tokens collected with lexical analysis are added to a tree as nodes,

which ultimately becomes an AST (Iyengar 2023, p. 155).

For example, consider the following piece of Elixir source code:

div(rem(5, 3) - 1, 2)

When tokenizing and parsing the above source code, Elixir’s compiler would generate an

AST that looks structurally like this:

35

Figure 5. An AST visualization of div(rem(5, 3) - 1, 2) Elixir source code.

Elixir represents ASTs in the form of what is referred to as quoted expressions (Elixir v1.15.5

2023c, see documentation for quote/2 in Kernel.SpecialForms module). As can

be seen from Elixir’s standard library documentation for quote/2 , quoted expressions are

composed of three-element tuples. For example, taking the fragment rem(5, 3) from

the previous example, the child node in the AST looks like the following:

Figure 6. AST representation of the fragment rem(5, 3) .

Now, turning this fragment into a quoted expression would produce the following kind of

Elixir data structure:

{:rem, [context: Elixir, imports: [{2, Kernel}]], [5, 3]}

36

In the three-element tuples of quoted expressions such as the one above:

• The first element is an atom or a tuple in the same three-element representation format.

• The second element represents metadata.

• The third element has the arguments to the function call.

In programming, metadata is auxiliary data that is often used to describe, annotate or oth-

erwise attach information to a data structure (Dictionary.com 2023). Although the name

metadata resembles metaprogramming, they are unrelated conceptually — metadata is a

common concept in all programming whereas metaprogramming more specific to a subset

of programming languages. In Elixir, metadata is part of every AST node that is composed

of the three-element tuple previously described.

Going back to the previous Elixir expression example, the first element is the function’s name

in atom format that is being called, in this case :rem . The second metadata element details

the context of the expression as well as what modules are imported. Finally, the third element

simply lists the two arguments 5 and 3 that were given as arguments to rem/2 . Armed

with an understanding of how Elixir represents ASTs internally as quoted expressions, we

are now able to produce the entire quoted expression Elixir’s compiler would generate from

the expression div(rem(5, 3) - 1, 2) as visualized in Figure 5:

{:div, [context: Elixir, imports: [{2, Kernel}]],

[

{:-,

[context: Elixir, imports: [{1, Kernel}, {2, Kernel}]],

[{:rem, [context: Elixir, imports: [{2, Kernel}]],

[5, 3]}, 1]},

2

]}

Notably changed from the quoted expression of the fragment rem(5, 3) , the last ele-

ment of the tuple has a structurally different format. Since the last element represents the

arguments given to the function call, it now has a quoted expression as the first argument

passed to div/2 . That quoted expression is our fragment rem(5, 3) .

37

The primary means of doing metaprogramming in Elixir is by defining what are called

macros. Macros are compile-time constructs that get called with Elixir’s quoted expres-

sions as an input and produce quoted expressions as an output. As McCord (2015, p. 4)

concisely puts it, macros are essentially code that writes code. In practice, this macro sys-

tem in Elixir allows the programmer to define expressions that transform the AST that is

ultimately used at run-time. Macro module in Elixir’s standard library provides a set of

tooling as helper functions to help with traversing and transforming ASTs (Elixir v1.15.5

2023c). In the construct in this thesis, while macros expressions are not leveraged directly,

the Macro module’s helpers are used to traverse the AST in search for operators to mutate.

5.4 Testing in Elixr

Software test suites in Elixir are often written by using Elixir’s native testing framework

called ExUnit (Elixir School 2023, see Testing). As a part of the standard library of Elixir, it

can be used by all projects built on Elixir and is therefore very common in Elixir codebases

(Elixir v1.15.5 2023a, note how ExUnit’s source code is a part of Elixir’s own codebase).

The construct in this research is tailored for Elixir’s ExUnit testing framework alone and

there are no plans to introduce support to any other Elixir testing tool or framework.

As can be glanced from the documentation, ExUnit test suites are most commonly set up

by using macros, namely ExUnit’s custom defined use ExUnit.Case macro which im-

ports the functionality from ExUnit needed to compose tests and assert on results (Elixir

v1.15.5 2023a, see ExUnit.Case module for reference). By convention, as is shown in

ExUnit’s documentation, ExUnit test suites reside in files that:

• Are named with a appending _test in the filename.

• Carry an extension .exs which denotes an Elixir script, as opposed to source mod-

ules that use an .ex extension.

Benefiting from this convention, it is possible to build the construct in this thesis to discover

all test modules that are inside an application path. While the construct in this thesis is not

built to analyze or anyhow introspect any of the tests written for ExUnit, by traversing the

AST generated by compiling the test suite, it would be possible to identify which source

38

modules each test suite imports directly. This would allow testing injected mutations primar-

ily against test suites that are known to test them directly. This is addressed, along with its

inherent drawbacks, in section 7.1 as a potential follow-up improvement method to improve

performance of the construct.

39

6 Mutix

To answer the research questions outlined in chapter 1, a practical mutation testing tool is

constructed as a part of this thesis. The tool is implemented for the Elixir programming

language and is an open source library called Mutix. The source code of Mutix can be

found on GitHub 1. At the time of writing this thesis it is at version v0.1.1 2 and all the

functionality and code referenced in this thesis is a part of this version. The current version

of the tool is tested with Elixir’s version v1.15.5 and Erlang/OTP version 26.0.2 3.

All the references in this thesis to Elixir’s semantics or compiler internals reference these

versions.

Mutix implements mutation testing on any Elixir source file that has a coverage with an

ExUnit test suite. As a testing tool, Mutix comes with the following features:

• Injects mutations into a target source file.

• Detects when no target operator present in the source file.

• As the result, generates a mutation report, including mutation score.

• Details undetected mutants line-by-line in the source file.

From the perspective of a developer using this tool, Mutix takes a target source file as an

input, injects mutations into it and runs the test existing test suite against them. The ultimate

result is a mutation report, which in Mutix encompasses all the detailed feedback the testing

tool produces, not just a simple mutation score.

6.1 Mutation operators

As described in the section 3.1, mutation operators are a set of predetermined rules to apply

when injecting mutants. Mutix is currently restricted to the following mutation operators:

+ , - , * , / , and , not , && , || , > , >= , < , <= , == and != . However, instead

of applying the mutation operators based on a randomly generated seed number like many of

1. https://github.com/tuomohopia/mutix
2. Version tagged with a corresponding git tag of the same name.
3. Elixir requires Erlang/OTP installed to work.

40

the popular libraries like Stryker Team (2023a, see configuration options for mutator) does,

Mutix allows the developer to configure these operators per source file to run.

In Mutix’s verbiage in the documentation on GitHub, the predetermined rules called mutation

operators are defined in terms of from and to operators where from is the target operator found

in the source code and to the operator to which it is mutated. Any of these operators can

be flexibly used as the from or to operator, allowing the developer to customize what Elixir

programming language operators they want to mutate into what, only limited by the currently

allowed list of mutation operators. This customization is done in practice by running Mutix

with different command line arguments. For example, the following command runs Mutix

against a source file found in path lib/parser.ex , mutating + operators into - .

mix mutate lib/parser.ex --from + --to -

If the --from and --to command line options are not specified, by default Mutix as-

signs from as + and to as - With little modifications to the source code of Mutix, the list

of allowed operators could be vastly expanded, even to encompass not only arithmetic and

other operators defined by the Elixir language but all function calls, whether local or remote.

This is discussed briefly as a follow-up improvement in section 6.6.

6.2 Launching Mutix

Mutix is run by invoking a custom written mix task 4. In practice, Mutix is invoked simply

by running:

mix mutate lib/parser.ex

where lib/parser.ex is the relative or full path to the source file to mutate. This starts

the custom written mix task for Mutix 5 that encompasses everything required in the entire

mutation testing process for Mutix. Initially, after extracting the source file and mutation

operator configuration from the command line input, Mutix performs a series of checks to

validate that:

4. Custom action defined by Elixir’s integrated build tool (Elixir v1.15.5 2023c).
5. https://github.com/tuomohopia/mutix/blob/v0.1.1/lib/mix/mutate.ex#L63-L186

41

• The defined mutation operators are within the allowed operators.

• Only one source file path is supplied.

• The source file exists on the supplied path.

• The source file belongs to a valid Mix project.

After the initial checks Mutix proceeds to using Elixir’s compiler to compile the codebase

by programmatically invoking the code compilation Mix task:

Mix.Task.run("compile", [])

As documented in Elixir’s source code documentation, running this Mix task uses the com-

pilers defined in the Mix project to compile the code for the application, which by default are

defined as [:yecc, :leex, :erlang, :elixir, :app] (Elixir v1.15.5 2023b,

see mix compile).

Importantly, after the code for the application has been compiled Mutix unrequires the source

file by using Elixir’s standard library’s Code.unrequire_files/1 function:

Code.unrequire_files([source_file])

Although Elixir’s documentation on this is thin, unrequiring the source file removes the

source module to mutate from a list of modules to track in terms of compilation. Effectively,

this allows Mutix to trigger compilation for new, mutated versions of the source file as a part

of the application as they are generated by Mutix from the source code.

To finish up the initial procedures Mutix finds and compiles all the test files in the applica-

tion’s test suite, filtering out those that do not contain any ExUnit test suites. After the ExUnit

test suites of the application have been located, Mutix uses Elixir’s compiler to compile all

the test files concurrently:

Kernel.ParallelCompiler.require(test_files, [])

Finally, Mutix runs the standard test suite, capturing and muting its printed feedback, without

any mutations injected in order to assert that the test suite runs with no failures against the

original source code. Sometimes this is called a dry run and is not unlike how many other

42

mutation testing libraries work 6.

6.3 Injecting mutations

As soon as Mutix has performed its initial checks and compiled the application’s original

source code, along with the full test suite, reads the source code in binary format from

the file it finds on the file system. With the aid of Elixir’s compiler helper functions,

Code.string_to_quoted!/1 is invoked with the source file contents in order to pro-

duce an AST — an Elixir representation of the source code. The generated AST gets passed

to Mutix’s AST transformer function whose role is to:

1. Locate all occurences of the given from operator in the source code.

2. Generate a transformed AST with a single mutation injected for each occurence.

Since the locating of the from operators in the source code happens before any source code

is executed, this step is essentially a form of static analysis, as introduced in section 2.1. For

the subsequent step, the diagram below illustrates how Mutix’s AST transformer works at a

high level:

6. For example: https://github.com/stryker-mutator/stryker-js/blob/master/packages/core/src/stryker.ts#L40

43

Figure 7. Source AST transformed into mutated ASTs.

Essentially, the original, unaltered source AST is transformed into a list of new ASTs, each

containing the source AST but with a single mutation injected. In the above illustration,

Mutix found five occurences of the from operator and generated a corresponding five to mu-

tations from them by means of AST transformations. Ultimately, as illustrated, this manifests

as five entirely new ASTs, each with a single mutation in them. Although in the current ver-

sion the transformed ASTs are generated sequentially, parallelizing the operation would be

fairly trivial as the transformations happen independently of each other, just from the same

source code.

The following example paints a more practical picture of how Mutix’s transformer works.

Given the following Elixir module with two comparison functions, one for numbers and one

for timestamps:

defmodule Comparer do

def greater?(a, b) do

a > b

end

44

def later?(timestamp1, timestamp2) do

timestamp1 = DateTime.to_unix(timestamp1)

timestamp2 = DateTime.to_unix(timestamp2)

timestamp1 > timestamp2

end

end

Mutix would initially tranform this source module into an Elixir AST structure where the

greater?/2 and later?/2 functions would be represented by the following AST

fragments:

greater?/2:

{:def, [line: 2],

[

{:greater?, [line: 2],

[{:a, [line: 2], nil}, {:b, [line: 2], nil}]},

[do: {:>, [line: 3],

[{:a, [line: 3], nil}, {:b, [line: 3], nil}]}]

]},

later?/2

{:def, [line: 6],

[

{:later?, [line: 6],

[{:timestamp1, [line: 6], nil},

{:timestamp2, [line: 6], nil}]},

[

do: {:__block__, [],

[

{:=, [line: 7],

[

45

{:timestamp1, [line: 7], nil},

{{:., [line: 7],

[{:__aliases__, [line: 7], [:DateTime]}, :to_unix]},

[line: 7], [{:timestamp1, [line: 7], nil}]}

]},

{:=, [line: 8],

[

{:timestamp2, [line: 8], nil},

{{:., [line: 8],

[{:__aliases__, [line: 8], [:DateTime]}, :to_unix]},

[line: 8], [{:timestamp2, [line: 8], nil}]}

]},

{:>, [line: 9],

[{:timestamp1, [line: 9], nil},

{:timestamp2, [line: 9], nil}]}

]}

]

]}

Now, if Mutix was run with from operator defined as > and to operator as < , Mutix would

initially be looking for the > occurences in the source AST. Although the AST looks noisy

when printed out, we can easily identify the two different occurences there are for the oper-

ator > which are represented as atoms 7 in the AST:

inside greater?/2

{:>, [line: 3], [{:a, [line: 3], nil},

{:b, [line: 3], nil}]}

inside later?/2

{:>, [line: 9],

[{:timestamp1, [line: 9], nil},

7. Constants whose value is their name. Syntactically represented with a leading : .

46

{:timestamp2, [line: 9], nil}]}

The fragments above are nodes of the AST where the operator > is found. Technically,

Mutix finds 8 these occurences by traversing the AST using Elixir’s Macro module’s helper

function, namely Macro.prewalk/3 which is a pre-order, depth-first traversal func-

tion built for quoted expressions, in other words Elixir ASTs (Elixir v1.15.5 2023a, see

Macro module). Conveniently, much like folds typically found in functional languages,

Macro.prewalk/3 allows aggregating an accumulator throughout the traversal, allow-

ing Mutix to pack metadata to it. For each iteration, the node tuple’s first element is pattern

matched against the from operator, in this case against :> which is an atom form of the

operator. If a match is found, Mutix will add details about the occurence to the metadata

accumulated throughout the traversal.

Once the entire AST has been traversed and all occurences of the from operator found, Mutix

will start producing transformations 9 of the AST where one single mutation — from is mu-

tated to to — is injected in each produced AST. This transformation is likewise implemented

with a pre-order, depth-first traversal function. But instead of just injecting the mutation

to the target node, Mutix also updates the said node’s metadata to detail the index of the

occurence on that given line of code. This allows Mutix’s report producer to highlight the

operator in the source code when producing feedback to the developer on surviving mutants.

Ultimately, what Mutix’s transformer returns is a list of new ASTs along with some helpful

metadata for reporting purposes. The number of ASTs transformed matches the number of

mutants generated as only a single mutant is injected per AST.

6.4 Report

Having finished the mutation injections, Mutix will, for each AST with a mutation injected:

1. Compile the AST with a mutation injected as a part of the application.

2. Run the entire ExUnit test suite captured and compiled by Mutix earlier, aggregating

results.

8. https://github.com/tuomohopia/mutix/blob/v0.1.1/lib/mutix/transform.ex#L17-L26
9. https://github.com/tuomohopia/mutix/blob/v0.1.1/lib/mutix/transform.ex#L38-L44

47

Building on Figure 7, at a high level the mutation testing process in Mutix would continue

like this:

Figure 8. Test suite is run against each version of the application with a single mutant in-

jected.

Aside from printed feedback, each ExUnit run programmatically produces the following kind

of example Elixir data structure as a result (Elixir v1.15.5 2023a, refer to suite_result()

data type):

%{

failures: 1,

total: 5,

excluded: 0,

skipped: 0

}

Since the entire ExUnit test suite is run against each mutated version of the application, Mu-

tix will generate the same amount of the above structures as there are mutations injected.

With each test run, Mutix will receive the above ExUnit result data structure and zip it to-

48

gether with metadata about the injected mutation’s location in the source code. This allows

Mutix reporter to aggregate feedback of the step where Mutix determines if the test suite is

able to capture and kill each mutant or not. Visualized, this step looks like the following:

Figure 9. Test suite is run against each version of the application with a single mutant injected

and results aggregated into a mutation report and ultimately, a mutation score.

A test suite for the earlier defined Comparer source module in the code block in 6.3 might

look something like this:

defmodule ComparerTest do

use ExUnit.Case

describe "greater?/2" do

test "confirms the 1st number is greater than the 2nd" do

assert Comparer.greater?(2, 1) == true

end

end

end

49

With this test suite having all the tests in the application, the application’s two functions now

have test coverage for only one of them. To run Mutix injecting < in place of all occurences

of > the following command is used:

mix mutate lib/comparer.ex --from ">" --to "<"

This will run the test suite with Mutix, having two mutations injected to the source module.

Therefore, the test suite will be run twice — once for each mutation. As a result, Mutix will

print out the following aggregate of the test runs:

Figure 10. Mutation report along with mutation score.

As can be seen from the feedback Mutix produces, the report details the following results:

• The number of mutants injected and which mutation operator was used.

• How many tests were run per mutant.

• How many mutants survived from the total mutants injected.

• Mutation score.

As defined in section 3.1 a surviving mutant is an infection that no test is able to capture by

failing. In this case, one mutant managed to evade capture by the test suite as the infection

had no test coverage with the defined software test suite. As the report about surviving

mutants, Mutix will print out the following kind of feedback:

50

Figure 11. Mutix’s feedback for surviving mutants.

Technically, Mutix’s reporter receives the ExUnit test suite run result data structure along

with metadata, detailing the infection itself. With the metadata about the injected mutant that

was produced during the AST transformation when injecting mutations, a helper function 10

in the reporter is able to produce a report detailing the:

• The mutation operator used.

• The source file path and line where the surviving mutant is located.

• Context in the source file with highlight on the actual surviving mutant on the line.

This feedback gets printed for every mutant that has survived running the test suite with

Mutix. Finally, as can be seen in Figure 10 Mutix computes a mutation score 11 of the test

suite run with Mutix. Revisiting the mutation score defined in section 4.1, mutation score is a

percentage of the killed mutants divided by the number of all infections which is subtracted

by the count of equivalent mutants. As Mutix, just like most other mutation testing tools,

fails to detect equivalent mutants that do not alter the semantics of the program, mutation

score is simply the amount of killed mutants from total mutants injected. In this case, as the

test suite has coverage for only a single mutant, one from two mutants is captured while the

other one survives, resulting in a 50% mutation score.

10. https://github.com/tuomohopia/mutix/blob/v0.1.1/lib/mutix/report.ex#L70-L110
11. https://github.com/tuomohopia/mutix/blob/v0.1.1/lib/mutix/report.ex#L51-L68

51

6.5 Performance

To get a rough idea of the performance impact Mutix comes with, a naive example program

with three functions, each containing a single + operator in a single source file was con-

structed 12. The performance assessment was conducted at the example program’s version

denoted by git hash 6e72cef , using the same Elixir and Erlang/OTP versions as for con-

structing Mutix itself. The performance of Mutix was assessed simply by measuring the

execution time of running Mutix, comparing to the execution time of the example program’s

ExUnit test suite itself. The example program’s test suite had to be slightly modified to

run the test suite thrice to match the number of ExUnit test suite runs Mutix does as it pro-

duces three mutations of the source program, running the test suite once against each one of

them. This was done by creating two additional, identical copies of the test suite, just with a

different module name.

Before running the standard ExUnit test suite the code was precompiled, so that compilation

itself would not alter the execution results:

mix compile

Following the successful compilation of the source code, the test suite was run, clocking the

time with Linux’s time utility:

time mix test

This command was run a thousand times and the average execution time measured for the

test suite was 0.45 seconds. Subsequently, Mutix was run on the same source program and

test suite with the same time utility:

time mix mutate lib/mutater.ex --from + --to -

This was likewise repeated a thousand times to get the average execution time, which yielded

0.48 seconds. Each time Mutix is invoked against a source file, it runs the ExUnit test suite

itself against each mutated version of the source program. Subtracting the average test suite

execution time of 0.45 seocnds from Mutix’s average execution time of 0.48 seconds leaves

12. https://github.com/tuomohopia/mutater

52

an average 0.03 second execution time for Mutix’s own logic per execution — a fraction of

the test execution time itself. Each Mutix execution produced the correct mutation score and

feedback from running the tool.

Most of the work Mutix does on top of running the ExUnit test suite are the AST transfor-

mations to produce the mutated source modules. This simple execution time measurement

would indicate that this is a fairly fast process with Elixir’s compiler that Mutix utilizes.

However, while Mutix may not add a lot of performance overhead on top of running the

test suite itself, the full test suite gets run as many times as there are mutated versions of

the source program. This adds up quickly, making this the largest drawback of the current

implementation of Mutix.

For example, if the source program had 10 source modules of similar size, each with the

same three operators to mutate, Mutix would produce a total of 30 mutated versions of the

source program when running Mutix on each source module. The entire test suite would

then get run against each mutated version in order to derive a mutation score and feedback.

Using the execution times from this performance assessment, this would result in a total

ExUnit test suite execution time of 0.45 * 30 = 13.5 seconds. While Mutix’s own

logic execution would only add 0.03 seconds per source module to the total execution time,

thus mere 10 * 0.03 = 0.3 seconds, the major issue in terms of execution time is the

repeated ExUnit full test suite run against each source module. Solutions to this are discussed

in section 7.1.

Although this performance assessment was shallow, only measuring execution times with a

static example application, it gives some preliminary indication of the performance penalty

Mutix’s own logic imposes on top of running the ExUnit test suites. The execution times

measured in this assessment would indicate that Mutix adds only very light performance

overhead to conventional ExUnit test execution, but introduces the problem of having to run

the test suite as many times over as there are mutations injected.

53

6.6 Caveats

In the current version, a notable caveat is that Mutix does not discriminate operators to mutate

based on the context they reside in. Essentially, this means that given a source code file

where there is code with the given target operators that is invoked at compile-time, Mutix will

indiscriminately also inject mutations there. This is unintentional but known and documented

behavior in the current version.

For example, consider the following Elixir code where a module attribute is assigned a value

by dynamically computing an expression at compile-time:

defmodule SourceModule do

@incrementor 1 + 1

def increment(a), do: a + @incrementor

end

In the mock source module definition above, @incrementor gets its value from the eval-

uation of the expression 1 + 1 that happens upon compilation. Now, Mutix ingests the

entire source code file and finds the target operators to mutate, injecting mutations before

the compilation takes place. Therefore, without context aware mutation algorithms this nat-

urally injects mutations into the same target operators everywhere, including code that is

run at compile-time instead of run-time. Consequentially, when Mutix is run with + as the

target operator to mutate, for example with - as the mutation operator, it would also mutate

the @incrementor value that is used at run-time by the incrementor function. With this,

@increment would evaluate to 1 - 1 = 0 at run-time, essentially transforming the

semantics of the increment function into:

def increment(a), do: a + 0

Obviously, transforming the compile-time logic with mutation injections can lead to test

results that are hard to reason about. Therefore, at this moment the developer using Mutix

will simply have to be aware of this when defining the source code to run Mutix against.

Ways to make Mutix context aware in order to beat this issue is discussed in the section 7.1

54

section.

While not a real caveat, the range of mutation operators Mutix currently allows is slim. Al-

though new operators to the list of allowed operators could be added trivially, implementing

local or remote function calls requires building entirely new logic. For example, consider an

unmutated line of code with two remote calls to List module’s functions that adds up the

first and last element of a given list:

List.first(a) + List.last(a)

As an AST node of the remote function call List.first(a) would be represented in

the following format:

{{:., [],

[{:__aliases__, [alias: false], [:List]}, :first]}, [],

[{:a, [], Elixir}]}

Now, as nodes that describe remote function calls simply have a different format AST node

with different children nodes than for instance an arithmetic + node would have, Mutix’s

AST transformation algorithms could be extended to work on them with moderate effort.

This would allow Mutix to practically inject mutations into any piece of executable code in

the source module. However, as this goes generally beyond what typical industrial mutation

testing software do, it is questionable how this extension should be designed so that it is

viable and sensible from a developer perspective to use to improve software test quality.

Other things that can be considered as caveats in the current implementation are mainly

related to performance and user experience. As detailed in the section 6.3, Mutix not only

creates injections sequentially but also runs the entire test suite against every single injection,

one by one, making running Mutix resource intensive computationally. To keep the user

experience bearable, Mutix currently is restricted to one single source module at a time. A

practical proposal to alleviate this issue are introduced in section 7.1.

55

7 Discussion

The main purpose of mutation testing, as stated in chapter 3, is to assert the test quality

and coverage of program by means of testing the application against mutated versions of it.

Building on this premise, the original research questions in the chapter 1 were to find out

if mutation testing can be applied in a functional programming context and with developer

friendly feedback produced.

Mutix, as implemented as a part of this thesis, is able to:

• Inject mutations with a range of configurable mutation operators into a source program.

• Assert test quality individually per mutant.

• Produce a mutation score.

• Detail developer friendly feedback on surviving mutants.

With these features, built in a functional programming context, Mutix is considered to have

fulfilled the original research goals that were set for the thesis. As per the definition of

higher order hierarchies in mutation testing by Harman, Jia, and Langdon (September 2010)

Mutix falls into the First Order Mutation Testing category. This is because each AST with

a single-order mutation is tested against the full test suite for each iteration. To qualify for

higher-order mutation testing, among other things the test suite would have to be run against

multiple simultaneous mutations.

In the traditional mutation testing process presented by Offutt and Untch, as visualized in

Figure 1, maintaining the original test suite so that it is run successfully is also included in

the process, not only running the mutation testing tool. Mutix runs the existing ExUnit test

suite silently on the original program before proceeding to run the same test suite against the

mutated versions of the program. Therefore, Mutix implements the traditional mutation test-

ing process fully, excluding the manual marking of equivalent mutants which is not currently

supported.

The technical means of implementing mutant injection and mutation testing of existing in-

dustrial tools was not evaulated in this thesis. Exploring the source code of popular, open

56

source mutation testing solutions such as those listed in Table 1 shows that there appears

to be no consistent patterns when it comes to the methods used when it comes to practi-

cal implementations of the testing tools. Mutix leverages metaprogramming for this which

is introduced in section 5.2. Mutix’s implementation with metaprogramming is detailed in

section 6.3.

7.1 Limitations & future improvement

Currently, Mutix has no way to reason about or manually ignore equivalent mutants injected

to the program. As referenced, earlier while discussing the currently available industrial

solutions, most other mutation testing tools are in the same pit and have generally taken

the approach to educate the developer about the issue of equivalent mutations in the tool’s

documentation. Although this is a known limitation in Mutix as well, Mutix’s documentation

does not yet educate the programmer about the issue with equivalent mutants.

Aside from this weakness, Mutix, at its current version, has poor technical documentation

and only supports a fixed amount of predetermined mutation operators. The extension of

Mutix to support arbitrary operators, including local and remote function calls is explored

in section 6.6. To summarize, aside from thin technical documentation and a suppressed

amount of mutation operators, Mutix currently has the following known caveats and limita-

tions:

1. Mutates operators even in code run comple-time.

2. Not performance optimized and as a result, only accepts a single source file at a time.

3. No detection or recognition of equivalent mutants.

Out of these known drawbacks, the first two items are somewhat vital to tackle before Mutix

can realistically be used in any industrial setup. This is because respectively:

1. Compile-time evaluated code is often prevalent in larger Elixir codebases.

2. Industrial codebases often have large codebases and test suites which take time to

compile and run.

To prevent infecting compile-time code with mutations, the most pertinent solution would

57

be to simply make the algorithms that locate the to operators to mutate context aware. In

practice, an easy way to implement this would be to simply have the algorithms detect if the

operator to mutate is discovered as a child of a function declaration node in the AST. This

is next on the list of improvements to implement for Mutix and requires only a moderate

engineering lift to implement — just tweaks to the current AST traversing algorithms.

However, the issue of inadequate performance of mutation testing with Mutix is a more diffi-

cult problem to solve. While, Mutix could allow running the tool against the entire codebase

at once, generating mutations in every source file where the from operator is found, it would

result in a potentially large amount of mutants generated and tested against. Although the

discovery of operators to mutate as well as injection of mutants is trivial to parallelize com-

putationally, the entire test suite would still have to be run sequentially against each mutated

version of the application.

The issue should primarily be approached from the angle of reducing the number of tests to

run against each mutated version of the application while still maintaining enough confidence

that all the tests that could potentially find and kill the mutation are run. An implicit way

to do this that would require no further input from the programmer would be to have Mutix

perform a static analysis on the test suite to see which tests alias or import the functions

directly where the injected mutant is located. This would most commonly mean that only

unit tests that test the functions directly get run since integration or other higher level tests

may not invoke the mutated functions directly but indirectly through another module.

58

Figure 12. Proposal to improve performance of Mutix. Light blue items denote the current

steps while the light purple items display the new steps to introduce.

After the narrowed down list of tests was run on each mutant, Mutix would then proceed to

run the entire test suite only for the surviving mutants. This is in order to reaffirm that no test

in the codebase actually provide coverage to identify and kill the mutant that had survived

the narrowed down list of tests run on it.

Holistically, implementing an upgrade such as the one described above would potentially

substantially reduce the number of tests that get run, because often it is the role of unit tests

to already provide test coverage for the logic of functions. As a result, this improvement

would lead to performance benefits particularly in those codebases the unit test coverage

was already extensive to begin with. Codebases with poor test coverage for unit tests that

59

import or alias the tested code directly would potentially lead to performance regressions

as mutations would get partially tested twice — first with targeted unit tests and then again

when the full test suite was run for the surviving mutant.

Other projected lighter improvements to Mutix are upgardes to the developer experience.

For example, the mutation report could be exported as a HTML document. Moreover, to

integrate with continuous integration and delivery pipelines found in industrial software en-

gineering projects, Mutix would also have to allow a configurable mutation score threshold

and produce an appropriate Unix error code accordingly.

Compared to many other practical mutation testing software publicly available, Mutix has

obviously only taken its baby steps and is not industrially tested as a testing tool. Further

improvement steps require exploration and getting some practical user experiences first from

developers actually using the tool to systematically assert and improve the quality of their

test suites in their software projects.

60

Bibliography

Ammann, Paul, Marcio Eduardo Delamaro, and Jefferson Offutt. 2014. “Establishing Theo-

retical Minimal Sets of Mutants”. In 2014 IEEE Seventh International Conference on Soft-

ware Testing, Verification and Validation, 21–30. https://doi.org/10.1109/ICST.2014.13.

Ammann, Paul, and Jefferson Offutt. 2017. Introduction to Software Testing. 2nd edition.

Cambridge University Press. https://doi.org/10.1017/CBO9780511809163.

Andrews, J.H., L.C. Briand, and Y. Labiche. 2005. “Is mutation an appropriate tool for testing

experiments? [software testing]”. In Proceedings. 27th International Conference on Software

Engineering, 2005. ICSE 2005. 402–411. https://doi.org/10.1109/ICSE.2005.1553583.

Armstrong, Joe. 2007. “A History of Erlang”. In Proceedings of the Third ACM SIGPLAN

Conference on History of Programming Languages, 6-1-6–26. HOPL III. San Diego, Cali-

fornia: Association for Computing Machinery. ISBN: 9781595937667. https://doi.org/10.

1145/1238844.1238850.

Bourque, Pierre, Richard E. Fairley, and IEEE Computer Society. 2014. Guide to the Soft-

ware Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. 3rd edition. Washington,

DC, USA: IEEE Computer Society Press. ISBN: 0769551661.

Breiman, L. October 2001. “Random Forests”. Machine Learning 45 (): 5–32. https://doi.

org/10.1023/A:1010950718922.

Coles, Henry. 2023. “Snippet of PITtest coverage report of Wicket Core test suite”. Visited

on May 10, 2023. https://pitest.org/.

Coles, Henry, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony Ven-

tresque. July 2016. “PIT: a practical mutation testing tool for Java (demo)”, 449–452. https:

//doi.org/10.1145/2931037.2948707.

Cooper, Keith D., and Linda Torczon. 2012. “Chapter 4 - Context-Sensitive Analysis”. In

Engineering a Compiler, 2nd edition, edited by Keith D. Cooper and Linda Torczon, 161–

219. Boston: Morgan Kaufmann. ISBN: 978-0-12-088478-0. https://doi.org/10.1016/B978-

0-12-088478-0.00004-9.

61

https://doi.org/10.1109/ICST.2014.13
https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1109/ICSE.2005.1553583
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1023/A:1010950718922
https://doi.org/10.1023/A:1010950718922
https://pitest.org/
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1016/B978-0-12-088478-0.00004-9
https://doi.org/10.1016/B978-0-12-088478-0.00004-9

Coralogix. 2015. “This is what your developers are doing 75 percent of the time, and this is

the cost you pay”. Visited on May 9, 2023. https://coralogix.com/blog/this-is-what-your-

developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/.

Demillo, Richard, R.J. Lipton, and Fred Sayward. May 1978. “Hints on Test Data Selection:

Help for the Practicing Programmer”. Computer 11 (): 34–41. https://doi.org/10.1109/C-

M.1978.218136.

Dictionary.com. 2023. “Metadata”. Visited on November 27, 2023. https://www.dictionary.

com/browse/metadata.

Domkin, Vsevolod. 2021. Programming Algorithms in Lisp. 1–377. Apress Berkeley, CA.

https://doi.org/10.1007/978-1-4842-6428-7.

Elixir School. 2023. “Elixir School - metaprogramming”. Visited on November 19, 2023.

https://elixirschool.com/en/lessons/advanced/metaprogramming.

Elixir v1.15.5. 2023a. “ExUnit”. Visited on June 8, 2023. https://hexdocs.pm/ex_unit/1.15.

5/ExUnit.html.

. 2023b. “Mix”. Visited on November 21, 2023. https://hexdocs.pm/mix/1.15.5/Mix.

html.

. 2023c. “Standard Library”. Visited on November 20, 2023. https: / /hexdocs.pm/

mix/1.15.5.

Falah, Bouchaib, Bouriat Salwa, and Ouidad Achahbar. September 2013. “Effectiveness of

Mutation Testing Techniques: Reducing Mutation Cost”. In 2013 World Congress on Multi-

media and Computer Science (ACEEE 2013). Hammamet, Tunisia.

Floyd, Robert W. 1993. “Assigning Meanings to Programs”. In Program Verification: Fun-

damental Issues in Computer Science, edited by Timothy R. Colburn, James H. Fetzer, and

Terry L. Rankin, 65–81. Dordrecht: Springer Netherlands. ISBN: 978-94-011-1793-7. https:

//doi.org/10.1007/978-94-011-1793-7_4.

Frankl, Phyllis G., Stewart N. Weiss, and Cang Hu. 1997. “All-uses vs mutation testing: An

experimental comparison of effectiveness”. Journal of Systems and Software 38 (3): 235–

253. ISSN: 0164-1212. https://doi.org/10.1016/S0164-1212(96)00154-9.

62

https://coralogix.com/blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/
https://coralogix.com/blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://www.dictionary.com/browse/metadata
https://www.dictionary.com/browse/metadata
https://doi.org/10.1007/978-1-4842-6428-7
https://elixirschool.com/en/lessons/advanced/metaprogramming
https://hexdocs.pm/ex_unit/1.15.5/ExUnit.html
https://hexdocs.pm/ex_unit/1.15.5/ExUnit.html
https://hexdocs.pm/mix/1.15.5/Mix.html
https://hexdocs.pm/mix/1.15.5/Mix.html
https://hexdocs.pm/mix/1.15.5
https://hexdocs.pm/mix/1.15.5
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1016/S0164-1212(96)00154-9

GitHub, Inc. 2022. “Octoverse The state of open source software - Developers”. Visited on

May 7, 2023. https://octoverse.github.com/2022/developer-community.

. 2023. “GitHub Search”. Visited on May 15, 2023. https://github.com/.

Gopinath, Rahul, Carlos Jensen, and Alex Groce. 2014. “Mutant census: an empirical exam-

ination of the competent programmer hypothesis”. Harvard Dataverse. https://doi.org/10.

7910/DVN/25443.

Hałas, Konrad. 2023. “MutPy Documentation”. Visited on May 15, 2023. https : / /github.

com/mutpy/mutpy.

Harman, Mark, and Yue Jia. September 2011. “An Analysis and Survey of the Development

of Mutation Testing”. IEEE Transactions on Software Engineering 37 (): 649–678. https :

//doi.org/10.1109/TSE.2010.62.

Harman, Mark, Yue Jia, and William Langdon. September 2010. “A Manifesto for Higher

Order Mutation Testing”. In ICSTW 2010 - 3rd International Conference on Software Test-

ing, Verification, and Validation Workshops, 80–89. https://doi.org/10.1109/ICSTW.2010.

13.

How Tai Wah, K.S. 2001a. “Theoretical Insights into the Coupling Effect”. Edited by W. Eric

Wong. (Boston, MA), 62–70. https://doi.org/10.1007/978-1-4757-5939-6_11.

. 2001b. “Theoretical Insights into the Coupling Effect”. In Mutation Testing for the

New Century, edited by W. Eric Wong, 62–70. Boston, MA: Springer US. ISBN: 978-1-4757-

5939-6. https://doi.org/10.1007/978-1-4757-5939-6_11.

. 2003. “An analysis of the coupling effect I: single test data”. Science of Computer

Programming 48 (2): 119–161. ISSN: 0167-6423. https://doi.org/10.1016/S0167-6423(03)

00022-4.

Howden, William. March 1978. “Algebraic Program Testing”. Acta Informatica (Berlin, Hei-

delberg) 10, number 1 (): 53–66. ISSN: 0001-5903. https://doi.org/10.1007/BF00260923.

. 1982. “Weak Mutation Testing and Completeness of Test Sets”. IEEE Transactions

on Software Engineering SE-8 (4): 371–379. https://doi.org/10.1109/TSE.1982.235571.

63

https://octoverse.github.com/2022/developer-community
https://github.com/
https://doi.org/10.7910/DVN/25443
https://doi.org/10.7910/DVN/25443
https://github.com/mutpy/mutpy
https://github.com/mutpy/mutpy
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/ICSTW.2010.13
https://doi.org/10.1109/ICSTW.2010.13
https://doi.org/10.1007/978-1-4757-5939-6_11
https://doi.org/10.1007/978-1-4757-5939-6_11
https://doi.org/10.1016/S0167-6423(03)00022-4
https://doi.org/10.1016/S0167-6423(03)00022-4
https://doi.org/10.1007/BF00260923
https://doi.org/10.1109/TSE.1982.235571

Hudak, Paul. September 1989. “Conception, Evolution, and Application of Functional Pro-

gramming Languages”. (New York, NY, USA) 21, number 3 (): 359–411. ISSN: 0360-0300.

https://doi.org/10.1145/72551.72554.

“IEEE Standard Glossary of Software Engineering Terminology”. 1990. IEEE Std 610.12-

1990, 1–84. https://doi.org/10.1109/IEEESTD.1990.101064.

Iyengar, Aditya. 2023. Build Your Own Web Framework in Elixir: Develop lightning-fast

web applications using Phoenix and metaprogramming. 151–183. Packt Publishing Ltd.

Jia, Yue, and Mark Harman. 2008. “MILU: A Customizable, Runtime-Optimized Higher

Order Mutation Testing Tool for the Full C Language”. In Testing: Academic & Industrial

Conference - Practice and Research Techniques (taic part 2008), 94–98. https://doi.org/10.

1109/TAIC-PART.2008.18.

Just, René, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and Gordon

Fraser. 2014. “Are Mutants a Valid Substitute for Real Faults in Software Testing?” In Pro-

ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 654–665. FSE 2014. Hong Kong, China: Association for Computing Machin-

ery. ISBN: 9781450330565. https://doi.org/10.1145/2635868.2635929.

Kim, Mingwan, Neunghoe Kim, and Hoh In. August 2020. “Investigating the Relationship

Between Mutants and Real Faults with Respect to Mutated Code”. International Journal of

Software Engineering and Knowledge Engineering 30 (): 1119–1137. https:/ /doi .org/10.

1142/S021819402050028X.

Kintis, Marinos, Mike Papadakis, and Nicos Malevris. April 2014. “Employing second-order

mutation for isolating first-order equivalent mutants”. Software Testing, Verification and Re-

liability 25 (). ISSN: 1099-1689. https://doi.org/10.1002/stvr.1529.

Langdon, William B., Mark Harman, and Yue Jia. 2010. “Efficient multi-objective higher

order mutation testing with genetic programming”. Journal of Systems and Software 83 (12):

2416–2430. ISSN: 0164-1212. https://doi.org/10.1016/j.jss.2010.07.027.

64

https://doi.org/10.1145/72551.72554
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/TAIC-PART.2008.18
https://doi.org/10.1109/TAIC-PART.2008.18
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1142/S021819402050028X
https://doi.org/10.1142/S021819402050028X
https://doi.org/10.1002/stvr.1529
https://doi.org/10.1016/j.jss.2010.07.027

Laurent, T., S. Gaffney, and A. Ventresque. April 2022. “Re-visiting the coupling between

mutants and real faults with Defects4J 2.0”. In 2022 IEEE International Conference on Soft-

ware Testing, Verification and Validation Workshops (ICSTW), 189–198. Los Alamitos, CA,

USA: IEEE Computer Society. https://doi.org/10.1109/ICSTW55395.2022.00042.

Madeyski, Lech, Wojciech Orzeszyna, Richard Torkar, and Mariusz Józala. 2014. “Over-

coming the Equivalent Mutant Problem: A Systematic Literature Review and a Comparative

Experiment of Second Order Mutation”. IEEE Transactions on Software Engineering 40 (1):

23–42. https://doi.org/10.1109/TSE.2013.44.

McCord, Chris. 2015. Metaprogramming Elixir: Write Less Code, Get More Done (and Have

Fun!) 1st edition. Pragmatic Bookshelf. ISBN: 1680500414.

Morell, L.J. 1988. “Theoretical insights into fault-based testing”. In 1988 Proceedings. Sec-

ond Workshop on Software Testing, Verification, and Analysis, 45062–. https://doi.org/10.

1109/WST.1988.5353.

Niedermayr, Rainer, Elmar Juergens, and Stefan Wagner. 2016. “Will My Tests Tell Me If

I Break This Code?” In Proceedings of the International Workshop on Continuous Software

Evolution and Delivery, 23–29. CSED ’16. Austin, Texas: Association for Computing Ma-

chinery. ISBN: 9781450341578. https://doi.org/10.1145/2896941.2896944.

Offutt, Jefferson. 1989. “The Coupling Effect: Fact or Fiction”. In Proceedings of the ACM

SIGSOFT ’89 Third Symposium on Software Testing, Analysis, and Verification, 131–140.

TAV3. Key West, Florida, USA: Association for Computing Machinery. ISBN: 0897913426.

https://doi.org/10.1145/75308.75324.

. January 1992. “Investigations of the Software Testing Coupling Effect”. ACM Trans-

actions on Software Engineering and Methodology (New York, NY, USA) 1, number 1 ():

5–20. ISSN: 1049-331X. https://doi.org/10.1145/125489.125473.

Offutt, Jefferson, and J. Huffman Hayes. 1996. “A Semantic Model of Program Faults”. (San

Diego, California, USA), ISSTA ’96, 195–200. https:/ /doi.org/10.1145/229000.226317.

https://doi.org/10.1145/229000.226317.

65

https://doi.org/10.1109/ICSTW55395.2022.00042
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/WST.1988.5353
https://doi.org/10.1109/WST.1988.5353
https://doi.org/10.1145/2896941.2896944
https://doi.org/10.1145/75308.75324
https://doi.org/10.1145/125489.125473
https://doi.org/10.1145/229000.226317
https://doi.org/10.1145/229000.226317

Offutt, Jefferson, and Stephen Lee. 1991. “How Strong is Weak Mutation?” In Proceedings

of the Symposium on Testing, Analysis, and Verification, 200–213. TAV4. Victoria, British

Columbia, Canada: Association for Computing Machinery. ISBN: 089791449X. https://doi.

org/10.1145/120807.120826.

Offutt, Jefferson, and Roland Untch. 2001. “Mutation 2000: Uniting the Orthogonal”. In

Mutation Testing for the New Century, 34–44. USA: Kluwer Academic Publishers. ISBN:

0792373235.

Papadakis, Mike, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon. 2016.

“Threats to the Validity of Mutation-Based Test Assessment”. In Proceedings of the 25th

International Symposium on Software Testing and Analysis, 354–365. ISSTA 2016. Saar-

brücken, Germany: Association for Computing Machinery. ISBN: 9781450343909. https :

//doi.org/10.1145/2931037.2931040.

Papadakis, Mike, Yue Jia, Mark Harman, and Yves Le Traon. 2015. “Trivial Compiler Equiv-

alence: A Large Scale Empirical Study of a Simple, Fast and Effective Equivalent Mutant

Detection Technique”. In 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, 1:936–946. https://doi.org/10.1109/ICSE.2015.103.

Papadakis, Mike, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman.

2019. “Chapter Six - Mutation Testing Advances: An Analysis and Survey”, edited by Atif

M. Memon, 112:275–378. Advances in Computers. Elsevier. https://doi.org/10.1016/bs.

adcom.2018.03.015.

Papadakis, Mike, and Nicos Malevris. April 2010. “An Empirical Evaluation of the First

and Second Order Mutation Testing Strategies”. In 2010 Third International Conference on

Software Testing, Verification, and Validation Workshops, 90–99. https://doi.org/10.1109/

ICSTW.2010.50.

Papadakis, Mike, Nicos Malevris, and Marinos Kintis. January 2010. “Mutation Testing

Strategies - A Collateral Approach”. In ICSOFT 2010 - Proceedings of the 5th International

Conference on Software and Data Technologies, 2:325–328.

Parsai, Ali, and Serge Demeyer. 2018. “Dynamic Mutant Subsumption Analysis using Lit-

tleDarwin”. CoRR abs/1809.02435. arXiv: 1809.02435. http://arxiv.org/abs/1809.02435.

66

https://doi.org/10.1145/120807.120826
https://doi.org/10.1145/120807.120826
https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1109/ICSTW.2010.50
https://doi.org/10.1109/ICSTW.2010.50
https://arxiv.org/abs/1809.02435
http://arxiv.org/abs/1809.02435

Petrovic, Goran, and Marko Ivankovic. 2018. “State of Mutation Testing at Google”. In 2018

IEEE/ACM 40th International Conference on Software Engineering: Software Engineering

in Practice Track (ICSE-SEIP), 163–171.

Pierce, Benjamin C. 2002. Types and Programming Languages. 1st edition. The MIT Press.

ISBN: 0262162091.

Polo, Macario, Mario Piattini, and Ignacio García-Rodríguez. June 2009. “Decreasing the

Cost of Mutation Testing with Second-Order Mutants”. Software: Testing, Verification and

Reliability (GBR) 19, number 2 (): 111–131. ISSN: 0960-0833.

Purushothaman, Ranjith, and Dewayne Perry. July 2005. “Toward understanding the rhetoric

of small source code changes”. Software Engineering, IEEE Transactions on 31 (): 511–526.

https://doi.org/10.1109/TSE.2005.74.

Rafalko, Maks. 2023. “Introduction - Infection PHP”. Visited on May 10, 2023. https : / /

infection.github.io/guide/index.html.

Sahinoglu, M., and Eugene Spafford. July 1999. “Sequential Statistical Procedures for Ap-

proving Test Sets Using Mutation-Based Software Testing” ().

Schirp DSO LTD. 2023. “Mutant Source Code”. Visited on May 15, 2023. https://github.

com/mbj/mutant.

Stein, Eike, Steffen Herbold, Fabian Trautsch, and Jens Grabowski. 2021. “A new perspec-

tive on the competent programmer hypothesis through the reproduction of bugs with repeated

mutations”. CoRR abs/2104.02517. arXiv: 2104.02517.

Stryker Team. 2023a. “Stryker - Documentation”. Visited on May 10, 2023. https://stryker-

mutator.io/docs/.

. 2023b. “Stryker Mutator - Mutation Score Example”. Visited on May 10, 2023.

https://dashboard.stryker-mutator.io/reports/github.com/stryker-mutator/robobar-example/

master#mutant.

Synopsys, Inc. 2023. “What is Continuous Development and How Does it Work?” Visited on

May 10, 2023. https://www.synopsys.com/glossary/what-is-continuous-development.html.

67

https://doi.org/10.1109/TSE.2005.74
https://infection.github.io/guide/index.html
https://infection.github.io/guide/index.html
https://github.com/mbj/mutant
https://github.com/mbj/mutant
https://arxiv.org/abs/2104.02517
https://stryker-mutator.io/docs/
https://stryker-mutator.io/docs/
https://dashboard.stryker-mutator.io/reports/github.com/stryker-mutator/robobar-example/master#mutant
https://dashboard.stryker-mutator.io/reports/github.com/stryker-mutator/robobar-example/master#mutant
https://www.synopsys.com/glossary/what-is-continuous-development.html

Technopedia. 2020. “Dictionary - What Does Programmer Mean?” Visited on May 9, 2023.

https://www.techopedia.com/definition/4813/programmer.

The Elixir Team. 2023. “The Elixir programming language”. Visited on May 7, 2023. https:

//elixir-lang.org/.

Van Do, Tien, Hoai An Le Thi, and Ngoc Thanh Nguyen, editors. 2014. “Problems of Muta-

tion Testing and Higher Order Mutation Testing”. In Advanced Computational Methods for

Knowledge Engineering, 157–172. Cham: Springer International Publishing. ISBN: 978-3-

319-06569-4.

Wichmann, B., A.A. Canning, D.L. Clutterbuck, L.A. Winsborrow, N.J. Ward, and William

Marsh. April 1995. “Industrial perspective on static analysis”. Software Engineering Journal

10 (): 69–75. https://doi.org/10.1049/sej.1995.0010.

Williams, Laurie A. 2010. “A (partial) introduction to software engineering practices and

methods”, 60–61.

Winters, T., T. Manshreck, and H. Wright. 2020. Software Engineering at Google: Lessons

Learned from Programming Over Time. O’Reilly Media. ISBN: 9781492082767.

Woo, Jia Hao. 2021. “AppSignal - An Introduction to Metaprogramming in Elixir”. Visited

on November 27, 2023. https : / / blog . appsignal . com / 2021 / 09 / 07 / an - introduction - to -

metaprogramming-in-elixir.html.

Wu, D., M.A. Hennell, D. Hedley, and I.J. Riddell. 1988. “A practical method for software

quality control via program mutation”. In [1988] Proceedings. Second Workshop on Software

Testing, Verification, and Analysis, 159–170. https://doi.org/10.1109/WST.1988.5371.

Zhang, Jie, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng, and Lu Zhang.

2016. “Predictive Mutation Testing”. In Proceedings of the 25th International Symposium on

Software Testing and Analysis, 342–353. ISSTA 2016. Saarbrücken, Germany: Association

for Computing Machinery. ISBN: 9781450343909. https://doi.org/10.1145/2931037.293103

8.

Zilberfeld, Gil. March 2014. “You Can’t Be Agile without Automated Unit Testing”. Better

Software 2014-02 ().

68

https://www.techopedia.com/definition/4813/programmer
https://elixir-lang.org/
https://elixir-lang.org/
https://doi.org/10.1049/sej.1995.0010
https://blog.appsignal.com/2021/09/07/an-introduction-to-metaprogramming-in-elixir.html
https://blog.appsignal.com/2021/09/07/an-introduction-to-metaprogramming-in-elixir.html
https://doi.org/10.1109/WST.1988.5371
https://doi.org/10.1145/2931037.2931038
https://doi.org/10.1145/2931037.2931038

	1 Introduction
	2 Faults in software
	2.1 Static analysis
	2.2 Software testing

	3 Foundations of mutation testing
	3.1 Mutation operators
	3.2 Competent programmer hypothesis
	3.3 Coupling effect
	3.4 Weak vs. strong mutants
	3.5 Equivalent and subsumed mutants
	3.6 Higher order mutants

	4 Mutation testing in practice
	4.1 Mutation Score
	4.2 Problems with mutation testing
	4.3 Industrial adoption

	5 Functional programming and Elixir
	5.1 Elixir
	5.2 Metaprogramming
	5.3 AST and its manipulation
	5.4 Testing in Elixr

	6 Mutix
	6.1 Mutation operators
	6.2 Launching Mutix
	6.3 Injecting mutations
	6.4 Report
	6.5 Performance
	6.6 Caveats

	7 Discussion
	7.1 Limitations & future improvement

	Bibliography

